Discussion of

The Term Structure of Real Rates and Expected Inflation

by Andrew Ang and Geert Bekaert

Martin Evans Georgetown University, NBER and I.E.S. Fellow, Princeton University

Overview

- The paper presents a "No Arbitrage" model of nominal interest rates that incorporates regime switching.
- Model estimates allow us to decompose movements in the nominal term structure into variations in (i) real yields, (ii) expected inflation, and (iii) (inflation) risk premia.
- The model estimates imply:
 - the real term structure is fairly flat $\sim 1.4\%$,
 - real rates are negatively correlated with inflation (expected and unexpected),
 - the inflation risk premium rises with maturity,
 - expected inflation and inflation risk account for $\sim 80\%$ of the variation in nominal rates.

Main Comment: This is a nice paper with a clear and important goal.

A Nominal Yield Decomposition

$$y_t^k = E_t \pi_{t+k,k} + \hat{y}_t^k + \frac{1}{k} E_t \sum_{i=0}^{k-1} \left\{ \theta_{t+i}^{k-i} - \hat{\theta}_{t+i}^{k-i} + \varphi_{t+i} \right\}$$

where

Nominal Term Premia: $\theta_t^k \equiv E_t \left[p_{t+1}^{k-1} - p_t^k \right] - y_1$ Real Term Premia: $\hat{\theta}_t^k \equiv E_t \left[\hat{p}_{t+1}^{k-1} - \hat{p}_t^k \right] - \hat{y}_1$ Inflation Risk Premia: $\varphi_t \equiv y_t^1 - \hat{y}_t^1 - E_t \pi_{t+1,1}$

Observations:

- The absence of arbitrage opportunities only places weak restrictions on θ_t^k , $\hat{\theta}_t^k$, and φ_t .
- Decomposing movements in y_t^k will depend critically on how $E_t \pi_{t+k,k}$, \hat{y}_t^k and the risk premia are identified.
- Previous work on the nominal term structure suggests that θ_t^k is time-varying.

Alternative Identification/Estimation Strategies

Regression Method (Mishkin 1990): Assume $\theta_{t+i}^{k-i} - \hat{\theta}_{t+i}^{k-i} + \varphi_{t+i}$ constant, and $\pi_{t+k,k} = E_t \pi_{t+k,k} + \eta_{t+k,k}$ where $\eta_{t+k,k}$ is a RE forecast error. Estimates of \hat{y}_t^k (and $E_t \pi_{t+k,k}$) are obtained from projecting $y_t^k - \pi_{t+k,k}$ on variables that span the time t information set.

Model-Based 1 (Evans 2003) Identify θ_{t+i}^{k-i} , $\hat{\theta}_{t+i}^{k-i}$ and φ_{t+i} via "No Arbitrage" + other assumptions. Use UK data on y_t^k and \hat{y}_t^k to estimate $E_t \pi_{t+k,k}$.

Model-Based 2 (A&B): Identify θ_{t+i}^{k-i} , $\hat{\theta}_{t+i}^{k-i}$ and φ_{t+i} via "No Arbitrage" + other assumptions. Use US data on y_t^k and $\pi_{t+k,k}$ + RE to estimate $E_t \pi_{t+k,k}$ and \hat{y}_t^k .

A&B's Model

$$1 = E_{t} \left[\exp \left(\hat{m}_{t+1} \right) \mathcal{R}_{t+1}^{i} \right]$$
$$\hat{m}_{t+1} = -\delta_{0} - \delta_{1}' X_{t} - \lambda_{t+1}' \lambda_{t+1} - \lambda_{t+1}' \varepsilon_{t+1}$$
$$\delta_{1}' = \begin{bmatrix} 1 \ 1 \ \delta_{\pi} \end{bmatrix} \lambda_{t+1}' = \begin{bmatrix} \gamma_{1} q_{t} \ \lambda_{f} \left(s_{t+1}^{f} \right) \ 0 \end{bmatrix}$$

$$\begin{aligned} X_{t+1} &= & \mu(s_{t+1}) + \Phi X_t + \Sigma(s_{t+1})^{1/2} \varepsilon_{t+1} \\ &\quad X_{t+1}' = \begin{bmatrix} q_{t+1} & f_{t+1} & \pi_{t+1} \end{bmatrix} \ \mu(s_{t+1})' = \begin{bmatrix} 0 & 0 & \mu_{\pi}(s_{t+1}^{\pi}) \end{bmatrix} \\ &\quad diag \left[\Sigma(s_{t+1}) \right]' = \begin{bmatrix} \sigma_q^2 & \sigma_f^2(s_{t+1}^f) & \sigma_{\pi}^2(s_{t+1}^\pi) \end{bmatrix} \\ &\quad s_{t+1}^i = \{1, 2\}, \qquad \text{Independent, Markov Chains} \end{aligned}$$

Observation 1: The model restricts the inflation risk premium. In particular

$$Cov_{t} \left[\exp \left(\hat{m}_{t+1} \right), \exp \left(\pi_{t+1,1} \right) \right] = 0,$$

so
$$\varphi_{t} = -\ln \left[E_{t} \exp \left(-\pi_{t+1,1} \right) \right] - E_{t} \pi_{t+1,1} \le 0.$$

Observation 2: The real and nominal term premia can vary within a regime. For example, suppose there is no switching. Then.

$$\begin{split} \hat{\theta}_{2,t} &= Cov_t \left(\hat{m}_{t+1}, r_{t+1} \right) - \frac{1}{2} Var_t \left(r_{t+1} \right), \\ &= \lambda_f \sigma_f + \lambda_1 \sigma_q q_t - \frac{1}{2} \delta_1' \Sigma \delta_1. \end{split}$$

A&B's estimates $\Rightarrow q_t$ is very persistent. (NB λ_{t+1} is not the price of risk when switching is present).

Observation 3: The model ignores reporting lags in the CPI. There is variable reporting lag in the CPI of approximately 2 weeks, which might be economically significant when inflation is high and variable.

Observation 4: Nominal Yields and Inflation display the same persistence across regimes:

$$y_t^k = -\frac{1}{k} (A_k(s_t) + B_k X_t)$$

$$\pi_{t,1} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} X_t$$

$$X_{t+1} = \mu(s_{t+1}) + \Phi X_t + \Sigma(s_{t+1})^{1/2} \varepsilon_{t+1}$$

- Evidence on state-dependent mean-reversion in short rates is reported by Gray (1996), Bekaert et al (2001) and Ang and Bekaert (2002).
- Evidence on state-dependent mean-reversion in inflation is reported in Evans and Wachtel (1993), and Evans and Lewis (1995).

Comment 1: Consider a representative consumer model with CRRA utility. With conditional log normality and no switching

$$\psi_{t} = Cov_{t} (m_{t+1}, \pi_{t+1,1}) - \frac{1}{2} Var_{t} (\pi_{t+1,1})$$
$$= -\gamma Cov_{t} (\Delta c_{t+1}, \pi_{t+1,1}) - \frac{1}{2} Var_{t} (\pi_{t+1,1})$$

How big is $Cov_t (\Delta c_{t+1}, \pi_{t+1,1})$? We can estimate $Cov (\Delta c_{t+1}, \pi_{t+1,1} | \Omega_t)$ where Ω_t denotes the information set available to the researcher, but

$$Cov \left(\Delta c_{t+1}, \pi_{t+1,1} | \Omega_t \right) = E \left[Cov_t \left(\Delta c_{t+1}, \pi_{t+1,1} \right) | \Omega_t \right]$$

$$+Cov\left[E_t\Delta c_{t+1}, E_t\pi_{t+1,1}|\Omega_t\right]$$

 $\Rightarrow Cov(\Delta c_{t+1}, \pi_{t+1,1}|\Omega_t)$ may be biased.

Comment 2: The introduction of switching has more potential than the model allows. For example, we could have

$$X_{t+1} = \mu(s_t) + \Phi(s_t)X_t + \Sigma(s_t)^{1/2}\varepsilon_{t+1}$$

A&B chose not to go this route because no closed form solution for yields is available with λ_{t+1} a function of q_t . However, if we eliminated q_t from λ_{t+1} so that

$$\hat{m}_{t+1} = -\delta_0 - \delta'_1 X_t - \lambda(s_t) \lambda_t(s_t) - \lambda_t(s_t) \varepsilon_{t+1}$$

we could solve for yields.

Comment 3: Switching makes "choosing the right specification" tricky. A&B favor version IV of their model because the inflation forecast errors are not serially correlated. This is certainly a large sample property of the model. But....

• Clearly the these forecast errors are serially correlated (beyond the forecast horizon).

Are the forecasters irrational, or was there a peso/learning problem?

The answer matters: Consider the alternative estimates of one-year real yields.

Summary

- Making inferences about the source of nominal term structure movements is HARD. The "No Arbitrage" model helps, but does not make up for the lack of data on real yields/inflation expectations/an economic model.
- Introducing regime-switching is a good idea because it has the potential to deliver a good deal of model flexibility (c.f. changing monetary policy as in Cogley and Sargent 2002).
- My preference would be to drop within-regime variation in the risk premia, and allow for state-dependent mean reversion (as in Evans 2003).
- Whatever the approach, relying on just nominal yields and realized inflation is not enough to establish "stylized facts". We need:
 - to account for the data on inflation expectations, and/or,
 - a GOOD model for the discount factor \hat{m}_{t+1} .