Discussion of "No-Arbitrage Taylor Rules" by Ang, Dong and Piazzesi

Thomas Philippon NYU

March 2005

Outline

- Technical comments
- What are affine models of the term structure?
- What can we learn from these models?

Technical comments

- Homoskedastic interest rate shocks?
- More lags could be useful
- Pricing errors should be for prices, not yields
- GDP growth not ideal for Taylor rule. Gap, or help wanted index would be better

What are affine models?

• No-Arbitrage -> there exist an m that prices all assets

- but (almost) no restrictions on what m should be

• Theory adds content only by restricting what m is

$$m_{t+1} = \exp\left(-r_t - \frac{\lambda'_t \lambda_t}{2} - \lambda'_t \varepsilon_{t+1}\right)$$
$$\lambda_t = \lambda_0 + \lambda_1 X_t$$

• Pricing equation

$$P_t^n = E_t \left[m_{t+1} P_{t+1}^{n-1} \right]$$

• Yields are affine

$$r_t^n \equiv -\frac{\log\left(P_t^n\right)}{n} = \frac{A_n}{n} + \frac{B_n'}{n}Y_t$$

• A_n and B_n are restricted by No-Arbitrage

$$B'_{n} = \delta' + B'_{n-1} (\Phi - \Sigma \lambda_{1}) ,$$

$$A_{n} = \delta_{0} + A_{n-1} - B'_{n-1} \lambda_{0} - \frac{B'_{n-1} \Sigma \Sigma' B_{n-1}}{2}$$

٠

• Compare to unrestricted OLS: cross-equation restrictions

Variable	ir1	ir5	ir10	ir10	xr5
Fed Fund Rate	0.883	0.782	0.648	0.642	0.495
	36.85	24.93	19.61	22.67	2.75
Output Gap	-0.062	-0.262	-0.33	-0.113	-0.608
	-2.89	-9.28	-10.98	-2.96	-3.79
Inflation	-0.014	-0.076	-0.058	-0.032	-0.991
	-0.42	-1.75	-1.32	-0.85	-4.02
Deficit/GDP				0.343	
				7.78	
N	198	198	168	168	194
r2	0.934	0.869	0.842	0.885	0.119

• Holding returns are also affine

$$xr_{t \to t+ au}^{n} \equiv \log\left(P_{t+ au}^{n- au}
ight) - \log\left(P_{t}^{n}
ight) - au r_{t}^{ au}$$

• State space should predict variations of expected excess returns over time

$$E_t \left[x r_{t \to t+\tau}^n \right] = A_n - A_{n-\tau} - A_{\tau} + \left(B'_n - B'_{n-\tau} \Phi^{\tau} - B'_{\tau} \right) Y_t$$

Figure 1:

Variable	ir1	ir5	ir10	ir10	xr5
Fed Fund Rate	0.883	0.782	0.648	0.642	0.495
	36.85	24.93	19.61	22.67	2.75
Output Gap	-0.062	-0.262	-0.33	-0.113	-0.608
	-2.89	-9.28	-10.98	-2.96	-3.79
Inflation	-0.014	-0.076	-0.058	-0.032	-0.991
	-0.42	-1.75	-1.32	-0.85	-4.02
Deficit/GDP				0.343	
				7.78	
N	198	198	168	168	194
r2	0.934	0.869	0.842	0.885	0.119

In this paper

- Do affine restrictions help us identify Taylor rule / monetary shocks?
- Before reading the paper, I thought there were 2 possible scenarios
 - good case scenario
 - bad case scenario

Good case scenario

• NA will help us estimate forward Taylor rule and get rid of the price puzzle

$$\pi_t = \pi_{t-1} - \beta r_t + u_t + v_t$$

$$r_t = \alpha E_t^{CB} [\pi_{t+1}] + \gamma g_t + \varepsilon_t$$

 and

$$E_t^{CB}\left[v_{t+1}\right] = v_{t+1}$$

this creates bias and price puzzle when

 $-\beta$ is small

-
$$\sigma_v >> \sigma_\varepsilon$$

- Can the yield curve help?
 - yes if and only if the term structure contains information about future inflation not captured by lagged macro variables

$$E_t^{yields} \left[v_{t+1} \right] \approx E_t^{CB} \left[v_{t+1} \right]$$

- Direct test: construct predicted inflation and estimate forward looking rule. Are

 *c*_t more or less correlated with Romer-Romer shocks if one uses yields
 in forecasting? Do yields help reduce the price puzzle?
 - Unfortunately, no
 - Consistent with the results of this paper

Bad case scenario

- Remove genuine policy shocks because of "measurement errors" or remove anticipated policy shocks
- Shocks from NA Taylor rule are much smaller that the RR shocks

Tentative conclusion. NA seems unlikely to help us identify monetary policy shocks better, especially compared to Romer-Romer approach (also conclusion reached by the authors)

What can we learn from affine models?

- Failure of good case scenario could just mean that Fed knows more than the private sector
 - But we can still use term structure to back out private sector expectations
 - Alternative to using forecast data
 - Estimate learning models, commitment, etc..
 - Practical question of how reliable risk premia estimates are

- We can use these models to test economic theories
 - What drives risk premia, what are the links between treasury and corporate bonds?
 - Welfare costs of bad monetary policy could be high risk premia on long bonds
 - Recent episode: long rates at 4.25%. Interpretation? Look at Forward Rate. Low risk premia or low expectation of future short rates?
 - Banks made a lot of money on carry-trades in past 2 years.

Conclusion

- Information in bond yields can help us test economic theories
 - This paper provides many useful tools and results
- Not entirely clear to me they will help us estimate monetary policy shocks