Discussion of Comin and Mulani, "A Theory of Growth and Volatility"

Charles I. Jones

U.C. Berkeley and NBER

Outline

- 1. Facts
- 2. Model
- 3. Comments

Facts

- 1. Private R&D intensity rises 3-fold since 1950.
- 2. Productivity growth has no trend (boom, slowdown, recovery).
- 3. Aggregate volatility has fallen.
- 4. Firm-level volatility has risen.
- Idea: Explain all of these facts in a single framework.

Model

- Schumpeterian growth model with *two* kinds of innovations
 - q: Standard firm-specific innovations
 - *h*: "General innovations" (GI) benefit all firms Innovator only captures own cost-reduction.

Equilibrium: λ_h , λ_q , v_ℓ , v_f

$$1 - \bar{s}_q = \bar{\lambda} (\delta_q^{1/N} v_\ell - v_f) \tag{1}$$

$$c'(\lambda_h/N) = (\delta_h - 1)v_\ell \tag{2}$$

$$v_f = 0 \tag{3}$$

$$rv_{\ell} = (1 - \alpha)\theta - c(\lambda_h) + \lambda_h(\delta_h - 1)v_{\ell} - \lambda_q v_{\ell}$$
(4)

(1) implies v_ℓ decreases in s
_q. (2) implies λ_h increases in v_ℓ.

 $\Longrightarrow \lambda_h$ decreases in \bar{s}_q .

• Also, λ_q increases in \bar{s}_q (not surprising).

Growth

$$\gamma_{y_s} = \#q_s \cdot \ln \delta_q + \#h \cdot \ln \delta_h$$
$$\gamma_y = \frac{1}{N} \sum_{s=1}^N \gamma_{y_s} = \left(\frac{1}{N} \sum_{s=1}^N \#q_s\right) \cdot \ln \delta_q + \#h \cdot \ln \delta_h$$

Poisson arrival

$$E\gamma_{y_s} = \lambda_q \ln \delta_q + \lambda_h \ln \delta_h$$
$$E\gamma_y = \lambda_q \ln \delta_q + \lambda_h \ln \delta_h$$
$$V\gamma_{y_s} = \lambda_q (\ln \delta_q)^2 + \lambda_h (\ln \delta_h)^2$$
$$V\gamma_y = \frac{1}{N} \cdot \lambda_q (\ln \delta_q)^2 + \lambda_h (\ln \delta_h)^2$$

• How do these change when \bar{s}_q rises?

Comments

What about \bar{s}_h ?

- Two facts about model:
 - Calibration: 90% of growth in 1960 due to GI.
 - Model features enormous spillovers of GI. (N = 35)
- Theory of institutional evolution: in a well-run society, evolution toward implementing optimal allocation.
- Strongly suggests that institutions should be evolving to increase λ_h ; unclear what should be happening to λ_q .
 - But calibration features declining λ_h and rising λ_q .
 - Is this toward or away from the optimal allocation?
- Perhaps in reality there is an s_h that has been rising??
 Example: Broadening of patents to include software and algorithms.

 \implies This would sharply alter predictions.

Evidence on λ_h ?

- Main evidence is (nice) list of GIs
 - Of 25 listed, only 4 are from after 1960
- More recent GIs may not be sufficiently appreciated.
- Maybe list is incomplete. Recent examples:
 - Relational databases, spreadsheets
 - Inventory tracking programs
 - WalMart
- Very unclear how to count. Evidence surely inconclusive.

Idea Production Functions

• Weird specification, something like:

Probability of
$$\mathbf{GI} = \bar{\lambda}_h \left(\frac{R}{Y} \right)^{
ho}$$

where R/Y is the *share* of sectoral output spent innovating.

- Problem: Suppose Hong Kong and the RestofWorld are separate closed economies, 1000-fold different in size.
 - Start with same initial conditions other than size.
 - Both generate same flow of GI, even though one has 1000 times more research.
- Alternatively, more sectors leads to more GI and growth (even if absolute amount of research is the same).

Calibration

- A true RBC model only (true) technology shocks!
- Table 3, using stdev instead of var; "explains" half of the decline

Moment	Data	Model
${\sf E} \gamma_{y2000}$.020	.017
Stdev γ_{y1950}	.020	.016
Stdev γ_{y2000}	.012	.012
Increment	008	004

- Model ignores all other sources of volatility, however, so matching volatility in 2000 is a weakness, not a strength.
- Other statistics? Sectoral, firm volatility, λ_h , n_h , n_q