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Abstract
The welfare reform literature of the last decade has largely focused on mean treatment ef-

fects. Our own recent work, Bitler, Gelbach & Hoynes (2006), provides evidence of pervasive
heterogeneity in the effects of Connecticut’s Jobs First. To the extent that other research in
the welfare reform literature has addressed treatment effect heterogeneity, the focus has largely
been on mean treatment effects within small numbers of subgroups. In this paper, we again
use experimental data from Jobs First to evaluate whether subgroup-specific mean treatment
effects can replicate the treatment effect heterogeneity we measured previously. We show how
to construct null hypotheses under which the treatment group’s earnings distribution can be
consistently estimated using mean treatment effects and control group earnings data. This
approach allows us to avoid making any parametric restrictions on the earnings distribution
other than those implied by the null. We find substantial evidence that even relatively flexi-
ble subgroup-specific mean treatment effects specification are inadequate to generate synthetic
treatment effect heterogeneity comparable to the observed heterogeneity. This conclusion holds
even allowing mean treatment effects to vary according to key variables like race, education,
and pre-reform earnings history, as well as by time since random assignment.
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1 Introduction

Welfare reform dramatically changed the system of cash support for low income families with

children in the United States. By the end of 1998, all states were required to eliminate Aid to

Families with Dependent Children (AFDC) and replace it with Temporary Assistance for Needy

Families (TANF). This meant large changes in incentives facing welfare recipients including adding

lifetime time limits for welfare receipt, as well as stringent work requirements and the threat of

financial sanctions. Due to this policy change, and the concurrent changes in the Earned Income

Tax Credit and the strong labor market of the 1990s, annual employment rates of less educated

single mothers increased by fully 18 percentage points—from 64 percent in 1992 to 82 percent in

2000 (Eissa & Hoynes (2006)).1

An enormous literature has followed this important set of policy changes. Recent comprehensive

reviews of the literature conclude that welfare reform led to a reduction in welfare caseloads and an

increase in employment and earnings, with less consistent and less statistically significant findings

for the impacts on income, poverty, and child well-being (Grogger & Karoly (2005) and Blank

(2002)).

There has been significant attention in this literature to exploring the extent of heterogeneity

in the effects of welfare reform. One might expect to find heterogeneity, for example, because of

differences in preferences, fixed costs of work, wage opportunities, or variation in the risk of being

impacted by welfare.

In earlier work, we explored this heterogeneity by estimating the impact of welfare reform on

the distribution of earnings, transfers, and income (Bitler et al. (2006)). In particular, we estimated

quantile treatment effects applied to a randomized experiment of an important welfare reform in

Connecticut. The quantile treatment effects are estimated simply as the difference in outcomes

for various quantiles of the treatment (welfare reform) group and the control (AFDC) group and

capture estimates of the treatment across the distribution. We found evidence of substantial het-

erogeneity of Connecticut’s reform: For example, the reform had no impact on the bottom of the

earnings distribution, it increased earnings in the middle of the distribution, and, before time lim-

its took effect, reduced earnings at the top of the distribution. Importantly, we argued that this

1Annual employment rates were calculated from the March Current Population Survey, including a sample of
single mothers between the ages of 19 and 44 with a high school education or less.
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heterogeneity is consistent with predictions of static labor supply theory.

Quantile treatment effects offer one way to get at underlying heterogeneity; in the context of

welfare reform a far more common approach is to estimate mean impacts for various demographic

subgroups. For example, some studies such as Meyer & Rosenbaum (2001) find that the impacts of

reform are greater for never-married women and women with young children. While much of the

existing work that focuses on subgroups is motivated by a desire to uncover heterogeneity arising

from differences in preferences or wage opportunities, in practice, choice of subgroups is often

somewhat ad hoc and dictated in part by data constraints. Further, Grogger, Karoly & Klerman

(2002) conclude that “the effects of reform do not generally appear to be concentrated among any

particular group of recipients” (p. 231).

In this paper, we evaluate the ability of subgroup-specific, constant mean treatment impacts

to generate the rich heterogeneity observed using the semi-parametric quantile treatment effects

estimator we used in Bitler et al. (2006). As with our earlier work, we use data from a randomized

experiment in Connecticut. In that experiment, welfare recipients and applicants were randomly

assigned to either Jobs First, Connecticut’s welfare reform program, or to the existing AFDC

program.

We begin by presenting the mean treatment effects for the full sample and for subgroups. We

construct subgroups based on the race, education, and marital status of the mother, the age of her

youngest child, her number of children, and her welfare and employment history.2 We compare

synthetic distributions created from these mean impacts to the quantile treatment effects (QTE)

estimated for the full sample and for various subgroups. To assess the importance of heterogeneity in

these two estimation approaches, we test whether the mean treatment effects vary across subgroups,

and whether the quantile treatment effects vary across quantiles. We then go on to formally test

for the adequacy of mean impacts in capturing the heterogeneity that we find using the quantile

treatment effects. In particular, we test whether the quantile treatment effects in the full sample are

statistically distinguishable from synthetic results generated under the null hypothesis that reform

has constant mean impacts within a variety of subgroups.

We have two key findings. First, substantial evidence of treatment effect heterogeneity in

welfare reform’s impact on earnings exists not only for the full sample, but also within virtually

2The vast majority of the participants in the experiment were women, thus we use “she” and “her.”
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all subgroups we examine. Importantly, the nature of the heterogeneity seems to differ depending

on the woman’s race, education and earnings history. Our analysis of mean treatment effects also

shows evidence of heterogeneity—we can reject equality of mean impacts across many subgroups.

Second, we resoundingly reject the null hypothesis that mean treatment effects by subgroup can

explain the heterogeneity shown in the full-sample quantile treatment effects. This conclusion holds

even when we define subgroups as three-way classifications between race, education, and earnings

history.

The Jobs First experiment and data are ideal for this exercise. First, the use of experimental

data means we can evaluate alternative estimators without concerns about identification, selection

and the like. Second, we have rich administrative pre-treatment data on earnings and welfare

history to supplement the usual demographic variables (race, ethnicity, education, age of youngest

child, number of children, marital status) for forming subgroups. This rich dataset allows us to

form subgroups that are not only more detailed than is possible in standard data sets but also

more likely to characterize wage opportunities or incentives. Lastly, as is typical with experimental

analyses of social programs, our experimental sample is drawn from the population of welfare

recipients and applicants. This has the advantage of generating a more homogeneous sample than

the typical non-experimental sample. Thus, if treatment effect heterogeneity cannot be explained

with subgroup-specific mean treatment effects here, it is even less likely to be explicable in non-

experimental settings.

Exploring heterogeneity is important insofar as it allows us to “get inside the black box” of

welfare reform. Can we identify groups with larger or smaller responses to the reforms? If so, then

this information could help improve targeting of certain features of the reform to the appropriate

groups. Understanding heterogeneity in the effects of reform is important not just for the purposes

of policy evaluation, but also because it allows us to test implications of economic models of

behavior.

The paper provides an important contribution to both the welfare reform literature and the

growing methodological literature on heterogeneous treatment effects. On the latter topic, there

are many other applications where researchers rely on estimating means within subgroups (e.g.,

job training, anti-poverty programs like Mexico’s Progresa, and social programs like Moving To

Opportunity in the United States). Moreover, there is an extensive literature on treatment effect
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heterogeneity (surveyed in Angrist (2004)), including Imbens & Angrist (1994), Heckman & Vyt-

lacil (2000), Heckman & Vytlacil (1999), Hotz, Imbens & Klerman (Forthcoming), Abadie (2002),

Crump, Hotz, Imbens & Mitnik (2006a), Crump, Hotz, Imbens & Mitnik (2006b). Papers that

use quantile treatment effects or instrumental variable quantile treatment effects to investigate

this heterogeneity in various contexts include Heckman, Smith & Clements (1997), Firpo (2007),

Abadie, Angrist & Imbens (2002), Friedlander & Robins (1997), Djebbari & Smith (2005), and

Chernozhukov & Hansen (2005). Other papers that consider the distribution of treatment effects

include Athey & Imbens (2006) Poirier & Tobias (2003), and Wu & Perloff (2006).

However, to our knowledge, ours is the first paper to provide a testable null hypothesis un-

der which all heterogeneity is—nonparametrically—driven by treatment effects that are constant

within, but vary across, identifiable subgroups. This is an important innovation because so many

applied researchers (reasonably) use ad hoc subgroups to try and isolate sample members likely

to respond to program or policy changes. If our finding—that this approach falls woefully short

of capturing the actual form of heterogeneous treatment effects—holds more generally, then the

subgroup-specific effect may need to be reconsidered. Estimating mean impacts may miss a lot,

even across multiple subgroups, so researchers should consider using distributional estimators such

as those used here.

The remainder of the paper is organized as follows. In section 2 we provide an overview of

welfare reform, the Connecticut Jobs First program, and its theoretically predicted effects. We

then discuss our data in section 3. We discuss the empirical methods in section 4 and present the

results for the mean treatment effect and quantile treatment effects in section 5. We present our

tests for the adequacy of the subgroup-specific treatment effects compared to the QTE in section 6

and the results of those tests in section 6.1. We conclude in section 7.

2 Welfare Reform, Jobs First & Predicted Labor Supply Effects

The current era of welfare reform consists of two periods of policy change. First, in the early- to

mid-1990s about half of the states were granted waivers to reform their AFDC programs. Second,

state experimentation led to passage of the 1996 Personal Responsibility and Work Opportunity Act

(PRWORA). PRWORA eliminated AFDC and replaced it with Temporary Assistance for Needy
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Families (TANF), representing a dramatic federal reform.

In hindsight, probably the most important feature of the PRWORA reform is the introduction

of time limits—which limit the number of years over a woman’s lifetime that she could receive

cash support. The other central features of TANF are work requirements, financial sanctions, and

enhanced earnings disregards. These changes were designed to increase work and reduce welfare

participation.3

A federal requirement faced by states seeking welfare waivers was that the state evaluate the

policy changes, which some states did using random-assignment experiments. This requirement

has led to a wealth of data for “waiver states” allowing for experimental analyses of welfare policy

changes. Interestingly, evaluation was not required when states implemented their TANF programs.

In this project we analyze Connecticut’s waiver program, called Jobs First. We have chosen

Connecticut because its waiver program is among the most TANF-like of state waiver programs.

Importantly, the Jobs First waiver contained each of the key elements found in TANF programs:

Time limits, work requirements, financial sanctions, and enhanced earnings disregards. In contrast,

few state waivers contained time limits of any kind. By using the experimental data available for

Connecticut, we are able to avoid the pitfalls of non-experimental analyses of welfare reform (Blank

(2002)).

In the Connecticut experiment, a random sample of welfare recipients (current recipients or new

applicants) were randomized into either the Jobs First program or the existing AFDC program. The

programs differ in many ways. First, Jobs First has a time limit of 21 months compared to no time

limit in the AFDC program. Second, Jobs First has a very generous earnings disregard policy:

Every dollar of earnings below the federal poverty line is disregarded in benefit determination,

leading to an implicit tax rate of 0% for all earnings up to the poverty line. In contrast, the

implicit tax rate under AFDC was two thirds in the first four months on aid, and 100 percent

after.4 Furthermore, work requirements and financial sanctions were strengthened in the Jobs First

program relative to AFDC. For more information on these and other features of Jobs First see

3Other changes adopted by some states include: Expanding eligibility for two-parent families, family caps (freezing
benefits at the level associated with current family size), and imposing residency and schooling requirements for
unmarried teen recipients. For a detailed discussion of these policy changes, see Blank & Haskins (2001) and Grogger
& Karoly (2005).

4These implicit tax rates in AFDC applied to all earnings above a monthly disregard of $120 during a woman’s
first 12 months on aid, and $90 thereafter.
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the final report on the Jobs First evaluation (Bloom, Scrivener, Michalopoulos, Morris, Hendra,

Adams-Ciardullo & Walter (2002)) or our earlier paper (Bitler et al. (2006)).

This combination of short time limits (in fact, the Job’s First time limits are the shortest in

the U.S. [Office of Family Assistance (2003)]) and generous disregards leads to large changes in

the incentives to work for welfare recipients. As such, Jobs First provides the perfect setting to

examine the heterogeneous impacts of welfare reform.

Labor supply theory has strong and heterogeneous predictions concerning welfare reforms like

those in Jobs First. To make the discussion more concrete, consider Figure 1 which shows a stylized

budget constraint under Jobs First (represented by AF ) and AFDC (represented by AB). Further,

suppose that a woman has been on aid for fewer than 21 months, so that the time limit does not

yet bind.5

What we have in mind is to compare the outcome of a woman if she were assigned to AFDC

to the counterfactual outcome for that same woman if she were assigned to Jobs First. At the

time of randomization, women will largely by definition6 be on cash support and, most likely, not

working. However, after random assignment, the AFDC and Jobs First groups are tracked for three

to four years. Over that time period, women in the AFDC group will leave welfare—at different

rates for different women. In fact, we find that about half of women in the AFDC control group

have left welfare within two years after random assignment, which is similar to the pattern of

welfare dynamics in the literature (Bane & Ellwood (1994)). So if we consider the full experimental

period, we may find women in the AFDC group at a range of labor supply choices such as points

{A,C,D,E,H} in Figure 1. We want to then compare labor supply outcomes for women arrayed

along these choices to the counterfactual outcome they would be predicted to have had if they had

instead been assigned to Jobs First.

Applying the static labor supply model, we assume that the woman can freely choose hours of

work at her (assumed fixed) wage. A woman who would not work (i.e., would locate at point A)

when assigned to AFDC will either stay out of the labor force or will locate at some point on AF

when she is instead assigned to Jobs First. This outcome, of course, will depend on her preferences,

5The remainder of this section follows Bitler et al. (2006).
6Anyone from the recipient sample is by definition already receiving support at the time of random assignment.

A very large majority of women in the applicant sample do wind up receiving aid, though some apparently do not
qualify for aid.
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her fixed costs of work, and her wage opportunities.7

Next, suppose a woman works positive hours and receives welfare if assigned to AFDC (so that

she locates at point C). If she is assigned to Jobs First, her hours will increase as long as the

substitution effect dominates the income effect. Now imagine that at some time after assignment

to AFDC, a woman ends up at a point like D, where she is earning above the AFDC break-even

point but below the poverty line. Assignment to Jobs First would make this woman eligible for

welfare and the outward shift in the budget line would be predicted to reduce her hours of work.

Finally, consider a woman who, given assignment to AFDC, eventually ends up at point E or

H. At E, as long as leisure and consumption are normal goods, the woman is predicted to decrease

her hours to qualify for the windfall payment. At H, assignment to Jobs First could lead to no

change or a reduction in hours, depending on her preferences.

The set of points {A,C,D,E,H} represent the (qualitatively) possible hours/earnings outcomes

under AFDC assignment. Therefore, we can summarize the impacts of Jobs First as follows: At

the bottom of the earnings distribution, the Jobs First effect will be zero; it will then be positive

over some range; then it will become negative; and finally at the very top of earnings distribution

it may again be zero.

It is useful to think about how these predictions will vary with differences in wage opportunities.

Suppose we compare two hypothetical women with similar preferences and fixed costs of work, but

where one woman has higher wage opportunities because, for example, she has more education

or more extensive work experience. With a higher wage and similar preferences, the higher-wage

woman will unambiguously be more likely to enter work from point A. In addition, the higher-wage

woman will be more likely to experience a reduction in hours. Why? Importantly, the Jobs First

phase-out point is the federal poverty line and thus (in income space) does not vary across the two

women. So the higher-wage woman will reach the federal poverty line at a lower hours point than

7Assuming that offered wages do not vary with hours worked, predictions about hours worked map one-to-one to
predictions about earnings. This fact is important since we observe earnings but not hours worked. In Bitler et al.
(2006) we discuss the possibility that “queuing” effects might cause women to reduce their reservation wages for
working in order to secure employment before the time limit. However, we find little empirical evidence to support
this theory. In other work analyzing Canada’s Self-Sufficiency Program, or SSP, we do find evidence of a decline in
wages at the top of the wage distribution (see Bitler, Gelbach & Hoynes (Forthcoming)). Card & Hyslop (2005), in
another study of SSP, provide a dynamic model suggesting such behavior and also find empirical evidence in support
of it. However, SSP differs from Jobs First, most notably in that it provides a limited time period for experimental
participants to establish eligibility for the program’s generous earnings subsidy. This feature is not present in Jobs
First (or in any other waiver or TANF program).
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the lower-wage woman. When assigned to AFDC, then, the higher-wage woman will be more likely

to locate at points like D or E where hours are predicted to decline.

In sum, simple labor supply theory yields important heterogeneous predictions for the impacts

of welfare reform on labor supply and earnings. Some groups may remain out of the labor market

with no increase in hours, either due to low labor market opportunities, high fixed costs of work

or strong tastes for leisure over income. Other groups may experience increases in hours worked

with entry into the labor market. Finally, some women who would otherwise exit welfare relatively

quickly and work at a level above the AFDC break-even point may be driven to work fewer hours

in the presence of Jobs First.

3 Data

The evaluation of the Connecticut Jobs First program was conducted by MDRC.8 In this analysis,

we use public-use data made available by MDRC on completion of an application process. The

data include information on a total of 4,803 cases; 2,396 were assigned to Jobs First, with 2,407

assigned to AFDC. The sample includes both women who were assigned to the experiment when

they applied to start a new spell on welfare (the “applicant” sample) and women who were already

on aid when they were assigned to the experiment (the “recipient” sample). The experiment took

place in the New Haven and Manchester welfare offices.

The public use data consist of administrative data on earnings, welfare receipt and welfare

payments, and survey data on demographic variables. Data on quarterly earnings and monthly

income from welfare and food stamps are available for most of the two years preceding program

assignment as well as for at least 4 years after assignment.9 In this paper, we use earnings data from

only the first seven quarters after random assignment. We focus on this period because the time

limit cannot bind for anyone in the sample during the first 21 months after random assignment; as

we discuss above, labor supply predictions are cleanest before the time limit. Demographic data

collected at experimental baseline include each woman’s number of children, education, age, race,

8MDRC, formerly known as the Manpower Demonstration Research Corporation, identifies itself as “a nonprofit,
nonpartisan social policy research organization with headquarters in New York City and a regional office in Oakland,
California.” MDRC has conducted many other social experiments in addition to Jobs First.

9For confidentiality purposes, MDRC rounded all earnings data. Earnings between $1–$99 were rounded to $100,
so that there are no false zeros. All other earnings amounts were rounded to the nearest $100.
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ethnicity, and marital status, all at the time of random assignment. Random assignment took place

between January 1996 and February 1997. Our final sample has 4,773 cases–2,392 assigned to Jobs

First and 2,381 assigned to AFDC–for which we observe earnings for the full 16-quarter follow-up

period.10

Table 1 reports summary information concerning a number of baseline characteristics. As

described in Bloom et al. (2002) and Bitler et al. (2006), average values of several of these charac-

teristics differ statistically by treatment assignment. In particular, the first two columns provide

means for the Jobs First (column 1) and AFDC (column 2) groups. The third column reports the

unadjusted difference in means across the program groups, with indicators as to when the difference

is statistically significantly different from zero. The table shows that the Jobs First group is sta-

tistically significantly more likely than the AFDC group to have more than two children, be in the

recipient sample (drawn from the current caseload of AFDC recipients), and has lower earnings for

the period prior to random assignment. A standard test for joint significance of the 17 differences

(including some missing indicators), however, leads to a χ2 test statistic of 22.83 (p-value of 0.16),

so we cannot reject that assignment was indeed random.

Despite our inability to reject random assignment, one might be concerned about the pre-

treatment differences in earnings and welfare receipt. Mindful of this possibility, we deal with

the unbalanced sample using inverse propensity score weighting, as in Bitler et al. (2006).11 We

use a logit model to estimate the probability that person i is in the treatment group; we include

as regressors the following pre-random assignment variables: Quarterly earnings in each of the 8

pre-assignment quarters, quarterly AFDC and quarterly Food Stamps payments in each of the 7 pre-

assignment quarters, dummies indicating whether each of these variables is nonzero, and dummies

indicating whether the woman was employed at all or on welfare at all in the year preceding

random assignment. We also include dummies for being in the applicant sample, race, marital

status, education, number of children, and age of woman. Finally, we include dummies indicating

whether education, number of children, or marital status is missing.

10In this version of the paper, we dropped 30 women from the sample because they are missing earnings data for
the 16th quarter after random assignment. Since we focus only on the first seven quarters after random assignment,
we will add these women back to the sample in future versions.

11Firpo (2007) shows that this approach yields asymptotically consistent estimates of QTEs for continuous de-
pendent variables. Because MDRC essentially rounds the earnings data we use to the nearest hundred dollars,
our dependent variable is actually discrete. Gelbach (2005) shows that sample quantiles computed using inverse
propensity score weighting are consistent for the population quantiles of the rounded earnings variable.
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Denoting the estimated propensity score for person i as p̂i and the treatment dummy as Di,

the estimated inverse-propensity score weight for person i is

ω̂i ≡
Di

p̂i
+

1−Di

1− p̂i
. (1)

We use inverse-propensity score weights in all our estimators used below. We find that the weighting

never changes the qualitative conclusions concerning the quantile treatment effects; it does, however,

lead to some important changes in the mean treatment effects. Unweighted results are available

upon request.

4 Average Treatment Effects and Quantile Treatment Effects

To introduce the alternatives for capturing heterogeneity, it is helpful to briefly introduce a model

of causal effects. For the moment, ignore the need to adjust for propensity score differences. Let

Di = 1 if observation i receives the treatment, and 0 otherwise. Let Yit(d) be i’s counterfactual

value of the outcome Y in period t if person i has Di = d. The fundamental evaluation problem

is that for any i, at most one element of the pair (Yit(0), Yit(1)) can ever be observed: we cannot

observe someone who is simultaneously treated and not treated. Evaluation methodology focuses

on inferences concerning various features of the joint distribution of (Y (0), Y (1)). There is an

enormous literature concerning this model, which is variously called the Roy Model, the Quandt

Model, and the Rubin Causal Model, as well as the assumptions under which it is useful (see,

for example, papers by Heckman et al. (1997) or Imbens & Angrist (1994) for further details and

citations).

The treatment effect for person i in period t, is equal to the difference between her period-t

outcome if treated and untreated: δit ≡ Yit(1)−Yit(0). We use δt to represent the average over the

population of δit for period t, and we use δ to represent the average over the population of δit for

all periods. Using overbars to denote sample means, random assignment allows us to estimate the

average effect of the policy for period t consistently using the difference in sample mean outcomes:

δt ≡ Y t(1) − Y t(0). Likewise, δ ≡ Y (1) − Y (0) is a consistent estimate of E[δit], where this

expectation is taken over all i and t.

In the welfare reform literature, heterogeneity is most commonly introduced by estimating
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mean treatment effects for subgroups of the population. For example, subgroup g might consist of

women (in both the treatment and control groups) who share a certain race, education, or welfare

history. Then, define Y g(i)
it (d) as the counterfactual outcome value in period t for person i who is a

member of subgroup g(i) when she has treatment status d. Again, under random assignment, we

can estimate the mean treatment effect for each subgroup g and period t by differencing subgroup

means between the treatment and control groups: δt(g) ≡ Y
g
t (1) − Y t

g(0). Accounting for the

unbalanced sample simply requires calculating weighted means using the inverse propensity scores

as weights.

The mean of Y is just one identified feature of the joint treatment and control group distri-

butions. More generally, the marginal distributions F0(y) and F1(y) are always identified, where

Fd(y) ≡ Pr[Yi(d) ≤ y] for a randomly drawn i. Quantile treatment effects (QTE) are simple

features of these marginal distributions. For treatment d, the qth quantile of distribution Fd is

defined as yqd ≡ infy{y : Fd(yqd) ≥ q}. The quantile treatment effect for quantile q is then

∆q = yq1 − yq0. We can account for inverse propensity score weighting by defining the empirical

cdf as F̂d(y) ≡
∑

i:Yi(d)≤y ω̂i/
∑

i ω̂i and then proceeding as before. The QTE for quantile q may be

estimated very simply as the difference across treatment status in the two outcome quantiles. For

instance, if we take the sample median for the treatment group and subtract from it the sample

median for the control group, we have the QTE at the 0.5 quantile. Other quantile treatment

effects are estimated analogously; we evaluate the distributions at all 99 centiles. As with mean

treatment effects, we can estimate QTE for subgroups of the population by calculating quantiles

within these subgroups and proceeding as above.

We make one final methodological note requiring quantile treatment effects. QTE capture het-

erogeneity in that they tell us how the distribution changes when we assign Jobs First treatment

randomly. We wish to stress an important methodological distinction between the quantile treat-

ment effects and quantiles or other features of the treatment effect distribution. Unlike quantile

treatment effects, quantiles of the distribution of treatment effects cannot generally be written as

features of the marginal distributions. Rather, they require more detailed knowledge of the joint

distribution (i.e., further assumptions about it). Under some conditions, the distribution of treat-

ment effects is recoverable from the quantile treatment effects. For example, if the treatment effect

is equal for all observations, then the distribution of treatment effects is degenerate and is fully
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identified by the mean impact. Second, if women’s ranks in the distributions are the same regard-

less of whether they are assigned to treatment or control group, i.e., there is rank preservation

across treatment status, then the QTE at quantile q tells us the treatment effect for someone whose

location is quantile q in the given distribution. Rank preservation is a strong assumption, however,

and it will fail here if, for example, preferences for work do not map one-to-one with rank in the

earnings distribution.12

5 Mean and Quantile Treatment Effects

In this section, we report mean and quantile treatment effects for the full sample, as well as for

several subsamples. We also test whether mean impacts differ across subgroups and whether the

set of QTE differ from the mean treatment effect. As noted above, we limit our analysis here to the

pre-time limit period. Since we use the person-quarter as the unit of analysis, there are a total of

7× 4, 773 = 33, 411 observations in our sample. Five of our subgroup classifications are commonly

used in analyses of welfare programs. These subgroups are defined by educational attainment, by

race, by age of youngest child, by number of children, and by marital history at the time of random

assignment. We also construct two additional subgroups, based on welfare and on employment

history. Because welfare and employment history data are rarely available in nonexperimental data

sets, subgroups based on these variables are rarely used in the literature. Finally, we consider

subgroups defined by cross-classifying some of the eight subgroup variables just described. For

example, we construct subgroups such as race by educational attainment, or age of youngest child

by educational attainment by employment history.

5.1 Mean Treatment Effects

Table 2 reports estimated mean treatment effects. The first row, for the full sample, shows that

Jobs First is associated with an increase in quarterly earnings of $80. This estimate is statistically

insignificant, as the 95% confidence interval of [−38, 122] includes 0. Moreover, the point estimate

is small by comparison to the control group mean of $1,112.

The next three rows of Table 2 report estimated mean treatment effects separately for whites,

12We plan to address empirical tests for evidence against rank preservation in future work.
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blacks and Hispanics. The estimate of $228 for whites is both statistically significant and large

relative to the control group mean. By contrast, estimates for blacks and Hispanics are statistically

insignificant and substantively small. The row below the Hispanics’ treatment effect row reports

an F statistic testing the null hypothesis that the mean treatment effects are the same across race;

the test clearly rejects, so we can say with confidence that there is racial heterogeneity in the mean

treatment effects. The next row reports an F statistic for testing the same null when we exclude

observations for which race is either missing or different from white, black or Hispanic; there are

305 such observations.13

The next set of results reports mean treatment effects of $133 and $87 for high school dropouts

and women with either a high school diploma or GED (henceforth, “dropouts” and “high school

graduates”). The former estimate is statistically significant, while the latter is not. Given that

mean control group earnings for dropouts are less than half the mean for high school graduates,

these estimates are substantively quite distinct. An F test clearly rejects equality of these estimates,

though we do not reject when we use an F test based on the sample that does not include 284

women missing data on educational attainment. Results for women whose youngest child is aged

5 or younger show a statistically significant estimated mean treatment effect of $86. The estimate

of $143 for those whose youngest child is aged 6 or older is also significantly different from zero.

The reported F statistics show that we can reject equality of these estimates when we include 157

observations with missing data on youngest child’s age, but not when we exclude these observations.

Generally similar results appear when we define subgroups using the number of children in the case

or marital history at the time of random assignment.

The final two sets of results concern subgroups defined using either AFDC or employment history

at the time of random assignment. There are two AFDC-history subgroups: women who received

any AFDC income in the quarter that occurred 7 quarters before random assignment, and those who

did not. The employment-history subgroups are defined analogously, according to whether women

had any earnings income in the quarter occurring 7 quarters before random assignment. Among

women with AFDC income 7 quarters before random assignment, the estimated mean treatment

13To conserve space, we do not report estimated mean treatment effects for women missing data on the variables we
use to construct our subgroups. However, the first F statistic in each pair reported in Table 2 is based on estimates for
both the reported subgroups and the set of women with missing data on the relevant subgroup variable. Moreover, in
constructing the synthetic earnings variables we use below, we treat women with missing data as a separate category.
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effect was a statistically significant $109, which is moderately large relative to the control group

mean. By contrast, women with no AFDC income 7 quarters before random assignment had a

statistically insignificant and small estimated mean treatment effect of $46. The reported F test

shows that these estimated mean treatment effects are not statistically different.14 Classifying

subgroups based on employment history, we see that the estimated mean earnings impact is $175

among those with no 7 quarters-lagged employment history and $126 among those with such a

history. The reported F statistic shows that these estimates are clearly statistically significantly

different from each other.

Overall, the estimated mean impacts show substantial and often statistically significant hetero-

geneity. Interestingly, there is no consistent pattern relating the magnitude of the treatment effects

to, say, control group mean earnings. For example, some subgroups show larger impacts for more

“advantaged” women (whites, ever married), but others show larger impacts for less advantaged

women (less educated, less employment history).

5.2 Quantile Treatment Effects

We now turn to our results for the quantile treatment effects. We construct QTE for 98 centiles

in graphical form.15 As above, we use the person-quarter as the unit of analysis and analyze the

33,411 observations on quarterly earnings during the first seven quarters. Figure 2 reports QTE for

the full sample.16 The solid line plots the estimated QTE, the dotted lines plot upper and lower

bounds for 95% pointwise confidence intervals,17 the dashed (horizontal) line shows the estimated

mean treatment effect, and the 0-line is provided for reference.

Heterogeneity in Jobs First’s impact across the earnings distribution’s quantiles is unmistakably

14There are no missing observations on the variables used to construct either AFDC or employment history.
15We computed QTE results at quantile 99 but omit them from the figures below because their variances are

frequently large enough to distort the scale of the figures.
16The estimated QTE plotted in this figure are identical to those in Figure 3 of Bitler et al. (2006).
17We construct confidence intervals using the percentile bootstrap based on 999 bootstrap replications. We use a

block bootstrap algorithm, so that we randomly sample entire 7-quarter earnings profiles. This re-sampling scheme
replicates any within-person dependence in the data. The 95% confidence interval limits are given as follows. First,
let ŷq be the qth real-data sample quantile. Second, let ŷ∗q,α/2 and ŷ∗q,1−α/2 be the α/2 and 1 − α/2 quantiles of

the empirical bootstrap distribution for the qth quantile. The lower limit of a 95% confidence interval is given by
ŷq − (ŷ∗q,1−α/2 − ŷq), while the upper limit is given by ŷq − (ŷ∗q,α/2 − ŷq). With 999 replications and α = 0.05, ŷ∗q,α/2
will be given by the 25th smallest bootstrap QTE for the qth quantile and ŷ∗q,1−α/2 will be given by the 25th largest.
This percentile method does not impose symmetry, and the estimated confidence interval limits frequently are not
symmetric.
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significant, both statistically and substantively. Figure 2 shows that for quarterly earnings in the

pre-time limit period, the QTE are zero below the median. This result occurs because quarterly

earnings are 0 for 48% of person-quarters in the Jobs First group over the first 7 quarters and 55%

of corresponding AFDC group person-quarters. For quantiles 49–82, Jobs First group earnings are

greater than control group earnings, yielding positive QTE estimates. Between quantiles 83–87,

earnings are again equal (though non-zero). Finally, for quantiles 88–98, AFDC group earnings

exceed Jobs First group earnings, yielding negative QTE estimates. For quantiles 89–96, these

negative estimates are statistically significantly different from zero based on individually applied

tests. This pattern is consistent with the predictions of labor supply theory discussed above (we

argue this point in detail in Bitler et al. (2006)). Finally, we note that the QTE range from a

minimum of -$300 to a maximum of $500, a considerable range. To address the possibility that

the estimated QTE in Figure 2 might simply be noisy estimates of a common treatment effect,

which would necessarily equal the mean treatment effect, we applied Procedure 1 below to the

entire sample; this test rejects equality of the QTE at the 5 percent level. Thus, as in Bitler et al.

(2006), we conclude that a single mean treatment effect cannot explain the heterogeneity in quantile

treatment effects that we estimate in Figure 2.

Next, we estimate the QTE for our seven subgroups. Figure 3 replicates Figure 2 when we

restrict consideration to whites. The pattern of estimated QTE mirror that for the full sample:

QTE are zero at the bottom of the distribution, rise in the middle, and then fall in the upper part of

the distribution (although the QTE do not become negative at the top of the earnings distribution).

In Figure 4, we plot estimated QTE for whites, blacks, and Hispanics on the same graph. This

figure shows some important differences across race/ethnicity. Throughout the distribution, whites’

QTE exceed both blacks’ and Hispanics’ QTE. Moreover, QTE for blacks and Hispanics exhibit

negative QTE at the top of the distribution, as in the full sample.18

While Figure 4 shows some variation in the amplitude and location of the positive QTE across

race and ethnicity, the shapes of the three QTE profiles do resemble one another considerably. This

finding is unsurprising given that the share of the control group that belonging to each race/ethnicity

group is fairly evenly distributed across the control and treatment groups. Figure 5 illustrates this

18To avoid clutter, we omit confidence intervals from Figure 4 and all remaining QTE plots. Figures that include
95% confidence intervals are available on request.

15



fact by plotting the race/ethnicity shares at each centile of the pooled control group earnings distri-

bution (because an analogous figure for the treatment group looks qualitatively similar, we present

only the control group figure).19 The figure shows the share of observations within each centile that

are black, white, or Hispanic.20 While these shares do vary, they are fairly stably distributed across

the control group distribution. Intuitively, if the members of a particular subgroup are spread

evenly across the centiles of the treatment and control groups, then it seems unlikely that strati-

fying along these subgroups will explain much of the heterogeneity in observed quantile treatment

effects.

Figure 6 plots QTE for dropouts and high school graduates. Each subgroup’s QTE profile

shows substantial variation across quantiles, suggesting mean impacts are inadequate to explain

the QTE. The figure also shows that high school graduates, but not dropouts, exhibit negative

QTE. This finding is in line with the expectation that more educated women are more likely to

locate at points like E or H in Figure 1 under AFDC assignment. Figure 7 repeats the group-shares

analysis of Figure 5, with groups now defined by dropout and high school graduate status. We see

that the dropout share falls, and the high school graduate share rises, as we move up the pooled

control group earnings distribution. This pattern suggests that there may be more scope for mean

impacts by education subgroups to capture some of the heterogeneity in the QTE. That said, the

considerable within-subgroup heterogeneity evinced in Figure 6 makes it unlikely that variation in

subgroup-specific mean treatment effects can explain the QTE heterogeneity observed in the pooled

sample.

Figures 8 and 9 show that, in contrast to the results for race and education, there is little

difference in the QTE by presence of child aged 5 or younger or by marital history. However, we do

find substantial cross-group heterogeneity in estimated QTE based on welfare and earnings history.

QTE estimates in Figure 10 show that women with no welfare income seven quarters prior to random

assignment have both (i) a smaller range of positive QTE and (ii) everywhere smaller magnitudes

for the earnings impacts, by comparison to women who had welfare income seven quarters prior to

random assignment. Differences based on employment seven quarters before random assignment,

reported in Figure 11, are striking. Among women with no employment income seven quarters

19Note that specific quantiles for the different subgroups in Figure 4 need not (and in practice do not) represent
the same dollar amount.

20We report group shares only for quantiles 45–98, since earnings are zero for each group at all quantiles below 45.
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prior to random assignment, the estimated QTE are zero for more than the bottom half of the

earnings distribution, with estimated effects being positive higher in the earnings distribution. For

women with employment income seven quarters before random assignment, the estimated QTE are

zero only for the first 30 quantiles, are positive and small over the next 35 or so quantiles, and

are negative for the top third of the earnings distribution. As with more educated women, it is

reasonable to think that women with an employment history are more likely to locate at points like

E and H of Figure 1 under AFDC assignment. Thus we regard the substantial range of negative

QTE for these women as additional evidence in favor of the usefulness of labor supply theory.

6 Testing for Adequacy of Mean Treatment Effects

Figures 2–11 document the fact that quantile treatment effects vary substantially across the dis-

tribution of earnings, both in the pooled sample and within subgroups commonly thought to be

relevant for welfare reform. We now turn to the question of whether cross-subgroup heterogeneity

in mean treatment effects, e.g., as documented in Table 2, can explain the heterogeneity in quantile

treatment effects documented in these figures.

As we will see, systematically addressing this question requires finding a way to compare ob-

served (nonparametric) earnings distributions with counterfactual distributions that result when a

(parametric) null hypothesis is true. In the remainder of this section, we show how to construct

a class of distributions that obtain under such null hypotheses. We also discuss bootstrap-based

tests for the equivalence of these null distributions to the observed earnings distribution. We can

state our simplest null hypothesis as

H0 : Y
g(i)
it (1) = Y

g(i)
it (0) + δ(g(i)) for all i, (2)
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where we recall that Y g(i)
it (d) is person i’s realized outcome t periods since random assignment given

that she is a member of group g(i) and has treatment assignment Di = d, while δ(g) is the effect

of treatment on women in group g. (We will drop the i superscript when there is no potential for

confusion.) Notice that this null implies that mean treatment effects do not vary with time since

random assignment. A more realistic null hypothesis that does allow treatment effects to vary with

time is

H0 : Y
g(i)
it (1) = Y

g(i)
it (0) + δt(g(i)) for all i, (3)

Notice that, while this null allows the treatment effect to vary across both time period and

across subgroup, it does not allow treatment effects to vary within subgroup-by-time cells. Thus,

for example, this null hypothesis assigns earnings δt(g) to a woman whose potential outcome is

0 when assigned to AFDC. We have seen that basic theory predicts that some women will have

zero earnings under both assignments, and both sample distributions have a substantial share of

women with zero earnings. It would therefore be unsurprising to reject the null simply because

(i) there is a nonzero mean treatment effect while (ii) both the treatment group and control group

earnings distributions exhibit positive mass at zero earnings. As Heckman et al. (1997) have noted,

the sensitivity of constant mean treatment effects models to such rejection is both undeniable and

rarely acknowledged.

One contribution of this paper is that we construct a more realistic null hypothesis that allows

nonzero, constant mean treatment effects given positive earnings even as potential outcomes can

be zero under both assignments. To allow this possibility, we consider a third null hypothesis,

which defines a probability distribution for Y g(i)
it (1) in the event that Y g(i)

it (0) = 0. Note that

the share of group-g women whose potential time-t earnings would be zero under treatment group

assignment can be written as p1gt ≡ F1gt(0), where F1g is the group-g earnings distribution given

treatment group assignment. Let the conditional distribution of control group earnings among

group-g women with positive earnings at time t be F0gt(·|y > 0). Finally, redefine δt(g(i)) as the

time-t mean treatment effect among group-g women with positive earnings, i.e., the difference in

the means of F1gt(·|y > 0) and F0gt(·|y > 0). Our most sophisticated null hypothesis is
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H0 : Y
g(i)
it (1) =


Y
g(i)
it (0) + δt(g(i)), Y

g(i)
it (0) > 0

X(gt), otherwise
for all i, (4)

where the random variable X(gt) equals 0 with probability p1gt and, with probability (1 − p1gt),

equals δt(g) plus a random draw from F0gt(·|y > 0). Notice that under this null hypothesis, the

null value of Y g
it (i)(1) always equals its actual population value. Moreover, the conditional mean of

treatment group earnings under the null also always equals its population value. These two facts

imply equality of the null and population values of the unconditional mean of treatment group

earnings. Thus by construction, the null hypothesis in (4) cannot be rejected due to differences

across program assignment in either the share of zeros or the conditional mean treatment effects

given positive earnings. That is, any rejection of (4) must arise for distributional reasons unrelated

to either {p1gt, δt(g)}g,t. This fact is obviously a feature of this null hypothesis.21

We now turn to the problem of how to test the three null hypotheses above. In so doing, it will

be useful to develop some notation. Let

Yit ≡ Y g(i)
it (1)Di + Y

g(i)
it (0) [1−Di] (5)

be the observed value of person i’s outcome in period t. From above, recall that for each treatment

status d ∈ {0, 1} and q ∈ (0, 1), we define

yqd ≡ inf
y
{y : Fd(yqd) ≥ q} . (6)

21Also note that rejecting this null hypothesis ensures that the pattern we have seen in the QTE is not simply the
mechanical result of there being an extensive margin effect of the Jobs First Program.
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where Fd is the cdf of outcome variable Y given treatment status d ∈ {0, 1}. Notice that these

quantiles are defined relative to the earnings distribution for the entire population—that is, they

do not specify any particular subgroup g. For notational simplicity, we will adapt the convention

that when q ∈ (0, 100), the quantile of interest is actually q/100. Thus, for example, we can refer

to the median as either y50d or y0.5d. We will define F̂d to be the sample analogue of Fd, i.e., the

empirical distribution function for observations actually observed in treatment status d. Next, we

define

Ỹ0it = Y
g(i)
it (0) (7)

Ỹ1it = Ỹ0it + δ(g(i)). (8)

Thus Ỹ0it is the outcome value that person i would have in period t if assigned to the control

group. Obviously, this definition entails no assumption about treatment effects, since it depends

only on actual potential earnings given assignment Di = 0. By contrast, the definition of Ỹ1it tells

us the value person i’s outcome in period t will take if the effect of treatment for this person is the

time-constant δ(g(i)) for each time t. If instead we wish to allow the treatment effect to vary with

t, then we define

Ỹ1it = Ỹ0it + δt(g(i)). (9)

Finally, if we wish to impose equal shares of zero earnings across program assignment, as in (4),

we define

Ỹ1it =


Y
g(i)
it (0) + δt(g(i)), Y

g(i)
it (0) > 0

X(gt), otherwise
(10)

where X(gt) is defined above. Note that (8), (9), and (10) will hold for all i and t if and only if the

null hypotheses (2), (3) or (4) are correct. Thus, we can rewrite each null hypothesis as

H0 : Ỹ1it = Y1it, (11)
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where Ỹ1it is defined appropriately to the relevant null by either (8), (9) or (10). Our inferential

procedure must therefore be able to construct consistent estimates of functionals of the distribution

of Ỹ1it and distinguish these estimates from estimates that are consistent even when the null is false.

It will be helpful to have notation for the true quantiles of the distributions of Ỹ0it and Ỹ1it. Let

F̃d be the cdf of outcome Ỹdit for d ∈ {0, 1}. Observe that since Ỹ0it = Y0it by definition, F̃0 = F0

is always true. When the null hypothesis is false, though, F̃1 will differ from F1. We denote the

relevant quantiles as

ỹqd ≡ inf
y

{
y : F̃d(ỹqd) ≥ q

}
. (12)

Under the null hypothesis, all quantiles of F̃1 and F1 will be equal; under the alternative hypothesis,

some (and perhaps all) quantiles will differ. We thus have another equivalent way to specify the

null hypothesis of interest:

H0 : ỹq1 = yq1 for all q ∈ (0, 1). (13)

Let ∆̃q ≡ ỹq1 − yq0 be the QTE at quantile q when the null hypothesis is correct, and recall that

∆q ≡ yq1 − yq0 is the population QTE at quantile q. Our final way to write the null hypothesis is

H0 : ∆̃q = ∆q for all q ∈ (0, 1). (14)

For given q, we can estimate both ∆̃q and ∆q consistently using sample quantiles of the dis-

tributions of Ỹ1it and Y1it. The following procedure shows how to estimate these sample quantiles

and test the null hypotheses implied by our three definitions of Ỹ1it.

Procedure 1 (Testing H0 from (14)).

Let Q be some number greater than 0 and less than 100. For ease of exposition, we will focus

on the case in which we are interested in all quantiles q = 1, 2, . . . , Q (the method applies more

generally). The following procedure provides a consistent test of the null hypothesis in (2):

1. Calculate sample quantiles of the control and treatment group observations for q = 1, 2, . . . , Q
(in practice, we use Q ∈ {97, 98, 99}). We denote the set of sample quantiles for assignment
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status d ∈ {0, 1} as {ŷq0, ŷq1}Qq=1. Defining F̂d as the empirical distribution function of
observations with Di = d, these sample quantiles are defined implicitly as

ŷqd ≡ inf
y

{
y : F̂d(ŷqd) ≥ q

}
. (15)

2. Estimate the mean treatment effect for each subgroup g and period t. When we constrain
the mean treatment effects to be constant across all t, as in (8), we use

δ(g) ≡ Y g
1 − Y

g
0 (16)

When we allow treatment effects to vary with time since random assignment, as in (9), we
use

δt(g) ≡ Y g
1t − Y

g
0t. (17)

Finally, when we define δt(g) as the conditional treatment effect given positive earnings, as
in (10), we use

δt(g) ≡ Y
g
1t

1− p̂1gt
− Y

g
0t

1− p̂0gt
, (18)

where p̂1gt and p̂0gt are the estimated share of treatment and control group observations with
zero earnings.

3. Construct estimates of the quantiles of F1 that are correct only under the null, i.e., construct
estimates of F̃1. To do so, first estimate Ỹ1it among control group observations, i.e., only
those with Di = 0, using the appropriate choice of

̂̃
Y 1it ≡ Yit + δ̂ (g(i)) . (19)̂̃
Y 1it ≡ Yit + δ̂t (g(i)) . (20)

̂̃
Y 1it ≡

{
Y
g(i)
it (0) + δ̂t(g(i)), Y

g(i)
it (0) > 0

X̂(gt), otherwise
(21)

where X̂(gt) is a random variable drawn from a consistent estimate of the distribution of
X(gt). In practice, we can use a reweighting scheme to avoid taking random draws when

constructing ̂̃
Y 1it in (21). To do so, we let ̂̃Y 1it = 0 whenever Yit = 0 and Yit + δ̂t(g(i))

whenever Yit > 0. Recalling that the inverse propensity score weight for observations i
defined above is ω̂i, we multiply this weight by Di + ρ̂it(1−Di), where

ρ̂it ≡
p̂1gt

p̂0gt
1(Yit = 0) +

1− p̂1gt

1− p̂0gt
[1− 1(Yit = 0)], (22)
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This reweighting ensures that the actual treatment and synthetic group will have both the
same share of observations with zero earnings and the same mean treatment effect within
group-by-time cells. Thus it effects a consistent estimate of Ỹ1it as defined in (10). We note
that the various estimates of Ỹ1it are consistent regardless of the null’s correctness, since

the null concerns the relationship between Ỹ1it and Y1it, whereas consistency of ̂̃Y 1it for Ỹ1it

follows simply from the fact that δ̂t(g) is consistent for δt(g) given random assignment. With

these estimates in hand, we estimate F̃1 using the empirical distribution function, ̂̃F 1, of ̂̃Y 1it

among those in the control group. Finally, we estimate the quantiles of F̃1 by calculating the

relevant quantiles of ̂̃F 1, using the values of ̂̃Y 1it we constructed from (19). These sample
quantiles are defined implicitly as follows:

̂̃yqd ≡ inf
y

{
y : ̂̃F d(̂̃yqd) ≥ q} . (23)

4. Calculate the test statistic

Ŝ ≡
√
n

 sup
q=1 to Q


∣∣∣ŷq1 − ̂̃yq1∣∣∣
(V̂ (q))1/2


 , (24)

where n is the overall sample size and V̂ (q) is a consistent estimate of the variance of the
discrepancy term ŷq1 − ̂̃yq1. The discrepancy terms themselves are the differences between
the always-consistent and consistent-only-under-the-null estimates of the quantiles. Cher-
nozhukov & Fernandez-Val (2005, henceforth, CF) establishes the distribution of the supre-
mum of the set of discrepancies, i.e., the statistic Ŝ. As CF discuss, dependence in the
data-generating process causes this distribution to have non-standard properties, complicat-
ing inference using standard methods. However, CF show that a bootstrap procedure provides
a basis for consistent inference on the Kolmogorov-Smirnov-like statistic Ŝ. We characterize
this bootstrap procedure in the next step, and we discuss calculation of the estimated variance
term V̂ (q) below.22

5. Do the following B times (where B is the number of bootstrap replications):

(a) Re-sample the data in a manner consistent with the data generating process using the
nonparametric block bootstrap. That is, we re-sample entire individual earnings profiles.
Since individuals are assigned to treatment or control status in an iid fashion, this re-
sampling approach reproduces the properties of the underlying data generating process.

(b) Repeat steps 1-3 using the re-sampled data. We use a superscript to indicate that the

estimated sample quantile ŷbq1 or ̂̃ybq1 is based on the bth bootstrap re-sample rather than
the real data.

22As applied to our context, CF’s assumptions require certain asymptotic normality properties for the sample
quantiles. Given the discrete nature of our earnings data, our use of CF’s method thus appears not to be justified by
their results. However, Gelbach (2005) shows that the bootstrap can be used to consistently estimate the distribution
of quantile treatment effects with discrete data. We believe but have not yet proved that the bootstrap can also be
used to estimate the null distribution of the statistic Ŝ.
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(c) Calculate the bootstrap estimate of the statistic Ŝ, denoted

Ŝb ≡
√
n

 sup
q=1 to Q


∣∣∣ŷbq1 − ̂̃ybq1 − (ŷq1 − ̂̃yq1)∣∣∣

(V̂ (q))1/2


 . (25)

This statistic differs in form from Ŝ in a key way: For each quantile, we create the
bootstrap supremand by subtracting the real-data discrepancy term ŷq1 − ̂̃yq1 from the
corresponding bootstrap discrepancy term. This step is what allows Chernozhukov &
Fernandez-Val’s (2005) method to overcome the noncentrality problem alluded to above.
Heuristically, the relevant noncentrality term can be consistently estimated using the
real-data sample’s estimate of the discrepancy ŷq1 − ̂̃yq1. The bootstrap re-sample’s
noncentrality term has the same asymptotic distribution, so subtracting the real-data
sample discrepancy term from the bootstrap term yields a statistic with conventional
properties under the null (and local alternatives).

6. We now use the bootstrap distribution {Ŝb}Bb=1 to estimate the relevant critical value of the
distribution of Ŝ. In other words, letting G be the distribution of Ŝ, we will show how to
estimate the quantile s1−α defined by

s1−α ≡ inf
s
{s : G(s1−α) ≥ 1− α} . (26)

To estimate this critical value, we must estimate the distribution function G, which we can
do using the empirical bootstrap distribution {Ŝb}Bb=1. Defining the estimated bootstrap
distribution as Ĝ, we have

Ĝ(s) ≡ 1
B + 1

B∑
b=1

1
(
Ŝb ≤ s

)
. (27)

The critical value for a level-α test is thus the smallest s such that Ĝ(s) ≥ 1 − α, which we
can write

ŝ1−α ≡ inf
s

{
s : Ĝ(ŝ1−α) ≥ 1− α

}
. (28)

7. We reject the null hypothesis as stated in (13) as follows:

Reject H0 iff Ŝ ≥ ŝ1−α. (29)

For instance, if we are interested in a level-0.05 test, with B = 999 we would find the 50th

largest bootstrap estimate of the test statistic (since (1 − 0.05) × (999 + 1) = 950, and the
950th smallest estimate is the 50th largest when B = 999) and then reject the null hypothesis
if and only if the real-data test statistic Ŝ exceeded that value.
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The only remaining task is to calculate the estimated variances given by V̂ (q). An easy way

to do this is to use the bootstrap distribution of the discrepancy terms. To see how, define the

discrepancy term for the qth quantile as

r̂q ≡ ŷq1 − ̂̃yq1. (30)

Similarly, define the iteration-b re-sampled estimate of this discrepancy term for the qth quantile as

r̂bq ≡ ŷbq1 − ̂̃ybq1. (31)

We can estimate the variance of each discrepancy term r̂q with the sample variance of the re-sampled

estimates of this vector. That is, for each q, we calculate

V̂ (q) ≡ 1
B − 1

B∑
b=1

(
r̂bq − rq

)2
(32)

where r̂bq is the bootstrap analogue of r̂q calculated using the bth re-sample and rq is the bootstrap

sample mean of this statistic. We can then use this estimate of V̂ (q) in steps 4 and 5.23

6.1 Empirical evidence: Synthetic and Sample QTE

Before proceeding to the test statistics, it is useful to illustrate the difference between the sample

QTE and the estimated synthetic QTE based on Ỹ1it. We begin by constructing synthetic QTE

using mean treatment effects by race/ethnicity, based on (19). In this and all subsequent figures, the

sample QTE are calculated using the pooled sample, so that these estimates repeat those plotted

in Figure 2.

In panel (a) of Figure 12, we allow treatment effects to vary only by race, constraining the

within-race mean treatment effect to be the same for all time periods; thus this panel corresponds

to the definition of Ỹ1it provided in (8). In panel (b), we allow treatment effects to vary across

race and time period, as in (9). For both of these panels, the figure shows that the synthetic QTE

23Notice that we use the same matrix in both steps, even though the real-data discrepancy term is subtracted
from each bootstrap discrepancy term; this is appropriate because the real-data term is constant over all bootstrap
iterations.
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do a very poor job of replicating the actual QTE. Not only are the synthetic QTE negative at the

bottom of the earnings distribution, but they also fail to replicate the large range of quantiles over

which the QTE are zero due to the fact that about half the person-quarters in each program group

exhibit no earnings. Moreover, the synthetic QTE in panels (a) and (b) fail to achieve as great a

maximum QTE as the sample results, and neither synthetic specification exhibits negative QTE at

the top of the distribution.

We turn now to panel (c), which reports actual estimated QTE together with estimated synthetic

QTE based on the definition of Ỹ1it in (9). Recall that this specification of synthetic treatment

earnings imposes the constraint that the synthetic and true earnings distributions have the same

share of zeros. Not surprisingly, then, the panel (c) synthetic QTE are essentially the same as the

sample QTE over the bottom half of the distributions.24 Over quantiles 50–80 or so, the panel

(c) synthetic QTE do a reasonably good job of replicating the shape of the sample QTE, though

they fail to achieve the same amplitude as the sample QTE profile. However, the synthetic QTE

clearly fail to replicate the negative QTE at the top of the earnings distribution. As we have seen,

this feature of the sample QTE is clearly predicted by labor supply theory. Thus the failure of the

panel (c) synthetic QTE to replicate this feature is, in our view, a substantial mark against even

the most flexible null hypothesis we consider.

Figures 13–17 report analogous results for the synthetic QTE for our subgroups defined by

educational attainment, youngest child’s age, marital history at the time of RA, receipt of AFDC 7

quarters before RA, and employment 7 quarters before RA. Results in these figures are qualitatively

identical to those for the results for subgroups defined by race/ethnicity. Notably, the panel (a)

and panel (b) results that do not constrain the share of zeros to be the same for synthetic as

for population QTE fail entirely to replicate the shape of the sample QTE profile. The panel (c)

results do much better in all cases, though they never do replicate the amplitude of the sample

QTE or the negative effects at the top of the distribution. Finally, Figure 18 reports synthetic

QTE for subgroups defined by race/ethnicity and educational attainment categories. Including

missing values as a category, this classification involves 9 subgroup categories. Allowing the added

flexibility makes little difference in any of the three panels.

24The negative synthetic QTE at the very bottom of the distribution occur because the mean treatment effect is
sufficiently negative for some time period(s) so that some women whose actual earnings are small and positive have
negative synthetic earnings.
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These figures suggest that constant within-group treatment effects do a poor job of capturing the

actual heterogeneity in treatment effects. Of course, the results in the figures are point estimates,

and no systematic inferences can be drawn without some notion of the sampling variability of these

point estimates. Thus in table 3, we report the values of formal test statistics and bootstrapped

critical values for level-0.05 tests based on the panel (a) specifications. In each case, we easily reject

the null hypothesis that the synthetic distribution equals the true treatment group distribution. We

stress that we have not yet calculated test results for the more flexible null hypotheses underlying

the panel (b) and panel (c) specifications; we plan to do this in our next draft.

Our preliminary results concerning the null hypotheses (2) and (3), corresponding to panels (a)

and (b) of the figures, provide very strong evidence against the idea that constant within-group

mean treatment effects are sufficient to characterize the heterogeneity in treatment effects that we

estimate using QTE. Even the synthetic estimates based on the panel (c) null hypothesis (4) fail to

replicate the key feature of negative earnings QTE at the top of the distribution. Given that this

null itself allows an important form of treatment effect heterogeneity within subgroup-time cells,

we believe that the panel (c) results also cast doubt on the plausibility of constant within-group

treatment effects to adequately evaluate key theoretical predictions.

7 Conclusion

The welfare reforms of the mid-1990s in the U.S. radically reformed the cash assistance system,

moving from a system with strong work disincentives and no time limits to a time limited system

aimed at encouraging work. A vast literature evaluates these reforms, concluding that there is

considerable heterogeneity in some effects of these reforms. In previous work, we have explored

this heterogeneity in the effect of a reform in Connecticut using quantile treatment effects (QTE)

and experimental data (Bitler et al. (2006)), finding evidence of considerable heterogeneity in the

effects of this TANF-like reform on earnings.

In this paper, we explore the extent to which this heterogeneity can be explained by heterogene-

ity across subgroups (defined by demographics, welfare use, or earnings histories). We conclude

that the heterogeneity uncovered in our earlier work simply cannot be explained by mean treatment

effects that are constant within subgroups—even when we define subgroups richly in terms of race,
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education, and earnings history, and even when we allow the null hypothesis to treat zeros differ-

ently from positive earnings amounts. This finding provides further important evidence that means

miss a lot. Distributional measures like QTE seem indispensable for measuring heterogeneity in

the treatment effects of key reforms.
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Figure 1: Stylized Connecticut budget constraint under AFDC and Jobs First
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Figure 2: Quantile treatment effects on the distribution of earnings, quarters 1–7, all observations
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Notes: Solid line is QTE estimate, and dashed line is mean difference, and dotted line is
95% confidence interval.
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Figure 3: Quantile treatment effects on the distribution of earnings, quarters 1–7, case head is
white
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95% confidence interval.
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Figure 4: Quantile treatment effects on the distribution of earnings, quarters 1–7, by race/ethnicity
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Notes: Solid line is QTE for whites, dashed line is QTE for blacks, and dotted line is QTE
estimate for Hispanics.
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Figure 5: Race/ethnicity breakdown of the control group distribution of earnings, quarters 1–7
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Note: Figure shows share of each centile of control group earnings distribution that is white,
black, or Hispanic. Solid line is share white, dashed line is share black, and dotted line is
share Hispanic. Shares only shown for for centiles 45–98 of the earnings distribution for
the control group. Earnings are zero for all centiles below centile 45 as well. There is no
variation in shares for which earnings are zero (includes all centiles below centile 45).
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Figure 6: Quantile treatment effects on the distribution of earnings, quarters 1–7, by education of
head
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Notes: Solid line is QTE for case heads with at least a high school degree, dashed line is
QTE for high school dropout case heads.
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Figure 7: Education breakdown of the control group distribution of earnings, quarters 1–7
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at least a high school degree or are high school dropouts. Solid line is share with at least
a high school degree, dashed line is share of high school dropouts. Shares only shown for
centiles 45–98 of the earnings distribution for the control group. Earnings are zero for all
centiles below centile 45 as well. There is no variation in shares for which earnings are zero
(includes all centiles below centile 45).
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Figure 8: Quantile treatment effects on the distribution of earnings, quarters 1–7, by whether
youngest child is under 6 at RA
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youngest child ≤ 5.
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Figure 9: Quantile treatment effects on the distribution of earnings, quarters 1–7, by marital status
of head at RA
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cases with never-married head at RA.
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Figure 10: Quantile treatment effects on the distribution of earnings, quarters 1–7, by receipt of
AFDC 7 quarters before RA
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Figure 11: Quantile treatment effects on the distribution of earnings, quarters 1–7, by whether had
any earnings 7 quarters before RA
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Notes: Solid line is QTE for cases with any earnings 7 quarters before RA, dashed line is
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Figure 12: Actual and synthetic QTE by race

Solid lines: actual QTE.
Dashed line: synthetic QTE.
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Figure 13: Actual and synthetic QTE by education

Solid lines: actual QTE.
Dashed line: synthetic QTE.
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Figure 14: Actual and synthetic QTE by youngest child’s age

Solid lines: actual QTE.
Dashed line: synthetic QTE.
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Figure 15: Actual and synthetic QTE by marital history

Solid lines: actual QTE.
Dashed line: synthetic QTE.
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Figure 16: Actual and synthetic QTE by 7 quarters-before-RA AFDC receipt

Solid lines: actual QTE.
Dashed line: synthetic QTE.
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Figure 17: Actual and synthetic QTE by 7 quarters-before-RA employment

Solid lines: actual QTE.
Dashed line: synthetic QTE.
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Figure 18: Actual and synthetic QTE by race and education

Solid lines: actual QTE.
Dashed line: synthetic QTE.
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Table 1: Characteristics of experimental sample
Levels

Jobs First AFDC Difference
Demographic characteristics
White 0.363 0.349 0.014
Black 0.366 0.369 -0.002
Hispanic 0.208 0.217 -0.009
HS dropout 0.331 0.313 0.018
HS diploma/GED 0.550 0.565 -0.015
More than HS diploma 0.063 0.059 0.004
At least HS diploma/GED 0.613 0.624 -0.011
More than two children 0.227 0.206 0.021∗

At least two children 0.484 0.470 0.014
Youngest child 5 or younger 0.536 0.525 0.011
Never married 0.625 0.630 -0.005
Div./wid./sep./living apart 0.317 0.314 0.003
Div./wid./sep./married 0.330 0.325 0.005
Any AFDC 7 quarters before RA 0.546 0.526 0.020
Earnings are zero 7 quarters before RA 0.700 0.673 0.027∗∗

Mother younger than 25 0.290 0.296 -0.006
Mother aged 25–34 0.411 0.416 -0.005
Mother older than 34 0.299 0.287 0.011
Recipient (stock) sample 0.622 0.591 0.032∗∗

Average quarterly pre-treatment values
Earnings 678 789 -111∗∗∗

(1,304) (1,548) (41)

Cash welfare 888 832 56∗∗

(806) (785) (23)

Fraction of pre-treatment quarters with
Any earnings 0.322 0.351 -0.030∗∗

(0.362) (0.372) (0.014)

Any cash welfare 0.571 0.542 0.029∗∗

(0.452) (0.450) (0.013)

Notes: Standard errors in parentheses for lower panels. ∗∗∗, ∗∗, and ∗ indicate statistical significance
at the 1%, 5%, and 10% levels, respectively (significance indicators provided only for difference
estimates). Standard deviations omitted for binary variables in top panel because all variables are
binary. For earnings, 8 quarters of pre-treatment data are used in lower panel. For cash welfare,
only 7 quarters are available for all observations. Baseline data on a small number of observations
for some variables are missing.
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Table 2: Mean differences in earnings during quarters 1–7 by subgroup
Subgroup Mean difference 95 % CI Control group mean NC NT
All 80 [-38, 122] 1112 16,744 16,667
By race of case head:

White 228 [161, 294] 1079 5845 6048
Black 62 [-5, 129] 1202 6174 6104
Hispanic 26 [-48, 100] 882 3633 3472
F-statistic [p-value] 19.6 [0.0000]

F-statistic excluding NA† [p-value] 7.87 [0.0004]
By education of case head:

No HS degree/GED 133 [79, 187] 647 5243 5516
At least HS/GED 87 [-34, 141] 1322 10,444 10,220
F-statistic [p-value] 9.75 [0.0001]
F-statistic excluding NA [p-value] 0.99 [0.3187]
By whether youngest child is ≤ 5:

Youngest child ≤ 5 86 [33, 139] 1084 8792 8939
Youngest child ≥ 6 143 [73, 213] 1150 5572 5810
F-statistic [p-value] 40.35 [0.0000]
F-statistic excluding NA [p-value] 2.24 [0.1347]
By number of children in case:

2 or more 156 [100, 212] 1042 7868 8071
1 or pregnant 76 [20, 132] 1118 8302 8071
F-statistic [p-value] 40.90 [0.0000]
F-statistic excluding NA [p-value] 2.21 [0.1370]
By marital status of case head:

Never married 82 [36, 128] 1038 10,542 10,416
Ever married 151 [75, 227] 1185 5439 5502
F-statistic [p-value] 15.80 [0.0000]
F-statistic excluding NA [p-value] 3.36 [0.0667]
By whether on AFDC 7 quarters before RA:

Yes 109 [54, 165] 956 8813 9100
No 46 [-18, 110] 1294 7931 7467
F-statistic [p-value] 2.16 [0.1413]
By whether earnings are zero 7 quarters before RA:

Yes 175 [135, 214] 751 11,277 11,669
No -126 [-224, -28] 1903 5467 4998
F-statistic [p-value] 44.6 [0.0000]

Mean differences overall and by subgroup for earnings during quarters 1–7, with 95 percent CIs, the control group
mean, and the number of observations in the treatment and control groups. Each set of subgroup differences also
contains 2 rows with tests for the mean treatment effect being the same across the subgroups, the first of which
includes the the missing data category and the second excluding it. Differences are for treatment (Jobs First) versus
control (AFDC) group using 4773 observations with data for all 16 quarters, with inverse propensity score weighting.
Means are differences in quarterly earnings for all sample members in the subgroup mentioned in the column label
for quarters 1–7. Numbers in bold are mean differences.
† NA denotes data missing for relevant variable.
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Table 3: Test of whether QTEs deviate from those calculated by adding mean TE within subgroup
to the control group distribution

Real data Ŝ Critical value (5% level) Reject?
Subgroup
Full sample 2976 804 Yes
Race 3810 1107 Yes
Education 3657 1029 Yes
Age of youngest child 3927 1173 Yes
Marital status 3876 1116 Yes
Race by education 3198 1212 Yes
Education by age of youngest child 2925 1179 Yes

Notes: Modified K-S test for whether QTEs deviates from null of constant average treatment effects
within subgroup added to control group. Label reports subgroup for row. First column reports
the real data difference, second column reports the critical value, and the third column reports the
results of the test (reject/do not reject). All estimates in this table for significance level of 0.05.
All estimates using 4,773 observations. Means within subgroup estimated with propensity score
weighting. Differences for bootstraps have real data difference subtracted out. Statistics normalized
by bootstrap estimate of the variance of the difference terms. For more information, see text.
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