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Abstract

The rapid transition from defined benefit (DB) pension plans to defined contribution (DC)

plans has a potential benefit of offering pension holders greater control over how their pension

accumulations are invested. If pension holders are willing to take some risk, investments in the

stock market could increase their economic preparation for retirement, and, indeed, economic

theory as well as the typical advice of financial advisors calls for stock market investments.

Yet, the rate of stock holding is much below what theory suggests it should be, undoing any

benefit associated with the greater control coming from DC plans. The leading explanations

for this under-investing include excessive risk aversion, costs of entry, and misperceptions

about possible returns in the stock market. We show that excessive risk aversion is not able to

account for the low fraction of stockholding. However, a model with heterogeneous subjective

expectations about stock market returns is able to account for low stock market participation,

and tracks the share of risky assets conditional on participation reasonably well. Based on

the model with subjective expectations, we estimate a consumption loss of 7–9% compared

to investment under rational expectations. The policy implication is that there is considerable

scope for welfare improvement as a result of consumer education regarding stock market

returns.

1 Introduction

The lifecycle model is the standard tool for prospectively evaluating possible Social Security

policy changes. This model assumes that individuals are forward looking and seek to maximize

lifetime utility. When appropriately calibrated to capture the economic incentives of Social

Security programs, it gives realistic predictions of household savings and wealth accumulation.

On the other hand, it tends to generate investment patterns that are grossly at odds with

observed portfolio choices, both inside and outside defined contribution (DC) pension plans (e.g.,

Hung, Meijer, Mihaly, & Yoong, 2009). According to the model (and to financial experts),

retirement-age individuals should hold a substantial fraction of their wealth in risky assets.

Furthermore, they should gradually reduce the share of wealth held in stocks as they age and

the risk of facing high medical expenses increases and the risk of losses in the stock market
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cannot be as easily compensated by labor income (e.g., Cocco, Gomes, & Maenhout, 2005).

The empirical evidence is very different. In the U.S. less than 30% of retirement-age individuals

hold stocks (Lee, Kapteyn, Meijer, & Yang, 2010). Moreover, conditional on stock holding, the

mean (median) share of risky assets is around 25% (18%) and there is no evidence of a gradual

reduction in portfolio shares with age (Hurd, 2002; Korniotis & Kumar, 2011).

Different reasons have been put forward to explain such observed patterns. For example,

Heaton and Lucas (2000), Hochguertel (2003), Rosen and Wu (2004), and Curcuru, Heaton,

Lucas, and Moore (2010) mention excessive risk aversion and background risks (e.g., medical

costs), Alan (2006) points at startup costs of starting stock market participation, Haliassos and

Michaelides (2003) study borrowing constraints, and Hong, Kubik, and Stein (2004) and Guiso,

Sapienza, and Zingales (2008) propose social interaction and trust as explanations. While each of

these have their merits, they do not explain empirical patterns satisfactorily.

Recently, authors have focused on subjective equity return expectations to explain the observed

low rates of stock holding (Hurd, Van Rooij, & Winter, 2011; Kézdi & Willis, 2008). Individual

beliefs may diverge substantially from estimates of returns based on historical series. In particular,

low average expectations, coupled with high uncertainty and large heterogeneity in beliefs may

be the reason why so many individuals are reluctant to invest in stocks. Data eliciting subjective

equity return expectations seem to support this hypothesis. Individuals on average have very

pessimistic expectations about the stock market, but beliefs vary substantially across groups with

different education, permanent income, cognitive functioning, numerical ability, and health status.

Assessing the importance of the various proposed reasons has important policy implications.

If excessive risk aversion is the major cause, there is no obvious public policy lever that would

increase participation. However, were misperceptions to be an important barrier to investing, a

possible remedy would be education about the risks and rewards.

This paper quantifies the importance of knowledge about stock market rates of return in

reducing stock market participation and how economic preparation for retirement would increase

were individuals fully informed about the distribution of stock market returns. We estimate the

costs of misperceptions in terms of foregone rates of return and in terms of loss of lifetime utility.

These costs will give an indication of the benefit that public policy might achieve. In doing so, we

study an important issue that has not been addressed in the literature, namely whether a standard

lifecycle model of saving and portfolio choice incorporating subjective expectations can reproduce

observed investment profiles. Clearly the model would predict that individuals holding negative

equity return expectations (Kézdi & Willis, 2008) should exclusively allocate their wealth to

risk-free assets. A more interesting question is which parameters of the equity return distribution

would reconcile theoretical and observed portfolio patterns conditional on participation. We

quantify what the mean and the variance of future returns are that would rationalize the observed

low fractions of wealth that are invested in risky assets and how these compare with those inferred

from survey questions (Dominitz & Manski, 2007; Hurd et al., 2011; Kézdi & Willis, 2008)

and with estimates based on historical returns. We also compute to what extent they induce poor

portfolio choices and what the consequences are for economic wellbeing.

We limit ourselves to individuals who are fully retired. The advantage of this is that retirees

do not face the income risk (job loss, uncertainty about promotions, and generally future labor
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income) that workers face (Guiso, Jappelli, & Terlizzese, 1996), which simplifies the model

and the estimation considerably, and avoids incorrectly attributing patterns due to income risk to

misperceptions about stock market risk.

The outline of the paper is as follows. In section 2, we describe the lifecycle model we use.

The data, the estimation of auxiliary processes, and the sources of the baseline versions of the

parameter estimates are described in section 3. The predictions of the resulting baseline model are

evaluated in section 4. This section also explores to what extent different values of the parameters,

such as risk aversion or expected stock market returns, are able to match observed patterns in

the data. Section 5 discusses the survey questions that elicit subjective beliefs on stock market

returns, and computes the resulting subjective distributions of stock market returns. Subsequently,

section 6 computes the patterns of stock holding, wealth, and consumption that are generated by

the lifecycle model with the subjective expectations governing investment decisions, and compares

these with the predictions of the model using historical returns and the patterns observed in the

data. Section 7 concludes.

2 Model

In this section we describe a stylized model of life-cycle saving and portfolio decisions for

retirees. Agents in the model choose consumption and allocate their savings between risky and

risk-free assets seeking to maximize expected utility over a finite time horizon. The stock of

savings comprises private wealth and non-annuitized pension wealth held in Individual Retirement

Accounts (IRAs).

Preferences Age is denoted by t. We consider individuals who are retired, which allows us

to abstract from labor income risk. They enter the model at age t = t0 ∈ {60, . . . , 64} and

live up to age T
M

. Total lifetime T
M

is stochastic, but in the model the largest allowed value

of T
M

is T = 100. Preferences are described by the time-separable iso-elastic utility function

with coefficient of relative risk aversion γ and discount factor β. Thus, the individual’s expected

remaining lifetime utility at age t is

U
t
=

C
1−γ
t

1 − γ
+ E

t



















TM
∑

j=t+1

β j−t
C

1−γ
j

1 − γ



















, (1)

where C
t

is consumption and E
t

indicates that the expectation is taken at age t, conditional on

all information available at that age. In addition to own consumption while alive, many lifecycle

models employ a utility function with a utlity term reflecting a bequest motive, which depends on

the amount of wealth left when the individual dies. Lockwood (2012) finds that a bequest motive

may explain why few individuals buy annuities. However, Hurd (1989) and De Nardi, French,

and Jones (2010) find little evidence for a bequest motive and their results are hardly affected by

including it. Therefore, we do not include it in our model.
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Health status and survival Health status at age t is denoted by H
t
. The individual can be either

in good health, H
t
= good, or in bad health, H

t
= bad. Survival and health status evolve according

to a first-order Markov process with transition probabilities that depend on age and previous year’s

health status. Formally,

sh
t
≡ Pr(alive

t
| alive

t−1,Ht−1 = h) (2)

φh
t
≡ Pr(H

t
= good | H

t−1 = h, alive
t
), (3)

where h ∈ {good, bad}. If we define

S ( j, g | t, h) ≡ Pr(alive
j
,H

j
= g | alive

t
,H

t
= h),

then survival and health status probabilities are found by recursively applying S ( j, good | j−1, h) =

sh
j
φh

j
and S ( j, bad | j − 1, h) = sh

j
(1 − φh

j
). Expected remaining lifetime utility (1) can then be

expressed in the form
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. (4)

Retirement income In retirement, individuals receive a constant income flow, consisting of

Social Security benefits, defined-benefit (DB) pensions and annuities. Retirement income is

denoted by

P
t
= P, ∀t. (5)

Income is different for different individuals, but we suppress individual identifiers in the notation.

In the current U.S. Social Security system, individuals can start receiving retirement benefits as

early as age 62. However, financial incentives provided by private pension plans as well as health

conditions may induce earlier withdrawals from the labor force. When taking our model to the

data, we will only select fully retired individuals age 60 and older. This approach greatly simplifies

the model’s specification. It comes at the cost of ignoring that workers on the verge of retirement

may switch from full-time employment to part-time bridge jobs while receiving pension benefits.

Medical expenses In every period, agents receive health shocks and incur out-of-pocket medical

expenses. The logarithm of health costs is modeled as a function of the logarithm of retirement

income, age, and health status,

ln HC
t
= δ0 + δ1 ln P + f (t,H

t
) + η

t
, η

t
∼ N(0, σ2

η
). (6)

In order to save on one additional state variable and keep the dynamic programming problem

tractable, the innovations η
t
are assumed to be i.i.d., except that we allow the varianceσ2

η
to depend

on health status. Hence, persistence in medical expenses is only attributable to persistence in

health status and persistence in income. French and Jones (2004) show that the stochastic process

for health care costs is well represented by the sum of a white noise term and a quite persistent

AR(1) component. Our i.i.d. assumption may, therefore, imply an underevaluation of the duration

of health cost shocks and, consequently, of the background risk associated with uncertain medical

expenses.
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Wealth and taxes For simplicity, we assume the existence of a single saving habitat, containing

both conventional savings accounts and investments and Individual Retirement Accounts (IRAs).

In the U.S. tax code, returns on IRA wealth accrue tax free, while withdrawals are taxed, whereas

by combining private and IRA savings in a single stock of financial wealth, we will apply the same

tax regime to both forms of savings. Our model assumes that returns are taxed at the source, but no

taxes are paid when resources are used for consumption. As in the current U.S. tax code, taxes are

paid on nominal rather than real returns. The marginal tax rate τ
r

applies to nominal investment

returns and the marginal tax rate τ
i

applies to noninvestment (pension) income. Since we do not

distinguish between capital gains and yield on risky assets, there is no differential taxation on

dividend and capital gains.

Portfolio choice The investment set is constant and consists of two financial assets: a risk-free

one that can be thought of as bonds, T-bills or cash, and a risky one, representing the stock market.

In each period, individuals choose the share of wealth to hold in risky assets, denoted by α
t
. There

is no entry fee to participate in the stock market or cost associated with portfolio rebalancing.1

Short sales are not allowed, and thus the following constraint is imposed:

α
t
∈ [0, 1]. (7)

Wealth dynamics We assume a constant inflation rate denoted by π. The risk-free asset yields

a constant real return r and thus a real after-tax return

r̃ =
1 + [(1 + r)(1 + π) − 1] (1 − τ

r
)

1 + π
− 1. (8)

The equity portfolio delivers a stochastic excess real return

re
t
− r = µ + ǫ

t
, (9)

where ǫ
t

is i.i.d. N(0, σ2
ǫ
). Hence, the real after-tax return on the risky asset is

r̃e
t
=

1 +
[

(1 + re
t
)(1 + π) − 1

]

(1 − τ
r
)

1 + π
− 1. (10)

Denoting wealth with W
t
, its evolution over time is described by

W
t+1 =

[

α
t
(1 + r̃e

t+1) + (1 − α
t
)(1 + r̃)

] {

W
t
+ (1 − τ

i
)P −C

t
− HC

t

}

. (11)

1Market frictions in the form of fixed entry costs are often mentioned as plausible, although partial, explanations

for the observed limited stock market participation. Vissing-Jørgensen (2002), Alan (2006), and Paiella (2007) all find

evidence of nonnegligible entry costs. While introducing a fixed entry cost in a conventional investment account,

Gomes, Michaelides, and Polkovnichenko (2009) consider stock market participation as costless in a retirement

account. The idea is that informational and set-up costs associated with direct stockholding are bypassed in the latter.

As the present model focuses on relatively older investors, we assume that agents have already sustained such costs

earlier in their life.
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A borrowing constraint is present so that:

W
t
≥ 0 ∀t. (12)

Because of the stochastic health costs, this borrowing constraint cannot be strictly enforced unless

we allow negative consumption or censor the distribution of health costs. In practice, individuals

who face large health costs and have run down their assets may be covered by Medicaid or other

government or charity programs. In our model, this is implemented in the form of a consumption

floor of 1% of retirement income (i.e., 0.01P).

Recursive form Define cash-on-hand as the sum of liquid assets and retirement income, net of

out-of-pocket medical expenses:

X
t
= W

t
+ (1 − τ

i
)P − HC

t

The life-cycle maximization problem under consideration involves two continuous state

variables—cash-on-hand and retirement income—and two discrete state variables—age and health

status. As shown in the appendix, it is possible to reduce the dimensionality of the problem by

dividing all variables by the constant flow of retirement income (Carroll, 1992, 1997).

Let lowercase letters indicate the ratios of the original variables to the level of retirement

income (e.g., x
t
= X

t
/P). The individual’s problem can now be written in the recursive form of

the Bellman equation (e.g., Christensen & Kiefer, 2009, p. 28; Adda & Cooper, 2003, p. 26; after

Bellman, 1957)

v
t
(x

t
,H

t
) = max

ct ,αt















c
1−γ
t

1 − γ
+ βE

t

[

v
t+1(x

t+1,Ht+1)
]















, (13)

subject to

x
t+1 =

[

α
t
(1 + r̃e

t+1) + (1 − α
t
)(1 + r̃)

]

(x
t
− c

t
) + (1 − τ

i
) − hc

t+1. (14)

Note that both x
t+1 and H

t+1 are stochastic functions of {x
t
,H

t
, c

t
, α

t
}, and the survival probability

is also part of the expectation.

Solution The model is solved by backward induction. The state space is given by {t, x
t
,H

t
}.

We discretize the continuous state variable, x
t
, by defining an equally spaced grid and we use

two-dimensional cubic spline interpolation to construct the value function v
t
(x

t
,H

t
) at all points

in the state space. Numerical integrations are performed by Gaussian quadrature. A solution

consists of a set of policy functions for consumption and portfolio composition: c∗
t
= c(x

t
,H

t
)

and α∗
t
= α(x

t
,H

t
). Optimal values for the choice variables are located using a combination of a

root-finding algorithm and standard grid search. See the appendix for more technical details.

Optimal saving is increasing and convex in normalized cash-on-hand, which mirrors the

consumption rules in Gourinchas and Parker (2002). The optimal portfolio share of the risky

asset is decreasing in normalized cash-on-hand. This is because at lower levels of cash-on-hand,

the risk-free asset position represented by the constant retirement income stream is relatively high

and agents can tilt their portfolios more heavily towards risky investments. As cash-on-hand
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increases, the relative importance of retirement income on total wealth decreases and so does the

optimal share of risky asset.2 It should be noted that the optimal share of risky assets is not defined

for very low values of wealth at which saving is zero and no resources are available for investment.

At older ages, the optimal share of risky assets conditional on normalized cash-on-hand is

lower. Since retirement benefits will be received over a shorter time horizon, the net present value

of the risk-free income stream is lower and so is the willingness to bear financial risks in the form

of risky investments. Also, at older ages, the risk of high out of pocket medical expenses is higher,

which also leads to a less risky portfolio composition.

3 Data and estimation of auxiliary processes

3.1 Data

We use the Health and Retirement Study (HRS; Juster & Suzman, 1995). The HRS is a

longitudinal biennial survey of individuals over the age of 50 in the U.S. and their households,

which represents the primary source of information about the elderly and future elderly in the

U.S. The data contain extensive information on household economic condition and demographics,

individual employment history, retirement planning, pensions, and health status. We mainly use

the RAND HRS (St.Clair et al., 2011), which is a postprocessed, more user-friendly version of the

raw HRS data. We also add variables that are not included in the main RAND HRS file, such as

subjective expectations about stock market returns (which are in the RAND-enhanced FAT files)

and detailed pension data (from the RAND income and wealth imputations files). We use waves

5–10, which cover the period from 2000 to 2010.

The model as presented in section 2 is a model for the individual. In contrast with this,

information on wealth and asset allocation is at the household level in the HRS. Thus, in our

estimation and simulation exercises, we use the household as our unit of analysis. Wealth and

income is reported by the financial respondent, who is the one deemed most knowledgeable

about the household’s finances. Accordingly, for some inherently individual-level variables (age,

mortality), we use the variables for the financial respondent. We define an individual to be in

bad health if he or she reports his or her health status as “fair” or “poor”, and in good health

otherwise. Because health costs are borne by the household, and economic decisions are made

at the household level, the risk of health costs related to the spouse’s health must be taken into

account. Therefore, in our analyses, we use an indicator of bad health at the household level. The

household is defined to be in bad health if either the respondent or the spouse (if any), or both are

in bad health.

Out-of-pocket medical expenses comprise the costs incurred in a year for hospital, nursing

home, doctor visits, dentist, outpatient surgery, average monthly prescription drug, home health

care, and special facilities. Household out-of-pocket medical expenses are obtained summing the

costs reported by the financial respondent and, if present, his or her spouse.

2As cash-on-hand increases, the optimal share of risky asset asymptotes to the value of µ/γσ2
ǫ
. This is the constant,

optimal share of risky assets generated by a portfolio model with CRRA preferences when markets are frictionless and

complete and/or agents face no uncertainty about available future resources (Samuelson, 1969; Merton, 1969).
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Household retirement income includes pension benefits, annuities, and Social Security

retirement received by the financial respondent and his or her spouse in each wave. For each

household, we first compute retirement income in each wave and then a constant flow of retirement

income by averaging retirement income over all periods when it is observed.

For total wealth, we use the most comprehensive total wealth measure (HwATOTB) from the

RAND HRS. This includes net housing wealth (primary and secondary residence, other real estate,

minus balances of mortgages and other loans), vehicles, personal items of value, and net financial

wealth (checking and savings accounts, certificates of deposit, bonds, stocks, businesses, IRAs,

minus non-housing debt). We take stocks as the risky asset and everything else as the risk-free

asset. We include both wealth in direct stock holding and stock holding in IRAs. We do not include

balances in defined contribution (DC) pension plans in total wealth, nor the stock fraction of these

balances in stock wealth, because these balances are not readily available. Gustman, Steinmeier,

and Tabatabai (2010) construct measures of DC (and DB) pension wealth and the fraction of that

invested in stocks. The latter is only available for 2006, in which among over 6400 fully retired

financial respondents 60 and over, less than 1% had stocks in a DC account and therefore this

omission does not influence our results.3

We compute household cash-on-hand by adding household retirement income to household

wealth. We divide household cash-on-hand by household retirement income to obtain the measure

of normalized cash-on-hand which we use to solve and simulate the model.

We restrict our analysis to financial respondents aged 60 and older who are fully retired. We

exclude households whose reported retirement income in a given wave is less than 5,000 or more

than 1,000,000 dollars per year and whose total wealth is less than 10,000 or more than 3,000,000

dollars.

Figure 1 shows the fraction of individuals in our sample who hold stocks, and among those

who hold stocks, what the average fraction of their wealth in stocks is. Stock holding is relatively

constant at slightly below 40%, whereas the share of risky assets slopes upward a little with

increasing age. In the following sections, we will present analogous graphs based on the model

predictions and compare them to this graph.

3.2 Survival and health transition probabilities

The model has two interrelated transition processes: mortality and health transitions. We follow

De Nardi et al. (2010) and others and assume that survival from age t−1 to age t, and health status

at age t conditional on survival, depend on health status at age t − 1. We cannot directly estimate

the one-year survival and health transition probabilities (2)–(3) from the HRS, because the HRS

interviews individuals every two years and thus we do not observe one-year transitions. This is

only a minor nuisance, because probabilities of two-year transitions follow from the probabilities

3The reasons for this are arguably that in this age group, relatively few individuals have DC plans and that upon

retirement, many of those who do have a DC plan roll over their balances into an IRA or take out the pension in the

form of a lump sum.
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Figure 1: Stock holding and share of risky asset conditional on stock holding among retired

individuals age 60 and older in the HRS 2000–2010
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of one-year transitions:

Φ
t
(good | h) ≡ Pr(alive

t
,H

t
= good | alive

t−2,Ht−2 = h)

= sh
t−1

[

φh
t−1s

good
t φ

good
t + (1 − φh

t−1)sbad
t
φbad

t

]

(15a)

Φ
t
(bad | h) ≡ Pr(alive

t
,H

t
= bad | alive

t−2,Ht−2 = h)

= sh
t−1

[

φh
t−1s

good
t (1 − φ

good
t ) + (1 − φh

t−1)sbad
t

(1 − φbad
t

)
]

(15b)

Φ
t
(dead | h) ≡ Pr(dead

t
| alive

t−2,Ht−2 = h)

= 1 − Φ
t
(good | h) − Φ

t
(bad | h). (15c)

The left-hand sides of these expressions are observable in the HRS and thus can be used to estimate

the one-year transition probabilities. However, the number of deaths in the HRS is insufficient to

reliably estimate conditional survival rates directly. Therefore, as in De Nardi et al. (2010), we

combine information from the data with unconditional survival probabilities from a lifetable and

Bayes’ rule to estimate conditional survival probabilities.

Specifically, we start with the 2007 Actuarial Life Table from the Social Security

Administration (http://www.ssa.gov/oact/STATS/table4c6.html). We weight the male and

female columns by the fraction of males and females among 60-year olds in the HRS, and then add

them to obtain a combined lifetable, from which we compute the unconditional one-year survival

probabilities, s
t
= Pr(alive

t
| alive

t−1). Conditional survival probabilities can now be expressed
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using Bayes’ rule as

s
good
t = Pr(alive

t
| H

t−1 = good; alive
t−1) =

Pr(H
t−1 = good | alive

t
)

Pr(H
t−1 = good | alive

t−1)
× Pr(alive

t
| alive

t−1)

=
Pr(H

t−1 = good | alive
t
)

Pr(H
t−1 = good | alive

t−1)
× s

t
, (16)

and analogously for survival conditional on bad health. Thus, we estimate the numerator and

denominator probabilities in (16) and compute s
good
t and sbad

t
using (16) and the results from

the lifetable. It follows that we estimate four probabilities: the health transition probabilities

φ
good
t and φbad

t
from (3) and the health status probabilities Pr(H

t−1 = good | alive
t
) and

Pr(H
t−1 = good | alive

t−1) from (16).

To obtain smooth estimates, we specify each of these four probabilities as a logit model with

a cubic polynomial in age as covariates. We insert the resulting expressions (3) and (16) into (15)

and estimate all four submodels jointly by maximum likelihood in Stata. The estimation results

are given in Table 1.

Figure 2 plots the resulting one-year conditional survival probabilities sh
t

and health transition

probabilities φh
t
. As expected, survival probabilities drop with age, especially after age 80 or

so (note that these are one-year survival probabilities, not cumulative survival probabilities), and

survival probabilities are lower for bad health than for good health. The probability of staying in

good health decreases a little as well, and the probability of being in good health is much lower

if the individual (or household, rather) was in bad health in the previous year. Remarkably, the

probability of transitioning from bad health to good health increases a little at higher ages. We

suspect that this is due to relatively healthier individuals (within the “bad health” category) living

longer.

3.3 Out-of-Pocket Medical Expenses

As the structural model is solved in terms of normalized variables, we subtract the logarithm of

retirement income from both sides of (6) and estimate a process for the logarithm of the ratio of

household medical expenses to household retirement income: ln hc
t
= ln(HC

t
/P). By assuming

δ1 = 1, P drops out of the right-hand side of the model. We specify the function f (·) in (6) to be a

third-order polynomial in age and an indicator for bad health status interacted with age. We also

allow the variance of the unobserved component η
t

to depend on health status in order to capture

differential risks for households with different health.

We include fixed effects in the model for the medical costs process to control for the potentially

biasing effect of changes in sample composition with age due to differential mortality. Suppose,

for example, that only wealthier households are observed at very old ages and that their ratio

of medical expenses to retirement income is relatively low because of more generous pension

allowances. Estimating the age profile of medical costs by pooled OLS would understate the

extent to which the fraction of resources spent in health care increases with age. The fixed-effects

estimator overcomes this problem. By using the time variation within each cross section, in fact,

it allows us to correctly infer the age profile of household medical expenses. This also has the
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Table 1: Parameter estimates for the transition models

Covariate Coef. s.e.

Prob. good health(t)

a = (Age − 80)/10 −.7057∗∗ (.3232)

a2 .1641 (.3240)

a3 −.0202 (.1871)

Constant .2063 (.2897)

Prob. good health(t) given survival until t + 1

a −.6811∗∗ (.3292)

a2 .1851 (.3261)

a3 −.0143 (.1890)

Constant .2443 (.2923)

Prob. good health(t + 1) given survival and good health(t)

a −.3316∗∗∗ (.0606)

a2 −.0481 (.0358)

a3 .0199 (.0268)

Constant 2.0140∗∗∗ (.0369)

Prob. good health(t + 1) given survival and bad health(t)

a .0306 (.0802)

a2 .0350 (.0386)

a3 .0149 (.0345)

Constant −1.7380∗∗∗ (.0418)

∗∗ p < .05; ∗∗∗ p < .01.
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Figure 2: Conditional one-year survival probabilities and health transitions

0
.2

.4
.6

.8
1

P
ro

b
a

b
ili

ty

60 70 80 90 100
Age

One−year survival

0
.2

.4
.6

.8
1

P
ro

b
a

b
ili

ty
60 70 80 90 100

Age

Health transition conditional on survival

Good Bad

Health previous year

advantage of capturing cohort effects, which may be important for the variable of interest. If

not appropriately accounted for, systematic differences in health care behavior among generations

may lead to biased assessments of the age effect on household medical costs. The regressions also

include year dummies, which pick up variations in medical prices that differ from inflation and

variations in medical costs due to other unmodeled causes, such as the business cycle.

The estimates are presented in Table 2. Figure 3 presents the estimated age profiles for the

ratio of medical expenses to retirement income by health status. This is the prediction from the

model except for the fixed effects and the year dummies, and reflects the predicted median health

costs in 2000 by age and health status. Median health costs amount to less than 20% of income

among individuals in their early 60s. They reach 30% for individuals in their late 80s and rise

sharply thereafter. The effect of health status on medical costs is modest until 85, but becomes

substantial in the later part of the life span. These results are in line with what has been found in

other studies. For example, De Nardi et al. (2010) estimate that single individuals at the median

permanent income incur medical costs of roughly $1,700 (in 2000 dollars) at age 70 and $4,500

at age 90. Assuming that the typical household has two members and knowing that the median

(constant) household retirement income is $21,000, the implied ratios of medical expenses to

permanent income are 16% at age 70 and 42% at age 90. The estimates in the last two rows of

Table 2 indicate that households in bad health face a significantly higher risk of incurring high

medical costs.
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Table 2: Estimates of the medical expenses process

Covariate Coef. s.e.

Age 0.761∗∗∗ (0.255)

Age2/100 −0.973∗∗∗ (0.332)

Age3/1000 0.044∗∗∗ (0.014)

Bad Health × Age/100 0.374∗∗∗ (0.029)

Year 2002 0.177∗∗∗ (0.058)

Year 2004 0.211∗∗ (0.102)

Year 2006 −0.017 (0.149)

Year 2008 −0.218 (0.197)

Year 2010 −0.168 (0.254)

Constant −23.017∗∗∗ (6.676)

Residual s.d. (σ2
η
):

Good health 1.033∗∗∗ (0.027)a

Bad health 1.383∗∗∗ (0.031)a

Sample size 26,050

F-statistic fixed effects 3.15∗∗∗

∗∗ p < .05; ∗∗∗ p < .01.

a Standard errors computed by bootstrap using 1000 replications.

Figure 3: Medical expenses process by health status
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Table 3: Baseline model’s parameters

Initial age 60

Final age (T ) 100

Discount factor (β) 0.96

Relative risk aversion (γ) 4

Real risk-free return (r) 1.6%

Mean real equity premium (µ) 5.0%

Standard deviation of real risky asset returns (σ
ǫ
) 0.173

Inflation (π) 4.0%

Pension income tax rate (τ
i
) 20%

Investment income tax rate (τ
r
) 15%

3.4 Net asset returns and preferences

We assume that the tax rate on retirement income (τ
i
) is 20%. The U.S. income tax code

is progressive, and thus not every household faces the same average and marginal tax rates.

Furthermore, tax rates change over time. Thus, our model (as most economic models) is a

simplification. The 20% is a rate that is close to the median or mean federal income tax rate

in our sample period (CBO, 2010; Piketty & Saez, 2007). In our model, we use a tax rate

on nominal asset returns (τ
r
) of 15%, which is the maximum rate on capital gains and dividends

(Piketty & Saez, 2007).

We base our parameters for asset returns and inflation on the outcomes of the past 50

years (01/01/1961–12/31/2011). From the CPI (all urban consumers, series CUUR0000SA0;

http://www.bls.gov/cpi/, we derive that the average inflation rate between January 1961 and

December 2011 was about 4%, so in the model we take π = 4%.

For the risk-free nominal asset return, we use the returns on 1-year Treasury Bills (series

RIFSGFSY01 N.A; http://www.federalreserve.gov/releases/H15/data.htm), which had

an average real return of r = 1.6%.

For the risky asset returns, we use the total returns—including dividends—of the S&P500

(data available at http://www.econ.yale.edu/˜shiller/data.htm), which had an average real

return of 7.0% and, hence, a real risk premium of 5.39%. In our model, we use µ = 5% as opposed

to the historical 5.39% to take into account transaction costs such as mutual fund and brokerage

fees (Gomes et al., 2009). The standard deviation of the risk premium is σ
ǫ
= 0.173, which

comprises the observed historical variation in both the real risk-free and risky assets returns.

Preference parameters are taken from previous studies using life cycle models of saving and

portfolio choice. In particular, the discount factor, β, is set to 0.96, as in Cocco et al. (2005), while

the coefficient of relative risk aversion, γ, to 4, as in De Nardi et al. (2010).

Table 3 summarizes the benchmark values for the model’s parameters.
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Table 4: Initial age and health distributions in the simulation sample

Age Health

Value Fraction (%) Value Fraction (%)

60 9.95 Good 64.07

61 13.72 Bad 35.93

62 17.60

63 27.03

64 31.69

Figure 4: Distribution of initial normalized wealth in the simulation sample
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4 Model predictions with historical expectations

In this section we describe the wealth accumulation and investment patterns obtained when agents

hold rational expectations and base their estimates of future market gains on historical returns. We

thus solve and simulate the model under the assumptions that (1) individuals expect that returns

in the future are characterized by the parameters in section 3.4 and (2) that their expectations are

fulfilled, that is, future realizations will be in line with the historical trend.

We start with the sample described in section 3.1 and select the individuals between 60 and

64 years of age. This leaves us with a pool of 3,607 individuals, from which we sample with

replacement 10,500 times to obtain our simulation sample. The age and health distributions in

the simulation sample are reported in Table 4. The distribution of cash-on-hand normalized to

retirement income is depicted in Figure 4.

We then simulate an outcome path for each individual in the sample, where the individual uses

the optimal decision rules (described above) that solve the model. Below we report cross-sectional

means of relevant variables from age 60 to age 95. Wealth and consumption are both normalized

to retirement income. Investment behavior is illustrated by the fraction of individuals who hold
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Figure 5: Wealth and consumption in the baseline model
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any wealth in stocks, and by the share of wealth held in the risky asset conditional on holding

stocks. It should be noted that in our computations we exclude those individuals who do not

have enough wealth to invest and for whom the share of wealth held in the risky asset is not

defined. All individuals in our simulation sample start off with enough wealth to invest. For

all these individuals, the portfolio problem is correctly defined until very old ages, when asset

decumulation combined with high medical expenses force some to rely on the consumption floor

and, consequently, to save and invest zero.

Figure 5 shows the evolution of (normalized) consumption and wealth over the life cycle.

Consumption is perfectly smooth at about 1.5 times retirement income. The initial stock of

household wealth in the simulation sample amounts to about 17 times retirement income. Total

wealth declines rather modestly early into retirement and starts to be largely run down in the late

70s. This is consistent with the data, where the elderly are observed to reduce their asset holdings

only slightly until very late in life. As in De Nardi et al. (2010), the increase risk of unexpected

high out-of-pocket medical expenses induces older households to save more for precautionary

reasons and significantly slows down asset decumulation.

Figure 6 shows the fraction of retirees holding stocks and the share of wealth held in risky

assets conditional on holding stocks. With the historical equity premium and its volatility, the

model predicts that everyone should invest in stocks, which is greatly at odds with the stock

market participation rate of less than 40% that we observed in the HRS (Figure 1). This finding,

however, is not surprising and confirms the well-documented “stock-market participation puzzle”

(Haliassos & Bertaut, 1995): under the assumption of rational expectations based on historical

returns, a standard life-cycle portfolio model cannot replicate the observed low rate of household

stock market participation unless it features extremely high values of risk aversion or substantial

market frictions in the form of large entry and transactions costs (Alan, 2006).

The model also predicts that individuals keep most of their wealth (75%) in risky assets at age
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Figure 6: Stock holding and share of risky assets conditional on stock holding in the baseline

model
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60 and gradually move towards more conservative portfolios as they age. This is in line with the

typical financial planners’ advice of shifting investments away from stocks in retirement (Cocco

et al., 2005, e.g.,). The reason for this is that younger individuals are better able to overcome

negative portfolio returns using retirement income over a longer horizon. Because the optimal

share of risky asset decreases in normalized wealth, asset decumulation towards the end of the life

cycle could induce a higher share of the risky asset. This mechanism is, however, counteracted by

the need for hedging against the risk of large medical expenses at old ages. The net effect is a sharp

decline of the fraction of wealth held in risky assets from age 85 to 95. Again, the investment path

predicted by the model is different from the empirical evidence in Figure 1. HRS respondents tend

to keep around 25% of their wealth in risky assets throughout their retirement and increase this

fraction to about 40% at the very end of the life cycle.4

The model approximates the portfolio profile observed in the HRS better with alternative

parameter values. For instance, Figure 7 shows that if individuals are twice as risk averse as

in the baseline model, the predicted share of risky assets is about 25% on average, which is much

closer to the empirical pattern in the data. The need for precautionary savings increases with the

degree of prudence Kimball (1990), which, with a CRRA utility function, is directly linked to the

degree of risk aversion. For higher values of risk aversion, the preference for a buffer stock of

wealth increases, inducing a slower asset run down at old ages and a lower level of consumption.

Such a high value of risk aversion, however, appears to be in contrast with empirical estimates.

Hurd (1989), and Attanasio and Weber (1993, 1995), among others, find evidence of relative risk

aversion as low as 1.

4Several reasons may explain the observed increase in the share of risky assets at very old ages. For example,

retirees may spend down their non-equity wealth before tapping their stock market investments. Also, mortality bias

may play a role, as richer and more educated individuals are more likely to hold stocks and live longer.
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Figure 7: Effect of relative risk aversion (rra = γ) on investment behavior
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The empirical patterns can also be better approximated should the risk premium or its volatility

differ from their historical values. Figures 8 and 9 show that if the expected and realized risk

premium is half the historical one or if expected and realized return volatility is double the

historical one, then the predicted share of risky assets is also about 25% on average. This exercise

indicates the potential of using return expectations not based on historical returns to bring the

model’s predictions closer to observed investment patterns. We explore this possibility in the

following sections.

However, as these figures show, even with different parameter values the model is not able to

produce the low fraction of stock holding that we see in the data, but predicts that all individuals

should participate in the stock market. In what follows, we will document that a substantial

fraction of individuals with very pessimistic beliefs about the stock market, combined with

fractions of individuals with moderate or optimistic beliefs, leads to predictions that resemble

the data more closely on both the intensive and extensive margins.

5 Subjective beliefs about the distribution of stock market returns

Since 2002, the HRS has elicited respondents’ beliefs about stock market returns. The basic

question, asked in each wave, is the following:

By next year at this time, what is the percent chance that mutual fund shares invested

in blue chip stocks like those in the Dow Jones Industrial Average will be worth more

than they are today?
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Figure 8: Effect of the risk premium (rp = µ) on investment behavior
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Figure 9: Effect of the return volatility (sd = σ
ǫ
) on investment behavior
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We call this question P0. In the different waves, there are different additional questions. In 2004,

only P0 was asked. In 2006 and later years, there was a follow-up question to understand whether

a 50% answer expressed epistemic uncertainty, and in 2008, there were also follow-up questions

after a 0% or 100% answer to P0 to elicit whether these were rounded (in which case they were

probed again to give a continuous answer) or actual beliefs of certainty. We use all this information

in cases where this leads to a more informative answer to P0. In 2002, there was one additional

question, which we call P10:5

By next year at this time, what is the chance they will have grown by 10 percent or

more?

In 2010, two similar questions were asked (P20 and P−20), in which the percentage was 20% or

more gain or 20% or more loss. In 2008, respondents were randomized into one of 8 follow-up

questions, with the same structure, with gains of 10, 20, 30, or 40% (P10–P40) and losses of 10,

20, 30, or 40% (P[−10] – P[−40]). So each respondent answered (at most) two questions, but

overall there were nine questions. In 2006, there were additional questions about 10 years in the

future and about the past 10 years. Because these ask about a different distribution, we do not use

the latter.

Summarizing, for the distribution of the one-year ahead stock market return, respondents gave

one probability in 2004 and 2006, up to two probabilities in 2002 and 2008, and up to three

probabilities in 2010. Under suitable assumptions, we can use these self-reported probabilities to

compute a individual-specific distributions of stock market returns. Throughout, we assume that

these questions elicit beliefs about real before-tax returns.

Dominitz and Manski (2007) studied the 2004 data, which only had P0. They assumed that

respondents’ subjective distributions of stock market returns are normal distributions, and that the

standard deviation of this distribution is the same as the standard deviation of historical nominal

returns (for which they use 0.206). These assumptions can be used to compute the subjective

mean. Let m
i

be respondent i’s subjective mean, s
i
= 0.206 be respondent i’s subjective standard

deviation, and p0i
be the answer to P0 divided by 100. Then m

i
= −s

i
Φ−1(1 − p0i

), where Φ(·)

is the standard normal cumulative distribution function. This method can be used for the 2004

and 2006 data. If there is more information, this method can be generalized. In years where the

respondent gave two answers, we can drop the assumption about s
i

and solve the system of two

equations in two unknowns. Let the two probabilities be denoted by p
xi

and p
yi

, corresponding to

a stock market gain of at least x and y (e.g., x = 0 and y = 0.10 in 2002). In the case of losses, first

transform the answer from P[−x] to 100 − P[−x]. Then

s
i
=

y − x

Φ−1(1 − p
yi

) − Φ−1(1 − p
xi

)
(17a)

m
i
= x − s

i
Φ−1(1 − p

xi
) =

xΦ−1(1 − p
yi

) − yΦ−1(1 − p
xi

)

Φ−1(1 − p
yi

) − Φ−1(1 − p
xi

)
. (17b)

5The order of P0 and P10 was randomized, which requires slightly different wording for the two randomization

groups.
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With three answers, we have a system of three equations in two unknowns, and we have to compute

some kind of compromise value. A simple method would be to compute the m
i

and s
i

resulting

from applying (17) to the smallest two values of x (i.e., P0 and the loss question) and compute

another m
i

and s
i

resulting from applying (17) to the largest two values of x (i.e., P0 and the

positive gain question) and taking the average of the two.

Hurd and Rohwedder (2011) take a different approach. They observe that if the respondent

answers k questions, we have the probabilities associated with k + 1 mutually exclusive intervals

that span the whole real line. They proceed to assume that the subjective distribution within each

interval coincides with the historical distribution within that interval. For example, suppose the

respondent answers only P0. From this we can deduce Pr
i
(n < 0) and Pr

i
(n ≥ 0), where n is the

nominal return and the subscript i denotes respondent i’s subjective distribution. Then

E
i
(n) = Pr

i
(n < 0) E(n | n < 0) + Pr

i
(n ≥ 0) E(n | n ≥ 0)

E
i
(n2) = Pr

i
(n < 0) E(n2 | n < 0) + Pr

i
(n ≥ 0) E(n2 | n ≥ 0).

The conditional expectations on the right-hand side are taken from historical distributions, and the

subjective mean and standard deviations are obtained as m
i
= E

i
(n) and s

i
=
[

E
i
(n2)−m2

i

]1/2
. This

method immediately generalizes to any number of intervals.

We have experimented with both approaches and found that they give very similar results.

Here, we only present results using the Hurd-Rohwedder approach.6

After computing subjective means and standard deviations of real returns, we transform them

by correcting for the historical risk-free return so as to obtain the subjective real risk premium

and subjective standard deviation of real excess returns. We then discretize their distributions by

first taking terciles of the risk premium and collapsing the distributions to the interval midpoints.

Within each of these three groups we then take terciles of the standard deviation and again collapse

distributions to the interval midpoints. The advantage of having a discrete distribution with a small

number of distinct values is that we do not have to add a state variable to the model, but can run

the model for each group separately and aggregate the results afterwards, which is much less

burdensome computationally. Because of ties, groups are not always exactly 1/9th of the sample,

and we do not always have nine different groups. We have collapsed all groups with zero or

negative subjective risk premia, because their optimal decisions are equal and consist of never

investing in stocks.

The resulting distributions are presented in Table 5. A large fraction of respondents is very

pessimistic about stock market returns and expects them to earn less than the risk-free rate. The

6We use basic probability rules to identify inconsistent answers. First, we drop self-reported probabilities that are

outside the [0, 1] interval. It should be noted that the procedure suggested by Dominitz and Manski (2007) implies

that only values strictly greater than 0 and strictly less than 1 can be used. Given that a significant fraction of the

respondents clusters at 0 or 1, we approximate a “zero probability” with 0.001 and a “one probability” with 0.999. This

allows us to retain most of the selected individuals in the sample when estimating subjective distributions of returns.

The Hurd-Rohwedder approach does not require this approximation as it can be implemented for probabilities taking

value 0 or 1. Second, when two or more probabilities are elicited, we define as inconsistent all answers that do not

conform to the probabilities of the single events and their union. If, for instance P0 and P10 are asked, we define as

inconsistent all answers for which P0 ≤ P10. In this case, we only use P0 and ignore P10. The inequality above is

required to be strict under the Dominitz-Manski approach, but not under the Hurd-Rohwedder approach.
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Table 5: Estimated distributions of subjective risk premium and volatility

2002 2004–2006 2008 2010

RP SD Fraction RP SD Fraction RP SD Fraction RP SD Fraction

≤ 0 15.1 54.0 ≤ 0 15.8 38.4 ≤ 0 17.7 45.5 ≤ 0 17.2 57.1

.03 14.9 19.1 1.5 18.7 37.0 .24 15.6 21.2 1.7 14.6 4.3

23.0 4.0 20.8 4.4

29.1 4.3

3.5 9.7 2.5 4.2 17.6 4.1 4.4 14.9 3.4 6.7 14.9 3.4

17.8 2.7 18.2 0.8 19.1 3.4 22.2 3.4

19.3 2.3 24.3 3.4 28.1 3.3

8.1 11.8 3.5 7.4 16.4 7.0 8.9 11.2 4.2 10.9 12.4 3.3

16.6 3.3 17.1 5.7 16.7 2.5 20.7 3.3

18.3 3.2 22.4 3.3 27.6 3.3

15.1 8.0 3.6 12.1 9.6 3.7 17.6 10.2 3.4 19.3 6.5 4.1

11.4 2.8 13.3 2.7 16.8 2.7 14.1 2.5

14.9 3.0 15.2 0.6 24.2 3.0 22.9 3.3

RP = subjective risk premium (µ), SD = subjective volatility (σ
ǫ
), Fraction = fraction of the population

fraction varies between waves, though, and appears to be related to the business cycle, with higher

fractions being pessimistic in recessions. The distributions are also skewed to the right, with

noticeable fractions of respondents expecting risk premia of up to 20% (even more so in the

nondiscretized data). Our findings—more pessimistic expectations about stock market gains than

historical averages, high degree of heterogeneity in subjective expectations, and reported beliefs

linked to the recent stock market performance—are in line with those documented by Hurd (2009).

6 Model predictions with subjective expectations

We now analyze the extent to which replacing rational expectations based on historical returns

with subjective return expectations affects the model’s predictions about household stock holding

at both the intensive and extensive margins. We will also gauge the robustness of such predictions

to different values of key preference parameters (e.g., degree of risk aversion) and quantify the

cost of suboptimal portfolio choices induced by inaccurate beliefs about future market returns. In

the simulations in this section, we use the subjective expectations for computing the decision rules

of the individuals, but the historical returns for generating actual returns.

We present results using the combined 2004–2006 subjective expectations and results using

the 2010 subjective expectations, These are the most optimistic and pessimistic ones in the sense of

having the lowest and highest fractions of individuals who expect a zero or negative risk premium.

We have also computed the results using the expectations from 2002 and 2008. These are similar
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to the ones shown here and will not be discussed further.

Figure 10 shows predicted stock holding and share of risky assets conditional on stock holding

using the more optimistic 2004–2006 expectations distribution. Stock holding is now substantially

below 1, but still substantially higher than in the data (which are averaged over 2000–2010). The

share of risky assets is now matched more closely, especially with the higher value of risk aversion

(4). However, the model does not predict an increasing fraction of risky assets with increasing age.

Figure 11 is the analogous graph using the 2010 data. Now stock holding is matched more closely

with the data (though still slightly higher), and the share of risky assets also fits slightly better.

Figures 12 and 13 show the effects on consumption and wealth. With a relatively high relative

risk aversion of 4, consumption is below optimal at almost all ages, and the overall loss in

consumption is substantial. Wealth levels are also noticeably below optimal. With a lower risk

aversion of 1.5, consumption is above optimal up to age 73 or 74 and below optimal thereafter.

The total amount of consumption is not that different from optimal, but welfare loss is suffered

because of the lack of consumption smoothing. Wealth is below optimal by a large fraction.

Figures 12 and 13 show the effects on consumption and wealth. With a coefficient of relative

risk aversion of 4, wealth levels are significantly below the level implied by investment choices

under rational expectations. Overall, the retirement wealth loss associated with inaccurate return

expectations is 21%, when subjective expectations are estimated using data from 2004–2006,

and 28%, when subjective expectations are estimated using data from 2010. In both cases,

consumption under subjective expectations is 9% below the level predicted by the model with

rational expectations. With a degree of risk aversion of 1.5, individuals are substantially less

prudent and tend to run down their assets relatively quickly. In this scenario, inaccurate

beliefs about future risk premia induce a wealth loss of around 20% in both Figure 12 and 13.

Consumption tracks wealth quite closely and decreases steadily over time. It is on average 7%

below the level predicted by the model with rational expectations based on historical returns.

In general, the consumption loss associated with inaccurate return expectations is higher, the

higher the degree of risk aversion. This is because higher risk aversion implies more prudent

behaviors and a higher preference for accumulating a buffer stock to hedge against background

risks. As a consequence, any missed investment opportunity due to overpessimistic expectations

and unrealized investment returns due to overoptimistic beliefs translate into a higher welfare cost

due to the need of reducing consumption and maintaining a sufficiently high level of wealth.

7 Discussion

Standard life cycle models of economic behavior perdict that essentially everybody should invest

in risky assets to some extent, which is greatly at odds with the less than 40% of households that

are observed to own stocks in the data. Moreover, conditional on stock holding, standard models

with realistic values of the parameters predict much higher fractions of wealth invested in risky

assets than we observe in the data. Several explanations have been put forward in the literature,

but these are not able to explain observed patterns.

In this paper, we explore to what extent subjective expectations about stock market returns
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Figure 10: Fraction of stockholding and share of risky assets under subjective and historical returns

(subjective expectations from 2004–2006)
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Figure 11: Fraction of stockholding and share of risky assets under subjective and historical returns

(subjective expectations from 2010)
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Figure 12: Consumption and wealth profiles under subjective and historical returns (subjective

expectations from 2004–2006)
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Figure 13: Consumption and wealth profiles under subjective and historical returns (subjective

expectations from 2010)
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that differ from historical returns can explain empirical patterns. We embedded subjective

expectations in an otherwise relatively standard economic life cycle model. Using data on

subjective expectations from the Health and Retirement Study, we show that a large fraction of

the population holds beliefs that are so pessimistic that they should never invest in stocks. Of the

remaining individuals, a nonnegligible fraction is very optimistic and they should invest almost all

of their wealth in risky assets. A “moderate” middle group rounds out the distribution. This groups

should invest moderate amounts of wealth in risky assets. The model with these heterogeneous

subjective expectations is remarkably well able to match the empirical patterns, although there are

still a few unresolved issues. The main empirical issue is that the fraction of wealth invested in

stocks slightly increases with age in the data, whereas the model predict a gradual decrease. Most

likely this is a selection effect due to wealth, stock holding, and mortality being correlated.

Our model simulations also show that individuals pay for their suboptimal behavior through a

large welfare loss. We estimate that their consumption is on average 7–9% lower than when using

correct expectations. The loss is larger if individuals are more risk averse.

These results have profound policy implications. Misperceptions about stock market returns

can be attacked by various forms of education, information, and exemplary behavior. Although

misperceptions are likely to be persistent and such a program will not reach everyone, there is

a large scope for such programs. Not only government and non-profit organizations may be

interested in this, but also commercial enterprises, in particular financial institutions.

An important aspect that is still missing from the model is the evolution of subjective

expectations. The current model assumes that different individuals may have different

expectatiobns, but they keep the same expectations throughout their lifetimes. In practice,

optimistic individuals who consume much and expect the asset returns to support their life style

may notice a systematic rundown of their assets caused by lower returns than expected. They

may respond to this by updating their expectations and behaving more cautiously in later life.

Moreover, we have seen that in the data, subjective expectations vary between waves and may be

related to the business cycle. This suggests a role for the business cycle in changing expectations

as well.

Our model contains risks of medical expenses as estimated from the HRS data. If individuals

hold beliefs about their likelihood of being in good health or about the risks of large medical

expenses conditional on health status that are different from historical distributions, these may

also impact individuals’ behavior. We have performed limited experiments with subjective

distributions of health transitions, but these did not have much effect on the results. However,

it is worthwhile to study this more systematically and focus on expectations about out-of-pocket

medical expenses directly.
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Appendix

A Normalization

Consider the model set-up of section 2. Define c
t
= C

t
/P. Then expected remaining lifetime

utility (1) is

U
t
= P1−γ
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and, using the definition of cash on hand X
t

in the text, and x
t
= X

t
/P and hc

t
= HC

t
/P, the

wealth transition (11) can be rewritten in the form (14). Clearly, P does not play any role in

the utility function, and it is eliminated from the wealth transition equation. By assuming that

δ1 = 1 in the health cost model (6), this model can also be expressed in terms of the normalized

health cost hc
t
, with P not playing an independent role. Survival and health transition equations

and other restrictions also do not depend on P. Thus, exploiting the scale-independence of the

original maximization problem, we can rewrite all variables as ratios to the constant flow of

retirement income so to reduce the dimensionality of the problem from 3 state variables to 2.

This renormalization, introduced by Carroll (1992, 1997), makes the numerical problem more

tractable as it significantly decreases the computational burden. Carroll (1992, 1997) shows that

this normalization can even be done if income is variable and uncertain, at least within the income

transition model he considers, but our model is much simpler because we only consider retirees

and assume they have a constant stream of income.

B Numerical solution

The model is solved via backward induction. Let u
t
= U

t
/P1−γ be the normalized expected

remaining lifetime utility and define the value function

v
t
(x

t
,H

t
) ≡ max u

t
,

where the maximization is done over all decision variables. In the final period T = 100, expected

remaining lifetime utility is u
T
= c

1−γ
T
/(1−γ). This is maximized when c

t
is maximized. With the

restriction W
T+1 ≥ 0 and income, taxes, and health costs also being zero, if follows from (14) that

utility is maximized by c
T
= x

T
and the value function is

v
T

(x
T
,H

T
) =

x
1−γ
T

1 − γ
.
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Now consider the period T − 1 problem. Normalized cash on hand x
T−1 and health status H

T−1

are given and the agent maximizes

u
T−1 =

c
1−γ

T−1

1 − γ
+ β

∑

g∈{good,bad}

S (T, g | T − 1,H
T−1) E

T−1
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T
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.

Whatever the choice at age T −1 and realizations of the health transition and health cost processes,

if the individual is still alive at age T , he or she will choose c
T
= x

T
and remaining lifetime utility

will be v
T

(x
T
,H

T
). Thus, the problem at age T − 1 becomes the problem of maximizing

u
T−1 =

c
1−γ

T−1

1 − γ
+ βE

T−1

[

v
T

(x
T
,H

T
)
]

over the decision variables c
T−1 and α

T−1. Note that the expectation now includes the survival

probability. The maximized value of u
T−1 is v

T−1(x
T−1,HT−1). Walking backwards, the argument

can now be repeated for T − 2, . . . , t0, and the problem at time t can be rephrased recursively as

v
t
(x

t
,H

t
) = max

ct ,αt















c
1−γ

T−1

1 − γ
+ βE
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The value function at age t + 1 can be used to compute the optimal decision rules in period t. This

procedure is iterated backwards to the initial period t = 60.

In order to implement this solution algorithm, we discretize the continuous state variable,

normalized cash-on-hand, by defining an equally spaced grid, {x
k
}K
k=1

. The upper bound is chosen

to be nonbinding in all periods, specifically x
K
= 99. The lower bound is set to 0.01. This

can be interpreted as a minimum level of consumption guaranteed by government transfers in all

periods. By imposing x
t
≥ 0.01 for all t, the model solution implicitly accounts for transfers from

welfare programs that equal to 1% of retirement income plus medical expenses minus all available

resources, if that amount is positive, and zero otherwise.

The optimization procedure combines a root-finding algorithm (Brent’s method; Brent, 1973,

chapter 4) and standard grid search. For given values of x
t

and H
t
, the value function is concave

with respect to c
t
. Thus, optimal normalized consumption can be computed using Brent’s method,

significantly improving on computational efficiency. It is not known whether the value function is

concave in portfolio share α
t
. Hence, to avoid the potential danger of selecting local optima, we

optimize over the space of the remaining decision variable using a standard grid search. For this

purpose, we discretize the share of risky assets, α, to take 11 equally spaced values in the interval

[0, 1].

Interpolation plays a crucial role in the solution of the dynamic programming problem at

hand. We use two-dimensional cubic splines interpolation to evaluate the value function between

points on the cash-on-hand grid. Cubic splines have the advantage of being twice continuously

differentiable with a nonzero third derivative. These properties preserve the prudence of the utility

function, which plays an important role in precautionary savings and the effect of background

risks on individual decisions (Eeckhoudt & Kimball, 1992; Kimball, 1990). The strictly positive
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lower bound on the grid for cash-on-hand implies that the value function is also bounded from

below. This makes the spline interpolation work very well as long as the discretization of the state

space is sufficiently fine. Numerical integrations are performed by Gaussian quadrature.
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