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Abstract

To date, regulatory bank stress testing in the United States has focused on ensuring the

banking system is resilient to losses in one or a few stress scenarios that involve macro-economic

weakness, but it is unclear how far this resilience extends beyond the stress scenarios consid-

ered. In addition, a theory of which stress-scenarios should be chosen to achieve systemic-risk

reduction objectives has not yet been developed. To improve stress testing practices, this paper

proposes a framework for modeling systemic risk. The framework is used to identify areas where

current stress-testing practices can be improved. Based on the framework, the paper proposes a

new approach for systemic risk stress-testing and recapitalization policy that ensure the banking

system is robust to a wide set of shocks, but minimizes the costs of achieving robustness through

better sharing of risk. In addition, the systemic risk framework is used to examine how risks

should be shared among banks to achieve systemic risk reduction.
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1 Introduction

The Great Recession underlined the role of the financial sector in real economic activity and high-

lighted the importance of assessing and monitoring financial stability. During the recession and

the period that followed, the Federal Reserve conducted a series of stress tests, beginning with the

Supervisory Capital Assessment Program (SCAP), and more recently the Comprehensive Capital

Analysis and Review (CCAR). Both programs had the objective of improving financial stability

through identifying vulnerabilities in banks’ balance sheets, requiring more bank capital as needed,

and through releasing information to the public on banks’ performance. The stress tests proved

to be useful in identifying capital shortfalls, and through increased capital and heightened trans-

parency reduced investors uncertainty about the financial sector during turbulent times.1 In the

aftermath of the crisis, stress testing will be employed on a regular basis in the United States.2 The

European Banking Authority is also likely to continue stress testing European banks on a regular

basis.

Broadly speaking there are two categories of stress-tests: micro-prudential stress tests, that are

designed to assess the financial resilience of individual banks; and systemic tests that assess the

resilience of the financial system. The focus of this paper is systemic tests. The financial system

becomes systemically impaired when it cannot provide needed financial intermediation (FI) services

to the real sector. Financial distress at a single bank will not necessarily cause systemic impairment

if other institutions can step in and provide the services that cannot be provided by the distressed

institution. However, if banks representing enough intermediation activity experience financial

distress at the same time, then others may be not able to substitute for the lost FI services, and

systemic impairment results.

This paper defines systemic risk as the risk that the financial system becomes systemically im-

paired. Systemic stress tests reduce systemic risk by reducing the likelihood that banks experience

joint financial distress.3 To do so, one or a few adverse macro-economic scenarios are applied to

all banks. Based on the banks’ losses, capital is increased to ensure that the banks can together

adequately weather the adverse scenarios.4,5

1Supervisors requested 10 out of 19 banks participating in SCAP to raise $75 billion. All SCAP procedures
and findings were made publically available for purposes of clarifying the SCAP process (Board of Governors of the
Federal Reserve System, 2009a, 2009b). See Hirtle, Schuermann, and Stiroh (2009) for an overview of the SCAP.
See Peristiani, Morgan, and Savino (2010) for an event study of analysis how the SCAP reduced uncertainty about
banks.

2The Dodd-Frank Wall Street Reform and Consumer Protection Act mandates the Federal Reserve to perform
annual stress tests of the major financial institutions. The institutions will also conduct their own stress tests.
Institutions with total assets of at least $ 10 billion will stress their portfolios once a year, while institutions with at
least $50 billion will conduct biannual tests.

3As noted above, the other way is through the provision of information.
4This paper does not take a stand on whether the capital should be privately raised or provided by the government
5The CCAR employed several stress-tests in addition to a single stress scenario applied to all banks. More

specifically, in CCAR both supervisors and the banks forecasted banks’ losses over a nine-quarter horizon under a
baseline scenario, a stress scenario, and an adverse supervisory stress scenario. The baseline scenario was generated
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The benchmark for the success of a program of systemic risk stress-testing and capital setting

policy is its ability to make the provision of financial intermediation services robust to the severe

but plausible shocks that can affect the financial system, and to accomplish this at low cost. This

notion of robustness is similar to Eric Rosengren’s (2011) definition of financial stability as “the

ability of the financial system to consistently supply the credit intermediation and payment services

that are needed in the real economy if it is to continue on its growth path.6”

Relative to this benchmark, there are two important areas in which systemic risk stress-testing

practices in the US can be refined. First, the systemic risk stress-tests are primarily focused

on stresses emanating from the macro-economy to the banks; there is not a formal method for

determining what other source of shocks should be considered. Second, the US approach to systemic

risk stress-testing and capital policy make the banking system robust to the stress-scenarios that

are used in the test. But, because it is not part of the design, it is not clear how far the robustness

extends against the other shocks that the banking system may face.

The first area in which stress-testing could be improved is that stress scenarios should be based

on all of the risk exposures that banks face. During the height of the financial crisis of 2007-2009

macro-economic weakness represented one of the most important threats to the banking system;

and problems with the banking system would have made the macro-economic situation even worse.

Systemic risk stress-tests based on a macroeconomic scenario were used then to shore-up the banking

system and the macroeconomy against this threat.

During good times, the more relevant threats to the banking system and real activity often

stem not from the macroeconomy but rather from banks’ other risk exposures. More specifically,

Afaro et al’s (2009) study of 43 financial crises found that about half of them occurred before the

macroeconomy experienced adverse economic conditions. The early stages of the recent financial

crisis is a good example since the problems in the financial system preceded much of the weakness

in the macroeconomy. Other examples are risks that emanate from financial institutions’ overseas

exposures. Historical examples include bank branches of Japanese banks cut back their US lending

in response to the bursting of the real estate bubble in Japan in the late 80s; debt problems in

Mexico, Brazil, and Argentina in the early ’80s created large losses for some US banks; more recently

there is a concern that direct or indirect exposures to European sovereign debt exposure could

by the banks and reflected their expectations of the most likely path of the economy. The stress scenario was also
generated by the banks and was targeted at stressing key sources of their revenue and loss. The adverse supervisory
stress scenario was generated by the Federal Reserve and was intended to represent developments in the recession
specified in terms of key macroeconomic indicators. Specifically, the Federal Reserve assumed a negative economic
growth and a rise in unemployment for several quarters, among other developments.

6There are many other notions of financial stability or instability. Mishkin (1999), for example, defines financial
instability as misallocation of capital as a result of a disruption in information flows between potential borrowers
and lenders. Capital misallocation results in inefficiency in the sense that capital does not necessarily flow to those
with the most productive investment opportunities. Borio and Drehmann (2009) separate financial instability from
financial distress. They define financial instability as a property of financial markets that may cause financial distress.
Financial distress, in turn, is an event in which losses at financial institutions affect the real economy in terms of
foregone output.
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spillover to US markets and financial institutions. In all of these cases, important risk exposures

and shocks could be missed if stress scenarios are chosen only based on U.S. macro-stresses without

consideration of banks’ exposures to all sources of risk.

The second area where stress-testing and recapitalization practices should be enhanced is that

they should be explicitly designed for robustness. A robust approach ensures that the financial

system is not only well capitalized and resilient against the stress scenario under consideration, but

also against a much broader set of plausible shocks to the financial system.

Ensuring robustness of the financial system does not mean that the financial system should

be able to weather all shocks, but rather that it should be unlikely that distress spills over from

the financial system to affect the real economy. A physical analogy is useful: there will always

be some floods that are large enough that they can overwhelm a dam of any size and spillover to

the valley below; the robustness of the dam can be measured by the probability that it will not

be overwhelmed. Similarly, the robustness of financial safeguards (such as capital buffers) can be

measured by the probability or confidence that the financial sector is resilient in the sense that

shocks to the financial sector will not spillover and harm the real economy. For example, a financial

system is robust with confidence level 99 percent if its performance is resilient with probability of

at least 99 percent.

The current US approach to systemic risk stress-testing, because it focuses on a very adverse

macro scenario, is likely to provide some amount of resilience of the financial system to other

plausible shocks. But the extent of robustness is unclear. Geometrically, if a set of plausible shocks

that could occur with 99 percent probability lie within a closed region such as the points in a

multidimensional rectangle, then an approach to stress-testing that guarantees financial system

resilience to all of the points in the region is robust with at least 99 percent confidence. By contrast

the current US approach guarantees resilience to the scenarios used in the stress test, but the extent

to which that resilience to extends to the other types of shocks in the region that the financial system

is exposed to is unclear.

This paper makes three contributions to the literature on systemic risk stress-testing. First, it

analyzes systemic risk, stress-testing, and capital policy within the framework of a formal model

in which the objectives of stress-testing are clearly defined. Using the model, weaknesses in cur-

rent stress practices are identified, and alternative methodologies are proposed. Second, the paper

introduces a new framework for systemic risk stress-testing. The framework models the financial

system’s ability to provide financial intermediation services to the real sector. Stress-tests and cap-

ital injections are chosen to make the financial system’s ability to provide financial intermediation

services robust with a high degree of confidence.7 Third, the paper proposes an additional layer of

capital standards, and an information disclosure policy that are both designed to encourage better

7Put differently, our approach operationalizes Greenlaw et al’s (2012) goal of using macroprudential policy to
preserve the balance sheet capacity of the financial sector to support the economy.
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risk-sharing for systemic risk purposes.

Stress testing practice is refined in two ways. First, banks’ risk exposures are used to construct

scenarios. Choosing scenarios based on exposures helps to prevent important risk sources from

being overlooked. Even if all potential risk sources are accounted for, it is important to use exposure

information to choose the best direction of stress factor movements when forming a stress test. As

a simple example of this principle, a downward move in stock prices is not stressful to an investor

that is short the market, but an upward move will be.

Second, stress-scenarios are chosen using a methodology that is designed to make the financial

system robust to a large set of shocks. Two different stress-testing approaches are used to generate

robustness.

The first approach, labeled stress-maximization or SM for short, chooses a scenario that maxi-

mizes stress to the financial system subject to a plausiblity constraint on the scenario. Specifically,

the scenario is chosen to be a worst case for the financial sector among a set of bounded scenarios

that may occur with some chosen probability level such as 99 percent. If capital policy makes the

financial system resilient against this worst-case scenario, then by construction the financial system

will also be resilient to the set of all other scenarios in the 99 percent probability set. The financial

sector will hence be robust with a confidence level exceeding 99 percent.

The SM approach is designed to satisfy a sufficient condition for robustness. Its principle

advantage is that it orthogonalizes sources of risk, and identifies those sources of risk that create the

greatest risk exposures for the financial system. However, because it satisfies a sufficient condition

for a robustness, the stress scenario and resulting capital requirement are overly conservative.

The second approach, labeled constrained stress maximization, or CSM for short, simulate many

scenarios using monte-carlo analysis and then chooses capital requirements that satisfy a necessary

and sufficient condition for achieving robustness with a given degree of confidence. This approach

achieves robustness at the lowest possible capital cost, given the portfolio holdings of the banks.8

Further capital savings are achieved through setting bank-specific capital requirements that promote

better sharing of risks for systemic-risk purposes. The bank-specific requirements are schedules of

risk exposure and bank capital changes which keep the level of robustness of the financial system

unchanged. Allowing banks to trade along their risk-exposure / capital schedules provides them

with the opportunity to save on capital while maintaining financial system robustness.9

8In a related but very different setting Weber and Willison (2011) also choose capital injections in the least costly
way to achieve a systemic risk objective.

9Other approaches to setting capital for systemic risk are based on banks returns through their return correlations,
conditional expected shortfalls, or their CoVaR (see for example Acharya (2010), (2012) and the references therein).
A disadvantage of these return-based approaches is that they identify systemically risky banks but don’t identify
how banks can reduce their systemic risk; i.e. how can two banks reduce their return correlations if they don’t know
the factors that are driving it. The proposed method, by contrast sets capital charge schedules based on risk-factor
exposures. Hence, it identifies the exposures that banks should share differently to reduce capital charges for systemic
risk.
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Additional capital savings are achieved by releasing information that promotes systemic-risk-

reducing trades between bank and nonbank financial market participants. Many types of informa-

tion releases may help to reduce systemic risk. In the current version of this paper, the information

that is released is the stress scenario that has the maximum likelihood among the set of worst

stress scenarios for which the financial sector is robust. It turns out the factor realizations in

this scenario are related to the relative marginal systemic risk reductions that the banking sector

can achieve through better sharing of risk with non-bank financial market participants. Thus, the

stress-scenario is an advertisement for areas where the gains for systemic risk reduction through

risk-sharing between bank and non-bank financial market participants are greatest.

Implementing new approaches to systemic-risk stress-testing require new ways of thinking about

how to use and collect supervisory information on banks and financial institutions. In particular, in

the new approach, supervisory information on exposures will be used for constructing the scenarios

that are used in systemic risk stress tests. Therefore, exposure information should be collected and

stored in ways that make it most useful for creating stress scenarios and conducting supervisory

stress-tests.

Tailoring stress-tests to achieve robustness with some degree of probabilistic confidence, requires

models of the joint probability distribution of the risk factors that affect financial institutions.

Therefore, models of the joint distribution of the factors should be further developed and refined

for use in systemic-risk stress-testing.

Before proceeding, it is important to identify why banks and markets on their own will fail to

hold capital and share risk in a way that provides the socially optimal level of stability (aka robust-

ness), and why properly implemented regulatory stress-testing and capital requirements should be

a part of the solution.

The banking and finance literature cites a number of reasons for why banks and markets will

not provide the socially optimal amount of financial stability. To cite just a few, these include

negative externalities associated with fire sales [Diamond and Rajan (2009), Korinek (2011), ], that

too large to fail banks will take excessive risks, and that banks have incentives to fail together

because this increases their likelihood of being bailed out together [Acharya (2001), Acharya and

Yorulmazer (2007)].

In addition to the above failures, the level of robustness may also be suboptimal because banks

have imperfect information about each others’ risk exposures and joint returns, and as a result

don’t hold informationally efficient amounts of excess capital during good times to step-in and

replace or absorb distressed intermediaries during bad times.10 Regulatory stress-tests and capital

10Specifically, the returns to acquiring the assets of distressed intermediaries depends on the joint distribution
of their asset values, and on the amounts of capital they have set aside to absorb distressed institutions. Because
these amounts are not publicly known, and for proprietary reasons cannot be publicly revealed, banks don’t hold
informationally efficient amounts of excess capital for acquiring distressed firms.
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policy, properly implemented can help to improve on this outcome because regulators observe each

bank’s risk exposure information and therefore have better information on banks joint returns (and

distress) than do any banks individually. This information can be used to provide banks with

incentives to hold closer to the socially optimal amounts of capital.11 This information can also be

used to encourage banks to share risks in a way that is more efficient in terms of systemic risk.

The remainder of the paper contains 4 sections. The next section presents the main ideas in

the paper. In the context of a one-bank example: it illustrates shortcomings in current stress-

testing practices, and new approaches for generating stress tests and setting capital. Section 3

shows how the new approaches can be extended to control systemic risk in the banking system.

Section 4 presents stylized examples of the new stress-testing approaches, and capital requirements.

In addition, it studies the relationship between risk-sharing arrangements among banks and and

systemic risk. A final section concludes.

2 Choosing a Stressful Scenario

This section discusses how to use information on banks’ risk exposures to construct stress scenarios

and set economic capital. Many of the ideas in the paper can be explained within the context of a

single bank i. For simplicity, that is the approach that will be followed in this section.

The analysis starts from the assumption that banks’ portfolio risks can be represented by a

potentially very large but common set of risk factors f . The risk factors represent innovations in

the inputs that the banks use to value their assets and liabilities. Alternatively the risk factors may

represent the factors that banks use to model the riskiness of their assets and liabilities as part of

their risk management and measurement functions.

Vi,0 represents the value of bank i today and Vi,T is the value of bank i at date T , a future date

of interest. The banks’ value represents the market value of its assets minus the market value of

its liabilities.

To illustrate ideas, a Taylor series expansion is utilized to express changes in Vi,T as a function

of f . It is important to emphasize that most of the results in the paper (with the exception of

results on which stress-scenario to release publicly) do not rely on Taylor series.

Using Taylor series, the change in bank i’s value, denoted ∆Vi (= Vi,t − Vi,0) can to first and

second order can be approximated as a function of fT , the factor realizations at date T .

∆V i =≈ µiT + δ′ifT ; (1)

11Acharya (2001) also notes that regulators should use their superior knowledge of the joint distribution of banks
portfolios when setting capital requirements for banks.
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and,

∆V i ≈ µiT + δ′ifT + .5f ′TΓifT . (2)

In the approximations the first term µiT represents the change in value of the portfolio that is

nonrandom (due to for example holdings of riskfree assets) while the remaining terms are due to

fT .

To simplify the exposition, the non-random terms will be normalized to 0. In addition, the

analysis in the text will concentrate on the first-order approximation. Analysis for the second order

approximation is contained in the appendix.

It is useful to begin by highlighting the main deficiency of the macro-scenario based approach

to systemic-risk stress-testing that is used in both the US and Europe. The macro-scenario based

approach posits a macro-scenario, and then examines how well each bank performs under the

scenario. To do so, a macro scenario is generated, and then its effects are projected onto the set

of risk factors that affect the bank, producing a particular realization of fT , call it f̃T . The bank

is evaluated based on δ′f̃T , the loss due to f̃T . If this creates too large a loss, then the bank is

deemed to be undercapitalized; but is viewed as well capitalized otherwise.

The following textbook example [Gibson and Pritsker (2000)] illustrate one of the potential

problems with this approach. Consider a bank with, for expositional purposes, a very basic balance

sheet. The bank funds itself with equity = $1 million, and insured deposits which have value $4

million. On the asset side, its portfolio has value $ 5 million, which consists of cash holdings, a

short position in one year zero coupon bonds, and a long position in 10 year zeros, as detailed in

Table 1. The current zero coupon yield curve is modeled to be flat at 1 percent.

For the purposes of illustration, in this example, I assume stress-tests are being used with the

objective of ensuring that the bank has enough equity capital (currently = $1 million) to survive

over the next three months with probability exceeding 99 percent. This objective will be achieved

by evaluating the bank’s capital under the stress scenario, and then requiring the bank to have

more capital if it is needed. For illustrative purposes, in the example I assume the value of the

bank’s liabilities, which consist of insured deposits, are not affected by changes in interest rates.

Given the above objective, how should a stress scenario for the bank be chosen? One method

that is often used, labelled the ES approach, chooses stresses that are extreme scenarios where an

extreme stressful scenario specifies an extreme move for some variables and then sets other variables

to their expected values given the extreme moves. In the yield curve example with two bonds, let X

denote the yield change on one bond and let Y denote the yield change for the other. An example

of an extreme move corresponds to setting X at its 1st or 99th percentile [X ∈ {X1, X99}], and
then choosing the yield for the other bond, Y so that Y = E[Y |X]. Depending on which bonds are

Y and X, this generates four possible extreme stressful scenarios.
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An alternative top-down approach, labelled the PS approach, shifts all risk factors in a class by

the same amount; i.e. a parallel shift. In the context of the bond example, the stress scenario in

the PS approach would shift both bonds yields by the same amount.

The effects that both approaches to stress-testing have on setting capital requirements, as well

as the effect of the SM approach are illustrated in Figure 1.

It is useful to begin with the stress maximization (SM) approach. To illustrate that approach the

figure has a parallelogram shaped region that contains 99 percent of the probability mass from the

joint distribution of the 1- and 10-year yield changes over a 3-month period. Of the yield changes

inside the region the one that generates the largest losses results in a loss of approximately 2.03

million dollars. Because this loss is the maximal loss inside a region that contains 99% probability,

it immediately follows that if the bank was required to hold sufficient economic capital to perform

its financial intermediation activities after absorbing the 2.03 million dollars in losses associated

with the worst scenario for the bank inside the region, then with probability of at least 99 percent

the bank will be able to continue its financial intermediation activities given its risk exposures. Put

differently, setting the bank’s capital based on this worst-case shock makes the bank robust to a

wide-set of shocks that in this case have probability of at least 99%.

It is useful to instead consider what would happen if the bank chose its capital based on the

ES and PS approaches. Of the four extreme scenarios, the one that generates the most extreme

losses generates a loss of $ .85 million (labeled -.85 in Figure 1) over a 3 month period. The other

3 scenarios generate a loss of $ 0.21 million or gains of $ 0.21 million and $ 0.85 million.

It turns out that the true 99th percentile of the portfolio’s losses is about 1.3 million dollars

of loss. Therefore, all four extreme scenarios turn out to greatly understate the economic capital

that is required. If instead the stress-scenario that is used to set capital charges was based on

parallel shifts in the yield curve (the PS approach) then the amount of capital held would also

be inadequate. To illustrate, note that the bank’s position is hedged against parallel yield curve

changes. As a result, parallel yield curve changes, which occur along the blue 45 degree line in the

figure generate almost no changes in the value of the bank’s portfolio even when the size of the

parallel shifts are very large. This means if capital was naively set based on a parallel yield curve

shift stress-test, then the amount of capital that was held would be small and would clearly be

insufficient to achieve 99 percent confidence.

There are two reasons why the ES and PS approaches to generating stress scenarios and setting

capital perform poorly in this example. The first is that they don’t choose the correct direction for

the stress. This is particularly clear in the case of the PS approach, which only considers shifts of

the yield curve in a direction in which the bank is hedged.

The ES approach fails for a similar reason since the stress scenarios it chooses are also not
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too different from a parallel shift. The ES approach fails for another reason: in the ES approach

capital is set based on the scenario X and E(Y |X). Choosing stress-scenarios and setting capital

in this way fail to consider the variation of Y around its conditional mean as a determinant of how

much capital the bank should hold even though this variation should affect capital holdings in most

settings.

This analysis shows that for stress-testing in the case of one bank, some of the very simple

ways of setting up stress-tests don’t require the bank to hold enough capital for its own survival,

while the alternative stress maximization approach ensures the bank has sufficient capital to attain

robustness against a wide-variety of shocks.

The SM approach succeeds in setting enough capital because it is explicitly designed to do so.

The approach is motivated by the idea that the bank should hold enough capital so that it is robust

to severe but plausible stress scenarios. This in turn raises the question of what types of plausible

stresses is the bank vulnerable to, and for the set of plausible stresses how large are the possible

losses against which the bank should hold economic capital.

Plausible scenarios are often modeled under the assumption that the factor vector fT has an

elliptical distribution that for simplicity is multivariate normal.12

fT ∼ N (0,Ω). (3)

A scenario is defined to be plausible if the realization of fT in the scenario is not too far out in

the tails of a multivariate normal. Formally, a scenario for fT is considered plausible if

Ω−.5fT ∈ S, (4)

where in the case of two factors

S = {(x, y)|x ∈ [−a, a] and y ∈ [−s, s]}.

For notational purposes I will refer to the set S as a trust set, which represents a set of fac-

tor outcomes against which the bank is sufficiently capitalized. The plausibility condition places

restrictions on the shape of the trust sets. The plausibility condition can best be understood as

restrictions on the transformed risk factors u = Ω−.5fT . The transformation expresses the bank’s

risk factors fT in terms of a set of independent risk factors u that are distributed N (0, I).13 The

12With some additional difficulty the factors could instead be modeled with a fat-tailed distribution such as a
multivariate student-t.

13The risk factors are independent in this case because they are normally distributed and uncorrelated. If the risk
factors are instead multi-variate student-t, then the transformed risk factors will be uncorrelated but not independent.
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restriction of the independent risk factors to the set A means the realizations of each element of

u lie beween −a, a; hence each independent risk factor in the system cannot lie too far out in the

tail of its marginal distribution, where “too far out” is determined by the choice of a (which then

determines the set S). Because the bank is only being stressed for scenarios in S, it is also impor-

tant that the probability of the set S is large enough to insure that the bank is well capitalized

against a large set of plausible scenarios. To ensure that this is the case, s can be chosen so that

the probability of the set S, given by,

Prob(S) = [Φ(s)− Φ(−s)]2,

is sufficiently large.14 For example, to ensure that the bank can weather bad scenarios with prob-

ability of at least 99%, s should be chosen so that

[Φ(s)− Φ(−s)]2 = 0.99;

and the stress scenario fmin should be chosen so that

f(min) = min
f
δ′f (5)

such that,

Ω−.5f ∈ S.

This minimization problem can be rewritten as:

min
f |Ω−.5f∈S

[δ′Ω.5]× [Ω−.5f ]

= min
u∈S

δ∗′u

= min
ui∈[−s,s]

∑

i

δ∗i × ui

The solution for u and f (denoted u(min) and f(min), and the worst linear loss in portfolio

value are

u(min)i = −a× sign(δ∗i ) for all i;

f(min) = Ω.5u(min).

Worst Linear Loss = δ′f(min)

14If fT is multivariate student-t, with covariance matrix Ω, then the elements of u = Ω−.5fT are not independent.
In that case s solves ∫ s

−s

∫ s

−s

g(k1, k2)dk1dk2 = (1− α),

where g(., .) is the density function of a multivariate student-t.
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For Example 1, the trust set is a box in terms of the transformed variables u (not shown) and

is a parallelogram in terms of fT . Figure 1 illustrates the boundary of the set of plausible scenarios

for f . The approximate worst-case linear loss in A is at one of the corners of the parallelogram.

Because a first-order approximation is used to find this point, the actual worst case loss over the

set S differs from the amount identified, but the difference is small in this case. Using quadratic

approximation of the change in portfolio value, with the same trust set S the difference will typically

be even smaller. However, when using quadratic approximation of the change in portfolio value, it

is computationally convenient to choose a slightly different 99% trust set (Figure 2).15 Whichever

99% trust set is utilized, if there is no error in approximating changes in portfolio value, then the

required capital using both estimates is a conservative estimate of the amount of capital actually

needed to achieve robustness with 99% probability.

Variations on SM type approaches for stress-testing individual banks have been proposed before

[Breuer et al (2009), Gonzalez-Rivera (2003), Studer (1997)]. Most variations differ in their choice

of trust sets. The usual choice of trust sets with Gaussian risk factors requires the risk factors to

satisfy the inequality

f ′TΩ
−1fT ≤ k,

where k is chosen so that the set of fT which satisfy the restriction have a known probability such

as 99%. A pitfall in using trust sets that are based on a quadratic form is they can produce highly

unrealistic stress scenarios in some circumstances. To cite one example, suppose there are 100 risk

factors that are distributed N (0, I100) with k = 135.81, and that banks exposures to these factors

is δ = (1, ǫ, ǫ, . . . , ǫ)′, where ǫ is an arbitrarily small number greater than 0. In the example, k is

chosen so that the trust set has probability 99%. Because each element of δ other than the first

is very small, the choice of fT that lies within the trust set and approximately maximizes losses

sets the first element of fT to −11.65 and sets its remaining elements to zero. The problem is this

choice of fT is totally unrealistic because its first element is so far out into the tails of its marginal

distribution. It suggests there is something wrong with the method that is used to define the trust

set. In particular, the choice of trust set does not realistically restrict the marginal distribution of

the factor realizatons that can be chosen. To overcome this difficultly, the trust sets in this paper

restrict a linearly transformed version of fT denoted u, to lie within a cube. Because the cube

bounds the range of the marginals in each dimension, it avoids the above problem that arises with

trust sets based on quadratic forms. Nevertheless, for reasons that are discussed below, the variant

of the SM approach that I propose still produces stress scenarios that generate overly conservative

capital estimates. As a result other approaches are needed.

The last approach for setting economic capital is the CSM, or constrained stress maximization

approach. In the context of a single bank, the CSM approach corresponds to computing the

15There are two ways to implement the maximization with quadratic approximation. The more difficult method
imposes the constraint Ω−1/2fT ∈ S. The more straightforward method imposes the constraint P ′Ω−1/2fT ∈ S where
P is a rotation matrix that depends on Ω and Γ. See the appendix for details.
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bank’s value at risk for the 99th percentile of its loss distribution. This value is computed by

using information about the banks risk exposures and shock distribution. If the bank holds capital

against this amount, then it will hold the necessary and sufficient capital to cover its losses and still

perform financial intermediation with probability 99 percent. In this sense, it achieves precisely the

desired robustness objective, and does so without setting capital on the basis of any single stress

scenario.

Before continuing, it is important to summarize the main lessons from this one-bank example.

1. Stress tests need to use information on banks risk exposures in order to ensure that they

choose directions of stress that are meaningful.

2. If stress tests are used to set economic capital, then they should appropriately use information

on the joint distribution of the risk factors when setting capital.

3. If a goal of stress testing and capital policy is to ensure that banks are robust to other plausible

scenarios, then stress tests and capital policies should be explicitly designed to achieve this

objective.

The next section applies the insights from designing stress scenarios for a single bank to the

problem of designing systemic risk stress tests for the banking system.

3 A Framework for Systemic-Risk Stress Testing

The analysis proceeds in four subsections. First systemic risk stress-testing is contrasted with

stress-testing for individual banks. Second, the analysis defines systemic risk and financial stability

and provides a methodology for measuring them. The third and fourth show how the SM and

CSM approaches can be designed to achieve financial stability objectives. Subsection 3 establishes

why the SM approach is overly conservative in setting capital. Subsection 4 shows how the CSM

approach saves on capital given banks initial risk exposures and how it can be adapted to given

banks incentives to better share risk among themselves and with others in order to to reduce capital

costs while achieving systemic risk objectives.

3.1 Systemic-Risk Stress Tests vs Stress Tests for Individual Banks

The purpose of systemic risk stress tests is to ensure that the banking and other parts of the financial

system are sufficiently capitalized as a whole to support normal levels of financial intermediation

activity. In this respect, the purpose of systemic risk stress-tests is different from individual bank

capital requirements.
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Individual bank capital requirements are designed to prevent the insolvency of individual banks

by for example requiring them to hold enough capital to survive for a year with probability exceeding

99.9 percent. However, even if a bank holds enough capital to survive for a year, if it is solvent but

becomes poorly capitalized, it may be unable to lend for a while. If other lenders are financially

healthy enough to step in and lend to that banks borrowers, it may not represent a problem for

the financial system. But, if many lenders are solvent but become poorly capitalized at the same

time, it could create problems since there may not be enough healthy lenders to step in and provide

financial intermediation. The purpose of systemic risk stress tests and associated capital injection

policy is to reduce the likelihood of an in impairment to financial intermediation.

3.2 Systemic Risk and Financial Stability: Definitions and Measurement

For the purposes of this paper, systemic risk is defined by the probability (or probability distribu-

tion) of impairment of financial intermediation capacity in the economy. The precise form for how

intermediation capacity should be modeled is beyond the scope of this paper. For simplicity, the

measures of financial capacity impairment and systemic risk that are used in this paper are based

on three basic assumptions:

1. Each financial institution i’s maximal intermediation capacity is proportional to the assets

on its balance sheet, and the constant of proportionality is the same across all financial

institutions.16

Intermediation Capacity[i] = αAi

2. Each institution i’s impairment in capacity to performing financial intermediation is the

product of its maximal intermediation capacity, and a function Di[Ci] which represents its

level of financial distress. Di[Ci] takes values in [0, 1] and is a function of bank i’s capital

ratio.

3. When the percentage of intermediation capacity in the country that becomes impaired ex-

ceeds a threshold θ, then financial intermediation in the economy becomes impaired, creating

systemic problems.

It is important to stress that these assumptions could be replaced by others. The only element

of these assumptions that are essential is that intermediation capacity should be tied to variables

that are regulated (such as bank capital) so policy can be used to improve this capacity, and

intermediation capacity should be linked to fundamentals, as it will be below.

16Note: the constant of proportionality could be greater than 1 if institutions create and securitizes a large number
of loans.
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The assumptions suggest that a systemic risk measure at time horizon T should be based on

the percentage of banking assets that are held by banks in distress at T . This amount is denoted

by SADT , which stands for System Assets in Distress at T :

SADT =

∑

i αAi ×Di
∑

i αAi

=

∑

iAi ×Di
∑

iAi

SADT should in general depend on banks capital and on the economic state at date T , which

is represented by the vector of risk-factor realizations fT .
17 To simplify notation, the dependence

of SADT on fT will typically be suppressed.

Building on the dam analogy and robustness concepts discussed in section 2, systemic risk can

be defined in terms of the probability that SADT exceeds θ. Specifically,

Definition 1 A financial system is defined to be weakly alpha-theta stable (written as α− θ stable

hereafter) over the time horizon [0, T ] if

Prob0(SADT ≥ θ) ≤ α.

As an example of the definition, if T is one year, θ is 10 percent, and α is one percent, then

weak α− θ stability at horizon T means the probability conditional on information today (time 0)

that banks representing 10 percent or more financial assets will be in financial distress a year from

today is less than 1 percent.

Weak α − θ stability is a measure of financial stability since it reveals information about the

probability that the financial system will achieve a particular stablity goal θ. For a given level of

θ, α is a measure of systemic risk because it measures the likelihood that the stability goal will

not be met, and that financial impairment will occur. Although it is not pursued here, measures

of systemic risk that are analogous to expected shortfall could based on the expected amount of

impairment when impairment exceeds θ. In addition, weak α− θ stability objectives and expected

shortfall objectives can both be used in regulating banks activities, and/or setting capital.18

The CSM approach sets capital to satisfy a necessary and sufficient conditions for weak α − θ

stability. The SM approach satisfies a stronger concept, which I refer to as α− θ stability:

17The should also depend on the network of banks connections through interbank markets, but this is abstracted
away from for now.

18It may be possible for banks to game regulations based on the probability that SAD exceeds a threshold by
effectively writing deep out of the money options on SAD. Such options can satisfy the probability constraint yet load
up on systemic risk. Supplementing regulations on the probability that SAD exceeds a threshold with regulations on
expected shortfall should help to prevent such gaming.
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Definition 2 Let fT be the vector of risk-factor realizations that affect the value of financial firms

at time T . The financial system is α − θ stable at horizon T if there is a set of possible factor

realizations FT such that

Prob0({fT }|fT ∈ FT ) = 1− α,

and for all fT ∈ FT , SADT (fT ) ≤ θ.

The definition of α− θ stability implies that for all realizations of fT within a set FT that has

probability 1− α, the amount of system assets in distress is less than or equal to θ. An immediate

implication is that the set of fT for which SADT > θ has probability which is less than or equal to

α. Therefore, α− θ stability implies weak α− θ stability.

The definitions of systemic risk and financial stability rely on a measure of financial distress.

Bank i is defined to be in financial distress if its economic capital ratio at date T , Ci,T , falls below

some threshold c∗i that in theory should depend on economic conditions and bank i’s characteristics

such as its portfolio, and lines of business.19 Ci,T , bank i’s capital ratio is approximated using a

“policy-augmented” first or second order Taylor series expansion in the risk factors f that affect

the bank’s value. The second order expansion has form

Ci,T ≈ Ci,0 + CIi,0 + δ′ifT +
1

2
f ′TΓifT . (6)

In the expansion Ci,0 is i’s capital ratio at date 0, CIi,0 is any crease in capital ratios that

is required just after date 0 due to regulatory policy. It is important to remember that Ci,T is

expressed in ratios. Therefore, if bank i has to increase its capital ratio by CIi,0 just after date

0, then the amount of capital it must somehow raise is Ai × CIi,0. Similarly, δi and Γi are the

sensitivities of bank i’s capital ratio to the risk factors fT ; this is different than earlier in the paper

where δ and Γ measured sensivity of the bank’s equity value to the risk factors.

Using the definition of distress, the event of bank i’s financial distress at date T can be denoted

by the indicator function di,T where

di,T =







1 Ci,T < C∗
i

0 Ci,T ≥ C∗
i

While it is convenient to define financial distress as occurring when a bank’s capital ratio is less

than some threshold, banks that are slightly above or below the threshold are probably experiencing

19Bank i’s capital ratio at date t is defined as Ci,t = (Ai,t −Li,t)/Ai,t where Ai,t and Li,t denote the value of bank
i’s assets and liabilities at time t.
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about the same amounts of financial distress. Therefore it makes more sense to model financial

distress as a continuous function of a bank’s capital ratio. To do so, the binary distress function di,T

is replaced with the continuous distress function Di,T . To ensure Di,t takes values between 0 and 1,

it is chosen to be a cumulative distribution function (CDF) whose arguments are the bank’s capital

ratio, capital ratio parameters, and some tuning parameters. For simplicity, Di,T below uses the

logistical function CDF; the standard Gaussian CDF produces qualitatively similar results. The

logistical distress function is given by:

Di,T =
1

1 + e−ai−ki(C∗
i −Ci,T )

. (7)

It approaches 1 as Ci,T becomes small and approaches 0 as Ci,T becomes large. The parameters ai

and ki are tuning parameters that can be dependent on the characteristics of bank i and provide

flexibility in modeling. Specifically, ai determines the level of bank i’s distress when Ci,T = C∗
i ,

and ki determines the rate at which bank i’s distress changes when Ci,T moves away from C∗
i .

The measure of system assets in distress used in this paper comes from equation 6 with the

assets measured as of time 0, while using the distress function from equation 7.

SADT (CI, fT ) =

∑

iAi,0Di,T
∑

iAi,0
. (8)

Note that in the left-hand side of the equation, the notation for SADT () makes explicit that it

is a function of the N × 1 capital injection vector CI, and the risk factors fT .

With this definition, it is becomes relatively straightforward to conduct stress tests and set

capital using the SM and CSM approaches.

3.3 The SM approach

Let A denote the N×1 vector of banks total asset holding. With this notation, the capital injection

vector CIM and the stress-scenario fMT are the solutions to the min-max problem:

CIM = argminCIA
′CI, such that (9)

fMT = argmaxfT∈FT
SADT (CI

M , fT ), (10)

Prob0({fT } ∈ FT ) = 1− α (11)

SADT (CI
M , fMT ) ≤ θ. (12)
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In words, the SM approach finds the minimal amount of capital to inject to ensure that for

stress scenario fMT , which is the factor realization in FT that maximizes system assets in distress,

the resulting system assets in distress is less than θ. By construction, this approach achieves α− θ

stability.

The main drawback of SM approach is that it is very conservative. To provide intuition for its

conservatism, note that if CIM has been chosen optimally, then based on a second order approxi-

mation of SADT (.), the problem of finding fMT reduces to the maximization problem:

fMT = max
fT

δ(SAD)′fT + .5f ′TΓ(SAD)fT such that (13)

Ω−.5fT ∈ S, (14)

where S is a set of factors with probability 1−α, and δ(SAD) and Γ(SAD) are the first and second

order derivatives of SADT (CI, fT ) with respect to fT evaluated at fT = 0.

The random variables u = Ω−.5fT , is a vector of independent standard normal random variables.

The appendix shows that after transforming the maximization problem in terms of u, and choosing

the trust set S conveniently the problem becomes:

uMT = max
u∈S

δ∗′u+ .5u′Γ∗u, (15)

where δ∗ is a vector, and Γ∗ is a diagonal matrix, K is the number of risk factors, and S is a

box in K-space that has edges [−s, s]. Choosing the trust-set S as a box rules out very extreme

elements of the support of the marginal distribution of each element of u; this treatment avoids the

very extreme worst-case scenarios that can be chosen when the trust set is quadratic.

After the transformation, the problem of finding the stress scenario that maximizes SADT

over the set S reduces to solving K separate quadratic maximization problems that each involve

choosing the realization of an independent random variable. For example, the k’th maximization,

solves for the k’th element of u, denoted uT (k), that solves:

uT (k) = max
u[k]∈[−s,s]

δ∗[k]u[k] + .5u[k]2Γ∗[k, k], (16)

where the notation x[i] or x[i, j] represents the corresponding elements of the matrix x.

Put differently, this means after transformation the banking system can be viewed as a set of

quadratic exposures to bets on k independent sources of risk. The worst outcome for SADT , the

outcome chosen by the SM approach, is that all K independent bets simultaneously experience
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outcomes that generate maximal distress for the financial system. This is highly implausible. For

example, if there are 500 independent bets, and each is akin to a coin flip, then the probability

that all go bad simultaneously is absurdly low (= .5500 = 3 × 10−151). Because the SM approach

requires that capital is held against this very low probability event, it is extremely conserative in

high dimensions, and is too conservative to use as a basis for setting capital. 20 Nevertheless, by

identifying worst stresses for the banking system as a whole in every independent risk direction,

the approach is useful for highlighting risk vulnerabilities. For example, the losses from each of the

independent uk[m] factors can be computed; those which generate the largest gains in SAD can be

identified, and the exposures to these factors can be traced back to individual banks. Thus, the

SM method is likely to provide useful information for risk-monitoring, even if it does not provide a

reasonable stress scenario for setting capital because it is too conservative.

Before turning to the next stress-testing methodology, it is important to mention the relationship

of this work to an alternative methodology for choosing stress-scenarios that is known as reverse

stress-testing. Reverse stress tests and new variants of it (Glasserman et. al. (2012)) find stress

scenarios that are the most likely to generate losses of a given size. Because reverse stress tests focus

on relatively likely scenarios, they help identify relatively plausible loss scenarios that firms may

want to plan against. In addition, as will be illustrated below, such maximum likelihood scenarios

contain information that is potentially useful for risk-sharing. It is important to emphasize, however,

that reverse stress-testing is a complement but not a substitute for the SM or CSM approaches

because the latter approaches when combined with capital policy, are designed to achieve robustness

of the financial system while reverve stress testing on its own is not. 21.

3.4 The CSM approach

The goal of the the CSM approach is to set capital injections that provide a given level of systemic

stability, and then to facilitate the creation of markets for reducing required capital through the

improvement of risksharing.

20A part of the “conservatism” stems from the multivariate normality assumption, which is tantamount to assuming
there are K independent risk-factors. In a setting where instead the risk-factors have a multivariate student-t
distribution, then all of the risk factor realizations are dependent. Nevertheless, based on similar reasoning, the SM
approach is still overly conservative. To see why, do a first order expansion of SADT in terms of fT . Because a
multivariate student-t with J degrees of freedom is the ratio of a multivariate normal with an independent chi-squared
J random variable, after suitable transformation the bets can be expressed as bets on the ratio of independent normals
divided by the same chi-squared J random variable. In this setting the worst case scenario will still involve each
normal random variable moving in the wrong direction given the exposure. This will still be highly implausible.

21To illustrate why reverse stress-testing may not achieve robustness of SAD, note that in a setting with two
banks, the most likely stress-scenario for which SAD = L might involve the first bank experiecing large losses, and
the second bank experiencing small losses. The second most likely scenario might involve the first bank experiencing
small losses and the second bank experiencing large losses. The cheapest way to hold capital against the most likely
scenario is to inject capital into the first bank, but this will not provide protection against the second most likely
scenario. If the second most likely scenario has high enough probability then the financial system will not be robust
just based on holding capital against the most likely scenario.
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The CSM approach for setting capital solves the minimization problem:

CICSM = argminCI CI
′A (17)

such that

Prob0(SADT (CI
CSM , f̃T ) ≥ θ) ≤ α. (18)

The CSM approach solves for the minimum amount of capital that needs to be injected into

the financial system to satisfy the “robustness constraint” in equation 18; in addition it solves for

which banks capital ratios should be increased or decreased to attain weak α − θ stability given

banks current risk exposures.

The complicated part of the optimization is modeling the robustness constraint. To do so, I use

monte carlo simulation methods to nonparameterically estimate the probability density function

of SADT , as a function of parameters that include banks risk exposures to the factors (δk and Γk

k = 1, . . .K.), and theK×1 vector of capital injections (in ratio form) CI. An important advantage

of this nonparametric approach is that it is not necessary to make restrictive assumptions about the

joint distribution of the risk factors fT ; i.e. fT can be high dimensional, have fat-tails, stochastic

volatility, etc., and most of the methods for setting capital and sharing risk can still accomodate

it.22 The details on the estimation are in the appendix. To economize on notation, most of the

parameters will be suppressed until needed. The nonparametric density estimate that SADT = u

is denoted by the function ĝ(u|CI). Because SADT was created so that 0 ≤ SADT ≤ 1, integrating

this density function from θ to 1 produces an estimate of the probability that SADT will exceed θ,

denoted G(θ, CI):

Ĝ(θ, CI) =

∫ 1

θ

ĝ(u|CI)du. (19)

The function Ĝ(.) is a differentiable function of its parameters. This is very useful in solving

for the optimal capital injections CI given banks initial positions, and for doing the comparative

statics.

The CSM approach has four components. The first is a set of required capital injections CI∗

that achieve weak α − θ stability in the least costly way given banks initial risk exposures. These

are found by estimating the function Ĝ(.) and then numerically solving for CI∗ using standard

methods. After expressing the minimization problem as an equivalent maximization problem, the

FOCs for the optimal choice of CI∗ are just the FOCs of the standard Langrangean maximization

problem. In the maximization, I have used the notation CCI(CI, λ) to represent the lagrangean

22The exception is the results on risk-sharing between banks and nonbanks. The results for that part of the paper
relies on elliptical distributions.
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function because at the optimized values of CI and λ, CCI is equal to the cash capital that is

injected into the banking system.

CCI(CI, λ) = max
CI,λ

−CI ′A+ λ
[

α− Ĝ(θ, CI)
]

. (20)

To simplify the exposition, I will assume all of the constraints are binding. Under this assump-

tion, CI∗ and λ satisfy the FOCs

CCICI : 0 = −A− λĜCI(θ, CI
∗) (21)

CCIλ : 0 = α− Ĝ(θ, CI∗) (22)

The second component of the CSM approach is a schedule of cash-capital charges which delin-

eate after the capital injection CI∗ how much additional equity capital in total must be held by

the banking system when a bank alters its risk exposures. For example, if bank j altered the δ

component of its risk exposure by an amount dδj , then by the envelope theorem, dCCI the mini-

mum amount of additional capital that needs to be injected into the banking system to maintain

robustness is given by:

dCCI = −λ[Ĝδj (θ, CI
∗)]′dδj (23)

where Ĝδj is a vector that represents the vector of partial derivatives of Ĝ with respect to the

elements of δj . This means (for small position changes) if each bank j faced a capital charge that

required it to raise λĜδj (θ, CI
∗) dollars of equity per unit of change in its δ risk exposures, it

would internalize the effects of its position changes on the robustness of the financial system. It is

important to emphasize that dCCI measures the amount of equity capital that needs to be injected

into the banking system due to a change in bank j’s risk exposures, but it does not specify who

should hold the capital.

When bank j changes its exposure by an amount dδj , each bank i should alter its equity capital

by an amount Ai
∂CIi
∂δj

dδj . This leads to the third component of the CSM approach, the change

in all banks capital ratios that are required because of the changes in risk exposures of each bank

j. Working through the comparative statics shows that when a bank alters its risk exposures, all

banks could in theory alter their capital injections in response. The formula for dCI comes from

straightforward comparative statics and is given by:

dCI = −λ−1Ĝ−1
CI,CIĜCIdλ− λ−1Ĝ−1

CI,CIĜCI,δjdδj , (24)

21



where

dλ =
λĜδj − Ĝ′

CIĜ
−1
CI,CIĜCI,δj

Ĝ′
CIĜ

−1
CI,CIĜCI

dδj .

The comparative static expressions for dCCI and dCI are valid if the function G(.) is twice dif-

ferentiable in the parameters δ,Γ, CI, which is standard. The nonstandard part of the comparative

statics is that they rely on a nonparametric estimate. Since Ĝ(.) is estimated nonparametrically,

the comparative statics also require that Ĝ(.) and its first two partial derivatives converge to G(.)

and its first two partial derivatives as the number of monte-carlo draws of f become large. These

requirements may restrict the kernel functions and bandwidth choices that can be used for the

nonparametric density estimate, but the precise form of these restrictions have not yet been incor-

porated in the paper or the empirical analysis that follows.23

The fourth, and final component of the CSM approach is the release of public information on

some of the scenarios that are used in the stress-test. Recalling that many scenarios are used in the

stress-test, this raises the question of what types of information should be released publicly? Here,

I propose releasing information that facilitates risk sharing between banks and non-bank financial

market participants that are not systemically important. The purpose of facilitating risk-sharing of

this type is that it provides a means of transferring risk away from systemically important banks,

which helps reduce the capital that they would be required to hold against systemic risk. To help

create a market for transferring the risk, it is useful to provide information on the marginal benefits

in terms of capital savings that the banking sector would receive by sharing risk.

To derive the information that should be released I make the following assumption:

Assumption 1 After CI∗ has been chosen optimally SADT is approximately linear in fT and has

form

SADT = β0 + f ′Tβ1, (25)

where β1 and fT are N × 1 and fT is distributed elliptically (0,Ω).

Under this assumption the benefit in terms of cash capital that is saved by the banking sector

by altering β1 by the amount dβ1 is as follows:

Lemma 1 Under assumption 1
dCCI

dβ1
∝ Ωβ1.

23See Chacon et. al. (2010) and the references therein.
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Proof: Under assumption 1 and equation 23, Prob(SADT ≥ θ) = G(θ, CCI) = Prob

(

β′
1
fT√

β′
1
Ωβ1

> θ−β0√
β′
1
Ωβ1

)

.

Because fT is elliptical with mean 0, the last expression = 1−ψ

(

θ−β0√
β′
1
Ωβ1

)

where ψ(.) is the CDF

of an elliptical random variable that has mean 0 and variance 1. Therefore from equation 23,

differentiation of 1− ψ(.) shows dCCI
dβ1

= λGβ1
= λψ′

(

θ−β0√
β′
1
Ωβ1

)

×
(

θ−β0

(β′
1
Ωβ1)3/2

)

× Ωβ1 ∝ Ωβ1. 2

The results of this lemma are fairly intuitive: under the assumptions, Ωβ1 is the vector of

each factor’s covariance with SADT . It is intuitive that the larger is this covariance the greater is

the benefit in terms of capital that the banking system can save by sharing this risk with others

(provided they are not systemic). The challenge is how should Ωβ1 be computed given that β1 is not

known. A possible solution comes from the monte-carlo simulation. It turns out the amount of cash

capital that is saved is related to the maximimum likelihood stress-scenario for which SADT = θ,

as shown in the following lemma.

Lemma 2 Under assumption 1, the maximum likelihood stress scenario fML
T for which SADT = θ,

is given by fML
T ∝ Ωβ1.

Proof: When the distribution function is elliptical, the likelihood function of fT has form l(fT ) =
Ch(f ′TΩ

−1fT ), where C is a scalar and h is a function that is nonzero on its domain. The FOC

for solving for the value of fT that maximizes the log-likelihood function and for which SADT = θ

is
h′(f ′

TΩ−1fT )

h(f ′
TΩ−1fT )

× 2Ω−1fT = µβ1, where µ is the lagrange multiplier of the constraint. Algebra then

shows that fML
T ∝ Ωβ1. 2.

The implications for information provision on stress-scenarios are given in the following propo-

sition:

Proposition 1 Under assumption 1, releasing the maximum likelihood stress-scenario for which

SADT = θ will provide the market with information on the relative marginal benefits in terms of

relaxing capital requirements that the financial sector gains by selling its factor risks to the private

sector.

Proof: Obvious from the lemmas. 2

The proposition shows that under the conditions in assumption 1, a reverse stress-test that

chooses the maximum likelihood stress scenario for a given amount of loss (see Glasserman et al

(2012) ) has an interpretation in terms of the relative benefits of reducing risks from different types

of factors. It thus provides a new way of interpreting some stress scenarios. To provide an example,

suppose there are two risk factors, percentage changes in GDP and percentage changes in the value

of the S & P 500. If the percentage change in GDP in the maximimum likelihood stress-scenario
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that causes SADT = θ is - 4% and the percentage change in the S & P 500 is -2%, the stress scenario

would indicate that the marginal benefit in terms of systemic risk capital savings from reducing

the banking systems exposure to percentage changes in GDP is twice as large as the benefit from

reducing its exposure to percentage changes in the stock market.

The reason the information provided by fML
T is novel and valuable is that up to a constant

of proportionality it provides information on Ω and β1. Because the latter depends on all banks

risk exposures, β1 is not known to any individual bank or to market participants individually or

collectively. Thus, without the stress scenario, the marginal benefits of sharing different types of

risks with nonbanks for systemic risk purposes may be unknown to banks and market participants

alike.

When implementing the CSM approach, there are two ways to attempt to solve for fML
T . The

first is examine all of the monte-carlo scenarios for which |SADT − θ| is small and choose the value

with the highest likelihood. The second is numerically solve for fML
T .

A version of the results in Proposition 1 generalize to the case when f is elliptical but has mean

of µ not equal to 0. The result is provided in proposition 2 in Section C of the appendix.

To close this section, it is useful to summarize and discuss how the elements of the CSM approach

would ideally function together. The first step of the approach solves for the minimum cost capital

injections to achieve systemic risk objectives given banks current portfolios. Although not made

explicit above, this maximization allows for capital payouts provided that systemic risk objectives

are satisfied. The second step of the approach solves for schedules of cash-capital charges that banks

would have to pay for altering their portfolio exposures. To implement this approach, each bank

j would have to raise dCCIj of cash from equity holders and initially contribute it to a national

systemic risk fund. Each banks contribution to the fund would internalize the contributions to

systemic risk from altering its portfolio contributions. Because banks will face different schedules

based on the contributions of their different positions to systemic risk, the schedules will create

a basis for trade that will allow the banks to save on contributions to the national systemic risk

fund by trading with each other. In addition, because of the public release of information (step 4)

about the maximum likelihood stress scenario, banks will also have the opportunity to share risks

with systemically important nonbanks. This will further alter their contributions to the national

systemic risk fund. Finally, the revenues that are contained in the systemic risk fund are disbursed

to banks according to the formulas in step 2. The disbursement of capital to banks in this step

ensures the capital in the systemic risk fund is disbursed to provide robustness in the least expensive

way possible.
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4 An Example of Stress-Tests and Capital Injections for Systemic

Risk.

This section contains a very preliminary and uncalibrated analysis of the CSM approach when

risk-sharing can only take place among the banks. It’s performance is studied under four economic

settings. In all four settings, there are 6 banks that have identical distress functions. The banks

differ in terms of the size of their assets, with Ai = i for i = 1, 2, . . . 6. The banks assets cause

the banks to have exposures to two risk factors f1 and f2 that for simplicity are each N (0, 1)

and independently distributed. Recall that the banks distress is a function of their capital ratios

(measured by equity to assets). In the first setting, labeled “perfect” risk-sharing, I assume there

is “perfect” risk-sharing, which means the sensitivity of each banks capital ratio to the factors is

the same, and is normalized to 1. Note that the perfect risk-sharing scheme does not necessarily

correspond to the optimal robust risk-sharing scheme for systemic risk, because the robust objective

function is concerned with minimizing joint distress while under “perfect” risk-sharing, the banks

distress functions are perfectly correlated, which means they all fail together. All other settings

begin from perfect risk-sharing factor sensitivities, and then solve for optimal risk-sharing and

capital injections among the banks. The second and third settings, labeled shorting and no-shorting,

solve for optimal risk-sharing and capital injections when banks are and are not allowed to take

long or short positions in the individual factors resectively.24 In the fourth setting, optimal capital

injections are solved for when the banks begin from perfect risk-sharing, and then banks 5 and 6

alter their risk-sharing of factor 1, by bank 5 going increasing long in factor 1 while bank 2 goes

increasingly short.

In all four settings, optimal capital injections and risk-sharing are chosen to maximize the objec-

tive in equation 17 subject to the robustness contstraint 18. The distress functions is parameterized

as described in appendix B, and the robustness constraint is approximated using monte-carlo sim-

ulation and non-parametric density estimation as described appendix D. In all simulations θ = .10

and α = 0.05.

Three results emerge from the preliminary analysis. The first is that in some circumstances,

in particular cases 1 - 3, the amounts of capital that need to held in total are very similar (Table

2) even though the portfolio holdings that support those capital choices can be very different. In

particular, when there is “perfect” risk sharing, all banks capital ratios have an exposure of 1 to each

factor; when shorting is allowed, the bank portfolios that require the minimum amount of capital

for systemic risk require that all banks hold the same relative portfolio weights, which means all

banks are essentially exposed to the same single factor. However, some banks have long exposures

to the factor while others have short exposures (Table 3). This makes intuitive sense since if the

banks hold positive and negative exposures to the same risks, this can help to reduce the likelihood

24When banks take short positions in the factors this can be interpreted as taking a short position in a futures
market, or as buying protection against movements in the factor from another bank.
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that banks will experience distress at the same time since if some banks are experiencing distress

others must be doing well.25

When banks are not allowed to take short positions, the risk-sharing arrangement that mini-

mized capital injections while satisfying the robustness constraint involved “narrow banking.” In

this configuration, some banks have positive exposures to the factors and hold capital, while others

hold capital, but have no exposure to the factors. In this case, the banks that are holding capital

have no factor risk, but are holding it as reserves to provide financial intermediation if the larger

banks that hold the factors experience distress. It is important to keep in mind that in this example

although some banks sell their factor exposures, all banks are financial intermediaries that make

loans. What is “narrow” is how the risks from the factors are shared. The systemic risk objective

function favors the risk being concentrated among a few well capitalized banks, while other banks

are well capitalized but do not hold this risk (Table 4 ).

The second interesting, but perhaps not surprising result is that when the robustness constraint

only minimizes the likelihood that systemic assets in distress exceed some threshold level, then

such a restriction generates many different distributions of systemic assets in distress, all of which

satisfy the robustness constraint (Figure 3 ). This is true despite the fact that the distributions of

system assets in distress beyond the threshold θ as measured by expected shortfall are very similar

(Table 2 ). The variation in the distributions of SAD across the different risk-sharing arrangements

(perfect, short, no-short) suggest that if the levels of SAD affect welfare even when SAD < θ, then

this should be taken into account when designing capital standards.

The third result is that although across the three very different risk-sharing arrangments con-

sidered above require the same amounts of economic capital, deviations from these risk-sharing

arrangements do generate large increases in capital. To illustrate, I consider the fourth setting,

when banks 5 and 6 alter their exposures to factor 1. This increases the total amount of capital

that needs to be injected into the financial system (Figure 4); it alters the amounts of capital that

banks 5 and 6 have to hold (Figure 5). Because the CSM approach solves for the least expensive

way to to inject capital into banks to achieve robustness, the change in risk-sharing between banks

5 and 6 should and does alter the amount of capital that banks 1 - 4 hold, in this case reducing it

(Figure 6).

The differences in risk based capital that need to be held to ensure robustness as risk-sharing

arrangements change show there is scope for tailoring capital charges to encourage sharing of risk

that preserves robustness while saving on capital.

25This result slighty refines Wagner (2010). Wagner argues against diversified portfolios because it leads to similarity
of risk taking and is bad for systemic risk. In the example above, by contrast, all banks take positions in the same
portfolio; they are all diversified; but it is good for systemic risk because some banks are long or short the portfolio
and therefoe will not fail together.
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5 Conclusion

Stress-testing bank portfolios is a relatively old idea, but the application of stress testing techniques

to systemic risk mitigation is still in its infancy. This paper has critiqued systemic-risk stress-

testing practice as applied in the US. The current U.S. stress-testing and recapitalization policy, by

focusing on stress-tests that use one or a small number of severe stress scenarios, is likely to produce

a financial system that achieves some level of robustness to other less severe scenarios. However, it

is not clear how much robustness is achieved against the wider of set shocks that could affect the

banking system because achieving robustness is not formally a part of the stress-test design.

This paper has provided a framework for formally modeling the process of systemic risk stress-

testing. Using the framework, the paper analyzed current U.S. stress testing practice. Three main

results emerged from the analysis. First, to achieve a desired degree of robustness it is necessary to

use exposure information and the distribution of risk factors when determining how much capital

should be injected. Second, the “stress-testing” and capital injection methodology that achieves a

necessary and sufficient condition for robustness is estimated by using many scenarios in a monte-

carlo analysis that is applied to the banking system. This suggests there may be room to improve

upon capital setting methodologies that are based on one or a small number of stress scenarios.

Third, improvements to risk sharing can substitute for capital in achieving systemic risk reduction.

This paper shows that in some settings the maximum likelihood stress scenario for which robustness

constraints on capital are just binding is proportional to the marginal capital saved when the

banking sector shares risks with non-bank market participants. This suggests, that some stress-

scenarios may have a role in promoting risk sharing to save on capital, even though reliance on

single stress scenarios is not optimal for setting capital.

The final contribution of providing a formal stress-testing framework with well defined objec-

tives, is that the framework helps to highlight areas where the stress-testing methodology requires

further development and analysis. In the case of the framework above, the linkage between capital

ratios and finanicial intermediation capacity should be further refined so that the framework can

be calibrated and operationalized. In addition, it should be extended to multiple periods, account

for banks linkages through counterparty credit risk, including interbank markets. These extensions

remain a topic for future research.
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A Quadratic Minimization

The quadratic approximation of the change in value of an individual firm is given by:

∆V ≈ δ′f + .5f ′Γf

where

f ∼ N (0,Ω).

After the change in variable,

u = Ω−.5f,

the change in value can be written as

∆V ≈ δ′Ω.5u+ .5u′Ω.5ΓΩ.5u, (26)

where u ∼ N (0, I).

Because Ω.5ΓΩ.5 is symmetric, it has representation

Ω.5ΓΩ.5 = PDP ′ (27)

where D is a real diagonal matrix and P is a matrix of orthonormal eigenvectors.

Applying the change of variables x = P ′u then tranforms ∆V to

∆V ≈ δ′Ω.5Px+ .5x′Dx

≈ δ̃x+ .5x′Dx, (28)

where x ∼ N (0, I).

To solve find the worst case stress-scenario over over a set of f that has probability 1 − α, we

solve

∆vmin = min
x
δ̃′x+ .5x′Dx (29)
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such that

xi ∈ [−a, a]for all i.,

and

[Φ(a)− Φ(−a)]N = (1− α).

Specifying the constraints on x in this way guarantees that mapping from x to A, the set of

possible f realizations has probability 1− α.

The reason for doing a change of variables to x is that the minimization problem has the very

simple form

min
xi∈[−a,a]

∑

i

δ̃ixi + .5x2iDii,

which is just N trivial constrainted quadratic minimizations. Denote the solution for x as xmin.

After the minimum has been found, transforming back produces

fmin = Ω.5Pxmin (30)

B Choosing Parameters of the Distress Function

Recall the distress function for bank i has form:

Di,T =
1

1 + e−ai−bi(C∗
i −Ci,T )

where Ci,T , firm i’s capital ratio at time T is modeled as

Ci,T = C0 + CIi + δ′if + .5f ′Γif,

and δi and Γi are first and second-order risk exposure sensitivities for bank i.

The parameters of the distress function are ai, bi and C
∗
i . A full analysis of how to estimate or

calibrate the distress function parameters is beyond the scope of this paper, but one approach is to

assume i’s distress function is related to i’s credit risk at time T . In the simplest case, i’s distress

function at time T is equal to its probability of default between times T and τ (τ > T ). This
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default probabity is denoted 1 − PS(T, τ) where PS(T, τ) is the probability that bank i survives

until time τ conditional on its capital at time T :

Di,T = 1− PS(T, τ).

Under this formulation, the log odds of survival between times T and τ is related to bank i’s

capital ratio via the formula26:

log(Survival Odds)(T, τ) = −ai − bi(C
∗
i − Ci,T ) (31)

From this equation, if data on survival odds (or EDFs), and banks capital ratios are available,

then under suitable restrictions the parameters of the distress function may be identifiable.27

To illustrate this papers framework for modeling systemic risk, instead of choosing a single set

of parameters for the distress function, several sets of parameters will be reported. Our baseline

configuration assumes that when ci,T = C∗
i , distress = 0.9, which restricts ai = 2.1972. To choose

bi and c
∗
i , I for now set them to 0.45 and 0. In future revisions assume that to conduct financial

intermediation, the banks probability of becoming insolvent over the next year must be less than

p%. In a framework with Gaussian (mean 0) factors and linear exposures, this requires c∗i =

−
√

δ′iΩδiΦ
−1(p). I will apply this formula even when the factors and exposures are not Gaussian.28

C Generalizing Proposition 1

Proposition 2 Under the assumptions of 1, when fT is distributed elliptically (µ,Ω), releasing the

maximum likelihood stress-scenario for which SADT = θ will provide the market with information

on the relative marginal benefits in terms of relaxing capital requirements that the financial sector

gains by altering its exposure to the stochastic (demeaned) components of fT .

26The odds of survival is the probability of survival between T and τ divided by the probability of default between
T and τ .

27Under ideal conditions, −ai−biC
∗
i and bi are identifiable via OLS. The parameter C∗

i is not separately identified,
but separate identification of this parameter is not needed to compute or simulate distress if the survival function
has the form in equation 31. Under more realistic conditions, identification will need to account for the endogeneity
of Ci,T .

In the equation, the scalar bi can alternatively be interpreted as a parametric function bi(.) which depends on
C∗

i −Ci,T and other parameters. For example in similarity with structural models of default bi() could be a function

of
C∗

i −Ci,T

σC

√
τ−T

, i.e. the distance of capital ratio from some threshold that is normalized by the standard deviation of the

capital ratio between times τ and T .
28This treatment is similar to requiring that capital is based on risk weighted assets, but it allows for “portfolio

effects” in which the capital requirement for an asset depends on the other risks in the portfolio. This is not possible
when the capital requirement is set based on risk-weighted assets.
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Proof: When the distribution function is elliptical with mean µ, the likelihood function of fT has

form L(fT ) = Ch[(fT − µ)′Ω−1(fT − µ)], where C is a scalar and h is a function that is nonzero

on its domain. The FOC for solving for the value of fT that maximizes the log-likelihood function

and for which SADT = θ is
h′(f ′

TΩ−1fT )

h(f ′
TΩ−1fT )

× 2Ω−1(fT − µ) = πβ1, where π is the lagrange multiplier

of the constraint. Algebra then shows that (fML
T − µ) ∝ Ωβ1. Therefore, knowledge of fML

T and µ

is equivalent to knowledge of a random vector that is proportional to Ωβ1.

Next, suppose that the banking sector increased its exposure to the random variable f − µ, the

demeaned version of f by an amount dη, evaluated at η = 0. By the envelope theorem, at the

optimized value of CI∗, dCCI
dη

= λGη(.)|η=0, where G(.) = Prob [β0 + β′1fT + η′(fT − µ) > θ] =

Prob

[

(β1+η)′fT√
(β1+η)′Ω(β1+η)

>
θ−β0−β′

1
µ√

(β1+η)′Ω(β1+η)

]

= 1− ψ

[

θ−β0−β′
1
µ√

(β1+η)′Ω(β1+η)

]

, where ψ(.) is the CDF of an

elliptical random variable with mean 0 and unit dispersion matrix. Differentiating the CDF with

respect to η evaluated at η = 0 shows dCCI
dη

∝ Ωβ1.

Assuming G(.) is differentiable in η, -dCCI
dη

is the change in cash capital that is saved by trans-

ferring risks from banks to systemically unimportant non-banks. Therefore using information on

the maximum likelihood stress scenario for which the robustness constraint just binds is equivalent

to solving for the relative value of banks reducing their demeaned exposures to the risk factors. 2

D Modeling the Robustness Constraint

The robustness constraint in the maximization is computed by combining simulation with non-

parametric estimation in three simple steps:

1. Makes N (a large number) i.i.d. draws of fT , from its distribution conditional on date 0.

Denote these draws f1, . . . , fN .

Note: there is not a need for this distribution to be Gaussian. It can be almost anything.

2. Using the monte-carlo draws of f , estimate the density function of SADT , nonparametrically

using kernel density estimation29. This density function is denoted ĝ(u; δ, CI), which rep-

resents the probability that the density of SADT = u conditional on risk exposures δ and

capital injections CI.

ĝ(u; δ, CI) = P̂rob(SADT = u) =
1

Nh

N
∑

i=1

K

(

u− SADt(δ, C, fi)

h

)

, (32)

29Values with hats over them are estimated.
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where h is the kernel bandwidth.30

3. Integrate the nonparametric density to estimateGC(θ, .), the probability that SADT is greater

than θ:

ĜC(θ;CI, δ) =

∫ 1

θ

ĝ(u;CI, δ)du

The robustness constraint requires

ĜC(θ;CI, δ)− α ≤ 0.

The advantage of estimating the robustness constraint nonparameterically is that ĜC is a

smooth function of risk exposures and capital injections. This greatly facilitates optimizing capital

and risk-sharing with respect to these parameters.

30For simplicity, following Silverman’s rule, h was chosen as h = N−.2
× 1.06σ(SADT ), where σ(SADT ) is the

sample standard deviation of SADT in the simulations. The kernel density estimation was computed using a gaussian
kernel.
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Table 1: Assets for Textbook Example

Asset Yield Amount Invested
Cash 0 95 million

1 Yr ZCB 1 % -100 million
10 Yr ZCB 1 % 10 million

Notes: For the example in section 2, the Table provides information on the banks asset portfolio,
which consists of positions in cash, and one- and ten- year zero coupon bonds (ZCB).
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Table 2: Capital injections and expected shortfall as a function of risk-sharing arrangements

“Perfect” Risk Sharing No Shorting Shorting
Capital Injection 253.42 253.35 253.30
Expected Shortfall .0065 .0067 .0068

Notes: For the example in section 4, the table presents the optimal capital injections into the
banking system, and expected shortfall for system assets in distress when the banks in the example
engage in “perfect” risk-sharing, when they share risk but cannot short assets, and when they can
short assets.
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Table 3: Optimal Factor Exposures for Systemic Risk when Short Positions in the Factors are
allowed

Bank Assets Factor 1 Factor 2
1 1 -3.23 -3.21
2 2 -.22 -.21
3 3 -.14 -.13
4 4 1.67 1.67
5 5 1.69 1.69
6 6 1.66 1.65

Notes: For the example in section 4, the table presents the optimal risk factor exposures as a
fraction of assets that minimize capital injections when the banks can take long and short risk
exposures.
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Table 4: Optimal Factor Exposures and Capital for Systemic Risk when Short Positions in the
Factors are not allowed

Bank Assets Factor 1 Factor 2 Capital
1 1 0 0 9.7667
2 2 0 0 9.7667
3 3 0 0 9.7667
4 4 0 0 9.7667
5 5 1.91 1.91 14.1564
6 6 1.91 1.91 14.1564

Notes: For the example in section 4, the table presents the optimal risk factor exposures (as a
fraction of assets) and capital injections that minimize total capital injections when the banks can
take long but not short risk exposures.
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Figure 1: Setting Capital Based on Stress Scenarios: An Example Using Interest-Rate Shocks
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Notes: For the stylized bank whose balance sheet is described in Table 1, the figure presents a
plot of changes in portfolio value that can occur for a set of ten-year and one-year yield changes.
The figure is used to examine the efficacy of setting capital by using stress-scenarios. Scenarios
are generated three ways. First, a scenario is generated through the stress maximization (SM)
approach by finding yield shocks that generate the worst portfolio loss for shocks that lie within a
parallelogram that contains 99% of the probability mass of shocks (loss = -2.03 million). Second, 4
extreme scenarios are generated that shock one yield up or down by two standard deviations, and
the other by its expected change conditional on the first shock (losses = -.85, -.21; gains = .85, .21
). Third, scenarios are generated through parallel shifts to the yield curve, which corresponds to
movements along the blue 45 degree line in the figure.
The true 99th percentile of loss for the portfolio is a loss of 1.3 million dollars. Therefore, if capital
is set based on the first alternative, it will be more than sufficient to cover this loss. If capital is set
instead based on the second alternative (extreme scenarios) or the third alternative (parallel yield
curve shifts), then the capital holdings will be inadequate to absorb up to 99th percentile of the
loss distribution of the bank’s portfolio.
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Figure 2: Linear and Quadratric 99% Trust Sets
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Notes: For the stylized bank in Figure 1, the figure shows the 99% trust set that was used in Figure
1, as well as an alternative trust set that is more convenient to maximize over when the bank’s
value is approximated using a quadratic function of the risk factors. For both trust sets, the worst
case loss over the trust set is presented in the figure. Both worst case losses exceed the true 99th
percentile of loss. Therefore, setting capital for this bank using the maximal loss criterion and
either trust set would result in adequate economic capital for the example considered.
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Figure 3: Distribution of System Assets in Distress for Different Risk Sharing Arrangements
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Notes: For the example in section 4, the figure presents the distribution of system assets in distress
when the smallest capital injection possible is chosen to satisfy robustness constraints, and when
the risksharing arrangement is optimized subject to the resriction that it is “perfect” risksharing,
allows for risk-sharing with shorting, or allows risk-sharing but no shorting.
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Figure 4: Capital Required for Deviation from “Perfect Risk Sharing”

0 2 4 6 8 10
250

260

270

280

290

300

310

Imperfect Risk Sharing Index

To
ta

l C
ap

ita
l I

nj
ec

tio
n

Relation of Total Capital Injections to Risk−Sharing

Notes: For the example in section 4, the figure presents the amount of capital that all banks have
to hold as a function of the deviation from perfect risk sharing (the imperfect risk-sharing index)
for banks 5 and 6. The imperfect risksharing index runs from 0 to 10. When it is 0, the holdings
of asset 1 are consistent with perfect risk sharing in which each banks exposure as a ratio of assets
is equal to 1. When the index is 10, the ratio of exposure to assets for bank 5 is 5.
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Figure 5: Capital Required for Banks 5 and 6 for Deviation from “Perfect Risk Sharing”
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Relation of Banks Capital Ratios to Risk−Sharing: Banks 5−6

Notes: For the example in section 4, the figure presents the amount of capital that banks 5 and
6 have to hold as a function of the deviation from perfect risk sharing (the imperfect risk-sharing
index) for banks 5 and 6. The imperfect risksharing index runs from 0 to 10. When it is 0, the
holdings of asset 1 are consistent with perfect risk sharing in which each banks exposure as a ratio
of assets is equal to 1. When the index is 10, the ratio of exposure to assets for bank 5 is 5.
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Figure 6: Capital Required for Banks 1 - 4 for Deviation from “Perfect Risk Sharing”
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Relation of Total Capital Injections to Risk−Sharing: Banks 1 − 4

Notes: For the example in section 4, the figure presents the amount of capital that banks 1 to 4
have to hold as a function of the deviation from perfect risk sharing (the imperfect risk-sharing
index) for banks 5 and 6. The imperfect risksharing index runs from 0 to 10. When it is 0, the
holdings of asset 1 are consistent with perfect risk sharing in which each banks exposure as a ratio
of assets is equal to 1. When the index is 10, the ratio of exposure to assets for bank 5 is 5.
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