
Stress-Testing U.S. Bank Holding Companies: A Dynamic Panel

Quantile Regression Approach∗

Francisco Covas Ben Rump Egon Zakraǰsek†
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1 Introduction

Macro stress tests have become a key tool for the conduct of macroprudential policy in the United

States and Europe.1 Undoubtedly, the stress tests conducted in the U.S. have been responsible for

the notable increase in bank holding companies’ (BHCs) regulatory capital ratios since early 2009

(see Figure 1). An important novelty of U.S. stress tests is that the Federal Reserve constructs its

own estimates of bank losses, revenues and regulatory capital ratios for each bank under a severely

adverse macroeconomic scenario. In many instances, the models used by the Federal Reserve are

estimated using data on individual portfolios and require a great deal of detailed information about

loan characteristics which are provided by banks. Upon completion of the analysis, bank-specific

results of the stress tests are released to the public. These disclosures have had a notable impact

on banks’ stock prices, suggesting that the announcements contain important information about

the capital adequacy of banks (Peristiani, Morgan, and Savino 2010). Given the role of stress tests

as an important policy tool, this paper evaluates the forecasting performance of “top-down” stress

testing models. These approaches can be used to generate industry-wide losses and revenues using

aggregate bank level data, hence require considerably less detailed data. In addition, top-down

stress testing models are useful to benchmark aggregated results from the U.S. stress tests and also

to evaluate banks’ capital adequacy plans under different macroeconomic scenarios.

Top-down stress testing approaches map the paths of macroeconomic variables into bank out-

comes using aggregate data. Although these models are used extensively by central banks and

regulatory agencies around the world they have some important shortcomings. In particular, two

often mentioned criticisms deal with misspecification issues and inability to capture the nonlinear-

ity of bank losses during periods of macroeconomic stress. To mitigate some of these limitations,

we estimate density forecasts of banks’ regulatory capital ratios using dynamic panel quantile re-

gressions. First, the quantile regression model is well-suited for capturing the nonlinear dynamics

of bank losses during periods of macroeconomic stress. Second, in contrast to a point forecast,

density forecasts provide an estimate of the probability distribution of all possible values of the

1For an overview of macroprudential policies and stress testing see, e.g., Hirtle, Schuermann, and Stiroh (2009),
Hanson, Kashyap, and Stein (2011) and Greenlaw, Kashyap, Schoenholtz, and Shin (2011).
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variables of interest. For example, density forecasts can characterize the uncertainty associated

with the projection of banks’ capital ratios under a severe macroeconomic scenario. Finally, we

use the parameter estimates from the quantile regressions to assess the size of capital shortfalls at

the onset of the last financial crisis using the density forecasts for the tier 1 common ratio (T1CR)

generated using simulation methods.

The dynamic panel quantile regression model is able to generate density forecasts for losses that

have fat tails in periods of macroeconomic stress, a distinct feature of the data that is impossible to

capture with the standard linear regression framework. In particular, we observe a strong nonlinear

effect in losses for several loan portfolios as well as trading losses, as the estimated impact of the

lagged dependent variables in the quantile model are increasing in the quantiles of the dependent

variable. This implies, that an adverse shock to the credit quality in, for example, the residential

real estate portfolio will make the series more persistent and increase the heaviness of the right tail

of the density forecast for residential real estate losses. Furthermore, as the out-of-sample forecast

horizon expands, this mechanism is amplified as banks that draw a sequence of negative shocks

would observe their losses escalate during a relatively short period of time. In contrast, the degree

of persistence of the linear model is invariant to the size of bank losses, thus density forecasts

generated using a linear panel regression have much thinner tails. As a result, in our projections,

realized net charge-offs are usually inside the multi-step-ahead density forecasts generated using

the quantile model during the last financial crisis whereas they are often outside the multi-step

density forecast generated using the linear model, particularly for the portfolios most affected by

the last financial crisis.

A key objective of macro stress tests is to analyze whether banks’ capital ratios are always

above a specified minimum requirement during a severe but plausible macroeconomic scenario. In

particular, in the latest round of U.S. stress tests the Federal Reserve disclosed point forecasts of

the T1CR for each of the 19 largest BHCs under a severe macroeconomic and financial market

scenario. An important feature of our top-down stress testing approach, is that we use simulation

methods to generate density forecasts for losses, net revenues and the T1CR and provide a complete

description of the uncertainty associated with our forecasts conditional on a given macroeconomic
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scenario. Furthermore, having the distribution of all possible T1CR outcomes allows us calculate

the probability a bank would violate a specified capital requirement. Moreover, we also calculate

the expected capital shortfall, that is the amount of capital a bank would need, on average, to

prevent it from ever violating the capital requirement under a given macro scenario.

To evaluate the methodology proposed in the paper, we estimate capital shortfalls for several

large U.S. BHCs at the onset of the last financial crisis. First, the results from both the quantile

and linear models indicate that relatively large fractions of banks would violate the minimum

T1CR requirement of 4 percent during the last financial crisis. Projected losses for both the

quantile and linear models are elevated enough that several banks have a relatively high likelihood

of violating the 4 percent minimum T1CR requirement. Second, under a a 2 percent minimum

T1CR requirement moderate fractions of banks would still have a fairly high likelihood of also

violating this requirement, but only based on the density forecasts generated using the quantile

model. In particular, several banks in our sample would violate the 2 percent T1CR requirement

between 1 and 5 percent during the financial crisis. The probability of going below 2 percent in

the linear model is zero for those same banks. Meanwhile, simulations based on the quantile model

suggest that almost all banks in our sample would need to raise new capital to avoid violating the

2 percent minimum T1CR requirement during the financial crisis. In contrast, under the linear

model specification just 1/4 of banks would need additional capital.

Several papers in the literature provide an overview of macro stress testing. For example, Sorge

and Virolainen (2006) and Drehmann (2009) review the main methodologies used for macro stress

testing, some of which are closely related to the class of models we use in our paper. Foglia (2009)

reviews current stress testing practices across various jurisdictions and Cihák (2007) provides an

overview of a typical stress testing process for both top-down and bottom-up approaches. Alfaro

and Drehmann (2009) and Borio, Drehmann, and Tsatsaronis (2011) criticize the current state-of-

the-art stress testing methodologies for not being capable of uncovering vulnerabilities to financial

stability during good times. To address these concerns, Schechtman and Gaglianone (2012) suggest

that stress testing exercises should turn their attention to the conditional right tail of credit losses.

However, they find that the results obtained using the widely known reduced form stress testing
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approaches of Wilson (1997a) and Wilson (1997b) are very similar to the ones obtained using

quantile regression. Our paper expands their basic idea of combining density forecasts and quantile

regressions in several important directions and find that the dynamic panel quantile regression

model generates density forecasts with fatter tails. First, we conduct our analysis using panel

regressions. Second, we generate our results using multi-step forecasts, which are needed to generate

significant differences to arise between the density forecasts derived from the quantile model and

ones constructed using the linear model.

The rest of the paper is organized as follows. Section 2 motivates our paper and describes the

stock market reaction to the disclosure of results from the latest round of U.S. stress tests. Section 3

describes the fixed effects dynamic panel quantile regression model. Section 4 describes the bank

holding company data used in the analysis and presents the estimation results. Section 5 evaluates

the out-of-sample forecast of the quantiles and linear model. Section 6 estimates capital shortfalls

at U.S. BHCs at the onset of the last financial crisis and also for the last U.S. stress testing exercise.

Section 7 concludes.

2 Some Implications of U.S. Stress Tests

In the U.S., stress tests are designed to carefully evaluate the capital adequacy of the 19 largest

BHCs. In particular, the objective of stress tests is to evaluate whether these banks maintain

sufficient capital to support the credit needs of borrowers under severe economic conditions. The

results of the most recent U.S. stress tests—also known as Comprehensive Capital Analysis and

Review (CCAR)—were released in mid-March of 2012. Prior to that, the capital adequacy of U.S.

bank holding companies (BHCs) was also formally assessed in two other previous occasions, namely

in March of 2011 and May of 2009.

The U.S. stress tests require a considerable amount of resources both at the banks and regulatory

agencies and last for about four months. Initially, the Federal Reserve provides a severely adverse

macroeconomic and financial market scenario to the participating BHCs. At the same time, the

participating BHCs submit extensive data with information on their loan and securities portfolios
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to the Federal Reserve. These data is then used as inputs to a variety of models developed by

staff at the Federal Reserve to generate projections for losses and net revenues. Meanwhile, banks

submit their capital plans with proposed dividend payouts, share repurchases and redeemption

of trust preferred securities. The Federal Reserve then uses their own projections for losses, net

revenues and the banks’ own capital plans to construct the path of the expected regulatory capital

ratios under the supervisory stress scenario over the following 9 quarters. The key requirement

for a bank to pass the stress test is that the projected tier 1 common capital ratio (T1CR) under

the severely adverse macroeconomic scenario must stay above 5 percent throughout the forecasting

horizon.2

Figure 1 plots the T1CR of the 19 largest U.S. BHCs between the first quarter of 2009 and

the second quarter of 2012. During this period, the T1CR climbed from 5.5 percent in the first

quarter of 2009 to about 11 percent in the second quarter of 2012. The increase in T1CR since

the beginning of 2009 was mainly driven by the issuance of common equity and increased retained

earnings at these BHCs. Restrictions in dividend payouts and share repurchases imposed by the

Federal Reserve based on the outcomes of the three stress tests were, in most part, responsible for

these increases.

In addition, the release of the U.S. stress test results to the public have also elicited a notable

reaction by market participants. For example, there is some evidence of significant abnormal

positive stock return performance for banks for which the Federal Reserve estimated relatively

small declines in their T1CR under stressed economic conditions. Figure 2 reports the abnormal

stock returns of each CCAR bank following the release of the CCAR 2012 stress test results against

the projected decline in the bank’s T1CR during the severe stress scenario.3 The abnormal stock

returns are defined as the residual of a capital asset pricing model estimated using banks’ daily

2The bank has also to maintain tier 1 capital, total capital and the tier 1 leverage ratio above minimum regulatory
capital ratios of 4, 8 and 4, percent respectively. The tier 1 common capital ratio (T1CR) is defined as tier 1 capital
less non-common elements, such as qualifying perpetual preferred stock, qualifying minority interest in subsidiaries,
and qualifying trust preferred securities. Common equity is the dominant for of capital in T1CR therefore this is the
preferred capital ratio used by supervisors to evaluate the capital adequacy of U.S. BHCs. Also, the T1CR has a
higher likelihood of binding during a severe stress scenario.

3The chart includes 18 of the 19 CCAR BHCs. Ally Financial Inc., is not a publicly traded BHC. Also, the
regression results presented in the chart exclude MetLife since it is an insurance company and the firm’s T1CR
remained above 5 percent under the adverse economic scenario. Instead, the firm failed their total capital ratio and
leverage ratio requirements.
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stock returns in the 22-days prior to the release of the results. The event period includes the day of

the release of the stress tests and the following day. As shown in Figure 2, banks that experienced

relatively small declines in T1CR during the severe stress scenario experienced abnormal stocks

returns in the range between 4 and 8 percent in the two days following the release of the results

of the stress tests. In contrast, BHCs that experienced the largest declines in T1CR during the

severe stress scenario had zero abnormal stock returns. Moreover, two of the banks that “failed”

the stress tests had the lowest abnormal stock returns.

In summary, empirical evidence suggests that stress tests have strongly encouraged U.S. BHCs

to increase their regulatory capital ratios notably over the last three years. In addition, there is

some evidence that the disclosure of the stress test results to the public elicited significant reaction

in stock markets and allowed market participants to better understand the risk profiles of each

institution.

3 Econometric Methodology

In this section we introduce the fixed effects quantile autoregression model (FE-QAR) and the

fixed effects dynamic linear panel model (FE-OLS). We use these models to generate h-step ahead

predictions for net charge-offs of loan portfolios and subcomponents of pre-provision net revenue.

These projections are key inputs to generate density forecasts for the tier 1 common regulatory

capital ratio for each bank.

The dynamic panel quantile regression model is as follows:

Yit = αi +
k∑

p=1

φp(Uit)Yit−p + β(Uit)
′Xit−1 + θ(Uit)

′Zt, i = 1, . . . , N ; t = 1, . . . , T, (1)

where Yit denotes, for example, annualized commercial and industrial (C&I) net charge-offs in

period t for bank i, expressed as a percent of average C&I loans; αi represents a bank fixed effect;

Yit−p is lag p of the dependent variable; Xit−1 is a (l × 1)-vector which includes observable bank-

specific variables; Zt is a (k × 1)-vector of macroeconomic variables; Uit is a sequence of i.i.d.

standard uniform random variables. In this context, the parameters φp : [0, 1] → R, β : [0, 1]l → Rl
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and θ : [0, 1]k → Rk are unknown functions that must be estimated. Following Koenker (2004), we

assume the bank specific effect is constant across the quantiles of the dependent variable. The bank

fixed effects are intended to capture unobserved heterogeneity, so it might make sense to restrict

the αi to be constant across the quantiles of the dependent variable. The estimation of FE-QAR

model solves the following minimization problem

(α̂, φ̂, β̂, θ̂) = min
α,φ,β,θ

Q∑

q=1

T∑

t=1

N∑

i=1

ωqρπq

(
Yij − αi −

k∑

p=1

φp(πq)Yit−p − β(πq)
′Xit−1 − θ(πq)

′Zt

)
(2)

where ρπ(u) = u(π − I(u < 0)), denotes the piecewise linear quantile function of Koenker and

Bassett (1978). As in Koenker (2004) the choice of the weights, ωq control the relative influence

of the Q quantiles on the estimation of the bank fixed effects, αi. As for the standard errors of

the parameter estimates we use the bootstrap. Generally, the FE-OLS and FE-QAR estimators

are biased in the presence of lagged dependent variables as regressors. However, for relatively long

panels the biases are negligible as the initial conditions have less of an effect on the fixed effect

estimators.

By imposing the constraint that the right-hand-side of the random coefficient specification (1)

is monotone in Uit allows us to write the conditional quantile of Yit as

Qπ(Yit |Yit−1, . . . , Yit−k, Xit−1, Zt) = αi +

k∑

p=1

φp(π)Yit−p + β(π)′Xit−1 + θ(π)′Zt (3)

where π ∈ (0, 1) indexes the conditional quantile function of the dependent variable.4 In equa-

tion (3), both the coefficient on the lagged dependent variable, the coefficients of the bank-specific

variables and the coefficients on the exogenous macroeconomic variables are allowed to vary over

the quantiles of Yit. The variation in the coefficients on the exogenous variables shifts the location

of the conditional distribution of Yit in response to firm-specific and macroeconomic developments,

whereas the variation in the coefficient on the lagged dependent variable allows for the change in

the scale and the shape of the distribution over time. These types of distributional dynamics are

4We estimate the conditional quantile function for π = 0.005, 0.010, 0.015, . . . , 0.995.
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likely to be important during periods of severe economic and financial stress and are impossible to

capture with the standard linear regression framework.

More specifically, suppose that the dependent variable is C&I net charge-offs, the model includes

one lag of the dependent variable and that the coefficient φ(π) is an increasing function of π. In

that case, an adverse shock to credit quality will increase the persistence of C&I charge-offs, a

development that will ultimately increase the heaviness of the right-hand tail of the conditional

distribution of charge-offs. In contrast, an unexpected positive development in credit quality will

reduce the persistence of the series, thereby accelerating the reversion of charge-offs to their long-run

mean.

This feature of the FE-QAR model allows it to capture the type of asymmetry that seems to

be a distinctive characteristic of credit losses, which exhibit significant persistence during cyclical

downturns but decline fairly quickly when economic conditions improve. Another attractive fea-

ture of the FE-QAR model is that it naturally generates a forecast of the entire distribution of

Yit. Density forecasts are important because they allow us to calculate value-at-risk and expected

shortfalls, statistics of central importance in risk management and capital planning.5 Of course, it

is not necessary to estimate quantile regressions to produce density forecasts.

We also consider the dynamic panel linear regression with bank specific effects

Yit = αi +
k∑

p=1

φpYit−p + β′Xit−1 + θ′Zt + ǫit, i = 1, . . . , N ; t = 1, . . . , T, (4)

where ǫit are idiosyncratic errors that change across bank and time. We estimate model (4) using

ordinary least squares. Below, we also construct the density forecast of the FE-OLS model based

on the normality assumption of the residuals and by using the bootstrap.

5For example, under Pillar I of the Basel II Capital Accord, banks are required to hold capital to cover unexpected
losses up to the 99.9th percentile. Thus, our top-down approach that focuses on the loss/revenue estimates in the
extreme tails of the distribution strikes us as a logical and reasonable way to assess the bank-specific capital needs.
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Density Forecasting

To account for the uncertainty associated with our projections for losses and revenues we construct

density forecasts through Monte Carlo simulations.6 Specifically, for the FE-QAR model the one-

step-ahead forecast is equivalent to a random draw from the conditional quantile function, which

is calculated as

Ŷ m
iT+1(j) = Q̂m

U1i
(YiT+1 |YiT , . . . , YiT−k+1, XiT , ZT+1), (5)

where Q̂m is the conditional quantile of model m and U1i is the j-th draw from an i.i.d. standard

uniform distribution. Because we will need the forecasts of various loss and revenue subcomponents

simultaneously, we let the uniform random draw be correlated across all loss portfolios and revenue

subcomponents. Below we present the results under two different set of assumptions. The first

approach uses the errors from each model specification m, to calculate the variance-covariance

matrix, Ω̂, and uses the multivariate uniform distribution to draw the shocks. The second approach,

bootstraps the residuals from each model directly to generate the density forecast.

For the two-step-ahead forecast, we iterate equation (5) forward to calculate

Ŷ m
iT+2(j) = Q̂m

U2i
(YiT+2 | Ŷ

m
iT+1(j), . . . , YiT−k+2, XiT+1, ZT+2), (6)

where U2i is a new draw from the uniform distribution. Applying equation (6) recursively yields a

sample path—for the j-th draw—of forecasts (Ŷ m
iT+1

(j), Ŷ m
iT+2

(j), . . . , Ŷ m
iT+H(j)). To construct the

conditional density forecasts, we repeat the above procedure 5,000 times. A potential problem with

this approach is that the predicted density often exhibits, in finite samples, a “quantile crossing”

problem—that is, the predicted conditional quantile function Q̂m
π is not monotonically increasing

in π (i.e., Q̂m
π < Q̂m

π′ for some π > π′). To solve this problem, we rearrange the predicted quantile

function to make it monotone.7

We also generate density forecasts for the FE-OLS model. The one-step ahead forecast from

6For a survey on density forecasting see Tay and Wallis (2000).
7For more details, see Chernozhukov, Fernandez-Val, and Galichon (2010). In particular, the paper shows that,

in finite samples, the rearranged curve is closer to the true quantile function.
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the linear model is:

Ỹ m
iT+1(j) = α̃i +

k∑

p=1

φ̃pYiT−p+1 + β̃′XiT + θ̃′ZT+1 + ǫiT+1(j), (7)

where ǫ ∼ N(0, σ̃2), and α̃i, φ̃1, . . . , φ̃k, β̃, θ̃ are the FE-OLS estimates. We can then apply

equation (7) recursively to generate a sample path for the j-th draw forecasts (Ỹ m
iT+1

(j), Ỹ m
iT+2

(j), . . .

, Ỹ m
iT+H(j)). To generate the density forecasts we present results both based on the variance-

covariance matrix of residuals and a bootstrap approach using 5,000 simulations.

4 Data Sources and Estimation Results

Data sources. Our sample includes 15 bank holding companies (BHCs) over the 1997:Q1–

2011:Q4 period listed in Table 1. We started by selecting all BHCs with total consolidated assets

of $50 billion or more at the end of the sample period. We have excluded credit card and custodial

banks, and did not include banks that have recently become BHCs (e.g., Goldman Sachs, Morgan

Stanley, Ally Financial) for the following reasons. First, most of the banks we excluded have a

very distinct business model relative to the BHCs included in the final sample. Adding those banks

would require a wider range of models, perhaps by estimating different models for different bank

types, which is beyond the scope of the paper. Second, the small time-series dimension of the recent

BHCs likely requires an instrumental variable estimation approach to obtain consistent estimators

for dynamic panel data models (Galvão Jr. 2011). For these reasons and to simplify the analysis

we estimate both the FE-OLS and FE-QAR model specifications using a balanced panel with 15

BHCs. It would be, however, straightforward, to augment the models to different bank types and

banks with shorter time-series.

We model net charge-offs for eight major loan portfolios and also split pre-provision net rev-

enue (PPNR) into six subcomponents. For each of the fourteen series we estimate models (4)

and (1) as described in the previous section. Net charge-offs are defined as charge-offs net of recov-

eries scaled by average loans during the corresponding quarter. We model net charge-offs for the

following eight major loan categories: (1) C&I = commercial and industrial; (2) CLD = construc-
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tion and land development; (3) MF = multifamily real estate; (iv) NFNR = nonfarm/nonresidential

commercial real estate; (v) HLC = home equity lines of credit (HELOCs); (vi) RRE = residential

real estate, excluding HELOCs; (vii) CC = credit card; and (viii) CON = consumer, excluding

credit card loans. To speed-up the calculations we have only included the major loan portfolios. In

particular, we excluded loans to depository institutions, loans to foreign governments, leases, farm

loans and other loans from the analysis.

In addition, we also model the following six subcomponents of PPNR: (1) NIM = net interest

margin; (2) TI = trading income; (3) ONII = noninterest income, excluding trading income; (4)

CE = compensation expense; (5) FA = fixed assets expense; and (6) ONIE = other noninterest

expense. All PPNR subcomponents are scaled by the average total assets during the corresponding

quarter.8 The series for each bank are expressed in annualized percent. All bank-level data were

obtained from the FR-Y9C reports published by the Federal Reserve Board. To deal with the large

number of mergers that occurred during the period of our analysis, we merger-adjusted the data

by constructing a virtual bank that aggregates all entities that merged during our sample, to the

extent data is available. Under this approach we combine, for example, Wells Fargo and Wachovia

since the start of our sample. Once constructed, each series was seasonally adjusted using the X11

(additive) filter.

The set of macroeconomic variables used in our forecast exercise includes the following seven

series: GDPt = real gross domestic product; URt = (civilian) unemployment rate; PHP
t = CoreLogic

house price index; PCRE
t = NCREIF transactions-based price index for commercial real estate;

Treas3mt = 3-month Treasury yield; Treas10yt = 10-year Treasury yield; and BBB10y
t = 10-year

yield on BBB-rated corporate bonds. We restricted the set of macroeconomic variables to the ones

available in the scenarios provided by the Federal Reserve to BHCs during previous comprehensive

stress testing exercises.

Table 2 provides summary statistics for the set of variables used in the empirical analysis. It

documents, for example, that loan losses are on average higher for credit card and construction

8Reported noninterest expense includes goodwill impairment losses, which have been especially large during the
recent financial crisis, causing large—and hopefully one-off—swings in PPNR. To minimize the transitory noise
associated with such accounting changes, we excluded goodwill impairment losses from the calculation of PPNR.
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and land development loans. On the revenue side, about half of bank revenues are generated

from interest income on loans, and noninterest/nontrading income, such as fiduciary income and

investment bank fees, also accounts for a sizable share of revenues. On the cost side, the largest

item of pre-provision net revenue is compensation expense. Finally, note that the sum of loan

share for the median bank is about 70 percent, which indicates that the loan portfolios used in the

analysis do not include all loan portfolios at banks. The remaining portfolios typically have very

low charge-offs and exhibit a weak sensitivity to the business cycle.

Estimation Results

Before delving into our main results, we present in Table 3 the model estimates of the FE-OLS

forecasting regression model for the eight loan loss series and the six subcomponents of PPNR.

The lag order of the dependent variable is set equal to 4 following Guerrieri and Welch (2012).

The remaining bank-specific variables and set of macroeconomic variables were selected using the

Bayesian information criteria (BIC). We allowed lags of the macroeconomic variables to enter in

each model specification, but in the large majority of models the BIC selected the contemporaneous

value of the relevant macroeconomic variable.

As evidenced by the entries in the table, the coefficients on the bank-specific and macroeco-

nomic variables have the economically intuitive sign and almost all are statistically significant at

conventional levels. We enhance the robustness of the statistical inference by clustering standard

errors by both bank and time. This two-way clustering has been discussed for example by Cameron,

Gelbach, and Miller (2011). Moreover, all regressions fit the data relatively well, a result that is due

in part to the presence of the lagged dependent variables, which captures the persistent dynamics

of loan losses and most subcomponents of PPNR. For the estimation of the FE-QAR models we

used the exact same covariates as the ones of the FE-OLS model specifications.

The nonlinear aspects of cyclical dynamics of credit losses is illustrated in the top left panel

of the first row of Figure 3, which shows the sum of the estimated autoregressive terms increasing

across the quantiles of the dependent variable for losses in the residential real estate portfolio (ex-

cluding HELOCs). Moreover, the degree of persistence of the dependent variable is higher across all
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quantiles of the dependent variable compared to the sum of the FE-OLS autoregressive coefficients

reported in Table 3, and showed by the dashed line also in the top left panel. These empirical

regularities are common across all eight net charge-off series. As discussed earlier, an attractive

feature of the FE-QAR approach is that it allows the degree of persistence of the process to vary

across the quantiles of the conditional distribution—that is, in periods of deteriorating credit qual-

ity, loss rates become considerably more persistent. At lowest quantiles, in contrast, loss rates

exhibit only a moderate degree of serial dependence, implying a relatively quick reversion to steady

state. However, as shown in the top right panel of Figure 3, the coefficient on house prices appears

to vary less across the quantiles of the conditional distribution and is slightly smaller in magnitude

relative to the FE-OLS coefficient reported in Table 3. As shown below, the projections for loan

losses will be mainly driven by the degree of persistence of the process; the somewhat decreased

sensitivity to the macro variables is more than compensated by the increase in persistence of the

dependent variable, particularly when loan losses are elevated.

Compared with the net charge-off rates, the degree of persistence of the net interest margin—

shown in the bottom left panel of Figure 3—varies a lot less across the quantiles of the dependent

variable. In contrast, the degree of persistence of trading income—shown in the bottom right panel

of Figure 3 decreases across the quantiles of the dependent variable. The intuition for this result

is similar to what we estimated for loan losses since high trading losses correspond to low trading

income. Thus, in periods of high trading losses the series becomes more persistent, which will

increase the heaviness of the left-hand tail of the conditional distribution of trading income. For

the remaining subcomponents of PPNR we do not reject the null hypothesis that the sum of the

autoregressive terms is invariant across the quantiles of the dependent variable. The only other

exception is noninterest expense, where the sum of the autoregressive terms increase somewhat

across the quantiles of the dependent variable. The noninterest expense component includes charges

for litigation risks associated with banks’ mortgage portfolios. These charges have been elevated in

the aftermath of the recent financial crisis.
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5 Out-of-Sample Forecast Performance

To generate forecasts for the eight loss series and six subcomponents of revenues we need the

estimated coefficients, the values of the bank-specific exogenous variables and the trajectory of

macroeconomic variables over the forecast horizon. We assume that the values of the explanatory

variables—with the exception of the lagged dependent variable—are equal to the realized values

during the evaluation period. More specifically, for the FE-QAR model we need the coefficients

of the underlying quantile process, α̂i, φ̂1(π), . . . , φ̂4(π), β̂(π), θ̂(π), for π ∈ (0, 1). With these

inputs, and the values of the exogenous explanatory variables we construct the predicted conditional

quantile function of YiT+h, denoted by Q̂m
π,iT+h, for π ∈ (0, 1) and h = 1, . . . , 8 as described in

Section 3. The FE-QAR and FE-OLS models generate predictions for each bank, however to

summarize the results in an efficient manner we report the forecasts by aggregating the projections

across all banks in our sample. The aggregation is performed within each Monte Carlo simulation

by adding losses and revenues across all banks, respectively. Each bank is weighted using the

corresponding level of loans and total assets which is assumed to be known.

Figure 4 shows the out-of-sample density forecasts for net-charge offs over the 2005:Q1–2011:Q4

period. The top two panels depict the one-quarter-ahead forecasts and the bottom two panels

display the four-quarters-ahead forecasts. The density forecasts are represented using several per-

centiles of the predicted density that range between the 1st and 99th percentiles. The left column

shows the out-of-sample forecasts under the FE-QAR model and the right column the out-of-

sample forecasts obtained using the FE-OLS model. These density forecasts were generated using

the variance-covariance matrix of the residuals. For both the one- and four-quarters ahead forecasts

the projected densities under the FE-QAR model exhibit fatter tails than the projected densities

generated using the FE-OLS model, especially during the last financial crisis. For example, real-

ized net charge-offs peaked in the first quarter of 2010, corresponding to the 98th percentile of the

density forecast generated using the FE-QAR model, however it is outside the density forecast gen-

erated using the FE-OLS model. More broadly, realized losses are outside the one-quarter-ahead

density forecasts generated using the FE-OLS model in the second and third quarters of 2008, and
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in the first, second and third quarters of 2010. In contrast, realized losses are never outside the

one-quarter-ahead density forecasts generated using the FE-QAR model.

The bottom two panels of Figure 4 plots the four-quarters-ahead forecasts of aggregate net-

charge offs. Forecasting performance deteriorates somewhat as we increase the forecast horizon for

both model specifications. In particular, the second, third and fourth quarters in 2008 and the first

quarter of 2010 are outside the four-quarters-ahead density forecasts generated using the FE-OLS

model. None of the quarters are outside the density forecasts of the FE-QAR model, however one

quarter is above the 99th percentile during the run-up of net charge-offs during 2008. It appears,

both the quantile and the linear models had a tendency to understate loan losses during the last

financial crisis, however this problem is ameliorated using the FE-QAR model since the projected

density forecasts exhibit fatter tails. One reason to use the top percentiles of the density forecast

during a crisis would be a reasonable approach for portfolios that did not experience meaningful

losses during past recessions.

Figure 5 shows the out-of-sample density forecasts for PPNR. The actual PPNR series appears

to behave a bit more erratic and therefore more difficult to forecast. In particular, there are very

large swings in PPNR during the last recession, and there is some evidence the FE-QAR model

captures slightly better that phenomenon. For example, the large swings in PPNR in 2008 and

2009 are usually inside the density forecast of the FE-QAR model, in contrast to what happens

with the FE-OLS model. These density forecasts are also generated using the variance-covariance

matrix of the errors of each model specification.

To formally assess the forecasting performance of each model, we calculate the realization of

the process taken with respect to the estimated conditional density function. Specifically, for one-

quarter-ahead forecasts, we calculate a sequence of statistics zht ∈ (0, 1), for h = 1, . . . , 4 and

t = 2005:Q1, . . . , 2011:Q4, where zht solves the following equation:

Yt+h =

∫ zht

0

P̂ h(s)ds,

where Yt+h denotes actual aggregate net charge-offs and pre-provision net revenue in quarter t+ h
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and P̂ h represents the inverse of the cumulative distribution of the density forecast h-quarters-

ahead. We use this sequence of statistics to test the null hypothesis that zht is distributed according

to an i.i.d. uniform distribution; the rejection of the null hypothesis is evidence that the density

forecasts are not optimal.9 We use the following two tests to test for the optimality of the density

forecasts: (1) the χ2 goodness-of-fit test, which compares the histogram of zht with that of the

standard uniform distribution; (2) the “Ljung-Box” test of serial correlation in (zht − z̄h). For test

(1) the null hypothesis is that zht is uniformly distributed; for test (2), the null hypothesis is that

there is no serial dependence of up to four lags in the first moment of zht . Table 4 provides the

p-values for each of the two tests and forecast horizons.

Keeping in mind that the out-of-sample forecast evaluation period is quite short (i.e., we are

using 28 quarters for out-of-sample evaluation), the p-values in Table 4 indicate that the near-term

forecasts of aggregate net charge-offs have desirable statistical properties. For h = 1 we do not

reject the null hypothesis of uniformity in zht and there is little evidence of serial correlation. These

statistical properties of the density forecasts of net charge-offs, however, deteriorate noticeably as

the forecast horizon extends beyond the very near term, in particular beyond h = 1 the probability

integral transform of the forecast exhibits a considerable amount of persistence. This is consistent

with the out-of-sample forecasts depicted in Figure 4, which shows the realized net charge-offs

with respect to the forecasted density consistently close to 1 during the financial crisis period.

For aggregate pre-provision net revenue, the forecasts seem to be farther away from the “correct”

density since we reject the null hypothesis of uniformity even at shorter horizons. In contrast, there

is less evidence of serial correlation in the probability integral transform of the PPNR forecast.

6 Estimating Capital Shortfalls at U.S. BHCs

In this section we illustrate the potential of our “top-down” models to estimate the capital shortfalls

of U.S. bank holding companies. We use the projections for net-charge-offs and pre-provision net

revenue to simulate the T1CR for each BHC in our sample. We show that the projections obtained

using the linear and quantile models result in sizable capital shortfalls at banks at the onset of

9The evaluation of densities is discussed by Diebold, Gunther, and Tay (1998).

17



the financial crisis. In addition, since the quantile model is better suited to capture some of the

nonlinearities in credit losses and revenues, it generates fatter left tails for the distribution of T1CR

and higher capital shortfalls. Just for benchmark purposes, and to report results based using the

entire span of our data, we also construct the distribution of T1CR using the supervisory stress

scenario provided to banks under CCAR 2012.

Capital calculator

We start by describing the mapping between the conditional forecasts of net charge-offs and pre-

provision net revenue into the tier 1 common capital risk-based ratio. To focus on the differences

between the quantile and linear model we constructed a relatively simple mapping between loan

losses, net revenues and the evolution of bank equity. In particular, we assume the equity capital

of bank i evolves as follows:

Eit = Eit−1 + (1− τ)×




6∑

j=1

P̂PNR
j

it ×Assetsi −
8∑

j=1

N̂CO
j

it × Loans
j

i


− Equity Payoutsi

where Eit−1 denotes book equity of bank i at the beginning of period t, τ is the marginal tax rate,

P̂PNR
j

it and N̂CO
j

it are the projections for net revenues and net charge-offs, respectively. Note

that charged-off loans are taken directly from the allowance for loan and lease losses (hereafter

loan loss reserves) and, therefore, do not impact earnings directly. Banks can increase loan loss

reserves through provisions, which affect bank earnings directly. For simplicity we assume provisions

are equal to net charge-offs. Furthermore, in the spirit of the U.S. stress tests we assume banks

have to maintain lending capacity even under adverse economic conditions, thus we let assets and

loans balances to remain constant throughout the projection period. Equity payouts are equal to

dividends paid on common and preferred stock and repurchases of treasury stock, and we assume

the bank is unable to issue new equity since during a stressful event it is prohibitively costly for a

BHC to issue new equity. Also for simplicity, we assume equity payouts are constant. In a “live”

exercise information on dividend payout and share repurchases is provided by banks to the Federal

Reserve, and the stress testing results are conditional on requested dividend payouts.

18



As pointed out in Section 2, the T1CR is the capital ratio that is more likely to bind during

an adverse macroeconomic scenario. This ratio is defined as the regulatory tier 1 capital less non-

common equity elements. To map book equity to tier 1 common capital we subtract the dollar

amount of regulatory capital deductions from total equity and assume deductions are constant

throughout the projection period. Finally, we assume other comprehensive income, and other

adjustments to equity capital to be zero over the projection period. Thus, the tier 1 common ratio

in our exercise is defined as follows:

T1CRit =
Eit −Deductionsi

RWAi

where Deductionsi includes all regulatory capital deductions under Basel I and additional tier 1

common deductions and RWAi denotes Basel I risk-weighted assets at the start of the exercise.

2007-2009 Financial Crisis

In our first exercise we start the projections of credit losses and revenue components in the first

quarter of 2008. At the end of 2007 there was already evidence of signs of stress in financial markets.

For example, the securitization market for non-conforming mortgages was essentially closed and

delinquencies in residential real estate loans were increasing at a rapid pace. We estimate the FE-

QAR and FE-OLS models until the fourth quarter of 2007 and use the realized macro variables to

generate density forecasts for net charge-offs and pre-provision net revenue over the next 8 quarters

until the end of 2009. Following that we apply the regulatory capital calculator and evaluate the

distribution of T1CR at the end of 2009.

Table 5 provides selected moments of the T1CR distribution in the fourth quarter of 2009.

The top panel shows the results based on Monte Carlo simulations generated using the variance-

covariance matrix of the residuals and the bottom panel shows the results using bootstrapped

errors. In both simulations we find that the FE-QAR model generates fatter tails for the T1CR

distribution relative to the FE-OLS model. Namely, in the top panel the 1st percentile of the

T1CR distribution for all banks is 3.1 percent under the FE-QAR model and 3.7 percent under
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the FE-OLS model. Note that the differences in the first percentile of the T1CR distribution

at the bank level are usually wider than the distribution for all banks since the aggregation of

T1CR across banks makes the tail of aggregate T1CR distribution less fat-tailed since these shocks

are independent and identically distributed. There is also a similar diversification effect in the

aggregation of the various portfolios within a bank. The 5th percentile is also lower for the FE-

QAR model. However, the conditional mean prediction is slightly higher for the FE-QAR model,

that is the FE-OLS model predicts a stronger decline in the mean T1CR. The results for all banks

using bootstrap errors are similar to the results generated using the variance-covariance matrix of

residuals, however there are differences at the bank level because under the bootstrap approach

banks draw only from their own past shocks. For example, banks that experienced large trading

and banking book losses simultaneously report a fatter left tail for the T1CR distribution at the

end of the projection horizon.

The top panels of Figure 6 plot the density forecasts of aggregate net charge-offs for the quantile

and linear models. Similarly, the bottom panels plot the density forecasts of aggregate PPNR. The

fatter tails of T1CR in the FE-QAR model are explained by both higher fatter right tail for net

charge-offs as well as higher left tail for net revenues. For losses, the difference arises mainly from

the behavior of the autoregressive terms in the quantile model, particulary for the residential real

estate portfolio, as suggested by the top panel in Figure 3. The heaviness of the right-tail of the

density forecast is explained by the fact that the sum of the autoregressive terms in the quantile

model is an increasing function of the level of net charge-offs. When an adverse shock leads to an

increase in credit losses, the persistence of the series increases which amplifies the impact of the

adverse shock on credit losses. Similarly, the lower percentiles of PPNR under the quantile model

are almost entirely driven by losses in the trading book which are highly nonlinear. In the case of

trading income, the sum of the autoregressive terms in the quantile model is a decreasing function

of the level of trading income as shown in the bottom right panel of Figure 3.

Figures 7–8 display the T1CR distribution under the variance-covariance and bootstrap Monte

Carlo simulation assumptions, respectively. The two panels confirm the findings presented in

Table 5 which showed fatter tails for the T1CR based on the quantile regression model. The Figure
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also shows that the quantile model generates a distribution with a larger variance than the linear

model. We believe that it can be attributed to the weak sensitivity of loan losses to changes in the

macro variables when we estimate the models only using data until the fourth quarter of 2007. In

particular, we do not observe a gap in the variance of the two distributions when the linear and

quantile models are estimated using the full sample.

In stress testing the first important statistic is to know the probability a bank is unable to

maintain its minimum regulatory capital ratio during a stressful event. Equally important, is to

know the size of the capital shortfall, that is the average amount of capital a bank needs to avoid

going below the minimum capital requirement. In risk management this statistic is known as the

expected shortfall, which is defined as the expected amount of capital needed conditional on the

capital ratio being below a certain requirement, τ . Specifically, letting p̂hi denote the conditional

density forecast of T1CR at the h-quarter-ahead horizon for bank i, the corresponding expected

shortfall associated with capital level τ is calculated as

ESh
iτ = E[ĈiT+h | ĈiT+h ≤ Ĉh(τ)] = RWAiT ×

1

τ

∫ τ

−∞

[τ − p̂h(s)]ds. (8)

where ĈiT+h represents the projected bank i tier 1 common capital in period T + h. Table 6

presents the probability banks are unable to maintain its minimum regulatory capital ratio and

the expected capital shortfall. We consider a minimum capital requirement of 2 percent for T1CR,

which is when the prompt corrective action provisions require supervisors to close a bank and a 4

percent requirement which was the minimum requirement adopted for the 2009 stress test exercise.

Looking first at the T1CR requirement of 2 percent, the average probability of failure is es-

timated to be 3 percent under the quantile model and 1 percent under the linear model. The

aggregate number masks a significant amount of heterogeneity across banks. For example, C has a

probability of failure of 23 percent at the end of 2009:Q4 using the quantile model and 17 percent

using the linear model. In contrast, ZION has zero probability of failure according to the quantile

and linear models. Because the quantile model generates T1CR distributions with fatter tails most

banks have a nonzero probability of failure. Capital shortfalls based on the density forecast gener-
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ated using the quantile model are also . For example, the estimated capital shortfall for C is about

$24 billion, that is the amount C would need to avoid violating the 2 percent T1CR constraint.

The capital shortfall of JPM is $15 billion, however the difference relative to C is that it reports

a much lower probability of failing. Another interesting result is that the capital shortfall of the

industry is lower than the sum of the capital shortfalls across all banks since the shocks used to

generate the density forecasts are not perfectly correlated across banks.

Increasing the target T1CR from 2 to 4 percent rises the probability of failing the stress test from

3 to 30 percent. Based on the T1CR density forecasts the target of 4 percent is no longer at the tail

of the distribution, hence the linear model generates, on average, a higher probability of violating

this requirement. Recall also that Figure 7 showed that the T1CR distribution generated using the

linear model has lower variance than the one generated using the quantile model. Because with the

higher T1CR capital requirement several banks are expected to violate that target simultaneously,

the capital shortfall is about $29 billion for both model specifications. At the bank level, the

expected capital shortfall is in almost all cases higher for the quantile regression model, in particular

for the cases where the probability of violating the 4 percent T1CR threshold is not close to 1.

The stress tests conducted in the U.S. use the conditional mean forecast of regulatory capital

ratios to evaluate whether a bank passes or fails the stress test. Based on the results of our model

a bank may “pass” a stress test by having the mean T1CR above the minimum requirement, but

still report a nonzero capital shortfall. For example, BAC’s mean T1CR reported in Table 5 was

4.3 percent at the end of 2009. Since the ratio is above the threshold of 4 percent, BAC would

have “passed” the stress test. However, as shown in Table 6, there is still a 31 percent probability

BAC would end up the period below 4 percent in the fourth quarter of 2009, which generates

a capital shortfall of $12.3 billion. The density forecast of T1CR gives a more complete capital

adequacy assessment because it also incorporates information about the uncertainty surrounding

our estimates. Another advantage of this approach is that it creates less incentives for banks to

submit capital plans that are just enough to pass the stress test. That is, even if the average T1CR

is above the minimum requirement, as long as there is a nonzero probability of violating the T1CR

requirement a bank would have a capital shortfall. In that case, the bank would be required to
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review its capital plan and reduce the capital shortfall to zero.

CCAR 2012

In our second exercise we simulate losses and net revenues over 9 quarters starting in the fourth

quarter of 2011 and until the end of 2013. For the path of the macro variables we use the severe

adverse stress scenario provided to banks by the Federal Reserve for CCAR 2012. The goal of this

exercise is re-estimate the top down models including all data until the third quarter of 2011 and

verify if the quantile model still generates fatter tails than the linear model.

Table 7 summarizes our findings. As reported in the table the 1st and 5th percentiles of the

T1CR distribution are lower using the quantile model. This finding confirms our previous result

that the quantile model generates fatter tails than the linear model. In addition, the change in

conditional mean prediction is now about the same for the two models. For example, according

to the quantile model the severe adverse macro scenario would cause the mean T1CR of all banks

in our sample to fall from 9.7 to 7.1 percent. The Monte Carlo results based on the bootstrap

approach, shown in the bottom panel of Table 7, are also similar to the results obtained using the

variance-covariance approach.

The top panel of Figure 9 plots the density forecasts of aggregate net charge-offs under the

quantile and linear models, respectively. The gap in the right tail of aggregate net charge-offs is

less wide using the full sample, because the inclusion of the financial crisis in the sample improved

the sensivity of losses in the residential real estate portfolios to house prices and unemployment

in the linear model. The bottom panel displays the projections for aggregate PPNR under the

quantile and linear models, respectively. Again, differences between the models are not as dramatic

as in the previous exercise, however the left tail of PPNR is considerably more heavy under the

quantile model.

Currently, U.S. bank holding companies’ T1CR are at historically high levels. This is in part

due to existing restrictions on capital distributions that are in place at some of the largest BHCs.

Because the T1CR is considerably higher in the third quarter of 2011 than at the end of 2007

we considered a minimum capital requirement of 5 percent for T1CR—as in CCAR 2012—and
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a minimum requirement of 8 percent, which is closer to a G-SIFI capital requirement. In the

simulation of T1CR we used the same dividend payouts as in the previous exercise. Alternatively,

we could have assumed the same dividend payouts as in 2011, but thought it would be more

interesting to compare the distributions of T1CR under a similar set of assumptions for capital

distributions. Overall, we arrive at very similar conclusions as in the previous exercise with the

quantile model generating fatter tails than the linear model as shown in Figures 10–11. In addition,

even at today’s levels of regulatory capital ratios banks in our sample would be expected to violate

the 5 and 8 percent T1CR minimum capital requirements 28 and 77 percent of the time under a

severe macroeconomic scenario, respectively. But of course we assumed equity payout ratios set at

2006 levels, which is probably not very realistic in the current environment.

7 Conclusion

Macro-stress testing is becoming a key element of the macroprudential toolkit. The results of

stress tests tell whether banks have enough tier 1 common equity to absorb losses incurred during

a severely adverse macro scenario without triggering an excessive reduction in assets. We have

shown that dynamic panel quantile regression models are well-suited in capturing nonlinearities

observed between bank losses and macroeconomic outcomes. In particular, the density forecasts of

T1CR generated using the quantile model exhibit fatter left tails relative to the density forecasts

constructed using the linear model. Thus, “top-down” stress-testing models based on quantile

regressions have higher odds of identifying vulnerabilities in financial stability than linear models.

Moreover, our approach generates density forecasts for bank losses, revenues and regulatory capital

ratios. These are important because not only they provide a complete description of the uncertainty

surrounding our projections, but they also allow the calculation of the capital ratios associated with

particular percentiles of the distribution and the expected capital shortfall. These are important

statistics in our view for at least two reasons. First, having a density forecast gives a range of

possible T1CR outcomes, which can be very useful to assess the outcomes of bottom-up approaches

and the estimates submitted by the banks. Also, as pointed out by Pritsker (2011), the macro and
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financial variables used in U.S. stress tests may not capture enough risks banks are exposed to.

Second, under current stress tests a bank gets a pass if its mean projected T1CR is above the

minimum requirement set by regulators. This criteria creates an incentive for a bank to submit a

capital distribution plan that would just be enough to receive a pass in the stress test. By using a

density forecast to evaluate a bank’s capital plan, regulators would reduce the incentive for banks

to adopt this strategy, since a bank that would just pass the stress test in a conditional mean

sense would still have a sizable capital shortfall based on the density forecast approach. Finally,

“top-down” models can be very useful in the design of stress scenarios since they allow to assess

the sensitivity of the size of capital shortfalls to the severity of macro scenarios.
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Figure 1: Tier 1 Common Ratio, CCAR BHCs
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Notes: (1) Tier 1 common ratio means the ratio of tier 1 common capital to its total risk-weighted
assets. Tier 1 common capital is calculated as tier 1 capital less noncommon elements in tier 1 capital,
including perpetual preferred stock and related surplus, minority interest in subsidiaries, trust preferred
securities, and mandatory covertible preferred securities; and (2) the BHCs that participated in SCAP,
CCAR 2011, and CCAR 2012 are Ally Financial Inc. (formerly known as GMAC LLC), American Express
Company, Bank of America Corporation, The Bank of New York Mellon Corporation, BB&T Corporation,
Capital One Financial Corporation, Citigroup Inc., Fifth Third Bancorp, The Goldman Sachs Group, Inc.,
JPMorgan Chase& Co., Keycorp, MetLife, Inc., Morgan Stanley, The PNC Financial Services Group, Inc.,
Regions Financial Corporation, State Street Corporation, SunTrust Banks, Inc., U.S. Bancorp, and Wells
Fargo & Company.
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Figure 2: Abnormal Stock Returns, CCAR 2012 BHCs
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Figure 3: Selected Coefficients of Various FE-QAR Model
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Note: The solid line in each panel depicts the estimate of the coefficients of the quantile process given by
equation (1) for selected series. The shaded bands represent 95-percent confidence intervals obtained using a
bootstrap Monte Carlo procedure.
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Figure 4: Out-of-Sample Forecasts for Aggregate Net Charge-Offs
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Note: The dashed line in each panel depicts the realized value of the specified series. The shaded areas in
each plot represents the 1st/2.5th/5th/10th/25th/50th/75th/90th/95th/97.5th/99th percentiles of the density
forecast. The shaded vertical bar denotes the 2007-09 NBER-dated recession.

29



Figure 5: Out-of-Sample Forecasts for Aggregate Pre-Provision Net Revenue
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forecast. The shaded vertical bar denotes the 2007-09 NBER-dated recession.
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Figure 6: Projections for All BHCs During 2008:Q1–2009:Q4
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Note: The shaded vertical bar denotes the 2007-09 NBER-dated recession.
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Figure 7: Empirical Density of Projected T1CR in 2009:Q4 - Variance Covariance Approach
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Figure 8: Empirical Density of Projected T1CR in 2009:Q4 - Bootstrap Approach
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Figure 9: Projections for All BHCs During 2011:Q4–2013:Q4
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Note: The shaded vertical bar denotes the 2007-09 NBER-dated recession.
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Figure 10: Empirical Density of Projected T1CR in 2013:Q4 - Variance Covariance Approach
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Figure 11: Empirical Density of Projected T1CR in 2013:Q4 - Bootstrap Approach
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Table 1: List of Bank Holding Companies

Bank Holding Company Ticker Start End N

Bank of America BAC 1997:Q1 2011:Q4 60
BB&T Corporation BBT 1997:Q1 2011:Q4 60

Citigroup Inc. C 1997:Q1 2011:Q4 60
Citizens Financial RBS 1997:Q1 2011:Q4 60
Comerica Inc. CMA 1997:Q1 2011:Q4 60

Fifth Third Bancorp FITB 1997:Q1 2011:Q4 60
JPMorgan Chase & Co. JPM 1997:Q1 2011:Q4 60

KeyCorp KEY 1997:Q1 2011:Q4 60
M&T Bank Corp. MTB 1997:Q1 2011:Q4 60

PNC Financial Services Group PNC 1997:Q1 2011:Q4 60
Regions Financial Corporation RF 1997:Q1 2011:Q4 60

SunTrust Banks Inc. STI 1997:Q1 2011:Q4 60
U.S. Bancorp USB 1997:Q1 2011:Q4 60

Wells Fargo & Company WFC 1997:Q1 2011:Q4 60
Zions Bancorporation ZION 1997:Q1 2011:Q4 60
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Table 2: Summary Statistics

Variable N Mean S.D. Min 0.25 0.50 0.75 Max

Net Charge-offs:

Commercial & Industrial 900 1.08 1.37 -0.33 0.34 0.67 1.37 12.98
Construction & Land Development 900 1.36 3.33 -3.03 0.00 0.09 0.92 45.25
Multifamily Real Estate 900 0.51 1.61 -1.15 -0.01 0.04 0.23 26.76
Nonfarm/Nonresidential CRE 900 0.41 1.11 -4.37 0.01 0.10 0.37 14.60
Home Equity Lines of Credit 900 0.64 1.01 -0.29 -0.09 0.19 0.73 7.00
Residential Real Estate (excl. HELOCs) 900 0.64 0.96 -0.77 0.07 0.20 0.76 9.12
Credit Card 720 4.38 3.71 -18.80 2.11 3.93 5.52 43.24
Consumer (excl. CC) 900 1.23 1.21 -0.67 0.45 0.90 1.57 8.71

Pre-Provision Net Revenue:

Interest Income (% Assets) 900 3.28 0.60 1.42 2.92 3.32 3.68 4.98
Trading Income (% Assets) 900 0.09 0.24 -2.51 0.02 0.05 0.12 0.92
Noninterest/Nontrading Income (% Assets) 900 2.01 0.71 -0.61 1.56 1.92 2.41 5.84
Compensation Expense (% Assets) 900 1.59 0.25 -0.16 1.47 1.61 1.74 2.66
Fixed Assets Expense (% Assets) 900 0.41 0.08 0.15 0.35 0.40 0.47 0.68
Other Noninterest Expense (% Assets) 900 1.17 0.41 -0.16 0.92 1.11 1.33 3.67

Loan/Asset Shares:

C&I (% Loans) 900 16.6 8.3 1.9 11.8 15.6 19.5 48.8
CRE (% Loans) 900 17.3 10.3 0.6 11.0 15.9 23.5 49.4
RRE (% Loans) 900 21.3 7.9 4.6 16.3 21.0 25.8 49.4
CC (% Loans) 900 2.4 3.2 0.0 0.3 1.0 3.9 18.9
Consumer (excl. CC) (% Loans) 900 8.0 3.5 0.8 5.7 8.1 10.4 18.6
Trading Assets (% Assets) 900 5.2 9.5 0.0 0.3 1.0 4.5 53.4

Macroeconomic Variables:

∆4GDPt 60 2.30 2.14 -4.69 1.59 2.46 3.88 5.24
∆4URt 60 0.24 1.10 -0.87 -0.47 -0.23 0.43 3.94
∆4 logPHP

t 60 3.48 9.18 -18.97 -3.03 6.94 9.37 16.57
∆4 logPCRE

t 60 4.76 13.42 -44.15 0.58 8.07 13.33 22.68
Treas3mt 60 2.78 2.03 0.01 0.92 2.71 4.83 6.02

[Treas10yt − Treas3mt ] 60 1.93 1.26 -0.24 0.78 1.85 3.08 3.76

[BBB10y
t − Treas10yt ] 60 1.93 0.98 0.72 1.33 1.77 2.19 5.74

∆[BBB10y
t − Treas10yt ] 60 0.03 0.49 -1.57 -0.10 0.02 0.13 2.53

VIXt 60 30.86 13.23 12.67 21.85 28.82 34.70 80.86
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Table 3: Linear Forecasting Models

Net Charge-Off Rate by Type of Loan PPNR Subcomponents

Explanatory Variable C&I CLD MF NFNR HLC RRE CC CON NIM TI ONII CE FA ONIE

φ1 0.427 0.251 0.213 0.443 0.588 0.464 0.373 0.431 0.498 0.251 0.357 0.558 0.461 0.340
[5.2] [2.7] [1.4] [4.1] [12.0] [4.0] [6.7] [5.4] [6.5] [1.7] [5.4] [7.8] [7.7] [14.9]

φ2 0.266 0.265 0.287 0.314 0.376 0.355 0.133 0.250 0.370 0.279 0.204 0.340 0.302 0.238
[3.6] [5.5] [3.8] [3.2] [7.0] [7.9] [1.9] [3.7] [9.4] [3.2] [3.3] [6.0] [6.4] [6.5]

φ3 0.102 0.134 0.136 0.108 0.057 -0.013 0.040 0.085 0.108 0.013 0.169 0.041 0.206 0.209
[2.7] [4.0] [1.8] [1.3] [1.0] [0.2] [0.9] [1.6] [1.3] [0.3] [2.6] [0.9] [3.8] [4.8]

φ4 -0.090 0.031 0.003 -0.123 -0.138 -0.049 0.105 -0.043 -0.155 -0.058 0.001 -0.095 -0.083 -0.034
[1.5] [0.8] [0.1] [1.3] [4.0] [1.4] [1.4] [1.0] [2.7] [0.9] [0.1] [1.7] [2.0] [1.2]

∆4GDPt - -0.157 - - - - - -0.103 -0.024 0.015 - - 0.018
[2.3] [5.3] [3.1] [2.2] [2.1]

∆4URt 0.198 - - - 0.043 - 0.904 - - - - - -
[3.5] [2.0] [4.5]

∆4 logPHP
t - - -0.022 - -0.011 -0.014 - - - - - - - -

[1.8] [3.6] [4.3] -
∆4 logPCRE

t - -0.039 -0.012 -0.014 - -0.008 - - - - - - - -
[2.7] [1.8] [3.9] [4.0]

Treas3mt - - - - - - - - 0.039 -0.024 - 0.003 -
[2.5] [2.8] [2.1]

[Treas10yt − Treas3mt ] - - - - - - - - 0.068 -0.042 -0.023 - 0.004 -
[2.8] [2.6] [1.8] [2.4]

[BBB10y
t − Treas10yt ] 0.101 - - - - - - - -0.068 0.046 - - - -

[2.5] [3.5] [2.4]

∆[BBB10y
t − Treas10yt ] - - - - - - - - 0.034 -0.098 -0.127 -0.038 - -0.059

[1.6] [2.9] [2.4] [3.3] [2.2]
VIXt - - - - - - - - - - - - - 0.004

[3.3]

Obs. 840 840 840 840 840 840 672 840 840 840 840 840 840 840
R2 0.78 0.49 0.40 0.61 0.92 0.79 0.52 0.78 0.93 0.50 0.71 0.80 0.86 0.65

Note: Sample period: 1997:Q1–2011:Q4; Series: C&I = commercial & industrial; CLD = construction & land development; MF = multifamily real
estate; NFNR = nonfarm/nonresidential commercial real estate; HLC = home equity lines of credit (HELOCs); RRE = residential real estate (excl.
HELOCs); CC = credit card; CON = consumer (excl. CC); NIM = net interest margin; TI = trading income; ONII = other noninterest income; CE =
compensation expense; FA = fixed assets expense; ONIE = other noninterest expense. All dependent variables are expressed in annualized percent. Entries
in the table denotes OLS estimates of the coefficients associated with the explanatory variables; absolute t-statistics reported in brackets are based on
standard errors clustered by bank and time. Almost all PPNR subcomponents include as explanatory variables lagged bank specific portfolio shares.
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Table 4: Specification Tests for the Optimality of Density Forecasts

Specification Tests

Forecasted Series KS LB(4)

Net Charge-Offs FE-QAR FE-OLS FE-QAR FE-OLS

Monte Carlo: Variance-Covariance Matrix
h=1 0.07 0.13 0.10 0.03
h=2 0.19 0.02 0.00 0.01
h=3 0.10 0.02 0.00 0.01
h=4 0.09 0.00 0.00 0.00

Monte Carlo: Bootstrap
h=1 0.02 0.01 0.12 0.05
h=2 0.07 0.00 0.00 0.01
h=3 0.06 0.00 0.00 0.01
h=4 0.01 0.00 0.00 0.00

Pre-Provision Net Revenue FE-QAR FE-OLS FE-QAR FE-OLS

Monte Carlo: Variance-Covariance Matrix
h=1 0.01 0.01 0.16 0.32
h=2 0.02 0.00 0.02 0.04
h=3 0.01 0.00 0.01 0.01
h=4 0.02 0.00 0.00 0.00

Monte Carlo: Bootstrap
h=1 0.02 0.01 0.16 0.31
h=2 0.02 0.00 0.02 0.04
h=3 0.01 0.00 0.01 0.01
h=4 0.01 0.01 0.00 0.00

Note: Entries in the table denote the p-values associated with the following specification tests of the
FE-QAR and FE-OLS models: (KS) the Kolmogorov-Smirnov χ

2 goodness-of-fit test; (LB) the Ljung-Box
test for serial correlation of (zt − z̄

h). The rejection of the null hypothesis is taken as evidence against the
optimality of the density forecasts (see text for details).
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Table 5: Selected Moments of the Tier 1 Common Distribution

T1CR Distribution in 2009:Q4

1st Percentile 5th Percentile Average Memo: T1CR

Banks FE-QAR FE-OLS FE-QAR FE-OLS FE-QAR FE-OLS in 2007:Q4

Monte Carlo: Variance-Covariance Matrix

All banks 3.1 3.7 3.6 3.9 4.6 4.2 6.0

BAC 0.7 2.7 2.4 3.1 4.3 4.0 5.5
BBT 3.8 4.9 5.1 5.2 6.4 6.1 7.0
C -3.6 1.1 -0.7 1.5 3.1 2.7 5.1
CMA 3.8 4.1 4.5 4.4 5.3 5.0 7.0
FITB 3.6 4.2 4.4 4.4 5.2 5.0 6.8
JPM 0.2 3.0 2.2 3.4 4.9 4.4 7.0
KEY 2.9 3.4 3.7 3.7 4.6 4.3 6.0
MTB 3.4 3.9 4.4 4.3 5.4 5.0 6.5
PNC 1.1 1.9 2.0 2.1 3.2 2.9 5.5
RBS 2.0 3.0 3.2 3.4 4.5 4.3 7.3
RF 1.5 2.5 2.7 2.8 3.8 3.6 6.6
STI 1.6 2.7 2.6 3.0 3.9 3.7 5.3
USB 1.9 3.0 2.8 3.3 4.1 4.0 5.9
WFC 3.6 4.6 4.8 4.9 6.0 5.7 6.4
ZION 5.8 6.1 6.7 6.4 7.6 7.2 6.5

Monte Carlo: Bootstrap

All banks 2.7 3.6 3.6 3.8 4.7 4.2 6.0

BAC 1.9 2.8 3.0 3.2 4.5 4.0 5.5
BBT 5.8 5.3 6.2 5.5 6.8 6.1 7.0
C -7.8 -0.1 -2.7 0.9 2.6 2.7 5.1
CMA 3.6 4.3 4.4 4.5 5.2 5.0 7.0
FITB 4.0 4.1 4.5 4.4 5.4 5.0 6.8
JPM 3.3 3.0 3.9 3.4 5.4 4.4 7.0
KEY 3.3 3.2 3.8 3.5 4.6 4.3 6.0
MTB 4.0 3.8 4.6 4.3 5.4 5.0 6.5
PNC 1.4 1.3 1.9 1.8 3.0 2.9 5.5
RBS -0.6 3.3 2.3 3.6 4.3 4.3 7.3
RF 2.9 3.0 3.3 3.2 4.0 3.6 6.6
STI 1.4 3.1 2.6 3.3 3.9 3.7 5.3
USB 3.1 3.0 3.6 3.4 4.4 4.0 5.9
WFC 4.9 4.2 5.3 4.7 6.2 5.7 6.4
ZION 6.4 6.2 6.8 6.5 7.6 7.2 6.5

Note: Projection period: 2008:Q1–2009:Q4. Bank names: BAC = Bank of America Corporation; BBT =
BB&T Corporation; C = Citigroup, Inc.; CMA = Comerica; FITB = Fifth Third Bancorp; JPM = JPMorgan
Chase & Co.; KEY = KeyCorp; MTB = M&T Bank Corp.; PNC = PNC Financial Services Group, Inc.; RBS =
Citizens Financial; RF = Regions Financial Corporation; STI = SunTrust Banks, Inc.; USB = U.S. Bancorp;
WFC = Wells Fargo & Company; and ZION = Zions Bancorporation.
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Table 6: Estimated Capital Shortfalls in 2007:Q4

2% T1CR Requirement 4% T1CR Requirement

Prob. Violate Expected Shortfall Prob. Violate Expected Shortfall

Banks FE-QAR FE-OLS FE-QAR FE-OLS FE-QAR FE-OLS FE-QAR FE-OLS

Monte Carlo: Variance-Covariance Matrix

All banks 0.03 0.01 6.9 0.9 0.27 0.36 28.6 28.1

BAC 0.03 0.00 15.2 0.6 0.31 0.48 12.3 6.0
BBT 0.00 0.00 0.5 – 0.01 0.00 1.1 –
C 0.23 0.17 24.4 5.1 0.65 0.97 25.4 18.4
CMA 0.00 0.00 0.2 – 0.01 0.00 0.5 0.1
FITB 0.00 0.00 0.6 – 0.02 0.00 1.0 0.2
JPM 0.04 0.00 15.2 – 0.20 0.26 13.8 3.6
KEY 0.00 0.00 0.5 – 0.11 0.21 0.5 0.2
MTB 0.00 0.00 0.3 – 0.02 0.01 0.6 0.1
PNC 0.05 0.02 2.5 0.6 0.93 1.00 3.7 4.6
RBS 0.01 0.00 1.4 – 0.20 0.28 0.7 0.4
RF 0.02 0.00 1.1 0.1 0.59 0.82 0.7 0.7
STI 0.02 0.00 1.1 – 0.54 0.78 1.1 0.8
USB 0.01 0.00 1.6 – 0.39 0.52 1.4 0.8
WFC 0.00 0.00 14.6 – 0.02 0.00 13.0 1.3
ZION 0.00 0.00 – – 0.00 0.00 0.2 –

Monte Carlo: Bootstrap

All banks 0.03 0.02 11.3 2.4 0.22 0.36 30.7 27.7

BAC 0.01 0.00 8.7 – 0.21 0.46 9.2 5.4
BBT 0.00 0.00 – – 0.00 0.00 – –
C 0.31 0.24 35.9 9.5 0.65 0.93 35.9 19.4
CMA 0.00 0.00 – – 0.03 0.00 0.3 0.0
FITB 0.00 0.00 – – 0.01 0.01 0.5 0.2
JPM 0.00 0.00 – – 0.06 0.26 4.0 3.8
KEY 0.00 0.00 0.8 – 0.11 0.26 0.4 0.3
MTB 0.00 0.00 0.0 – 0.01 0.02 0.3 0.2
PNC 0.07 0.08 1.3 1.2 0.95 0.97 4.2 4.8
RBS 0.04 0.00 2.2 – 0.21 0.23 1.4 0.3
RF 0.00 0.00 – – 0.48 0.95 0.4 0.5
STI 0.02 0.00 1.4 – 0.48 0.90 1.1 0.6
USB 0.00 0.00 – – 0.16 0.47 0.8 0.7
WFC 0.00 0.00 – – 0.00 0.01 4.9 3.7
ZION 0.00 0.00 – – 0.00 0.00 – –

Note: Projection period: 2008:Q1–2009:Q4. Bank names: BAC = Bank of America Corporation; BBT =
BB&T Corporation; C = Citigroup, Inc.; CMA = Comerica; FITB = Fifth Third Bancorp; JPM = JPMorgan
Chase & Co.; KEY = KeyCorp; MTB = M&T Bank Corp.; PNC = PNC Financial Services Group, Inc.; RBS =
Citizens Financial; RF = Regions Financial Corporation; STI = SunTrust Banks, Inc.; USB = U.S. Bancorp;
WFC = Wells Fargo & Company; and ZION = Zions Bancorporation. Expected shortfall is in billions of dollars.
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Table 7: Selected Moments of the Tier 1 Common Distribution

T1CR Distribution in 2013:Q4

1st Percentile 5th Percentile Average Memo: T1CR

Banks FE-QAR FE-OLS FE-QAR FE-OLS FE-QAR FE-OLS in 2011:Q3

Monte Carlo: Variance-Covariance Matrix

All banks 5.5 6.2 5.9 6.4 6.8 7.1 9.7

BAC 1.1 2.2 2.2 2.9 4.3 4.4 8.7
BBT 4.7 5.9 5.6 6.4 7.6 7.9 9.8
C 5.7 7.1 6.8 7.8 9.5 9.6 11.7
CMA 4.9 5.5 5.6 5.9 6.9 6.9 10.6
FITB 2.1 3.1 2.8 3.6 4.2 4.7 9.3
JPM 4.8 6.7 6.0 7.4 8.6 9.1 9.9
KEY 5.7 6.1 6.3 6.6 7.7 7.7 11.3
MTB 2.3 2.7 3.0 3.2 4.4 4.4 6.9
PNC 2.8 3.5 3.4 4.0 5.0 5.1 10.5
RBS 5.0 5.7 5.7 6.2 7.3 7.5 13.3
RF -0.9 0.5 0.1 1.1 2.0 2.4 8.2
STI 3.1 4.1 3.9 4.6 5.8 5.9 9.3
USB 3.8 4.9 4.6 5.4 6.3 6.6 8.5
WFC 4.2 5.2 5.0 5.7 6.8 7.0 9.2
ZION 6.1 6.8 7.0 7.4 8.6 8.8 9.5

Monte Carlo: Bootstrap

Industry 5.5 6.0 5.8 6.4 6.8 7.1 9.7

BAC 0.9 1.6 2.1 2.6 4.3 4.5 8.7
BBT 5.8 6.7 6.4 7.1 7.6 7.9 9.8
C 4.6 5.3 6.1 6.5 9.3 9.7 11.7
CMA 5.2 6.1 5.7 6.4 6.7 7.0 10.6
FITB 0.6 2.1 2.1 2.9 4.3 4.7 9.3
JPM 5.7 7.0 6.4 7.6 8.5 9.1 9.9
KEY 4.7 5.6 5.7 6.3 7.6 7.7 11.3
MTB 3.3 3.2 3.7 3.6 4.7 4.4 6.9
PNC 2.7 3.1 3.3 3.7 5.1 5.1 10.5
RBS 5.2 6.3 5.9 6.7 7.3 7.5 13.3
RF -0.4 1.2 0.4 1.6 2.0 2.5 8.2
STI 3.9 4.4 4.6 4.9 6.1 5.9 9.3
USB 4.6 5.3 5.3 5.8 6.5 6.6 8.5
WFC 4.2 5.1 5.1 5.8 6.6 7.0 9.2
ZION 6.6 7.1 7.3 7.6 8.8 8.7 9.5

Note: Projection period: 2011:Q4–2013:Q4. Macro scenario is based on the supervisory stress scenario
provided by the Federal Reserve. Bank names: BAC = Bank of America Corporation; BBT = BB&T Corporation;
C = Citigroup, Inc.; CMA = Comerica; FITB = Fifth Third Bancorp; JPM = JPMorgan Chase & Co.; KEY =
KeyCorp; MTB = M&T Bank Corp.; PNC = PNC Financial Services Group, Inc.; RBS = Citizens Financial;
RF = Regions Financial Corporation; STI = SunTrust Banks, Inc.; USB = U.S. Bancorp; WFC = Wells Fargo
& Company; and ZION = Zions Bancorporation.
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Table 8: Estimated Capital Shortfalls in 2011:Q3

5% T1CR Requirement 8% T1CR Requirement

Prob. Violate Expected Shortfall Prob. Violate Expected Shortfall

Banks FE-QAR FE-OLS FE-QAR FE-OLS FE-QAR FE-OLS FE-QAR FE-OLS

Monte Carlo: Variance-Covariance Matrix

All banks 0.28 0.25 18.5 13.7 0.77 0.75 98.2 86.2

BAC 0.72 0.72 17.8 13.6 0.99 1.00 50.4 48.4
BBT 0.02 0.00 0.7 0.1 0.66 0.55 1.3 0.9
C 0.00 0.00 7.9 – 0.17 0.07 9.0 4.6
CMA 0.01 0.00 0.3 0.1 0.93 0.96 0.8 0.7
FITB 0.81 0.69 1.1 0.7 1.00 1.00 3.9 3.4
JPM 0.01 0.00 7.5 – 0.35 0.14 13.1 6.3
KEY 0.00 0.00 0.3 – 0.66 0.68 0.6 0.5
MTB 0.77 0.78 0.7 0.6 1.00 1.00 2.5 2.5
PNC 0.53 0.45 1.7 1.1 1.00 1.00 6.8 6.5
RBS 0.01 0.00 0.6 0.1 0.79 0.76 1.1 0.8
RF 0.99 1.00 2.8 2.4 1.00 1.00 5.5 5.2
STI 0.24 0.12 0.9 0.5 0.97 1.00 3.0 2.8
USB 0.10 0.01 1.3 0.8 0.94 0.97 4.8 3.8
WFC 0.05 0.00 4.8 2.4 0.87 0.91 14.9 11.5
ZION 0.00 0.00 0.3 – 0.25 0.18 0.3 0.2

Monte Carlo: Bootstrap

All banks 0.26 0.25 17.8 13.4 0.79 0.76 97.6 86.4

BAC 0.70 0.68 17.6 13.6 1.00 1.00 50.1 47.9
BBT 0.00 0.00 0.2 – 0.71 0.57 0.9 0.5
C 0.02 0.01 6.7 7.7 0.25 0.16 11.8 11.3
CMA 0.01 0.00 0.2 – 1.00 1.00 0.8 0.6
FITB 0.72 0.66 1.3 0.9 1.00 1.00 3.8 3.4
JPM 0.00 0.00 8.0 – 0.36 0.11 10.2 5.5
KEY 0.02 0.00 0.4 0.3 0.65 0.64 0.8 0.6
MTB 0.73 0.90 0.4 0.4 1.00 1.00 2.3 2.5
PNC 0.48 0.46 1.9 1.4 0.99 1.00 6.6 6.5
RBS 0.01 0.00 0.3 – 0.81 0.84 1.0 0.6
RF 1.00 1.00 2.8 2.4 1.00 1.00 5.6 5.1
STI 0.12 0.07 0.6 0.4 0.97 1.00 2.5 2.8
USB 0.03 0.00 1.2 0.5 0.97 1.00 4.0 3.7
WFC 0.04 0.01 5.7 3.7 0.94 0.95 14.4 10.8
ZION 0.00 0.00 – – 0.20 0.14 0.2 0.1

Note: Projection period: 2011:Q4–2013:Q4. Macro scenario is based on the supervisory stress scenario
provided by the Federal Reserve. Bank names: BAC = Bank of America Corporation; BBT = BB&T Corporation;
C = Citigroup, Inc.; CMA = Comerica; FITB = Fifth Third Bancorp; JPM = JPMorgan Chase & Co.; KEY =
KeyCorp; MTB = M&T Bank Corp.; PNC = PNC Financial Services Group, Inc.; RBS = Citizens Financial;
RF = Regions Financial Corporation; STI = SunTrust Banks, Inc.; USB = U.S. Bancorp; WFC = Wells Fargo
& Company; and ZION = Zions Bancorporation. Expected shortfall is in billions of dollars.
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