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Abstract

This paper studies forecast combination from a macroeconomic perspective. We

introduce the concept of Forecast Combination Equilibrium to model boundedly ra-

tional agents who possess a menu of different models to forecast an endogenous state

variable. The agents combine the forecasts using one of three optimal combination

strategies or simple averaging, known as equal weights. The different equilibrium

outcomes are compared to each other and to rational expectations. We find that

optimal combination strategies can produce multiple equilibria and endogenous

volatility under broad conditions. The equilibrium outcomes of the strategies are

an interesting metric to consider when selecting combination strategies for actual

forecasting. The standard metric to assess forecast combination strategies, real-time

out-of-sample forecasting, does not capture the self-referential effect of forecasting

in the macroeconomy.
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1 Introduction

A popular alternative to rational expectations in dynamic macroeconomics is to model

agents as econometricians. The approach, known as econometric learning, is commonly

used as a stability criterion for rational expectations equilibria and as a selection mech-

anism for models with multiple equilibria. It is also used as a rational basis to justify

boundedly rational economic behavior. Evans and Honkapohja (2013) call the justifica-

tion the cognitive consistency principle. The cognitive consistency principle states that

economic agents should be modeled to be “as smart as (good) economists.”

The standard econometric learning approach assumes that agents possess a single

subjective forecast model with initially unknown parameters. The agents estimate the

unknown parameters given data and forecast recursively, updating their parameter es-

timates as new data becomes available. If the subjective forecast model is specified

correctly, then the recursively formed parameter estimates typically converge to rational

expectations.

In the practice of forecasting, however, econometricians often possess a menu of dif-

ferent subjective forecast models. The menu of different models reflects diverse views on

the structure of the economy or different misspecifications that must be made to satisfy

degrees of freedom restrictions when there exists limited data. An econometrician can

select among the models by assigning a fitness measure to each forecast or she can devise

a way to combine them. The forecasting literature has studied both forecast selection

and forecast combination and it has found that combination is the more robust and ef-

ficient solution. Bates and Granger (1969) first demonstrated the forecasting efficiency

gains that are possible with forecast combination. The paper spawned an entire subfield

of econometrics dedicated to developing new combination techniques and explaining the

origins of the results. Surveys of this literature are found in Clemen (1989), Granger

(1989), Timmermann (2006), and Wallis (2011).

Despite the dominance of forecast combination in the forecasting literature, theoretical

models that have studied agents with a menu of forecasts, overwhelmingly model agents

that select, rather than combine forecasts. A brief list of examples are Brock and Hommes
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(1997 and 1998), Branch and Evans (2006, 2007, and 2011), Branch and McGough (2008

and 2010), and Gibbs (2012). The agents in these models select forecasts by a process

called dynamic predictor selection. The agents use a fitness measure to select models

that evolve with the dynamics of the economy. The evolving fitness measure prompts

the agents to switch among the forecast models over time. Dynamic predictor selection

is often used to motivate heterogeneous expectations and is shown to produce a number

of economic phenomena such as multiple equilibria, time-varying volatility, and exotic

dynamics, which can match dynamics observed in actual economic data. It is, however,

an open question whether these economic phenomena exist if agents choose the more

common and robust solution to the model selection problem of forecast combination.

In addition, combined forecast are also the most common way forecasts are widely

distributed to the private sector and to policymakers. Prominent examples of widely

distributed combined forecasts include the Survey of Professional Forecasters, the Michi-

gan Inflation Expectations Survey, and the Blue Chip Consensus Forecasts, which are

all reported as either mean or median combined forecasts. The wide dissemination and

use of these combined forecasts are an example of how combined forecasts may have

macroeconomic implications. Given these notable examples and embracing the cognitive

consistency principle, it is natural to model agents to form combined forecasts.

1.1 Contribution

I study the forecast combination solution to the model selection problem in a macroecon-

omy. I introduce a formal equilibrium concept called a Forecast Combination Equilibrium.

The concept is an extension of the Restricted Perception Equilibrium concept used to

study dynamic optimizing agents that possess limited information as in Sargent (2001),

Evans and Honkapohja (2001), and Branch (2004). The equilibrium concept creates

a general framework in which any forecast combination strategy can be studied as an

expectation formation strategy of agents in a macroeconomic model.

The concept proposes that a continuum of identical agents considers a menu of un-
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derparameterized forecast models.1 The consideration of underparameterized and parsi-

monious models follows the recommendations of the forecasting literature.2 The agents

combine the forecasts from the menu models to form a single expectation. The identi-

cal agents employ a predetermined strategy to combine the forecasts and the resulting

equilibrium beliefs are explored. The forecast combination strategies are judged on their

ability to obtain or approximate the Rational Expectations Equilibrium (REE) in keeping

with the traditional use of learning techniques as selection and robustness measures.

The agents’ combination strategy is to form a weighted sum of the menu of forecasts.

I study and compare the outcomes of choosing weights using two different forecast com-

bination strategies proposed in the forecasting literature. The two strategies are optimal

weights and simple averaging, known as equal weights. Optimal weights provides esti-

mates of the weights that explicitly minimize the expected squared forecast error, while

equal weights mimics the most common way forecasts are combined, as in the widely

publicized measures mentioned previously. The two different strategies are used to com-

bine the same menu of forecasts. The existence of Forecast Combination Equilibrium are

established for the different strategies and studied using econometric learning.

The optimal weights forecast combination strategy is shown to have different equilib-

rium outcomes depending on the self-referential feedback of the model. In a model with

negative feedback, an optimal weights combined forecast results in a unique equilibrium

that is stable under learning and for some parameter assumptions, identical to rational

expectations. In a model of positive feedback, however, optimal weights can result in mul-

tiple equilibria of which one is identical to rational expectation, but is never stable under

learning. The multiple equilibria that are stable under learning create an environment

where endogenous volatility and other non-standard dynamics occur under constant gain

learning, which is similar to what is observed when agents engage in dynamic predictor

selection. The result is significant because unlike the majority of dynamic predictor selec-

tion models, the agents under optimal weights take into account all available information

1The consequences of combining erroneous information as regressors and the contemplation of sunspot
solutions is explored in a follow-up paper.

2For example see Hendry and Clements (1998).
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and there exists no heterogeneity among agents’ expectations. The result suggests that

forecast uncertainty may be the key driver of the dynamics observed in this literature.

The equal weights forecast combination strategy bounds agents’ expectations away

from rational expectations in all relevant parameterizations of the model under study.

But unlike optimal weight strategies, the equilibrium under equal weights is unique. The

deviations from rationality depend again on the type and magnitude of expectational feed-

back. Under some parameterizations of the model, the equilibrium under equal weights

provides predictions that are very similar to rational expectations predictions and for

other parameterizations there are significant discrepancies. Both combination strategies

considered in the proposed equilibrium concept provide a consistent modeling framework

to think about how agents respond to relative changes in information coming from mul-

tiple sources and how their subjective or ad hoc weighting of that information effects

economic outcomes.

1.2 Forecast Combination Equilibria and Actual Forecasting

The Forecast Combination Equilibrium concept is presented as an open concept in which

numerous combination strategies can be applied because there exists no firm consensus in

the forecast combination literature on the best combination strategy. The best forecast

combination strategies are actually referred to as a puzzle, called the forecast combination

puzzle.3 The strategies that are consistently found to perform best are simple strategies

such as averaging forecasts. This result is obtained despite the fact that there is significant

time variation in the relative efficiency of popular forecasting models that should be

exploitable by more sophisticated combination routines.

The criteria used to evaluate the efficacy of different forecast combination strategies

and which generates the forecast combination puzzle is pseudo out-of-sample forecasting

efficiency. Pseudo out-of-sample forecasting is an exercise where an existing data set is

partitioned into in-sample and out-of-sample subsets. The in-sample subset is used to

estimate a menu of forecast models and initialize the combination strategy to recursively

3The puzzle was first called “the forecast combination puzzle” by Stock and Watson (2004), but has
been noted in the literature by many authors over the last 40 years.
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forecast the out-of-sample subset. If a combination strategy forecasts the out-of-sample

subset well versus some benchmark, then the strategy is deemed effective.

This method of evaluation and justification for forecast combination strategies has the

potential to suffer from a external validity problem along the lines of the Lucas Critique. A

main objective of researchers in this field is to publish and widely distribute the forecasting

strategies they develop. If a combination strategy were to show a substantial improvement

in forecasting efficacy over existing strategies, and it were widely adopted by firms, used

to produce forecasts for policymakers, or used to create widely publicized forecasts such

that the forecasts influence decision making on a macroeconomic level, then there is

reason to believe that the forecast efficiency of that strategy will not continue. A link

between the forecasting strategy and the data generating process is created which may

render invalid the demonstrated efficacy of a strategy to predict past data. The same way

a macroeconomic policy change based on empirical correlations in past data can often

fail to have the intended effect as described by Lucas (1976).

This scenario is described by the Forecast Combination Equilibrium concept and it

provides a way to model the general equilibrium effects of a widely used forecast com-

bination strategy. Since these strategies are largely atheoretic with respect to economic

theory and because the current evaluation method yields a puzzle, the Forecast Combi-

nation Equilibrium concept provides another perspective from which to evaluate forecast

combination strategies. Granger (1989) and Wallis (2011) both remark that the forecast

combination literature is large and repetitive, but important, and this concept offers a

new way to design and evaluate strategies.

The remainder of the paper proceeds as follows. Section 2 introduces a general frame-

work and equilibrium concept in which to study forecast combination. Section 3 proposes

forecast combination strategies from the forecasting literature to analyze and character-

izes the forecast combination equilibria that exist. Section 4 uses econometric learning to

study the stability of the Forecast Combination Equilibria when agents estimate param-

eters and weights in real time. Section 5 demonstrates the time-varying volatility that

optimal forecast combination can generate. Section 6 discusses the relationship between
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endogenous weight forecast combination strategies and the Lucas Critique. Section 7

concludes.

2 A General Framework

To fix ideas I present a macroeconomy that has a unique Rational Expectations Equilib-

rium in which to study forecast combination. I then propose a plausible way for boundedly

rational agents to possess a menu of different forecasts based on standard practices from

the forecasting literature. Finally, I present an equilibrium concept to study the prop-

erties of different forecast combination strategies when employed by dynamic optimizing

agents in place of rational expectations.

2.1 A Reduced Form Economy

I consider a reduced form economy described by a self-referential stochastic process driven

by a vector of exogenous shocks. The model takes the following form,

yt = µ+ αEt−1yt + ζ ′xt−1 + vt, (1)

where yt is a scalar state variable, xt−1 is a n × 1 vector of exogenous and observable

shocks, and vt is white noise.4 The model is the reduced form version of two well-known

macroeconomic models depending on the value of α. The model is the reduced form

version of the Muth (1961) cobweb model for α < 0 and the Lucas-type aggregate supply

model of Lucas (1973) for 0 < α < 1.

The standard assumption under rational expectations is that agents form expecta-

tions using a linear combination of the exogenous observable shocks, which are model

consistent. The agents’ expectations or forecasts can be represented as

Et−1yt = φ′zt−1, (2)

4The model permits many different shock structures such as VAR(p) or VARMA(p,q) processes.
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where φ is a (n + 1) × 1 vector of coefficients that reflect agents beliefs about the effect

of the exogenous observables on yt and zt−1 = (1 x′t−1)′. The necessary and sufficient

condition for the expectation to be rational is that in equilibrium its forecast errors are

orthogonal to the agents’ information sets,

Ezt−1(yt − φ′zt−1) = 0, (3)

where 0 is an (n + 1) vector of zeros. The unique beliefs that satisfy (3) and constitute

a rational expectations equilibrium are φ = (1− α)−1(µ ζ ′)′.

2.2 Misspecified Models and Forecast Combination Equilibria

To study forecast combination I deviate from rational expectations and assume there

exists uncertainty over the correct specification to forecast yt. I assume that agents

consider k different underparameterized versions of equation (2) that each omit one or

more of the exogenous shocks in xt−1.5 The k underparameterized models are denoted as

yi,t = φ′izi,t−1 for i = 1, 2, ...k, where φi and zi,t−1 are m× 1 vectors such that m ≤ n.

The use of underparamerterized and misspecified models mimics standard practices

in the forecasting literature. Macroeconomic forecasters typically possess limited data

and must make restrictions on the number of parameters that are estimated in any given

model. Also, the use of many predictors is found to create estimation uncertainty in

the form of model overfitting that reduces out-of-sample forecast accuracy. Empirical

examples of the efficacy of using parsimonious forecasts are Ohanian and Atkeson (2001),

Ang, Bekaert, and Wei (2007), and Stock and Watson (2004), who show that simple

univariate time series models forecast inflation or output better respectively, than more

correctly specified and theoretically grounded models. A survey of the literature on

forecasting with many predictors is given by Stock and Watson (2006).

The agents, in accordance with the cognitive consistency principle, choose to combine

the k different forecasts to create a single forecast of yt. The agents combine the fore-

5In a companion paper with Bruce McGough, I explore the case where agents consider sunspots
representations as possible forecast models.
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casts using a weighted sum approach that is standard in the forecasting literature. The

weighted sum of the k underparameterized model is given by

Et−1yt =
k∑
i=1

γiφ
′
izi,t−1, (4)

where γi ∈ R is the weight given to ith model.

I require that in equilibrium the individual forecasts meet a set of optimality conditions

similar to the condition presented for rational expectations. I formalize these conditions

in a new equilibrium concept called a Forecast Combination Equilibrium.

Definition 1: A Forecast Combination Equilibrium (FCE) is a set of beliefs {φ1, φ2, ..., φk}

that describes a vector of forecasts Yt = (y1,t y2,t... yk,t)
′ ∈ Rk, given weights Γ =

(γ1 γ2... γk)
′ ∈ Rk, such that Et−1yt =

∑k
i=1 γiyi,t and

Ezi,t−1(yt − φ′izi,t−1) = 0 (5)

for all i = 1, 2, ..., k.

The general definition requires agents to consider only plausible models in equilibrium,

where plausible is defined as the conditional expected forecast error of each model is zero.

The general definition also leave the selection of weights as exogenous. The selection of

weights is a non-trivial problem in the empirical practice of forecasting and I am inter-

ested in studying modifications from this basic definition to explore how exogenous and

endogenous selection of weights alters equilibrium outcomes.

A Forecast Combination Equilibrium is a natural extension of the Restricted Percep-

tions Equilibrium (RPE) concept. In an RPE the agents are required to have an optimal

forecast given their restricted information set. In an FCE the agents have a similar re-

striction that is model specific. Each individual forecast model is required to be optimal

given the information set used to create it. The individual forecasts are, however, not nec-

essarily optimal given the total information set of the agents. The definition reflects the

9



behavior of forecasters in the real world, who optimally fit different misspecified models

conditional on their included information and then combine the forecasts.

The equilibrium definition is also related to the Misspecification Equilibrium (ME)

concept developed in Branch and Evans (2006). They analyze heterogeneous agents that

select forecasts from a list of misspecified models using a fitness measure. The aggregate

forecast in the economy is the weighted average of the different forecasts chosen by the

agents with the weights equal to the measure of agents that chose each forecast. An ME

requires in equilibrium that the individual models satisfy the same orthogonality condition

given in Definition 1. The Forecast Combination Equilibrium concept is distinct from

ME because there is no heterogeneity in forecast choice. The agents form homogeneous

expectations by incorporating the entire menu of forecast to form a single prediction.

2.2.1 Existence of an FCE

I begin my analysis of forecast combination by establishing the conditions that must be

met for an FCE to exist given an exogenous vector of weights. Suppose that the agents

possess a menu of misspecified forecasts Yt = (y1,t y2,t ... yk,t)
′ ∈ Rk and they choose to

combine them to form a single forecast using the weights Γ = (γ1 γ2 ... γk)
′ ∈ Rk. The

expectation of the agents, Et−1yt, is given by equation (4) and the economy under the

combined forecasts can be written as

yt = µ+ α
k∑
i=1

γiφ
′
izi,t−1 + ζ ′xt−1 + vt. (6)

The economy is said to be in a Forecast Combination Equilibrium if given the weights

Γ, the individually misspecified forecasts are individually optimal in accordance with

equation (15) given in Definition 1. This implies the beliefs of the agents represented by

the φi’s must satisfy the following system of equations
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Ez1,t−1(µ+ α

k∑
i=1

γiφ
′
izi,t−1 + ζ ′xt−1 + vt − φ′1z1,t−1) = 0

...

Ezk,t−1(µ+ α

k∑
i=1

γiφ
′
izi,t−1 + ζ ′xt−1 + vt − φ′kzk,t−1) = 0. (7)

There exists a unique FCE given the following condition is satisfied:

Existence Condition: Given Yt and Γ, a unique FCE exists if det(∆) 6= 0, where

∆ =



(1− αγ1)(u1Σzu
′
1) −αγ1u1Σzu

′
2 ... −αγ1u1Σzu

′
k

−αγ2u2Σzu
′
1 (1− αγ2)(u2Σzu

′
2) ... −αγ2u2Σzu

′
k

... ... ... ...

−αγkukΣzu
′
1 −αγkukΣzu

′
2 ... (1− αγk)(ukΣzu

′
k)


,

Ezt−1z
′
t−1 = Σz, and ui is an m × (n + 1) sector matrix that selects the appropriate

elements out of Σz that correspond to the ith underparameterization.6

The existence condition is derived in detail in the appendix.

If there exists an FCE for a given Γ and menu of forecast Yt, then in general there

exists and open set U of weight vectors, such that Γ ∈ U , which will also satisfy the

existence condition for the same Yt. This follows from the fact that the eigenvalues of

∆ are a continuous function of Γ. The existence of multiple weights that constitute and

FCE for a given Yt implies that there is not a unique weight vector for the agents to

choose. The next section studies different possible ways agents may choose weights based

on recommendations from the forecasting literature.

6The condition is a necessary, but not sufficient condition for an ME in Branch and Evans (2006).
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3 Exogenous and Endogenous Selection of Weights

In this section I consider the possibility that agents either exogenously impose recom-

mended weights or endogenously choose weights according to an optimality criterion to

form combined forecasts. I restrict my analysis to the homogeneous selection of weights

by all agents to characterize the possible equilibrium outcomes when agents coordinate

on single combination strategy. The analysis of the homogeneous case is sufficiently

complicated to leave the questions of heterogeneity to future research.

The goal of forecast combination is to choose weights to create the optimal combined

forecast. I employ the standard definition of optimal used in the forecasting literature,

which is that an optimal forecast minimizes the expected squared error of a forecast.7

Given a set of underparmeterized models Yt, the forecast combination problem is

min
{Γ}

E[(yt − Γ′Yt)
2]. (8)

Endogenous solutions to (8) are given by Granger and Ramanathan (1984). They propose

three different ordinary least squares regressions that estimate the optimal solution to

(8), given past data on yt and Yt. The three different specifications are justified by the

statistical properties of the forecasts Yt. I consider all three strategies as ways agents can

endogenously select weights.

The three specifications Granger and Ramanathan propose are

yt = γ1y1,t + γ2y2,t + ...+ γkyk,t + et (9)

yt = γ1y1,t + γ2y2,t + ...+ γkyk,t + et : s.t.
k∑
i=1

γi = 1 (10)

yt = γ0 + γ1y1,t + γ2y2,t + ...+ γkyk,t + et, (11)

where et represents the error term. The regression coefficients of each model are ex-

plicit solutions to (8). The first specification, equation (9), is argued by Granger and

7The effect of using other metrics, such as asymmetric loss functions, is an interesting avenue for
future research.
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Ramanathan to be the optimal solution when the menu of forecasts is believed to be

unbiased. I call this specification optimal weights (OW).

The two other specifications are modifications to the OW case. The second speci-

fication imposes the restriction that the weights sum to one. I call this case restricted

optimal weights (ROW). The restriction is argued to guarantee that the combined fore-

cast of unbiased forecasts is unbiased. The restriction is also argued to ensure that the

combined forecast optimally uses the available information. Diebold (1988) shows that

combined forecasts that do not impose this restriction can generate serially correlated

forecast errors in out-of-sample forecasting exercises.

The third specification adds a constant term to the optimal weights (OWC). The

constant term is used to remove any bias that may exist in the elements of Yt from the

combined forecast. The addition of a constant to the weights regression is not a trivial

modification to the OW case because in forecasting, parsimony is key. The estimation

error introduced by the addition of extra parameters when there exists limited data can

reduce forecast efficiency.8 The modification is also not an obvious addition based on

the objective function given by (8). Although, it is a more natural modification when

considered in a regression framework.

A natural exogenous weights choice is for agents to consider equal weights. The equal

weights solutions is given by γi = 1/k for i = 1, 2, ..., k. This specification is only a

solution to (8) under very specific conditions, but as mentioned in the introduction, it

is found to work well in practice. Equal weights also serve as a good comparison to the

optimal weights because it does not require knowledge of the distribution of yt or the

vector of forecasts Yt to implement.9

8A specific example of this appear in Smith and Wallis (2009) who show that estimation uncertainty
is one explanation for the forecast combination puzzle.

9A popular forecast combination strategy not studied in this paper is to weight forecasts by the
inverse of their past mean squared error measured over a rolling window. The weights in this case are
not explicit solutions, but, like equal weights, they are found to be effective. For empirical examples see
Bates and Granger (1969) or Stock and Watson (2004).
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3.0.2 Assessing FCEs

The four different strategies are used to modify the FCE definition to incorporate the

selection of weights as an equilibrium condition. Rational expectations is the natural

benchmark for our characterization of these different types of FCEs. The resulting equi-

libria are compared to an REE in four categories:

1. equilibrium differences in beliefs

2. equilibrium differences in forecasts

3. stability under learning

4. and dynamics under real-time learning.

The first two categories address a forecast combination strategy’s ability to approximate

rational expectations in equilibrium. I capture these categories in a new definition.

Definition 2: An FCE {φ1, φ2, ..., φk} is called a fundamental FCE if the individual

model beliefs φi = (ai b
′
i)
′ are equivalent to the REE beliefs, such that ai = (1 − α)−1µ

and bi = (1− α)−1(ζi,1 ζi,2 ... ζi,m−1)′ for i = 1, 2, ...k and EREE
t−1 yt = EFCE

t−1 yt.

The notation EREE
t−1 yt = EFCE

t−1 yt denotes equivalence between the equilibrium forecasts.

This condition is necessary because equal beliefs in general do not imply equivalent fore-

casts or vice versa because the combination weights affect the equilibrium expectations.

The third category assesses the likelihood an FCE is an actual outcome when agents

must infer their beliefs from past data. The fourth category assesses the dynamics on the

off equilibrium paths when agents form forecasts recursively using real-time econometric

learning. The off equilibrium paths under learning can sometimes diverge far from the

equilibrium dynamics when there exists unobservable stochastic shocks. The comparisons

are made with respect to the value of α assumed in the model. The value of α determines

the type of economic model represented by equation (1) by determining the amount

feedback a forecast has on the actual realization of the data. If α = 0, the model has no

self-referential component and forecasting is reduced to a purely statistical exercise.
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3.1 Characterizing FCEs

This section characterizes the possible FCEs under each of the four proposed combination

strategies for an example of the reduced form economy and a specific menu of forecast

models. I consider an economy driven by a 2× 1 vector xt−1 of exogenous and observable

shocks. The shocks are assumed i.i.d. with Exi,t−1 = 0 for i = 1, 2 and

Ex′t−1xt−1 =

 σ2
1 σ12

σ12 σ2
2

 . (12)

The results are not dependent on this assumption, but the simple structure simplifies

analysis to better illustrate the intuition.

The agents’ menu of forecasts consists of all non-trivial underparameterizations of the

data generating process. The menu of forecasts is

y1,t = a1 + b1x1,t−1 (13)

y2,t = a2 + b2x2,t−1., (14)

which can be express as yi,t = φ′izi,t−1 with beliefs φi = (ai bi)
′ for i = 1, 2. The inclusion

of all non-trivial underparameterizations make the agents’ information sets equivalent to

the information set under rational expectations. This assumptions allows for a precise

characterization of the difference between an FCE and the REE.

3.1.1 Equal Weights

The equal weights solution requires the least amount of information for the agents to

impose. The equilibrium outcomes provide an illustrative example of how forecast com-

bination alters equilibrium beliefs and forecasts.

Definition 3: An Equal Weights Forecast Combination Equilibrium (EWFCE) is a

set of belief {φ1, φ2} that describes a vector of forecasts Yt = (y1,t y2,t)
′, given weights
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Γ = (1
2

1
2
)′, such that Et−1yt =

∑k
i=1 γiyi,t and

Ezi,t−1(yt − φ′izi,t−1) = 0 (15)

for all i = 1, 2.

The set of beliefs that constitute an EWFCE for the model under consideration are

φ1 and φ2 that satisfy

Ez1,t−1(yt − φ′1z1,t−1) = 0

Ez2,t−1(yt − φ′2z2,t−1) = 0. (16)

These conditions can be represented as a projected T-map. A projected T-map is a

mapping from the individual beliefs to the actual outcomes of the economy under forecast

combination. The mapping from beliefs to outcomes is a useful representation to calculate

equilibrium beliefs and is the key to analyzing the stability of any equilibria under real-

time econometric learning. The projected T-map is also equivalent to constructing the ∆

matrix to establish existence of an FCE discussed in Section 2. I translate the conditions

in each of the four cases into a projected T-map to solve for the equilibrium beliefs.

A projected T-map is constructed by specifying the agents’ perceived law of motion

(PLM) for the economy. The PLM under forecast combination is the combined forecast

given the appropriate weights,

Et−1yt =
1

2
φ′1z1,t−1 +

1

2
φ′2z2,t−1. (17)

The PLM represents how agents form Et−1yt in equation (1). The PLM can be substituted

in for Et−1yt to produce the actual law of motion (ALM) of the economy,

yt = µ+ α(
1

2
φ′1z1,t−1 +

1

2
φ′2z2,t−1) + ζ ′xt−1 + vt. (18)
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The ALM describes how yt evolves given agents beliefs and their forecast combination

strategy. The ALM is then substituted into the orthogonality conditions, the expectation

is taken, and the conditions are simplified so that φ1 and φ2 appear on the right-hand

side of the equations and a function of φ1 and φ2 are on the left-hand side. The left-hand

side of the equations is the projected T-map. The T-map under equal weights is

T



a1

a2

b1

b2


=



µ+ α
2
(a1 + a2)

µ+ α
2
(a1 + a2)

α
2
(b1 + b2

σ12
σ2
1

) + ζ1

α
2
(b2 + b1

σ12
σ2
2

) + ζ2


, (19)

where ζ = (ζ1 ζ2)′. The fixed points of the projected T-map correspond to EWFCEs of

the economy.

Lemma 1: There exists a unique fixed point given by

a1 = a2 =
µ

1− α

b1 =
(α

2
− 1)ζ1σ

2
1σ

2
2 − α

2
ζ1σ

2
12 − ζ2σ12σ

2
2

1
4
σ2

12α
2 − (1− α

2
)2σ2

1σ
2
2

b2 =
(α

2
− 1)ζ2σ

2
1σ

2
2 − α

2
ζ2σ

2
12 − ζ1σ12σ

2
1

1
4
σ2

12α
2 − (1− α

2
)2σ2

1σ
2
2

, (20)

which is not a fundamental FCE.

The lemma is obtained by solving for a fixed point of the T-map and by comparing

the resulting beliefs to rational expectations.

The rational expectations beliefs for the given model are a = µ
1−α , b1 = ζ1

1−α , and

b2 = ζ2
1−α . The difference in the beliefs between the EWFCE and REE are from the

misspecification of the two underparameterized models and the interaction of the forecast

combination strategy in a self-referential environment. The misspecification error is an

omitted variable. The bias is captured by the σ12 terms in the bi beliefs. If σ12 = 0,

then the omitted variable bias is removed and the EWFCE beliefs collapse to bi = ζi
1−α/2
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for i = 1, 2, where the remaining difference is due to the combination strategy and the

feedback from expectations. The use of equal weights prevents the agents from fully

responding to a predicted change from one of the individual models. The attenuated

response to the prediction impacts the actual realization of yt when α 6= 0. This alters

the actual relationship between xt−1 and yt in equilibrium, which is reflected by the agents

beliefs in the EWFCE.

In addition, the equilibrium forecasts provided by the FCE do not equal the REE

forecasts. A way to characterize this difference is to calculate the expected squared

forecast error in the REE compared to the EWFCE. The expected squared forecast error

in the REE is Ev2
t = σ2

v and the expected squared in the EWFCE is

E(yt −
1

2

2∑
i=1

yi,t)
2 = σ2

v + ξ1σ
2
1 + ξ2σ

2
2 + ξ1ξ2σ12, (21)

where ξi = (1
2
(α−1)bi+ ζi) and bi is the EWFCE belief given previously for i = 1, 2. The

equal weights forecast has a higher expected squared forecast error than under rational

expectations in equilibrium.

3.1.2 Optimal Weights

The optimal weights case uses the regression specification (9) to form optimal weights

for the menu of forecasts. The regression specification can be translated into an extra

orthogonality condition that must be satisfied in equilibrium. I formalize these conditions

into a new definition.

Definition 4: An Optimal Weights Forecast Combination Equilibrium (OWFCE) is a

set of beliefs and weights {φ1, φ2,Γ} such that Et−1yt =
∑2

i=1 γ1yi,tand

EYt(yt − Γ′Yt) = 0

Ez1,t−1(yt − φ′1z1,t−1) = 0

Ez2,t−1(yt − φ′2z2,t−1) = 0, (22)
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where the 0’s are 2× 1 vectors of zeros.

To study OWFCEs I again translate the equilibrium conditions into a projected T-map.

The PLM under optimal weights is

Et−1yt = γ1φ
′
1z1,t−1 + γ2φ

′
1z2,t−1, (23)

and the corresponding ALM is

yt = µ+ α(γ1φ
′
1z1,t−1 + γ2φ

′
1z2,t−1) + ζ ′xt−1 + vt. (24)

Substituting the ALM into the conditions of Definition 4, simplifying the system with

respect to each coefficient in {φ1, φ2,Γ}, and taking expectations gives the following

projected T-map

T



a1

a2

b1

b2

γ1

γ2


=



µ+ α(a1γ1 + a2γ2)

µ+ α(a1γ1 + a2γ2)

αγ1b1 + (αγ2 + ζ2)σ12
σ2
1

+ ζ1

αγ2b2 + (αγ1 + ζ1)σ12
σ2
2

+ ζ2

αγ1a21+b1(αγ1σ2
1b1+(α−1)γ2σ12b2+σ1ζ1+σ12ζ2)+a1((α−1)γ2a2+µ)

(a21+σ2
1b

2
1)

(α−1)(γ1a1a2+γ1σ12b1b2)+αγ2a22+αγ2σ2b22+ζ1σ12b2+ζ2σ2
2b2+µa2

(a22+σ2
2b

2
2)


. (25)

The fixed points of the T-map are OWFCEs of the economy.

The T-map is a system of polynomial equations which suggest there may exist multiple

OWFCEs. Obtaining analytic solutions to systems of polynomial equations is notoriously

difficult (see Sturnfels (2002)). It is possible to solve this system explicitly with the aid of

computers, but the solutions are large and impractical to study. Instead of solving for the

entire family of solutions, I analyze the T-map using bifurcation theory to characterize

OWFCEs in the neighborhood of rational expectations. The possible equilibria that exist

away from the rational expectations are explored numerically.
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Lemma 2: If σ12 = 0 and µ = 0, then there exists an OWFCE that is a fundamental

FCE with optimal weight Γ = (1 1)′.

The lemma can be established by substituting in the appropriate values into the T-map

and checking that it is a fixed point. The requirement that σ12 = 0 is necessary to prevent

omitted variable bias in the individual agents beliefs and µ = 0 is required so that optimal

weights are correctly specified. The condition that σ12 and µ equal zero does not remove

the non-linearity from the T-map, so there may exist non-fundamental OWFCEs as well

as the fundamental OWFCE in some cases. The existence of non-fundamental OWFCEs

implies that rational expectations may only be one of many equilibrium outcomes under

optimal weights.

The existence of non-fundamental OWFCEs can be established by monitoring the

properties of the fundamental OWFCE as a bifurcation parameter is varied. The existence

of a bifurcation can precisely characterize the existence of non-fundamental OWFCEs

without having to explicitly solve for them. The natural parameter to study is α, the

feedback parameter on expectations, which captures the self-referential element of the

model.

To apply bifurcation theory, consider the T-map as a differential equation given by

Θ̇ = T (Θ)−Θ. (26)

The differential equation governs the dynamics of Θ = (φ′1 φ
′
2 Γ′)′ in notional time.10

Bifurcation theory characterizes the existence of OWFCEs by monitoring the stability of

a fixed point. If the fixed point of the system has eigenvalues that are equal to zero for

some value of α, it may indicate that new fixed points have come into existence by way

of a bifurcation.

The fundamental FCE experiences a bifurcation at α = 1
2
. The type of bifurcation

and its effect on the fundamental FCE is analyzed by using the center manifold reduction

10Notional time is used to distinguish the treatment of the T-map as a differential equation from the
actual timing of outcomes in the model.
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technique described in Wiggins (1990). The center manifold reduction creates a one-

dimensional projection of the bifurcation that fully characterizes the existence of the

fixed points in the larger system.

Theorem 1: Given µ = 0 and σ12 = 0, there coexists non-fundamental and fundamen-

tal OWFCEs for some α > 1
2
.

The theorem is proved by showing the existence of a pitchfork bifurcation. A pitch

fork bifurcation is where a single fixed point destabilizes and creates two new stable

OWFCEs. The approximate center manifold is given in Figure (1).

Theorem 1 is a surprising result. It says that optimal weights lives up to its moniker

for negative or small positive values of α and can provide equilibrium outcomes that are

equivalent to rational expectations. But, as α becomes large, optimal weights can also

provide equilibrium outcomes that diverge from rational expectations.11

There is an economic explanation for the existence of the non-fundamental OWFCEs

when the feedback parameter on expectations is positive. A positive feedback parameter

creates a self-fulfilling quality to expectations. The degree to which a forecast has an

affect on yt is determined by the sign of α. In the case where α is negative any beliefs

that deviate from rational expectations will result in poor forecasts because yt will move

in the opposite direction of the forecast. In the case where α is positive any beliefs

that deviate from rational expectations will be partly confirmed because yt will move in

the same direction as the forecast. The self-fulfilling quality allows the non-fundamental

beliefs to interact with the weights to create combinations that constitute an OWFCE.

To illustrate the multiple OWFCEs that exist and their dependence on α, I create a

type of pseudo-bifurcation diagram. The diagram is constructed by numerically solving

for the entire set of OWFCE that exists for a fixed parameterization of the model and

11non-rational or non-fundamental beliefs are associated with stable dynamics in notional time. As
indicated when the T-map was introduced, the mapping is key for analyzing the stability of equilibira
under real-time econometric learning and the theorem suggests that although the fundamental FCE
always exists, it may not always be stable under learning. Unfortunately Theorem 1 does not constitute a
proof because the specific technique used is not equivalent to studying the equilibrium under econometric
learning, but the intuition is shown to be correct in Section 4.
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Figure 1: A pitchfork bifurcation on the approximate center manifold of the T-map (26).
The bifurcation has been normalized to occur at (0, 0). The solid line indicate stable
fixed points and the dashed line indicates unstable fixed points.

a given value of α. The value of α is then incrementally changed and another set of

OWFCE is calculated. The resulting beliefs and weights that characterize the OWFCEs

for each α are used to construct forecasts for a given specific realization of xt−1. The

forecasts are plotted against the corresponding α to produce a diagram that illustrates

the dependence of equilibrium beliefs on α.

Figure 2 is the pseudo-bifurcation diagram for α between−1.5 and 1.5 with parameters

ζ1 = .9, ζ2 = −.9, σ2
1 = σ2

2 = 1, σ12 = 0, µ = 0, and x̂t−1 = (1 1)′ as the specific

realization of xt−1. The range of α is chosen to cover the relevant regions of the parameter

space that are typically explored in the literature.12 The REE forecast under the given

parameters for the fixed x̂t−1 is EREE
t−1 [yt|x̂t−1] = 0 for all α. The simulation shows that

the fundamental FCE is the unique OWFCE before the bifurcation and is one of many

after the bifurcation. The system also bifurcates a second time at α = 3
4
, which results in

six OWFCEs existing simultaneously in addition to the OWFCE that is the fundamental

OWFCE.

12The majority of papers look at α between -3 and 1. The action in FCEs is in the positive feedback
case, so I restrict the size of α on the left. Some examples from the literature are Brock and Hommes
(1997) who use α = −2.7, Branch and Evans (2006) who use α = −2, Gibbs (2012) who uses α = −1.5,
and Branch and Evans (2007) who use α = 0.6.
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Figure 2: A plot of the OWFCE forecasts for a specific realization of xt−1 and for different
values of α.

3.1.3 Further Exploration

No fundamental OWFCE exists when either σ12 6= 0 or µ 6= 0. Figure 3 illustrates

the deviations in the forecasts from rational expectations by plotting the equilibrium

forecasts for OWFCEs with µ = 1 and the remaining parameters the same as Figure

2. The figure shows the OWFCEs forecast in black and the REE forecast in gray. The

deviation between the OWFCE nearest the REE is driven by the weights. This OWFCE

has equilibrium beliefs equivalent to rational expectations, but optimal weights Γ =

(
ζ21+αµ2

ζ21+µ2
ζ22+αµ2

ζ22+µ2
)′. The weights provide a combined forecast that is not equivalent to the

rational expectations forecast.

The genesis of the deviation is due to the forecast combination strategy. The strat-

egy is misspecified along the line considered by Granger and Ramanathan (1984). The

individual forecasts have positive intercepts that are not correctly accounted for by the

optimal weights specification. The specification error is also affected by the value of α,

but it is not the main cause of the deviation. Note that if α = 0, the equilibrium weights

will still not equal Γ = (1 1)′, which is required for the OWFCE forecast to equal the

REE forecast.
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Figure 3: A plot of the OWFCE forecasts (black) and the REE forecast (gray) for a
specific realization of xt−1 and for different values of α.

The addition of a positive intercept also alters the second bifurcation of the system.

The equilibrium forecasts for a relatively large positive α change compared to Figure

2. There now exists multiple OWFCEs for α > 1. The maximum number of OWFCEs

remains at seven.

3.1.4 Restricted Optimal Weights

The second specification proposed by Granger and Ramanathan (1984) imposes the re-

striction that the weights sum to one. The purpose of the restriction is to ensure that

the combined forecast of unbiased forecasts is unbiased. An FCE with restricted optimal

weights can fit into Definition 4 by imposing the restriction that γ2 = 1− γ1 on the first

orthogonality condition to yield

E(y1,t − y2,t)[(yt − y2,t)− γ1(y1,t − y2,t)]. (27)

The FCE under restricted regression weights will be referred to as ROWFCE. The system

can be represented by a T-map following the same procedure executed under optimal

weights. The T-map for ROW is
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T



a1

a2

b1

b2

γ1


=



µ+ αγ1a1 + α(1− γ1)a2

µ+ αγ1a1 + α(1− γ1)a2

αγ1b1 + (ζ2 + α(1− γ1)b2)σ12
σ2
1

+ ζ1

α(1− γ1)b2 + (ζ1 + αγ1b1)σ12
σ2
2

+ ζ2

b1Ω1−b2Ω2+(a1−a2)Ω3

a21−2a1a2+a22+σ2
1b

2
1−2b1b2+σ2

2b
2
2


(28)

where Ω1, Ω2, and Ω3 are expanded in the footnote.13

The possible FCEs under restricted optimal weights are similar to the OW case with

a unique FCE that experience a bifurcation to create multiple FCEs. Figure 4 plots the

ROWFCE forecasts given by EFCE
t−1 [yt|x̂t−1] for α ∈ (−1.5, 1.5) using identical parameters

to Figure 2, but with µ = 1, and σ12 = .1. The ROWFCEs are dissimilar to the OW case

because the restriction prevents the existence of a fundamental FCE.

Lemma 3: There does not exist a fundamental FCE in the set of ROWFCEs.

The lemma is obtained by substituting in the REE beliefs into the T-map to verify

that they are not a fixed point for any γ1.

The combined forecast under restricted optimal weights also does not provide a

forecast equivalent to rational expectations. Figure 4 in the bottom panel shows the

ROWFCE forecasts and the REE forecasts for ζ = (.9 − .65)′, σ2
1 = σ2

2 = 1, σ12 = 0,

and µ = 0. In this case the forecast diverges from the rational expectations forecast

even when the intercept term and the covariance of the shocks are zero. The restriction

that the weights sum to one restricts the possible beliefs and forecasts from ever being

equivalent to rational expectations.

3.1.5 Optimal Weights with a Constant

The third solution to the forecast combination problem offered by Granger and Ra-

manathan (1984) is to add a constant parameter to the weights. The constant is added

13Ω1 = σ2
1(αγ1b1 + ζ1) + σ12(b2(α− αγ1 − 1) + ζ2), Ω2 = σ12(αγ1b1 + ζ1) + σ2

2(b2(α− αγ1 − 1) + ζ2),
and Ω3 = µ+ αγ1a1 + a2(α− αγ1 − 1).
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Figure 4: Plots of the ROWFCE forecasts. The top plot demonstrates multiple
ROWFCEs for the same parameter values used in Figure (2), but with µ = 1 and
σ12 = 0.1. The bottom plot compares ROWFCE forecasts (black) to the REE fore-
cast (gray) for different values of α and ζ = (.9 − .65)′, σ2

1 = σ2
2 = 1, σ12 = 0, and

µ = 0.
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to offset biases that may exist in the forecasts contained in Yt. A forecast combination

equilibrium under optimal weights with a constant can be fit into Definition 4 by redefin-

ing Γ to include an intercept such that Γ = (γ0 γ1 γ2)′. The FCE under optimal weights

will be referred to as OWCFCE. The transformed equilibrium conditions can then be

represented as a projected T-map following the same procedure executed for optimal

weights. The T-map for OWC is

T



a1

a2

b1

b2

γ0

γ1

γ2



=



µ+ α(γ0 + γ1a1 + γ2a2)

µ+ α(γ0 + γ1a1 + γ2a2)

αγ1b1 + (αγ2b2 + ζ2)σ12
σ2
1

+ ζ1

αγ2b2 + (αγ1b1 + ζ1)σ12
σ2
2

+ ζ2

µ− γ1a1 − γ2a2 + α(γ0 + γ1a1 + γ2a2)

αγ1a21+b1(αγ1σ2
1b1+(α−1)γ2σ12b2+σ2

1ζ1+σ12ζ2)+a1((α−1)(γ0+γ2a2)+µ)

a21+b1σ2
1

αγ2a22+b2((α−1)σ12b1+αγ2σ2b2+σ12ζ1+σ2ζ2)+a2((α−1)(γ0+γ1a1)+µ)

a22+σ2
2b

2
2



. (29)

Lemma 4: There exists a unique OWCFCE given by

a1 = a2 =
µ

1− α
γ0 =

(σ2
1σ

2
2 − (σ12)2)ζ1ζ2µ

(α− 1)(σ2
1ζ1 + σ12ζ2)(σ12ζ1 + σ2

2ζ2)

b1 =
σ2

1ζ1 + σ12ζ2

σ2
1(1− α)

γ1 =
σ2

1ζ1

σ2
1ζ1 + σ12ζ2

b2 =
σ12ζ1 + σ2

2ζ2

σ2
2(1− α)

γ2 =
σ2

2ζ2

σ2
2ζ2 + σ12ζ1

and if σ12 = 0, then the OWCFCE is the fundamental FCE with weights Γ = ( µ
α−1

1 1)′.

The result provides intuition for why there exist multiple FCEs under OW or ROW.

The addition of the intercept term correctly specifies the weights for all possible pa-

rameterizations of the economy. The correct specification eliminates the possibility of a

self-reinforcing bias originating in the misspecified models. For example, note that the

non-fundamental forecasts in Figure 2 are non-zero. The forecasts deviate from zero be-

cause one or both of the individual models posits, incorrectly, a positive (negative) value
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for the intercept. The incorrect belief of a positive (negative) value for the intercept

exists because of the interaction between the weights and the expectational feedback,

which biases the agents’ beliefs compared to rational expectations. The addition of the

intercept, γ0, eliminates the possibility of a sustained bias in the combined forecast from

this interaction and results in a unique equilibrium.

3.2 Results Summary

The findings of the section are summarized in Table 1. The table is organized by forecast

combination strategies and by the feedback parameter to illustrate the different outcomes

that occur for positive, negative, and zero feedback. The table denotes the number of

possible equilibria, whether one of the forecast combination equilibrium is equivalent to

REE as indicated by the existence of a fundamental FCE, and the conditions under which

the fundamental FCE occurs.

There are two important results shown in this section. The first is that optimal

weighting strategies can provide equilibrium outcomes equivalent to rational expecta-

tions under certain conditions. This shows that optimally combined underparameterized

models can be a route to rational expectations. The second result is that optimal combi-

nation strategies can deviate from rational expectations in surprising ways, in that, there

coexists multiple FCEs under OW and ROW in the positive feedback case. The existence

of the multiple FCEs suggest that although rational expectations outcomes are possible,

they may not be likely.

The deviations from rational expectations also show that the recommendations from

the out-of-sample forecasting literature do not always carry over into the self-referential

environment. The recommendations of Granger and Ramanathan are consistent with

the multiple FCE case of OW, when σ12 and µ equal zero, and consistent for many

of the ROWFCEs, which prove never to be fundamental. The next section determines

whether the FCEs found under the four solutions to the forecast combination problem

are learnable if agents estimate the weights and beliefs in real time.
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FCE Representative Results Summary

Number of FCE Fundamental FCE Fundamental Condition

EW α = 0 1 no -
α < 0 1 no -
α > 0 1 no -

OW α = 0 1 yes σ12 = 0, & µ = 0
α < 0 1 yes σ12 = 0, & µ = 0
α > 0 7 yes (1/7) σ12 = 0, & µ = 0

ROW α = 0 1 no -
α < 0 1 no -
α > 0 3 no -

OWC α = 0 1 yes σ12 = 0
α < 0 1 yes σ12 = 0
α > 0 1 yes σ12 = 0

Table 1: Tabulated representative results for the FCEs under equal weights (EW), optimal
weights (OW), restricted optimal weights (ROW), and optimal weights with a constant
(OWC). The Fundamental FCE column denotes existence. The notation (1/7) indicates
that only one of the 7 OWFCEs is a fundamental FCE. The Condition column gives the
necessary condition for the existence of fundamental FCE result to be obtained. A dash
indicates that there is no broad or economically significant restriction.

4 Learning FCEs

This section assesses the stability of the FCEs identified in Section 3 under recursive

least squares learning following the method of Evans and Honkapohja (2001). The FCE

concept follows the cognitive consistency principle which makes econometric estimation

the natural way agents would form forecasts and combination weights. In real time,

the agents are executing the econometric procedures recursively by estimating models on

existing data, forming an expectation, and then interacting in the economy to form a new

data point. The econometric learning analysis acts an equilibrium selection mechanism

by characterizing the likelihood of convergence to a given FCE from nearby initial beliefs.

4.1 E-stability

The agents form their estimates of belief and weights using recursive least squares learn-

ing. The estimation of multiple individual models and combination weights requires

the use of the Seemingly Unrelated Regression (SUR) method of estimation. The SUR
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method allows the agents’ estimation strategy to be written in a way that standard learn-

ing results can be applied. The ability of the agents’ estimation strategy to be written

in this form is an advantage of the optimal weights strategies studied in this paper. In

related work by Evans et al. (2012), the agents use Bayesian model averaging, which is

found to not be emendable to standard learning analysis.

The SUR is written recursively as

Θt = Θt−1 + κtR
−1
t zt−1(yt − z′t−1Θt−1)

Rt = Rt−1 + κt(zt−1z
′
t−1 −Rt−1), (30)

where the first equations governs the evolution of the belief and weight coefficients, the

second equation is the estimated second moments matrix, and κt is the gain sequence

that governs the weight given to new observations. To estimate the SUR under optimal

weights (OW), the agents stack three copies of yt into the vector yt = (yt yt yt)
′ and

stack the regressors into the matrix

zt =


z1,t 0 0

0 z2,t 0

0 0 Yt+1

 , (31)

where the zeros are 2× 1 vectors of zero so that zt is a 6× 3 matrix. The other forecast

combination techniques can fit into this form by making the appropriate changes to yt

and zt.

The possible rest points of (30) are equivalent to the FCEs determined in Section 3.

The stability of these FCEs are determined by appealing to the E-stability principle.14

The E-stability principle states that the stability of a rest point of (30) is governed by

the stability of an associated differential equation. The associated differential equation

is determined by fixing the parameter Θ and taking the limit of the expected values of

14Guse (2008) explores using SUR to analyze RPE under E-stability. Guse shows that the E-stability
results can be applied directly to SUR.
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(30) as t goes to infinity.15 The resulting system is

dΘ

dτ
= R−1Ezz′(T (Θ)−Θ)

dR

dτ
= Ezz′ −R. (32)

The stability of an FCE under the econometric learning process is determined by

dΘ

dτ
= T (Θ)−Θ, (33)

which is the same differential equation studied in Section 3, where T (Θ) is the appropriate

T-map derived previously. The stability of this equation evaluated at fixed point governs

the stability of (30). The condition for stability is that the Jacobian of the T-map,

evaluated at an FCE, has eigenvalues with real parts less than one. The condition for the

stability of the REE when agents learn using a single, correctly specified model given by

equation (2) is α < 1.

4.2 Equal Weights

The Equal Weights FCE can easily be characterized analytically. Stability under learning

of EWFCE requires the same condition as stability of the REE when agent learn using a

correctly specified model in the standard learning analysis.

Theorem 2: The EWFCE is E-stable if α < 1, α < 2
ρ+1

, and 2
1−ρ where ρ is the corre-

lation between x1,t−1 and x2,t−1.

The binding condition of Theorem 2 is α < 1. Although, it is worth noting that if

the agents did not include intercepts in their misspecified forecast models, then the con-

ditions for E-stability would be relaxed. This reflects the dampening effect the weights

have on agents’ beliefs that was discussed in Section 3.

15See Evans and Honkapohja (2001) for a more detailed explanation.
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4.3 Optimal Weighting Strategies

Analytic characterizations of the E-stability conditions for the optimal weights cases is

difficult because the eigenvalues that indicate stability are large polynomials. I study

E-stability in these cases by providing analytic results for special cases that are tractable

and use numerical simulation to show evidence that the results generalize.

In the OW case, Theorem 1 strongly suggests that after the bifurcation the two

non-fundamental OWFCEs that come into existence are stable under learning and that

the fundamental OWFCE is unstable. Unfortunately, Theorem 1 does not provide a

proof because it required the system to be reduced to a smaller dimension than needed

to determine stability. However, if the bifurcation in the larger system shares the same

stability properties as the smaller system, then the fundamental OWFCE should be stable

under learning before the bifurcation and unstable after.

Theorem 3: The fundamental OWFCE is E-stable if α < 1/2.

Theorem 3 shows that the fundamental steady state behaves as expected, which sug-

gests that the two non-fundamental equilibria are stable under least squares learning.

This result is confirmed numerically.

For simplicity I illustrate the E-stability of the different OWFCEs and ROWFCEs by

modifying the pseudo-bifurcation diagrams. Figures 2, 3, and 4 are replicated in Figure

5 with solid lines corresponding to FCEs that are stable under learning and dashed lines

corresponding to FCEs that are not stable. The upper right plot of Figure 5 shows the

result predicted by Theorem 3 with the fundamental FCE destabilizing at α = 1
2
. The

intuition from the bifurcation analysis is also seen in the ROW case. The unique FCE

destabilizes and the system bifurcates to produce two new stable equilibria.

The FCE under OWC is also not tractable analytically and is analyzed using numeric

simulation. A numerical investigation of the parameter space shows that the E-stability

condition can vary from 0 < α < 1, depending on the value of the intercept, the correla-

tion between the exogenous shocks, and ζ. Figure 6 plots a grid of the parameter space
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Figure 5: The EFCE
t−1 [yt|x̂t−1] under OW (left) and ROW (right) for different values of α.

E-stability is indicated by solid lines and E-instability is indicated by dashed lines.

for α, σ12, and µ with the remaining parameters ζ = (.9 − .9)′, σ2
1 = σ2

2 = 0. The light

regions of the figure indicates E-stability and the dark regions indicates E-instability. The

figures demonstrates a non-linear relationship between E-stability and the parameters of

the model.

4.4 Discussion

The E-stability results are summarized in Table 2. The E-stability analysis reveals that

the fundamental FCEs under OW have stricter conditions for E-stability than rational

expectations. However, many of the non-fundamental OWFCEs that exist are learnable

for the same parameters as rational expectations. The non-fundamental OWFCEs are

the equilibria the economy obtains when α is large and positive, despite the existence of

a fundamental OWFCE.

The OWC case provides a unique equilibrium, but the equilibrium is not stable over

the same parameter space as rational expectations. The E-stability of the OWCFCE

varies non-linearly with parameters of the model and in many cases the E-stability con-
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Figure 6: E-stability of the fundamental FCE under OWC for pairs of parameters (α, σ12),
and (α, µ). The light portion corresponds to the parameter space that is E-stable.

dition for α is far lower than is traditionally found in the literature. The result implies

that even a correct optimal forecast combination specification does not guarantee rational

expectations under learning.

The best combination strategy compared to rational expectations is equal weights.

Equal weights always results in a unique and learnable equilibrium over the same pa-

rameter space as rational expectations. This is in contrast to OW, which has as many

as four non-fundamental coexisting and stable equilibria, or ROW, which has two stable

and non-fundamental coexisting equilibria. It is also in contrast to the OWCFCE, which

is not learnable at all for portions of the parameter space.

5 Learning in Real Time

The last metric to assess the different forecast combination strategies is to analyze the

dynamics generated by the strategies under econometric learning. The result from the

dynamic predictor selection literature is that when agents use constant gain learning the

economy can experience time-varying volatility as the economy transitions endogenously

between equilibria as shown in Branch and Evans (2007). I demonstrate that this behavior

also occurs under certain conditions when agents use optimal weights to combine forecasts.
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E-stability Results

Fundamental FCE Non-Fundamental Coexisting Condition

EW - α < 1 - -

OW α < 1
2

α < 1 4 µ = 0

- α < 1 4 µ 6= 0

ROW - α < 1 2 -

OWC α < 2
3

α . 0.8∗ - µ = 0

α . 1∗∗ α . 1∗∗ - µ 6= 0

Table 2: Tabulated E-stability results for the FCEs under equal weights (EW), optimal
weights (OW), restricted optimal weights (ROW), and optimal weights with a constant
(OWC). The Coexisting column indicates the maximum number of stable FCEs that exist
for the stated conditions in the Non-Fundamental column. ∗The E-stability condition on
α is a non-linear function of σ12 and ζ that ranges between (0, 0.8) (see Figure (6)). ∗∗The
E-stability condition is a non-linear function of σ12, ζ, and µ that ranges between (0, 1).

Constant gain learning is used to model agents that are concerned about structural

breaks as argued in Orphanides and Williams (2006) and Branch and Evans (2006b and

2007). Constant gain learning assumes that agents place more weight on new information

when forming their parameter estimates. The placement of higher weight on new obser-

vation can cause agents’ expectations to drift in response to the random shocks in the

economy. When there exists multiple FCEs the drifting causes the economy to transition

from one stable FCE to another.

5.1 Endogenous Volatility

The endogenous volatility is driven by the existence of multiple equilibria when agents use

OW or ROW with constant gain learning. The following simulation assumes agent use

OW to form combined forecasts. Similar results are obtained using the ROW strategy.

The time-varying volatility that may occur alters both the mean and variance of yt after

an endogenous break. The agents estimate beliefs and weights in real time using the SUR

recursive formula given by (30).

The simulation is conducted with parameters α = .9, µ = 0, ζ = (.9 .9)′, vt ∼ N(0, 1),
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σ2
1 = σ2

2 = 1, σ12 = 0, and a gain parameter of κ = 0.05.16 There are four E-stable

OWFCEs under this parameterization of the model. The OWFCEs are

Θ1 =



2.846

1.014

2.846

7.985

0.125

0.985


,Θ2 =



−2.846

1.014

2.846

7.985

0.125

0.985


,Θ3 =



−2.846

7.985

−2.846

1.014

0.985

0.125


,Θ4 =



2.846

7.985

−2.846

1.014

0.985

0.125


.

The white noise shocks, vt, cause the agents to occasionally move away from the neigh-

borhood of one stable equilibrium into the attractor of another stable equilibrium, which

results in a time series that exhibits endogenous volatility. Figure (7) shows a time series

of yt generated under constant gain learning with a 100 period moving average of the

variance shown below. The simulation shows the economy endogenously transitioning in

response to white noise shocks from Θ1 to Θ2.

The transition between Θ1 and Θ2 results in a small change in the mean of yt. The

change in the mean can temporarily become very large if the transition is between distant

FCEs such as between Θ1 and Θ3. To illustrate this change, I increase the variance of

the white noise shocks to increase the likelihood that the agents’ beliefs move far away

from an initial FCE. Figure (8) shows the dynamics of the system when vt ∼ N(0, 2).

The time paths of yt, b1, b2 and Γ show that the system transitions from Θ1 to Θ3 and

results in a large temporary deviation in yt.

5.1.1 VAR Shocks

Next, I simulate the model assuming a VAR(1) shock structure for xt−1. The simulation

demonstrates that the main equilibrium results of the paper carry over to more compli-

16There is a debate over the plausibility of large gain parameters. I do not address this debate here,
but note that the gain I selected is typical for the literature. For example, Orphanides and Williams
(2006) and McGough (2006) use gains between 0.01 and 0.03, while Branch and Evans (2007) uses gains
that vary from 0.01 to 0.15.
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Figure 7: Time-varying volatility generated by OW forecast combination under constant
gain learning.

Figure 8: Time-varying volatility generated by OW forecast combination under constant
gain learning.
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cated shock structures. The model does not need to be altered to accommodate this new

shock structure. The list of models assumed for the agents still represents all non-trivial

underparameterizations of the VAR(1) process. The only change to agent behavior is

in the estimated beliefs, which are altered due to different misspecification errors when

compared to the case with i.i.d shocks.

The exogenous shocks of the economy are

xt = Axt−1 + εt, (34)

where A is 2×2 and εt is 2×1. The simulation uses similar parameters to those consider

by Branch and Evans (2007). The parameters are α = .95, ζ = (.5 .5)′, µ = 0, and

A =

 .5 .001

.001 .3

 ,Σx =

 .2668 .1190

.1190 3.5166

 ,Σε =

 .2 .1

.1 3.2

 , (35)

where Σx = Ext−1x
′
t−1 and Σε = Eεtε

′
t. The agents combined the forecasts using OW.

Figure (9) shows the time path of yt and a 100 period rolling window average of the

variance of yt. The time-varying volatility shown in the figure is similar to the results

obtained by Branch and Evans (2007) under dynamic predictor selection.

6 Forecast Combination and the Lucas Critique

Forecast combination techniques are particularly interesting to consider from the macroe-

conomic perspective because they are largely atheoretic with respect to economic theory.

In fact, the very act of combining forecasts is to give up on finding a model of the true

data generating process. The justification for a combination strategy is derived from

the strategy’s ability to forecast an existing data set in a pseudo or real-time forecasting

exercise. This justification, however, lacks external validity if the forecasting technique

is widely adopted throughout the economy. The mass use of the strategy would have

general equilibrium effects such as those demonstrated in this paper that may alter the
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Figure 9: Time-varying volatility generated by OW forecast combination under constant
gain learning with xt following a VAR(1) process.

actual forecast efficiency. The reliance on out-of-sample forecasting exercises for justi-

fication and evaluation is subject to the Lucas Critique under the assumption of mass

adoption and use. The past forecasting performance established on existing data does

not imply continuing future forecasting performance.

In addition, the forecast combination strategies themselves can suffer from a more

perverse form of the Lucas Critique. The non-fundamental FCEs that coexist with the

fundamental FCE under optimal weights are self-fulfilling equilibria, where past forecast-

ing success that occurred by chance is self-fulfilling as more weight is placed erroneously

on the better performing forecast. This form of the Lucas Critique is more perverse

because instead of receiving disconfirming information through poor forecasting perfor-

mance, the agents received confirming information. The confirming information moves

agents’ beliefs away from the fundamentals of the economy and prevents agents from

recognizing their mistakes.

Given that the goal of research in forecasting is to widely disseminate strategies and

that forecast combination strategies lack economic justifications, the forecast combination

equilibrium framework provides a new way to assess a forecast combination strategy. The

ability of a forecast combination strategy to equal or approximate rational expectations,
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given a menu of forecasts, is a measure of strategy quality. A forecast combination strat-

egy that results in deviations from ration expectations is a strategy that econometricians

may not want to promote. When analyzing a forecast strategy from the macroeconomic

perspective there is more at stake than mean squared forecast error. Economists should

be concerned with putting forward strategies that lead to optimal decisions by individuals,

policymakers, and in aggregate.

An example of the usefulness of the Forecast Combination Equilibrium approach to

the empirical practice of forecasting is to apply the equilibrium results of this paper to

the forecast combination puzzle. I show that the optimal weights forecast combination

strategy can result in multiple, non-fundamental, and learnable equilibria, which can

move the economy far from the rational predictions. In contrast, I show that equal

weights results in a unique, learnable equilibrium that remains in the neighborhood of

rational expectations for the majority of the parameter space. These differing results

imply that the cause of equal weights dominance in the forecast combination puzzle may

be immaterial, because even if optimal weights were shown to be superior in an out-

of-sample forecasting exercise, their widespread use may have unintended and possibly

undesirable general equilibrium effects.

This paper cannot speak explicitly to the welfare implications of forecast combina-

tion because of the reduced form model employed. But, the paper demonstrates the

point that different forecast combination strategies will result in different equilibrium

outcomes. This difference is a reasonable way to study and think about forecast combi-

nation for selection and justification as an addition to the current techniques employed

in the forecasting literature.

7 Conclusion

Forecast combination is touted by the forecasting literature as the most robust and ef-

ficient way to forecast. In addition, combined forecasts are often the way forecasts are

presented to the general public, such as with the Survey of Professional Forecasters. Due
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to these facts, I adopt the cognitive consistency principle to model boundedly rational

agents who combine different forecasts to forecast a single endogenous state variable.

The agents follow the actual recommendations of the forecasting literature to combine

the forecasts. The concept of Forecast Combination Equilibrium is introduced to describe

the equilibrium behavior of the agents.

The equilibrium concept is explored by assuming agents possess a menu of misspeci-

fied forecasts that together span the information set needed to form rational expectations.

The agents’ objective is to combine the menu of misspecified forecasts to create a com-

bined forecast that minimizes expected squared forecast error. The Forecast Combination

Equilibria that result are compared to rational expectations.

I find that different types of Forecast Combination Equilibria can both approximate

and deviate substantially from rational expectations, depending on how agents combine

the forecasts and the assumptions of the model. In a model with negative feedback,

the combination of forecasts by optimal weights and equal weights produces unique,

learnable equilibria that closely approximate rational expectations. In contrast, a model

with positive feedback can have equilibria that diverge from one another and from rational

expectations. The Optimal Weights FCE can produce up to six distinct equilibria that

each minimize expected squared forecast error, but deviate substantially from rational

expectations. These non-fundamental equilibria exist because of the self-referential nature

of forecasting in the macroeconomy, where incorrect forecasts can become self-fulfilling.

Furthermore, these non-fundamental equilibria are found to be stable under learning.

The use of optimal weights forecast combination strategies by agents, when analyzed

under constant gain learning, are shown to exhibit time-varying volatility in the presence

of high positive feedback. The dynamics are similar to the those observed in the dynamic

predictor selection literature. The results shows that model uncertainty is a key driver

in creating these types of outcomes.

Although this paper focuses on the representative agent case, the FCE concept can

easily be adapted to accommodate heterogeneous expectations. The heterogeneous ex-

pectations case could be used to model specific forecast combination techniques employed

41



by policymakers, such as a central bank, to characterize policy implications of different

strategies. The variation in equilibrium outcomes demonstrated in this paper suggests

that further study of homogeneous or heterogeneous agents who use forecast combina-

tion strategies to form expectations may help explain the stylized facts of macroeconomic

and financial data, as well as contribute to the evaluation and design of actual forecasts

combination strategies.

Existence Condition: The conditions for existence of an FCE require that beliefs φi for

i = 1, 2, ...k satisfy

Ez1,t−1(µ+ α
k∑
i=1

γiφ
′
izi,t−1 + ζ ′xt−1 + vt − φ′1z1,t−1) = 0

...

Ezk,t−1(µ+ α
k∑
i=1

γiφ
′
izi,t−1 + ζ ′xt−1 + vt − φ′kzk,t−1) = 0.

The k underparameterizations can be rewritten as φ′iuizt−1, where zt−1 is (n+ 1)× 1

and ui is an m× (n + 1) selector matrix that picks the elements out of zt−1 that belong

in the ith model. Also, the intercept term µ and ζ can be combined in B = (µ ζ ′)′ to

write the system as

Eu1zt−1((B′ + α
k∑
i=1

γiφ
′
iui)zt−1 + vt − φ′1u1zt−1) = 0

...

Eukzt−1((B′ + α
k∑
i=1

γiφ
′
iui)zt−1 + vt − φ′kukzt−1) = 0.
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Then simplify

Eu1zt−1z
′
t−1(B + α

k∑
i=1

γiu
′
iφi) + Eu1zt−1vt − Eu1zt−1z

′
t−1u

′
1φ1 = 0

...

Eukzt−1z
′
t−1(B + α

k∑
i=1

γiu
′
iφi) + Eukzt−1vt − Eukzt−1z

′
t−1u

′
kφk = 0

and take expectations such that Ezt−1z
′
t−1 = Σz, which results in

−α
k∑
i=1

γiu1Σzu
′
iφi + u1Σzu

′
1φ1 = u1ΣzB

...

−α
k∑
i=1

γiukΣzu
′
iφi) + ukΣzu

′
kφk = ukΣzB.

The system of equations has a unique solution given det(∆) 6= 0

∆ =



(1− αγ1)(u1Σzu
′
1) −αγ1u1Σzu

′
2 ... −αγ1u1Σzu

′
k

−αγ2u2Σzu
′
1 (1− αγ2)(u2Σzu

′
2) ... −αγ2u2Σzu

′
k

... ... ... ...

−αγkukΣzu
′
1 −αγkukΣzu

′
2 ... (1− αγk)(ukΣzu

′
k)


.

Theorem 1: The theorem is proven by establishing the existence of pitchfork bifurca-

tion for the fundamental FCE steady state. The condition for a bifurcation to occur is

one of the eigenvalues of the T-map evaluated at the steady state must equal zero. This

occurs in the eigenvalue associated with a1 and a2 for the fundamental FCE at α = 1
2
.

I proceed by describing the basic technique for characterizing a bifurcation following

Wiggins (1990) and then show how to apply the technique to the T-map.

A bifurcation is characterized by deriving an approximation to the center manifold

of the dynamic system. The dynamic behavior of the system on the center manifold

determines the dynamics in the larger system. To demonstrate the derivation of the
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center manifold, consider the following dynamic system

ẋ = Ax x ∈ Rn.

The system has n eigenvalues such that s+c+u = n, where s is the number of eigenvalues

with negative real parts, c is the number of eigenvalues with zero real parts, and u is the

number eigenvalues with positive real parts. Suppose that u = 0, then the system can be

written as

ẋ = Ax+ f(x, y, ε),

ẏ = By + f(x, y, ε), (x, y, ε) ∈ Rc × Rs × R,

ε̇ = 0, (36)

where

f(0, 0) = 0, Df(0, 0) = 0,

g(0, 0) = 0 Dg(0, 0) = 0,

and ε ∈ R is the bifurcation parameter. Suppose that the system has a fixed point at

(0, 0, 0). The center manifold is defined locally as

W c
loc(0) = {(x, y, ε) ∈ Rc × Rs × Rp | y = h(x, ε), |x| < δ, |ε| < δ, h(0, 0) = 0, Dh(0, 0) = 0}.

The graph of h(x, ε) is invariant under the dynamics generated by the system, which gives

the following condition

ẏ = Dxh(x, ε)ẋ+Dεh(x, ε)ε̇ = Bh(x, ε) + g(x, h(x, ε), ε). (37)

The equation can be used to approximate h(x, ε) to form f(x, h(x, ε), ε). The sufficient
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conditions for the existence of a bifurcation at (0,0,0) are

f(0, 0, 0) = 0 ∂f
∂x

(0, 0, 0) = 0 ∂f
∂ε

(0, 0, 0) = 0

∂2f
∂x2

(0, 0, 0) = 0 ∂2f
∂x∂ε

(0, 0, 0) 6= 0 ∂3f
∂x3
6= 0.

The T-map: The point of interest is the fundamental FCE, so I set µ = 0 and σ12 = 0.

To simplify the analysis, I reduce the dimension of the system by solving a2, b1, and b2 in

terms of a1, γ1, and γ2. Let η = (a1 γ1 γ2)′ and define differential equations as η̇ = T (η)−η

where

η̇ =


−a1(−1+α(γ1+γ2))

−1+αγ2

−a21(−1+α)γ1(−1+αγ1)2+σ2
1(−1+γ1)(−1+αγ2)ζ21

(−1+αγ2)(a21(−1+αγ1)2+σ2
1ζ

2
1 )

a21(−1+α)αγ21−σ2
2(−1+γ2)ζ22

a21α
2γ21+σ2

2ζ
2
2

 .

The fixed point of the system is given by (0, 1, 1), which corresponds to the fundamental

FCE. A change of variables is used to put the system in normal form with the fixed point

at (0,0,0), and with the bifurcation occurring at 0 as well. Let u = a1, γ1 = v + 1,

γ2 = w + 1, and α = ε + 1
2
. Using the transformation, the system can be written in the

form of (36) with A = 0, B = (1 1)′,

f(u, v, w, ε) = −u(v + w + 4ε+ 2vε+ 2wε)

−1 + w + 2ε+ 2wε

g(u, v, w, ε) =

 −u2(1+v)(− 1
2

+ε)(−1+(1+v)( 1
2

+ε))2+vσ2
1(−1+(1+w)( 1

2
+ε))ζ21

(−1+(1+w)( 1
2

+ε))(u2(−1+(1+v)( 1
2

+ε))2+σ2
1ζ

2
1 )

u2(1+v)2(− 1
2

+ε)( 1
2

+ε)−wσ2
2ζ

2
2

u2(1+v)2( 1
2

+ε)2+σ2
2ζ

2
2

 .

Let v = ha(u, ε) and w = hb(u, ε) such that h(u, ε) = (ha(u, ε) hb(u, ε))′, then using

equation (37) the center manifold must satisfy

Duh(u, ε)[Au+ f(u, ha(u, ε), hb(u, ε), ε)]−Bh(u, ε)− g(u, ha(u, ε), hb(u, ε), ε) = 0. (38)

Equation (38) can be implicitly differentiated to form a second order Taylor approxima-

tions of ha(u, ε) and hb(u, ε). The approximations are substituted into f(u, ĥa(u, ε), ĥb(u, ε), ε)
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to form the center manifold. Figure 1 is a graph of the center manifold with

 ĥa(u, ε)

ĥb(u, ε)

 =

 2σ2
1(−1+2ε)3ζ21

ε(u2(1−2ε)2+4σ2
1ζ

2
1 )2

−2σ2
2(1+2ε)(ζ2−2εζ2)2

ε((u+2uε)2+4σ2
2ζ

2
2 )2


and σ2

1 = σ2
2 = 1 and ζ = (.9 .9)′. The partial derivatives of the center manifold meet the

specified conditions for the existence of a pitchfork bifurcation.

Lemma 4: To solve for the FCE, first solve for a1, a2, and γ0 using the corresponding

equations. The three linear equations yield

a1 = a2 =
µ

1− α

γ0 =
(γ1 + γ2 − 1)µ

α− 1

Then substitute these back into the four remaining equations of the T-map.

b1 = b1αγ1 + (b2αγ2 + ζ2)
σ12

σ2
1

+ ζ1

b2 = b2αγ2 + (b1αγ1 + ζ1)
σ12

σ2
1

+ ζ2

γ1 =
(b2

1σ
2
1(α− 1)2α + µ2)γ1 + b1(α− 1)2(b2σ12(α− 1)γ2 + σ2

1ζ1 + σ12ζ2)

b2
1σ

2
1(α− 1)2 + µ

γ2 =
(b2

2σ
2
2(α− 1)2α + µ2)γ2 + b2(α− 1)2(b1σ12(α− 1)γ1 + σ2

2ζ2 + σ12ζ1)

b2
2σ

2
2(α− 1)2 + µ

The γ1 and γ2 equations can be simplified to

γ1 =
b2σ12γ2(α− 1) + σ2

1ζ1 + σ12ζ2

b1σ2
1(1− α)

γ2 =
b1σ12γ1(α− 1) + σ2

2ζ2 + σ12ζ1

b2σ2
2(1− α)

.
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Then substituting γ1 and γ2 into b1 and b2 yields

b1 = α
b2σ12γ2(α− 1) + σ2

1ζ1 + σ12ζ2

σ2
1(1− α)

+ (α
b1σ12γ1(α− 1) + σ2

2ζ2 + σ12ζ1

σ2
2(1− α)

+ ζ2)
σ12

σ2
1

+ ζ1

b2 = α
b1σ12γ1(α− 1) + σ2

2ζ2 + σ12ζ1

σ2
2(1− α)

+ (α
b2σ12γ2(α− 1) + σ2

1ζ1 + σ12ζ2

σ2
1(1− α)

+ ζ1)
σ12

σ2
1

+ ζ2,

which is linear and b1 and b2. This shows that the non-linearity cancels out of the system

leaving a unique solution.

The second part of the proposition can be verified by substituting σ12 = 0 and µ = 0

into the OWCFCE beliefs to verify that they equal the REE coefficients.

Theorem 2: The Jacobian matrix for the EW T-map (19) evaluated at the EWFCE

is



α
2

0 α
2

0

0 α
2

0 ασ12
2σ2

1

α
2

0 α
2

0

0 ασ12
2σ2

2
0 α

2


.

The eigenvalues of the Jacobian are λ1,2,3,4 = 0, α, α
2
(ρ+ 1), and α

2
(1− ρ), where ρ is the

correlation coefficient between x1,t−1 and x2,t−1. The E-stability conditions are that α

must satisfy α < 1 and α < 2
1±ρ and since −1 ≤ ρ ≤ 1, the binding condition for stability

is α < 1.

Theorem 3: The Jacobian matrix for the OW T-map (25) evaluated at the fundamental

FCE is
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

α 0 α 0 0 0

0 α 0 0 αζ1
1−α 0

α 0 α 0 0 0

0 0 0 α 0 αζ2
1−α

0 − (−1+α)2

ζ1
0 0 α 0

0 0 0 − (−1+α)2

ζ2
0 α


.

The eigenvalues of the matrix are λ1,2,3,4, 2α, α−
√
−α + α2, α−

√
−α + α2, α+

√
−α + α2,

α +
√
−α + α2. The binding condition for E-stability is α < 1

2
.
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