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Abstract

Recent studies attempt to quantify the empirical importance of news shocks (i.e., antic-

ipated future shocks) in business cycle �uctuations. This paper identi�es news shocks in a

dynamic stochastic general equilibrium model estimated with not only actual data but also

forecast data. The estimation results show new empirical evidence that anticipated future

technology shocks are the most important driving force of U.S. business cycles. The use of

the forecast data makes the anticipated shocks play a much more important role in �tting

model-implied expectations to this data, since such shocks have persistent e¤ects on the

expectations and thereby help to replicate the observed persistence of the forecasts.
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1 Introduction

What is the source of business cycle �uctuations? The conventional wisdom in the literature is

that technology shocks are the main driving force of cyclical movements in economic activity

(e.g., King and Rebelo, 1999). Moreover, since the seminal work by Beaudry and Portier

(2004), there has been a surge of interest in the business cycle implications of news shocks (i.e.,

anticipated future shocks) about technology.1

To quantify the empirical importance of news shocks, Fujiwara, Hirose, and Shintani (2011),

Khan and Tsoukalas (2010), and Schmitt-Grohe and Uribe (2010) investigate estimated dy-

namic stochastic general equilibrium (DSGE) models.2 In particular, Schmitt-Grohe and Uribe

analyze the business cycle implications of news shocks not only about technology but also about

demand.3 These studies identify news shocks on the basis of the feature that observed variables

in their models respond di¤erently to news shocks and to associated unanticipated shocks. All

of the three empirical studies, however, reach the conclusion that news shocks about technology

are not a major source of business cycle �uctuations.

This paper identi�es news shocks in a DSGE model estimated with not only actual data

but also forecast data. The motivation of this approach is twofold. First, forecast data conveys

information about the future state of the economy expected by forecasters, and therefore it

helps to pin down the evolution of anticipated future shocks.4 Second, the identi�cation of

news shocks in the previous studies is dubious in that the number of shocks is far more than

that of observables due to the addition of news shocks to their models. Thus, adding forecast

data increases the number of observables and thereby ameliorates the over-identi�cation issue.

In the model estimation, this paper employs forecast data of output growth, in�ation, and

1See also Christiano et al. (2010), Fujiwara (2010), Jaimovich and Rebelo (2009), and Lorenzoni (2009) for

theoretical studies on news shocks.

2Beaudry and Portier (2006) and Barsky and Sims (2011) estimate a structural vector autoregression model

to examine the e¤ect of news shocks about technology on U.S. business cycle �uctuations.

3Milani and Treadwell (2011) examine the e¤ects of news shocks about monetary policy, as well as about

technology and demand, on output.

4To identify anticipated future monetary policy shocks, Hirose and Kurozumi (2011) use U.S. Treasury

bond yields data, which contains information on the future path of the federal funds rate expected by market

participants. With the estimated news shocks about monetary policy, they examine the changes in the Fed�s

communication strategy during the 1990s as well as the business cycle implications of such news shocks.
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the interest rate in the Survey of Professional Forecasters (SPF).5 Moreover, for informational

consistency with the forecast data, the paper uses real-time data of output growth and in�ation

in the Real-Time Data Set for Macroeconomists provided by the Federal Reserve Bank of

Philadelphia.6 The model is a small-scale DSGE model with sticky prices and a Taylor (1993)

type monetary policy rule, and thus it enables intuitive, clear-cut identi�cation of anticipated

and unanticipated components of shocks to technology, demand, and monetary policy using

the actual and forecast data of output growth, in�ation, and the interest rate. The Bayesian

estimation of the model demonstrates that the forecast data is quite informative in identifying

news shocks as well as other parameters of the model. The credible intervals of estimated

parameters are all concentrated around their posterior mean when the SPF data is included in

the set of observables, whereas the intervals are dispersed with no use of the forecast data.

The estimation results provide new empirical evidence on business cycle �uctuations in the

U.S. The variance decompositions indicate that anticipated future technology shocks are the

most important driving force of output �uctuations. This �nding is in stark contrast with the

empirical result of the previous studies that news shocks about technology are not a major

source of U.S. business cycles. It is also shown that when the SPF data is not used in the

model estimation, the business cycle implications of news shocks are altered; unanticipated

technology shocks play the most important role in explaining output �uctuations, in line with

the result of Schmitt-Grohe and Uribe (2010). This di¤erence between the estimation results

with and without the forecast data arises from the fact that the forecast data exhibits high

persistence, even compared with the actual data. The use of the forecast data thus makes

anticipated shocks play a much more important role in �tting model-implied expectations to

this data, since the anticipated shocks have persistent e¤ects on the expectations and thereby

help to replicate the observed persistence of the forecasts.7

5Del Negro and Eusepi (2011) and Milani (2011) use the SPF data in estimating DSGE models. Leduc and

Sill (2010) use forecast data in the SPF and the Livingston Survey in estimating vector autoregression models.

6We also estimated the model using revised data of output growth and in�ation and con�rmed that the main

results obtained with the real-time data did not alter.

7The use of the forecast data also yields lower estimates of model parameters that determine the persistence

of the economy, such as habit persistence in spending and price indexation to past in�ation. This result is

similar to that of Milani (2007), who estimates a DSGE model without news shocks in the absence of forecast

data and indicates that the estimates of such parameters are lower under adaptive learning than under rational

expectations.
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The remainder of this paper proceeds as follows. Section 2 presents an example that explains

the identi�ability of news shocks when expectation variables are observable. Section 3 describes

a DSGE model with news shocks. Section 4 accounts for the data and econometric methods

for estimating this model. Section 5 shows empirical results. Section 6 conducts robustness

analysis. Finally, Section 7 concludes.

2 Identi�cation of News Shocks

Before proceeding to the analysis of news shocks in a DSGE model estimated with actual and

forecast data, this section presents an example that shows the identi�ability of news shocks

when expectation variables are observable.

Consider a univariate linear rational expectations model that governs the behavior of an

observed variable yt

yt =
1

�
Etyt+1 + "t;

where � > 1 is a constant, Et is the expectation operator conditional on information available

in period t, and "t is an exogenous shock that consists of both anticipated and unanticipated

components. Speci�cally, it is supposed that

"t = �0;t + �1;t�1;

where �0;t denotes an unanticipated shock that is realized in period t and �1;t�1 denotes an

anticipated shock that is expected in period t� 1 to materialize in period t. It is assumed that

�0;t and �1;t are mutually and serially uncorrelated and have mean zero and standard deviation

�i, i = 0; 1. These two equations can be written as the system24 Etyt+1
�1;t

35 =
24 � ��

0 0

3524 yt

�1;t�1

35+
24 �� 0

0 1

3524 �0;t
�1;t

35 :
In this system, the set of state variables is (�1;t�1; �0;t; �1;t), and thus the undetermined coe¢ -

cient method gives the determinate rational expectations solution8

yt = �1;t�1 + �0;t +
1

�
�1;t: (1)

8Note that � > 1 is a su¢ cient condition for equilibrium determinacy in this system, since the system contains

the only one non-predetermined variable (yt) and the eigenvalues of the coe¢ cient matrix are � and 0.
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Therefore, yt is driven by both anticipated and unanticipated shocks. These shocks have a

di¤erent e¤ect on the evolution of yt. The unanticipated shock �0;t has a temporary e¤ect in

period t, while the anticipated shock �1;t has a persistent e¤ect in period t + 1 as well as in

period t.

Now consider the estimation of the standard deviations �0; �1 and the parameter � by a

full-information likelihood-based econometric procedure. This seeks to bring the evolution of

the model-implied variable yt given by (1) as close to its corresponding data as possible. When

yt is the only one observed variable, the standard deviations �0; �1 of the two disturbances

�0;t; �1;t would be hard to identify, and only a joint distribution of the standard deviations as

well as the parameter � is obtained at best. Moreover, the marginal probability density for

each of these three would be dispersed.

The issue regarding the identi�cation of anticipated and unanticipated shocks can be re-

solved when the expectation variable Etyt+1 is also observable. From (1), it follows that

Etyt+1 = �1;t; (2)

and hence, given the observation of Etyt+1, the standard deviation �1 can be identi�ed. Then,

parameter � and the standard deviation �0 can also be identi�ed using (1). Moreover, the

marginal probability densities for the standard deviations �0; �1 are isolated from each other.

Therefore, the anticipated shock �1;t and the unanticipated shock �0;t can be fully pinned down.

For a general class of DSGE models, the identi�cation issue about anticipated and unantic-

ipated shocks may be more complicated than that in the example presented above. However,

the ensuing empirical analysis demonstrates that the addition of forecast data to the set of

observables helps to identify news shocks in a DSGE model.

3 The Model

This paper employs a small-scale DSGE model with sticky prices and a monetary policy rule.

This model is chosen because it enables intuitive, clear-cut identi�cation of anticipated and

unanticipated components of shocks to technology, demand, and monetary policy as shown in

Section 5. Consequently, the relative importance of each component in business cycle �uctua-

tions can be successfully investigated.

In the model economy, there are households, perfectly competitive �nal-good �rms, mo-
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nopolistically competitive intermediate-good �rms that face price stickiness, and a monetary

authority. For empirical validity, the model features external habit persistence in consumption

preferences, price indexation to recent past in�ation and steady-state in�ation, and a stochastic

trend in output, i.e., the technology level At follows the non-stationary stochastic process

logAt = log 
 + logAt�1 + z
a
t ;

where 
 is the steady-state gross rate of technological change and zat is a shock to the rate of

this change, called a technology shock.

The log-linearized equilibrium conditions are summarized as follows.9

ŷt =




 + b
Etŷt+1 +

b


 + b
ŷt�1 �


 � b

 + b

(r̂t � Et�̂t+1)

� 1


 + b

�
bzat � 
Etzat+1

�
+

 � b

 + b

�
zdt � Etzdt+1

�
; (3)

�̂t =
�

1 + ��
Et�̂t+1 +

�

1 + ��
�̂t�1

+
(1� �) (1� ��)
� (1 + ��)

��
� +





 � b

�
ŷt �

b


 � b ŷt�1 +
b


 � bz
a
t

�
; (4)

r̂t = �rr̂t�1 + (1� �r) (���̂t + �yŷt) + zmt : (5)

Equation (3) is the spending Euler equation, where ŷt denotes output expressed in terms of

log-deviations from its stochastic trend, r̂t and �̂t are the interest rate and in�ation in terms of

log-deviations from their steady-state values, zdt is a shock to households�period utility, called

a demand shock, and b 2 [0; 1] is the degree of habit persistence. Equation (4) is the so-called

New Keynesian Phillips curve, where � 2 (0; 1) is the subjective discount factor determined

by the steady-state relationship � = 
�=r, � 2 [0; 1] is the weight of price indexation to recent

past in�ation �t�1 relative to steady-state in�ation �, � 2 (0; 1) is the so-called Calvo (1983)

parameter that measures the degree of price stickiness, and � � 0 is the inverse of the elasticity

of labor supply. Equation (5) is a Taylor (1993) type monetary policy rule, where �r 2 [0; 1)

is the degree of interest rate smoothing, ��; �y represent the degrees of interest rate policy

responses to in�ation and output, and zmt is a monetary policy shock.

The shocks zxt , x 2 fa; d;mg are all governed by univariate stationary �rst-order autore-

gressive processes

zxt = �xz
x
t�1 + "

x
t ;

9See Appendix for the full description of the model.
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where �x 2 [0; 1) is an autoregressive coe¢ cient and "xt is a disturbance that consists not only

of an unanticipated component but also of anticipated components up to �ve periods ahead

"xt = �
x
0;t +

5X
n=1

�xn;t�n;

where each component �xn;t�n, n = 0; 1; : : : ; 5 is a normally distributed innovation with mean

zero and standard deviation �xn. The length of the anticipation horizon is determined on the

basis of the horizon for the quarterly forecasts of output growth, in�ation, and the interest rate

in the SPF, where the maximum horizon is �ve quarters. As explained in the preceding section,

matching the number of forecast data and that of anticipated components helps to identify the

standard deviations of each shock component.

4 Econometric Methodology

The model is estimated with Bayesian methods using quarterly U.S. time series. The set

of observables contains the output growth rate 100� log Yt, the in�ation rate 100 log �t, and

the interest rate 100 log rt. In addition, this set includes quarterly forecasts for these three

rates up to �ve quarters ahead f100� logE�t Yt+n; 100 logE�t �t+n; 100 logE�t rt+ng5n=1, where E�t
denotes expectations formed by forecasters, to identify each shock�s unanticipated component

and anticipated components up to �ve quarters ahead. The data on the rates of output growth,

in�ation, and interest are respectively the per capita real GDP growth rate, the in�ation rate of

the GDP implicit price de�ator, and the interest rate on three-month Treasury bills. This paper

employs the forecasts for these three rates in the SPF. Moreover, taking account of the fact that

this survey�s timing is geared to the release of the Bureau of Economic Analysis�advance report

on the national income and product accounts, the present paper uses the contemporaneously

realized rates of output growth and in�ation in the Real-Time Data Set for Macroeconomists

provided by the Federal Reserve Bank of Philadelphia.

7



The observation equations that relate the data to the model-implied variables are given by266666666666666666666666666666664

100� log Yt

100 log �t

100 log rt

100� logE�t Yt+1
...

100� logE�t Yt+5

100 logE�t �t+1
...

100 logE�t �t+5

100 logE�t rt+1
...

100 logE�t rt+5

377777777777777777777777777777775

=

266666666666666666666666666666664

�


��

�r

�

...

�


��
...

��

�r
...

�r

377777777777777777777777777777775

+

266666666666666666666666666666664

ŷt � ŷt�1 + zat
�̂t

r̂t

Etŷt+1 � ŷt + Etzat+1
...

Etŷt+5 � Etŷt+4 + Etzat+5
Et�̂t+1
...

Et�̂t+5

Etr̂t+1
...

Etr̂t+5

377777777777777777777777777777775

;

where �
 = 100(
 � 1), �� = 100(� � 1), and �r = 100(
�=� � 1) are the steady-state rates of

output growth, in�ation, and interest. In the baseline estimation, the forecast data are related

to the model-implied variables under rational expectations. A deviation from this assumption

is examined in the robustness analysis presented later.

The sample period is from 1983:1Q to 2008:4Q. The beginning of the sample is determined

to exclude the possibility of equilibrium indeterminacy based on the results of Clarida, Galí,

and Gertler (2000) and Lubik and Schorfheide (2004). The end of the sample follows from the

fact that the estimation strategy is not able to take into account the non-linearity in monetary

policy rules due to the zero lower bound on the nominal interest rate, which has been binding

since 2009:1Q.

The prior distributions of parameters to be estimated are shown in Table 1. The priors

of structural parameters, monetary policy parameters, and shock persistence parameters are

chosen based on those in Smets and Wouters (2007). As for the steady-state rates of output

growth, in�ation, and interest �
, ��, �r, the priors are centered at the sample mean. Moreover,

the priors of the standard deviations of unanticipated technology and demand shocks �a0,

�d0 are distributed around 2.0, whereas that of unanticipated monetary policy shock �m0 are

centered at 0.5. Regarding the standard deviations of anticipated components of each shock,

equal weights on the unanticipated component and on the sum of anticipated components are
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set in the priors; that is, each �xn, x 2 fa; d;mg, n = 0; 1; : : : ; 5 is distributed around 5�1=2��x0
so that

P5
n=1 �

2
xn = �

2
x0.

In the Bayesian estimation, the Kalman �lter is used to evaluate the likelihood function for

the system of log-linearized equilibrium conditions of the model, and the Metropolis-Hastings

algorithm is applied to generate draws from the posterior distribution of model parameters.10

These draws yield inference on the parameters, impulse response functions, and variance de-

compositions.

5 Empirical Results

This section presents the results of empirical analysis. A novelty in the analysis is that the

forecast data is used in the estimation of the stylized DSGE model with news shocks. Thus,

the model is estimated with and without the forecast data, and then these estimation results

are compared. In the estimation without the forecast data, revised data of output growth and

in�ation are used instead of the real-time data, as in the previous empirical studies on DSGE

models with news shocks.

5.1 Parameter Estimates

The posterior estimates of parameters are reported in Table 2. The second and third columns

present the posterior mean and the 90 percent credible posterior intervals of parameters in

the estimation with the forecast data (i.e., baseline estimation), while the fourth and �fth

columns show those in the estimation with no forecast data. Notable di¤erences between the

estimation with and without the forecast data are found in most of the parameters. First, the

parameters that determine the persistence of the model economy, such as the habit persistence

parameter b, the price indexation parameter �, and the autoregressive parameters of technology

and monetary policy shocks �a, �m, are smaller in the baseline estimation than those in the

estimation with no forecast data. This result is similar to that of Milani (2007), who estimates

a DSGE model without news shocks in the absence of forecast data and indicates that the

10 In each estimation, 200,000 draws were generated and the �rst half of these draws was discarded. The scale

factor for the jumping distribution in the Metropolis-Hastings algorithm was adjusted so that the acceptance

rate of approximately 25 percent would be obtained. The Brooks and Gelman (1998) measure was used to check

the convergence of parameters.
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estimates of parameters regarding habit persistence in spending and price indexation to past

in�ation are lower under adaptive learning than under rational expectations. Second, the

estimate of the Calvo parameter �, which measures the degree of price stickiness, is smaller in

the baseline estimation. Third, the estimated steady-state rates of output growth, in�ation, and

interest �
, ��, �r, di¤er between the estimation with and without the forecast data, suggesting

the possibility of a bias in the forecasts. This possibility is examined in the robustness analysis

presented later.

The primary interest of this paper lies in the estimated standard deviations of anticipated

and unanticipated components of each shock. Regarding technology shocks, the posterior

mean of the standard deviation of each component is larger in the baseline estimation than

that in the estimation with no forecast data. Remarkable increases are found in the standard

deviations of one- and four-quarter-ahead anticipated components �a1, �a4. As for demand

shocks, the estimate of the standard deviation of the unanticipated component is almost twice

larger, whereas those of the anticipated components are substantially smaller. In particular,

the posterior mean of the standard deviation of one-quarter-ahead anticipated disturbance

�d1 is less than half of that in the estimation with no forecast data. The estimated standard

deviations of anticipated and unanticipated components of monetary policy shocks, except that

of one-quarter-ahead anticipated component, are smaller in the baseline estimation.

It is worth emphasizing that the 90 percent credible posterior intervals for all the estimated

parameters are concentrated around their posterior mean in the baseline estimation whereas

those are dispersed in the estimation with no forecast data. This �nding shows that the

forecast data is quite informative in identifying not only anticipated shocks but also the other

parameters of the model.

The baseline estimation uses the real-time data of output growth and in�ation for infor-

mational consistency between the actual and forecast data, whereas the estimation with no

forecast data uses the corresponding revised data as in the previous studies. Thus, the use

of the real-time data may amount to the di¤erence between the two estimation results. To

investigate this possibility, the last two columns in Table 2 show the posterior estimates of pa-

rameters in the estimation with the revised data as well as the forecast data. These estimates

are similar to those in the baseline estimation (which uses the real-time data and forecast data)

presented in the second and third columns of the same table. Therefore, the di¤erence between

the baseline estimation and the estimation without the forecast data is attributable to the use
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of the forecast data but not to that of the real-time data.

5.2 Impulse Responses

In Section 2, the identi�ability of news shocks has been explained in a simple univariate setting.

In general, the identi�cation issue about news shocks may be more complicated for multivariate

DSGE models. However, the identi�ability of the anticipated and unanticipated components

of shocks to technology, demand, and monetary policy in the present model can be veri�ed

by computing impulse response functions; if each shock generates di¤erent comovement of the

observables, the parameters associated with the shock can be identi�ed.

Figure 1 illustrates the impulse responses to the unanticipated component and three-

quarter-ahead anticipated component of technology and demand shocks, evaluated at the pos-

terior mean estimates of parameters. The demand-and-supply relationships in the sticky price

DSGE model lead to the following fairly straightforward interpretation of the responses.

The two upper panels plot the impulse responses of the actual rates and three-quarter-

ahead forecast rates of output growth and in�ation to a one-standard-deviation technology

shock added in period one. The upper-left panel shows the case of an unanticipated technology

shock. This shock has an expansionary e¤ect not only on the actual rate of output growth

but also on the forecast rate of future output growth owing to habit persistence in spending.

Actual in�ation declines because the unanticipated technology shock reduces contemporaneous

real marginal cost, while the forecast of future in�ation changes little due to the very low degree

of price indexation to past in�ation.

The upper-right panel presents the case of an anticipated technology shock that is expected

in period one to materialize in period four. In period one, when future technological progress

is anticipated, the forecast of the future output growth rate increases whereas that of future

in�ation decreases. As a consequence, real wage growth expectations are heightened and hence

the actual output growth rate rises. Because the technological progress has not yet materialized

in period one, the demand-driven growth of actual output raises actual in�ation.

Next turn to the two lower panels, which illustrate the impulse responses to a one-standard-

deviation demand shock added in period one. The case of an unanticipated demand shock is

depicted in the lower-left panel. This contemporaneously demand-stimulating shock raises

both the actual rates of output growth and in�ation. Because such a shock gives rise to no
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expansion of the production frontier, the forecast of future output growth declines on the

rebound. However, the future in�ation forecast increases due to the very high persistence of

demand shocks.

The lower-right panel shows the case of an anticipated demand shock that is expected in

period one to materialize in period four. In reaction to the anticipated increase in future

demand, both the forecasts of future output growth and future in�ation increases. Then,

households substitute current with future spending due to its smoothing, and hence the actual

output growth rate declines immediately after the shock was added. Consequently, actual

in�ation also decreases.

The impulse responses examined above demonstrate that each component of technology and

demand shocks generates distinct comovement among actual and forecast variables of output

growth and in�ation. Since these variables are all �tted to their corresponding data in the

model estimation, it follows that available information is fully utilized to identify each shock.

If the model were estimated only with the actual data, it would be hard to identify each shock

because both an anticipated technology shock and an unanticipated demand shock lead to the

contemporaneous positive comovement between actual output and actual in�ation.

The identi�ability of the anticipated and unanticipated components of monetary policy

shocks is straightforward. They are well identi�ed from the Taylor-type monetary policy rule

and the actual and forecast data of the interest rate.

5.3 Variance Decompositions

In the presence of the anticipated and unanticipated components of each shock, this subsection

analyzes the sources of business cycle �uctuations using the variance decompositions. Table 3

shows the forecast error variance decompositions of the actual rates of output growth, in�ation,

and interest at an in�nite horizon evaluated at the posterior mean estimates of parameters in the

baseline estimation and in the estimation with no forecast data. In this table, the contribution

of each anticipated shock is the sum of the contribution of the anticipated components from

one to �ve quarters ahead.

The top rows of Table 3 present the variance decompositions in the baseline estimation.11

11The variance decompositions in the estimation with the revised data as well as the forecast data are almost

the same as those in the baseline estimation, since the posterior estimates of parameters are very similar as

shown in Table 2.
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It is shown that anticipated technology shocks are the most important driving force of output

�uctuations in the U.S. This �nding is novel in the literature, since previous studies, such

as Fujiwara, Hirose, and Shintani (2011), Khan and Tsoukalas (2010), and Schmitt-Grohe

and Uribe (2010), have shown that news shocks about technology are not a major source

of U.S. business cycle �uctuations although they play a non-negligible role in explaining the

�uctuations. Unanticipated technology shocks are also important in the output �uctuations,

in line with the results of many previous business cycle studies. The in�ation variability is

mainly explained by unanticipated demand shocks. This �nding re�ects the observed tendency

of positive contemporaneous correlation between output growth and in�ation. The variance

decomposition of the interest rate is similar to that of in�ation, since the estimated monetary

policy rule shows that the Fed reacts to in�ation much more aggressively than to output.

When the forecast data is not used in the model estimation as in the previous empirical

studies on DSGE models with news shocks, the business cycle implications of news shocks are

altered. The bottom rows of Table 3 present the variance decompositions in the estimation with

no forecast data. It is shown that unanticipated technology shocks play the most important

role in explaining �uctuations in output growth, in line with the result of Schmitt-Grohe and

Uribe (2010). Moreover, anticipated demand shocks have a substantial contribution to the

output �uctuations.

What makes the di¤erence in the business cycle implications of news shocks between the es-

timation with and without the forecast data? To answer this question, the time-series property

of the forecast data is investigated. Speci�cally, the persistence of each data is measured by

estimating a univariate �rst-order autoregressive coe¢ cient. Table 4 summarizes the estimated

persistence of the forecast and actual data for output growth and in�ation. The persistence

of in�ation forecasts for all the forecast horizons is much higher than that of actual in�ation.

Moreover, the one- to four-quarter-ahead forecasts of output growth exhibit higher persistence

than real-time actual output growth. Taking account of the fact that the anticipated shocks

have persistent e¤ects on the expectations as shown in Figure 1, the use of the forecast data

in the model estimation makes anticipated shocks play a much more important role in order

to �t model-implied expectations to the observed persistence of the forecasts. Therefore, the

contribution of anticipated future technology shocks to output �uctuations is much larger in

the baseline estimation than in the estimation without the forecast data.
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6 Robustness Analysis

In the baseline estimation, the forecast data in the SPF are related to the model-implied

variables under rational expectations. However, the forecasts could be biased or randomly

deviate from rational expectations. As indicated in the previous section, the estimated steady-

state rates of output growth, in�ation, and interest di¤er between the estimation with and

without the forecast data, which suggests the possibility of a bias in the forecasts. Moreover,

the real-time data of output growth and in�ation could also be biased or have measurement

errors.

To examine the robustness of the baseline results with respect to such possible discrepancy

between observed and model-implied variables, the observation equations are generalized as

follows. 266666666666666666666666666666664

100� log Yt

100 log �t

100 log rt

100� logE�t Yt+1
...

100� logE�t Yt+5

100 logE�t �t+1
...

100 logE�t �t+5

100 logE�t rt+1
...

100 logE�t rt+5

377777777777777777777777777777775

=

266666666666666666666666666666664
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�� +�b�0
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�
 +�bY 1
...

�
 +�bY 5
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�� +�b�5

�r +�br1
...

�r +�br5

377777777777777777777777777777775

+

266666666666666666666666666666664

ŷt � ŷt�1 + zat + �Y 0t
�̂t + �

�0
t

r̂t + �
r0
t

Etŷt+1 � ŷt + Etzat+1 + �Y 1t
...

Etŷt+5 � Etŷt+4 + Etzat+5 + �Y 5t
Et�̂t+1 + �

�1
t

...

Et�̂t+5 + �
�5
t

Etr̂t+1 + �
r1
t

...

Etr̂t+5 + �
r5
t

377777777777777777777777777777775

;

where �bXn and �Xnt � N(0; �2Xn), X 2 fY; �; rg, n = 0; 1; : : : ; 5 represent, respectively, a bias

and a measurement or forecast error in each observable. The prior distribution of �bXn is set to

be the normal distribution with mean zero and standard deviation 0.25, and that of �Xn is the

inverse gamma distribution with mean 0.25 (i.e., annually one percent) and standard deviation

2. The other priors are the same as in the baseline estimation.

Table 5 reports the posterior mean and the 90 percent credible posterior interval for each

parameter in the estimation with the generalized observation equations. The habit persistence

parameter b, the price indexation parameter �, and the autoregressive parameter of technology

14



shock �a are large compared with those in the baseline estimation presented in Table 2. This is

because noisy movements in the observables are partly captured by the measurement or forecast

errors. Consequently, the movements of model-implied variables are smooth. This should be

characterized by the larger estimates of the parameters that determine the persistence of the

model economy (i.e., b, �, �a). Relatively large increases are found in the standard deviations

of one- and four-quarter-ahead anticipated technology shocks �a1, �a4, whereas the standard

deviations of the other shocks are in line with the baseline estimates. The estimates of biases in

the real-time and forecast data �bXn and the standard deviations of the measurement or forecast

errors �Xn explicate the properties of the forecasts in the SPF. According to the estimates of

�bXn, no large biases are found although the in�ation forecasts may have a slightly positive bias.

As for �Xn, the estimates of �Y 0 and ��0 imply that the measurement errors in the real-time

data of output growth and in�ation are non-negligible. By contrast, the standard deviations of

the forecast errors are very small except the error in the one-quarter-ahead forecast of output

growth, which has a relatively large standard deviation.

Note that the 90 percent credible posterior interval of each parameter widens compared

with that in the baseline estimation. The dispersed estimates here are ascribed to the increase

in the number of shocks. This �nding suggests that matching the number of data and that of

shocks is a key factor for the identi�cation of model parameters, as argued in Section 2.

Table 6 demonstrates the variance decompositions of the actual rates of output growth, in-

�ation, and interest in the estimation with the generalized observation equations. Although the

contribution of the measurement or forecast errors is not able to be ignored, the baseline result

that anticipated future technology shocks are the most important driving force of U.S. output

�uctuations, presented in Table 3, still holds in the estimation here. It is also shown that the

volatilities of in�ation and the interest rate are mainly explained by the unanticipated demand

shock, as is the case with the baseline estimation. Therefore, the main results obtained in

the baseline estimation are robust with respect to the deviation from the rational expectations

assumption.

7 Concluding Remarks

This paper identi�es news shocks about technology, demand, and monetary policy in a DSGE

model with actual and forecast data of output growth, in�ation, and the interest rate. It has
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been shown that the use of the forecast data in the model estimation pins down the evolution of

news shocks more e¢ ciently. The estimation results have demonstrated that anticipated future

technology shocks are the primary source of U.S. business cycle �uctuations. This �nding

is novel in the literature because the previous studies have shown that news shocks about

technology are not a major source of the business cycles although they play a non-negligible

role.

One of the limitations in this analysis may be that the forecast data are related to the model-

implied variables under rational expectations. The robustness analysis has demonstrated that

the baseline results survive even when discrepancy between the observed and model-implied

variables is allowed. Yet the introduction of learning in the model along the lines of Milani

(2011) and Mitra, Evans, and Honkapohja (2011) might yield a di¤ering estimation result. This

would be a fruitful extension of the present analysis.
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Appendix

This appendix presents the full description of the model. In the model economy, there are a

continuum of households, a representative �nal-good �rm, a continuum of intermediate-good

�rms, and a monetary authority.

Each household h 2 [0; 1] consumes �nal goods Ch;t, supplies labor lh;t, and purchases

one-period riskless bonds Bh;t so as to maximize the utility function

E0

1X
t=0

�t

"
log (Ch;t � bCt�1)�

l1+�h;t

1 + �

#
exp(zdt )

subject to the budget constraint

PtCh;t +Bh;t = PtWtlh;t + rt�1Bh;t�1 + Th;t;

where Et is the expectation operator conditional on information available in period t, � 2

(0; 1) is the subjective discount factor, b 2 [0; 1] is the degree of external habit persistence in

consumption preferences, � > 0 is the inverse of the elasticity of labor supply, zdt represents

a demand shock, Pt is the price of �nal goods, Wt is the real wage, and Th;t is the sum of a

lump-sum public transfer and pro�ts received from �rms. The �rst-order conditions for optimal

decisions on consumption, labor supply, and bond-holding are identical among households and

therefore become

�t =
exp(zdt )

Ct � bCt�1
; (6)

Wt =
l�t exp(z

d
t )

�t
; (7)

1 = Et�
�t+1
�t

rt
�t+1

; (8)

where �t is the marginal utility of consumption and �t = Pt=Pt�1 denotes gross in�ation.

The representative �nal-good �rm produces output Yt under perfect competition by choos-

ing a combination of intermediate inputs fYf;tg so as to maximize pro�t PtYt �
R 1
0 Pf;tYf;tdf

subject to a CES production technology Yt =
�R 1
0 Y

1=(1+�p)
f;t df

�1+�p
, where Pf;t is the price of

intermediate good f and �p � 0 denotes the intermediate-good price markup. The �rst-order

condition for pro�t maximization yields the �nal-good �rm�s demand for intermediate good

f , Yf;t = Yt (Pf;t=Pt)
�(1+�p)=�p , while perfect competition in the �nal-good market leads to

Pt =
�R 1
0 P

�1=�p
f;t df

���p
.
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Each intermediate-good �rm f produces one kind of di¤erentiated goods Yf;t under monop-

olistic competition by choosing a cost-minimizing labor input lt given the real wage Wt subject

to the production function

Yf;t = Atlf;t;

where At represents the technology level and follows the non-stationary stochastic process:

logAt = log 
 + logAt�1 + z
a
t ;

where 
 denotes the steady-state gross rate of technological change and zat represents a tech-

nology shock. The �rst-order condition for cost minimization shows that real marginal cost is

identical among intermediate-good �rms and is given by

mct =
Wt

At
: (9)

In the face of the �nal-good �rm�s demand and the marginal cost, intermediate-good �rms

set prices of their products on a staggered basis à la Calvo (1983). In each period, a fraction

1 � � 2 (0; 1) of intermediate-good �rms reoptimizes prices while the remaining fraction �

indexes prices to a weighted average of past in�ation �t�1 and steady-state in�ation �. Then,

�rms that reoptimize prices in the current period maximize expected pro�t

Et

1X
j=0

�j
�j�t+j
�t

"
Pf;t
Pt+j

jY
k=1

�
��t+k�1�

1����mct+j#Yf;t+j
subject to the �nal-good �rm�s demand

Yf;t+j = Yt+j

"
Pf;t
Pt+j

jY
k=1

�
��t+k�1�

1���#� 1+�p

�p

;

where � 2 (0; 1) denotes the weight of price indexation to past in�ation relative to steady-state

in�ation. The �rst-order condition for the reoptimized price P ot is given by

Et

1X
j=0

8>>>>><>>>>>:
(��)j

�t+j
�t

Yt+j

"
P ot
Pt

jY
k=1

��t+k�1
�

�� �

�t+k

#� 1+�p

�p

�
"
P ot
Pt

jY
k=1

��t+k�1
�

�� �

�t+k
� (1 + �p)mct+j

#
9>>>>>=>>>>>;
= 0: (10)

Moreover, the �nal-good�s price Pt =
�R 1
0 P

�1=�p
f;t df

���p
can be rewritten as

1 = (1� �)
�
P ot
Pt

�� 1
�p

+ �

���t�1
�

�� �
�t

�� 1
�p

: (11)
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The �nal-good market clearing condition is

Yt = Ct; (12)

while the labor market clearing condition leads to

Ytdt
At

=

Z 1

0
lf;tdf = lt; (13)

where dt =
R 1
0 (Pf;t=Pt)

�(1+�p)=�p df represents price dispersion across intermediate-good �rms.

Note that this dispersion is of second order under the staggered price-setting and that its steady-

state value is unity.

The monetary authority adjusts the interest rate following a Taylor (1993) type monetary

policy rule

log rt = �r log rt�1 + (1� �r)
�
log r + �� log

�t
�
+ �y log

Yt
Y

�
+ zmt ; (14)

where �r 2 [0; 1) is the degree of interest rate smoothing, r is the steady-state gross interest

rate, and ��; �y � 0 are the degrees of interest rate policy responses to in�ation and output.

The equilibrium conditions are (6)�(14). Because the log level of technology has a unit root

with drift, the equilibrium conditions are rewritten in terms of stationary variables detrended

by At: yt = Yt=At, ct = Ct=At, wt = Wt=At, and �t = �tAt. Log-linearizing the equilib-

rium conditions represented in terms of the detrended variables and rearranging the resulting

equations yields (3)�(5).
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Table 1: Prior distributions of parameters

Parameter Distribution Mean S.D.
� Inverse of elasticity of labor supply Gamma 2.000 0.200
b Habit persistence Beta 0.700 0.150
� Price indexation Beta 0.500 0.100
� Price stickiness Beta 0.500 0.100
�r Interest rate smoothing Beta 0.750 0.100
�� Policy response to in�ation Gamma 1.500 0.200
�y Policy response to output Gamma 0.125 0.050
�
 Steady-state output growth rate Gamma 0.470 0.100
�� Steady-state in�ation rate Gamma 0.640 0.100
�r Steady-state interest rate Gamma 1.230 0.100
�a Persistence of technology shock Beta 0.500 0.100
�d Persistence of demand shock Beta 0.500 0.100
�m Persistence of policy shock Beta 0.500 0.100
�a0 S.D. of unanticipated technology shock Inv. Gamma 2.000 2.000
�a1 S.D. of one-quarter-ahead anticipated technology shock Inv. Gamma 0.894 2.000
�a2 S.D. of two-quarter-ahead anticipated technology shock Inv. Gamma 0.894 2.000
�a3 S.D. of three-quarter-ahead anticipated technology shock Inv. Gamma 0.894 2.000
�a4 S.D. of four-quarter-ahead anticipated technology shock Inv. Gamma 0.894 2.000
�a5 S.D. of �ve-quarter-ahead anticipated technology shock Inv. Gamma 0.894 2.000
�d0 S.D. of unanticipated demand shock Inv. Gamma 2.000 2.000
�d1 S.D. of one-quarter-ahead anticipated demand shock Inv. Gamma 0.894 2.000
�d2 S.D. of two-quarter-ahead anticipated demand shock Inv. Gamma 0.894 2.000
�d3 S.D. of three-quarter-ahead anticipated demand shock Inv. Gamma 0.894 2.000
�d4 S.D. of four-quarter-ahead anticipated demand shock Inv. Gamma 0.894 2.000
�d5 S.D. of �ve-quarter-ahead anticipated demand shock Inv. Gamma 0.894 2.000
�m0 S.D. of unanticipated policy shock Inv. Gamma 0.250 2.000
�m1 S.D. of one-quarter-ahead anticipated policy shock Inv. Gamma 0.112 2.000
�m2 S.D. of two-quarter-ahead anticipated policy shock Inv. Gamma 0.112 2.000
�m3 S.D. of three-quarter-ahead anticipated policy shock Inv. Gamma 0.112 2.000
�m4 S.D. of four-quarter-ahead anticipated policy shock Inv. Gamma 0.112 2.000
�m5 S.D. of �ve-quarter-ahead anticipated policy shock Inv. Gamma 0.112 2.000

Notes: The table shows the prior distributions of parameters. The priors are truncated at the boundary of the

determinacy region.
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Table 2: Posterior distributions of parameters

Baseline No forecast data Revised data
Parameter Mean 90% interval Mean 90% interval Mean 90% interval

� 2.158 [1.826, 2.491] 2.025 [1.698, 2.337] 2.212 [1.881, 2.541]
b 0.732 [0.703, 0.759] 0.854 [0.809, 0.900] 0.708 [0.679, 0.738]
� 0.057 [0.047, 0.069] 0.219 [0.129, 0.312] 0.056 [0.047, 0.066]
� 0.771 [0.751, 0.790] 0.868 [0.839, 0.896] 0.767 [0.748, 0.787]
�r 0.915 [0.905, 0.925] 0.843 [0.800, 0.885] 0.918 [0.908, 0.928]
�� 1.671 [1.487, 1.844] 1.630 [1.312, 1.948] 1.660 [1.472, 1.849]
�y 0.016 [0.006, 0.026] 0.084 [0.032, 0.135] 0.017 [0.006, 0.027]
�
 0.403 [0.358, 0.448] 0.460 [0.314, 0.603] 0.409 [0.364, 0.455]
�� 0.757 [0.705, 0.807] 0.645 [0.515, 0.775] 0.766 [0.712, 0.818]
�r 1.563 [1.458, 1.676] 1.213 [1.076, 1.352] 1.576 [1.459, 1.694]
�a 0.058 [0.047, 0.071] 0.337 [0.209, 0.467] 0.112 [0.107, 0.119]
�d 0.940 [0.930, 0.953] 0.747 [0.645, 0.859] 0.948 [0.934, 0.962]
�m 0.415 [0.375, 0.456] 0.645 [0.533, 0.762] 0.421 [0.381, 0.460]
�a0 1.374 [1.142, 1.590] 1.079 [0.636, 1.508] 1.571 [1.323, 1.817]
�a1 1.380 [1.131, 1.614] 0.449 [0.229, 0.661] 1.383 [1.122, 1.647]
�a2 0.703 [0.575, 0.825] 0.475 [0.230, 0.713] 0.709 [0.578, 0.834]
�a3 0.754 [0.610, 0.889] 0.464 [0.234, 0.694] 0.738 [0.594, 0.878]
�a4 0.887 [0.732, 1.043] 0.491 [0.236, 0.752] 0.846 [0.694, 1.001]
�a5 0.676 [0.566, 0.783] 0.562 [0.248, 0.887] 0.635 [0.532, 0.744]
�d0 2.770 [2.386, 3.130] 1.489 [0.668, 2.307] 2.807 [2.338, 3.279]
�d1 1.319 [1.100, 1.530] 3.293 [2.050, 4.667] 1.160 [0.971, 1.348]
�d2 0.459 [0.388, 0.531] 0.783 [0.226, 1.391] 0.426 [0.359, 0.490]
�d3 0.405 [0.346, 0.464] 0.739 [0.239, 1.317] 0.382 [0.328, 0.434]
�d4 0.368 [0.316, 0.418] 0.658 [0.233, 1.148] 0.350 [0.300, 0.397]
�d5 0.404 [0.350, 0.454] 0.741 [0.232, 1.314] 0.384 [0.336, 0.430]
�m0 0.050 [0.044, 0.056] 0.067 [0.049, 0.083] 0.049 [0.043, 0.055]
�m1 0.078 [0.069, 0.087] 0.044 [0.028, 0.060] 0.078 [0.069, 0.086]
�m2 0.027 [0.023, 0.030] 0.039 [0.025, 0.052] 0.026 [0.023, 0.029]
�m3 0.019 [0.017, 0.021] 0.040 [0.026, 0.055] 0.018 [0.016, 0.020]
�m4 0.022 [0.020, 0.025] 0.042 [0.026, 0.056] 0.021 [0.019, 0.024]
�m5 0.022 [0.019, 0.025] 0.042 [0.026, 0.056] 0.021 [0.019, 0.024]

Notes: The table shows the posterior mean and the 90 percent credible posterior intervals of parameters. To

compute the posterior distribution, 200,000 draws were generated using the Metropolis-Hastings algorithm, and

the �rst half of these draws was discarded.
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Table 3: Variance decompositions of output growth, in�ation, and interest rate

Baseline Output growth In�ation Interest rate
Unanticipated technology shock 31.39 3.99 1.48
Anticipated technology shocks 48.54 22.94 6.02
Unanticipated demand shock 7.36 36.26 68.99
Anticipated demand shocks 8.02 9.44 20.89
Unanticipated policy shock 1.28 5.87 0.34
Anticipated policy shocks 3.39 21.50 2.29

No forecast data Output growth In�ation Interest rate
Unanticipated technology shock 37.18 3.47 9.89
Anticipated technology shocks 27.49 11.00 9.54
Unanticipated demand shock 4.20 6.15 9.34
Anticipated demand shocks 27.10 39.17 59.70
Unanticipated policy shock 1.74 9.81 2.59
Anticipated policy shocks 2.27 30.43 8.94

Notes: The table shows the forecast error variance decompositions of the output growth rate, the in�ation rate,

and the interest rate at an in�nite horizon evaluated at the posterior mean estimates of parameters.
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Table 4: Persistence of actual and forecast data

Forecast data Actual data
1 quarter 2 quarter 3 quarter 4 quarter 5 quarter Real-time Revised

Output growth 0.66 0.53 0.40 0.36 0.28 0.35 0.41
In�ation 0.89 0.93 0.94 0.95 0.96 0.47 0.47

Notes: The table shows the persistence of actual and forecast data for the output growth rate and the in�ation

rate. The measure of persistence is the univariate AR(1) coe¢ cient on each data.
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Table 5: Posterior distribution of parameters in robustness analysis

Parameter Mean 90% interval Parameter Mean 90% interval
� 2.044 [1.712, 2.360] �bY 3 0.004 [-0.122, 0.119]
b 0.893 [0.869, 0.915] �bY 4 0.018 [-0.100, 0.128]
� 0.436 [0.285, 0.579] �bY 5 0.000 [-0.114, 0.111]
� 0.944 [0.937, 0.953] �b�0 -0.052 [-0.175, 0.076]
�r 0.826 [0.784, 0.870] �b�1 0.012 [-0.102, 0.134]
�� 1.851 [1.616, 2.101] �b�2 0.032 [-0.076, 0.152]
�y 0.031 [0.012, 0.049] �b�3 0.057 [-0.054, 0.170]
�
 0.452 [0.312, 0.591] �b�4 0.073 [-0.041, 0.180]
�� 0.671 [0.546, 0.792] �b�5 0.082 [-0.026, 0.192]
�r 1.228 [1.073, 1.370] �br0 -0.062 [-0.197, 0.085]
�a 0.423 [0.304, 0.540] �br1 -0.049 [-0.192, 0.087]
�d 0.917 [0.883, 0.953] �br2 -0.024 [-0.155, 0.113]
�m 0.602 [0.506, 0.699] �br3 0.006 [-0.117, 0.141]
�a0 0.964 [0.722, 1.203] �br4 0.036 [-0.088, 0.162]
�a1 0.453 [0.232, 0.663] �br5 0.068 [-0.054, 0.189]
�a2 0.390 [0.228, 0.550] �Y 0 0.408 [0.344, 0.478]
�a3 0.372 [0.227, 0.516] �Y 1 0.128 [0.095, 0.160]
�a4 0.436 [0.236, 0.666] �Y 2 0.062 [0.047, 0.075]
�a5 0.854 [0.533, 1.168] �Y 3 0.050 [0.040, 0.060]
�d0 2.616 [2.012, 3.198] �Y 4 0.050 [0.040, 0.060]
�d1 1.321 [0.423, 2.050] �Y 5 0.071 [0.057, 0.084]
�d2 0.544 [0.281, 0.802] ��0 0.208 [0.183, 0.230]
�d3 0.772 [0.572, 0.969] ��1 0.069 [0.059, 0.079]
�d4 0.439 [0.269, 0.603] ��2 0.048 [0.041, 0.055]
�d5 0.654 [0.483, 0.825] ��3 0.045 [0.038, 0.051]
�m0 0.050 [0.043, 0.058] ��4 0.051 [0.044, 0.058]
�m1 0.057 [0.043, 0.072] ��5 0.051 [0.043, 0.058]
�m2 0.023 [0.018, 0.028] �r0 0.037 [0.031, 0.042]
�m3 0.021 [0.017, 0.026] �r1 0.032 [0.030, 0.035]
�m4 0.022 [0.017, 0.026] �r2 0.031 [0.030, 0.033]
�m5 0.021 [0.017, 0.025] �r3 0.031 [0.030, 0.033]
�bY 0 0.016 [-0.169, 0.197] �r4 0.031 [0.030, 0.032]
�bY 1 -0.064 [-0.219, 0.086] �r5 0.033 [0.030, 0.036]
�bY 2 -0.014 [-0.149, 0.115]

Notes: The table shows the posterior mean and the 90 percent credible posterior intervals of parameters. To

compute the posterior distribution, 200,000 draws were generated using the Metropolis-Hastings algorithm, and

the �rst half of these draws was discarded.
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Table 6: Variance decompositions of output growth, in�ation, and interest rate in robustness
analysis

Output growth In�ation Interest rate
Unanticipated technology shock 29.02 3.95 7.23
Anticipated technology shocks 36.43 5.07 5.02
Unanticipated demand shock 5.96 37.19 51.64
Anticipated demand shocks 5.67 17.82 24.37
Unanticipated policy shock 0.86 1.97 4.81
Anticipated policy shocks 1.80 6.52 6.51
Measurement or forecast errors 20.24 27.48 0.42

Notes: The table shows the forecast error variance decompositions of the output growth rate, the in�ation rate,

and the interest rate at an in�nite horizon evaluated at the posterior mean estimates of parameters.
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Figure 1: Impulse responses in the baseline estimation

Notes: Each panel shows the impulse responses of 100� log Yt (dy_t), 100� logE�
t Yt+3 (Edy_t+3), 100 log �t

(pi_t), and 100 logE�
t �t+3 (Epi_t+3) to each one-standard-deviation shock in terms of percentage deviations

from the steady-state rates, evaluated at the posterior mean estimates of parameters in the baseline estimation.
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