What the Cyclical Response of Advertising Reveals about Markups and other Macroeconomic Wedges

Robert E. Hall
Hoover Institution and Department of Economics Stanford University

Conference in Honor of James Hamilton Federal Reserve Bank of San Francisco

19 September 2014

Theorem:

Let R be the ratio of advertising expenditure to the value of output. Let $-\epsilon$ be the residual elasticity of demand. Let m be an exogenous multiplicative shift in the profit margin. Then the elasticity of R with respect to m is $\epsilon-1$, which is a really big number.

PAPERS ON VARIATIONS IN MARKET POWER

- Bils (1987), Nekarda and Ramey (2010, 2011)
- Rotemberg and Woodford (1999)
- Bils and Kahn (2000)
- Chevalier and Scharfstein (1996)
- Edmond and Veldkamp (2009)

Literature on advertising

- Dorfman and Steiner (1954)
- Bagwell, Handbook of IO (2007), 143 pages!

Wedges

Profit-margin wedge m raises the markup of price over cost-for example, lowers residual elasticity of demand

Wedges

Profit-margin wedge m raises the markup of price over cost-for example, lowers residual elasticity of demand

Product-market wedge f raises the purchaser's price relative to the seller's price-for example, a sales tax

Propositions

The elasticity of the advertising ratio R with respect to the profit-margin wedge m at the point $f=m=1$ is $\epsilon-1$.

Propositions

The elasticity of the advertising ratio R with respect to the profit-margin wedge m at the point $f=m=1$ is $\epsilon-1$.

The elasticity of the advertising ratio with respect to the product-market wedge f is -1 .

Propositions

The elasticity of the advertising ratio R with respect to the profit-margin wedge m at the point $f=m=1$ is $\epsilon-1$.

The elasticity of the advertising ratio with respect to the product-market wedge f is -1 .

The elasticity of the labor share λ with respect to the profit-margin wedge m is -1 .

Propositions

The elasticity of the advertising ratio R with respect to the profit-margin wedge m at the point $f=m=1$ is $\epsilon-1$.

The elasticity of the advertising ratio with respect to the product-market wedge f is -1 .

The elasticity of the labor share λ with respect to the profit-margin wedge m is -1 .

The elasticity of the labor share with respect to the product-market wedge f is -1 .

From these propositions,

$$
\log R=(\epsilon-1) \log m-\log f+\mu_{R}
$$

From these propositions,

$$
\log R=(\epsilon-1) \log m-\log f+\mu_{R}
$$

and

$$
\log \lambda=-\log m-\log f+\mu_{\lambda}
$$

where μ^{R} and μ^{λ} are constant and slow-moving influences apart from m and f.

SOLVING FOR $\log m$ AND $\log f$ YIELDS

$$
\log m=\frac{\log R-\log \lambda}{\epsilon}+\mu_{m}
$$

SOLVING FOR $\log m$ AND $\log f$ YIELDS

$$
\log m=\frac{\log R-\log \lambda}{\epsilon}+\mu_{m}
$$

and

$$
\log f=-\log \lambda-\frac{\log R-\log \lambda}{\epsilon}+\mu_{f}
$$

Here μ_{m} and μ_{f} are constant and slow-moving influences derived in the obvious way from μ_{R} and μ_{λ}.

Advertising is A capital stock

$$
A_{t}=a_{t}+(1-\delta) A_{t-1}
$$

Advertising is A capital stock

$$
\begin{gathered}
A_{t}=a_{t}+(1-\delta) A_{t-1} \\
\kappa_{t}=\frac{r+\delta}{1+r} v_{t} .
\end{gathered}
$$

Advertising spending / Private GDP

LABOR SHARE

Profit-margin wedge

Product-market wedge

Periodicity

Periodicity: number of years between one peak and and the next in a cyclical component

Periodicity

Periodicity: number of years between one peak and and the next in a cyclical component

Periodicity of a component at frequency ω is $2 \pi / \omega$

Filtering out higher periodcities

Baxter and King, 1999

Filtering out higher periodcities

Baxter and King, 1999
Linear filter $\phi(L)$

Filtering out higher periodcities

Baxter and King, 1999
Linear filter $\phi(L)$
The time series $\hat{x}_{t}=\phi(L) x_{t}$, with adroit choice of $\phi(L)$, can emphasize business-cycle periodicities-ranging from once every two years to once every 5 years-and attenuate higher periodicities

Filtering out higher periodcities

Baxter and King, 1999
Linear filter $\phi(L)$
The time series $\hat{x}_{t}=\phi(L) x_{t}$, with adroit choice of $\phi(L)$, can emphasize business-cycle periodicities-ranging from once every two years to once every 5 years-and attenuate higher periodicities

Gain applied to a periodicity with frequency ω is $\left|\phi\left(e^{i \omega}\right)\right|$

Gain functions for filters that EMPHASIZE CYCLICAL MOVEMENTS

Calculated Filtered Time Series for the Profit-Margin Wedge

Calculated Filtered Time Series for the Product-Market Wedge 0.08
$0.06-1$
$0.04-1$

REGRESSIONS OF THE FILTERED MARKUP WEDGE ON THE EMPLOYMENT RATE

Employment timing	Filter	Coefficient	Standard error	Years	Upper-tail p- value for coefficient $=-0.1$
Contemporaneous	First difference	0.02	(0.05)	$1951-2010$	0.004
	Symmetric	0.01	(0.04)	$1952-2008$	0.003
	First difference	0.00	(0.05)	$1952-2010$	0.014
	Symmetric	0.00	(0.04)	$1953-2008$	0.006

REGRESSIONS OF THE FILTERED PRODUCT-MARKET WEDGE ON THE EMPLOYMENT RATE

Employment timing	Filter	Coefficient	Standard error	Years	Upper-tail p- value for coefficient $=0$
	First difference	-0.09	(0.18)	$1951-2010$	0.298
Contemporaneous	Symmetric	-0.06	(0.17)	$1952-2008$	0.368
	First difference	-0.84	(0.14)	$1952-2010$	0.000
Lagged one year	Symmetric	-0.82	(0.14)	$1953-2008$	0.000

Role of the two wedges in employment VOLATILITY

$$
L_{t}=\theta \log m_{t}+\rho \log f_{t}+x_{t}
$$

Role of the two wedges in employment VOLATILITY

$$
L_{t}=\theta \log m_{t}+\rho \log f_{t}+x_{t}
$$

Master wedge $=m f \frac{\epsilon}{\epsilon-1}$

Role of the two wedges in employment VOLATILITY

$$
L_{t}=\theta \log m_{t}+\rho \log f_{t}+x_{t}
$$

Master wedge $=m f \frac{\epsilon}{\epsilon-1}$
Reasonable to take $\theta=\rho$

Role of The TWO WEDGES IN EMPLOYMENT VOLATILITY

$$
L_{t}=\theta \log m_{t}+\rho \log f_{t}+x_{t}
$$

Master wedge $=m f \frac{\epsilon}{\epsilon-1}$
Reasonable to take $\theta=\rho$
From Hall, $J P E, 2009$, I take $\theta=-1$ as the main case, but examine the consequences of lower and higher values

Contributions of Wedges to
 Employment Movements as Functions of the Parameter θ

Conclusions about the profit-margin WEDGE

The profit-margin wedge extracted from the advertising/GDP ratio R and the labor share λ has low volatility and no apparent cyclical movements

Conclusions about the profit-margin WEDGE

The profit-margin wedge extracted from the advertising/GDP ratio R and the labor share λ has low volatility and no apparent cyclical movements

The wedge is close to uncorrelated with both this year's employment and last year's

Conclusions about the profit-margin WEDGE

The profit-margin wedge extracted from the advertising/GDP ratio R and the labor share λ has low volatility and no apparent cyclical movements

The wedge is close to uncorrelated with both this year's employment and last year's

The evidence against a countercyclical profit-margin mechanism for cyclical movements of employment seems strong

Conclusions about The Product-market WEDGE

The product-market wedge f is not correlated with current-year employment change, but is strongly correlated with previous-year employment change

Conclusions about The product-market WEDGE

The product-market wedge f is not correlated with current-year employment change, but is strongly correlated with previous-year employment change

The wedge's adverse effect operates not in the year of a recessionary employment contraction, but rather in the following year

Conclusions about the product-market WEDGE

The product-market wedge f is not correlated with current-year employment change, but is strongly correlated with previous-year employment change

The wedge's adverse effect operates not in the year of a recessionary employment contraction, but rather in the following year

The product-market wedge is responsible for the fall in the advertising/GDP ratio R and for the decline in the labor share λ, in the aftermath of an employment contraction

OTHER INFLUENCES

- A Hicks-neutral productivity index, h
- A labor wedge or measurement error, f_{L}
- A capital wedge or measurement error, f_{K}
- An advertising wedge or measurement error, f_{A}

Model with other influences

$$
R=\frac{\kappa A}{p Q}=\frac{\alpha}{f_{A} f_{Q} m} \frac{(m-1) \epsilon+1}{\epsilon}
$$

Model with other influences

$$
\begin{gathered}
R=\frac{\kappa A}{p Q}=\frac{\alpha}{f_{A} f_{Q} m} \frac{(m-1) \epsilon+1}{\epsilon} \\
\lambda=\frac{W}{p Q}=\frac{1}{f_{L} f_{Q} m} \gamma \frac{\epsilon-1}{\epsilon}
\end{gathered}
$$

Conclusions

- The Hicks-neutral productivity index h and the capital wedge or measurement error f_{K} affect neither the advertising/sales ratio R nor the labor share λ.
- The new wedge f_{A} affects R with an elasticity of -1 and the new wedge f_{L} affects λ with an elasticity of -1 ; the margin wedge m remains the only wedge that has a high elasticity.
- The advertising wedge or measurement error, f_{A}, lowers R in the same way that f_{Q} does.
- The labor wedge or measurement error, f_{L}, lowers λ in the same way that f_{Q} does.
- Equal values of f_{A} and f_{L} have the same effect as f_{Q} of the same value.

Role of the two wedges in employment VOLATILITY

$$
L_{t}=-\theta \log m_{t}-\delta \log f_{t}+x_{t}
$$

Role of the two wedges in employment VOLATILITY

$$
L_{t}=-\theta \log m_{t}-\delta \log f_{t}+x_{t}
$$

Prior: $\theta=\delta=1$

Optimal PRICE

$$
\max _{p, A}\left(\frac{p}{f}-c\right) p^{-\epsilon} \bar{p}^{\bar{\epsilon}} A^{\alpha} \bar{A}^{-\bar{\alpha}}-\kappa A
$$

Optimal PRICE

$$
\begin{gathered}
\max _{p, A}\left(\frac{p}{f}-c\right) p^{-\epsilon} \bar{p}^{\bar{\epsilon}} A^{\alpha} \bar{A}^{-\bar{\alpha}}-\kappa A \\
p^{*}=\frac{\epsilon}{\epsilon-1} f c
\end{gathered}
$$

Profit-margin shock

$$
p=m p^{*}
$$

Profit-margin shock

$$
\begin{gathered}
p=m p^{*} \\
p=m f \frac{\epsilon}{\epsilon-1} c
\end{gathered}
$$

Optimal advertising

$$
\frac{\alpha}{A} Q\left(\frac{p}{f}-c\right)=\kappa
$$

Optimal advertising

$$
\begin{gathered}
\frac{\alpha}{A} Q\left(\frac{p}{f}-c\right)=\kappa \\
\frac{\kappa A}{p Q}=\alpha \frac{p / f-c}{p}
\end{gathered}
$$

Optimal advertising

$$
\begin{gathered}
\frac{\alpha}{A} Q\left(\frac{p}{f}-c\right)=\kappa \\
\frac{\kappa A}{p Q}=\alpha \frac{p / f-c}{p} \\
R=\frac{\kappa A}{p Q}=\alpha \frac{(m-1) \epsilon+1}{f m \epsilon}
\end{gathered}
$$

Optimal advertising

$$
\begin{gathered}
\frac{\alpha}{A} Q\left(\frac{p}{f}-c\right)=\kappa \\
\frac{\kappa A}{p Q}=\alpha \frac{p / f-c}{p} \\
R=\frac{\kappa A}{p Q}=\alpha \frac{(m-1) \epsilon+1}{f m \epsilon} \\
\text { With } f=m=1, R=\frac{\alpha}{\epsilon}
\end{gathered}
$$

LABOR SHARE

$$
\lambda=\frac{W}{p Q}
$$

LABOR SHARE

$$
\begin{gathered}
\lambda=\frac{W}{p Q} \\
\lambda=\frac{\gamma c Q}{p Q}=\gamma \frac{\epsilon-1}{\epsilon} \frac{1}{f m}
\end{gathered}
$$

Implications of Alternative Values of the Residual Elasticity of Demand, with

$$
\theta=-1
$$

Employment timing	Filter	Implied contributions of wedges to cyclical movements in the employment rate					
		E, residual elasticity of demand					
		3		6		12	
		$\theta \beta_{m}$	$\theta \beta_{f}$	$\theta \beta_{m}$	$\theta \beta_{f}$	$\theta \beta_{m}$	$\theta \beta_{f}$
Contemporaneous	First difference	$\begin{aligned} & -0.05 \\ & (0.09) \end{aligned}$	$\begin{gathered} 0.12 \\ (0.18) \end{gathered}$	$\begin{gathered} -0.02 \\ (0.05) \end{gathered}$	$\begin{gathered} 0.09 \\ (0.18) \end{gathered}$	$\begin{gathered} -0.01 \\ (0.02) \end{gathered}$	$\begin{gathered} 0.08 \\ (0.18) \end{gathered}$
	Symmetric	$\begin{gathered} -0.02 \\ (0.08) \end{gathered}$	$\begin{gathered} 0.07 \\ (0.17) \end{gathered}$	$\begin{gathered} -0.01 \\ (0.04) \end{gathered}$	$\begin{gathered} 0.06 \\ (0.17) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.02) \end{gathered}$	$\begin{gathered} 0.05 \\ (0.18) \end{gathered}$
Lagged one year	First difference	$\begin{aligned} & -0.01 \\ & (0.09) \end{aligned}$	$\begin{gathered} 0.84 \\ (0.15) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.05) \end{gathered}$	$\begin{gathered} 0.84 \\ (0.14) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.02) \end{gathered}$	$\begin{gathered} 0.83 \\ (0.14) \end{gathered}$
	Symmetric	$\begin{gathered} 0.00 \\ (0.08) \end{gathered}$	$\begin{gathered} 0.82 \\ (0.14) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.04) \end{gathered}$	$\begin{gathered} 0.82 \\ (0.14) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.02) \end{gathered}$	$\begin{gathered} 0.82 \\ (0.14) \end{gathered}$

Implications of Alternative Values of the Depreciation Rate

Employment timing	Filter	Implied contributions of wedges to cyclical movements in the employment rate					
		δ, annual rate of depreciation					
		1		0.6		0.3	
		$\theta \beta_{m}$	$\theta \beta_{f}$	$\theta \beta_{m}$	$\theta \beta_{f}$	$\theta \beta_{m}$	$\theta \beta_{f}$
Contemporaneous	First difference	$\begin{aligned} & -0.15 \\ & (0.07) \end{aligned}$	$\begin{gathered} 0.22 \\ (0.17) \end{gathered}$	$\begin{aligned} & -0.02 \\ & (0.05) \end{aligned}$	$\begin{gathered} 0.09 \\ (0.18) \end{gathered}$	$\begin{gathered} 0.11 \\ (0.04) \end{gathered}$	$\begin{gathered} -0.04 \\ (0.18) \end{gathered}$
	Symmetric	$\begin{aligned} & -0.16 \\ & (0.06) \end{aligned}$	$\begin{gathered} 0.21 \\ (0.17) \end{gathered}$	$\begin{aligned} & -0.01 \\ & (0.04) \end{aligned}$	$\begin{gathered} 0.06 \\ (0.17) \end{gathered}$	$\begin{gathered} 0.14 \\ (0.03) \end{gathered}$	$\begin{gathered} -0.09 \\ (0.17) \end{gathered}$
Lagged one year	First difference	$\begin{gathered} 0.14 \\ (0.07) \end{gathered}$	$\begin{gathered} 0.69 \\ (0.15) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.05) \end{gathered}$	$\begin{gathered} 0.84 \\ (0.14) \end{gathered}$	$\begin{gathered} -0.02 \\ (0.04) \end{gathered}$	$\begin{gathered} 0.85 \\ (0.14) \end{gathered}$
	Symmetric	$\begin{gathered} 0.17 \\ (0.06) \end{gathered}$	$\begin{gathered} 0.65 \\ (0.15) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.04) \end{gathered}$	$\begin{gathered} 0.82 \\ (0.14) \end{gathered}$	$\begin{aligned} & -0.03 \\ & (0.04) \end{aligned}$	$\begin{gathered} 0.86 \\ (0.14) \end{gathered}$

Covariance decomposition

$$
\mathrm{V}\left(L_{t}\right)=\theta \operatorname{Cov}\left(m_{t}, L_{t}\right)+\theta \operatorname{Cov}\left(f_{t}, L_{t}\right)+\operatorname{Cov}\left(x_{t}, L_{t}\right)
$$

Covariance decomposition

$$
\begin{aligned}
& \mathrm{V}\left(L_{t}\right)=\theta \operatorname{Cov}\left(m_{t}, L_{t}\right)+\theta \operatorname{Cov}\left(f_{t}, L_{t}\right)+\operatorname{Cov}\left(x_{t}, L_{t}\right) \\
& 1=\theta \frac{\operatorname{Cov}\left(m_{t}, L_{t}\right)}{\mathrm{V}\left(L_{t}\right)}+\theta \frac{\operatorname{Cov}\left(f_{t}, L_{t}\right)}{\mathrm{V}\left(L_{t}\right)}+\frac{\operatorname{Cov}\left(x_{t}, L_{t}\right)}{\mathrm{V}\left(L_{t}\right)}
\end{aligned}
$$

Covariance decomposition

$$
\begin{gathered}
\mathrm{V}\left(L_{t}\right)=\theta \operatorname{Cov}\left(m_{t}, L_{t}\right)+\theta \operatorname{Cov}\left(f_{t}, L_{t}\right)+\operatorname{Cov}\left(x_{t}, L_{t}\right) \\
1=\theta \frac{\operatorname{Cov}\left(m_{t}, L_{t}\right)}{\mathrm{V}\left(L_{t}\right)}+\theta \frac{\operatorname{Cov}\left(f_{t}, L_{t}\right)}{\mathrm{V}\left(L_{t}\right)}+\frac{\operatorname{Cov}\left(x_{t}, L_{t}\right)}{\mathrm{V}\left(L_{t}\right)} \\
1=\theta \beta_{m}+\theta \beta_{f}+\beta_{x}
\end{gathered}
$$

