What the Cyclical Response of Advertising Reveals about Markups and other Macroeconomic Wedges

> Robert E. Hall Hoover Institution and Department of Economics Stanford University

Conference in Honor of James Hamilton Federal Reserve Bank of San Francisco

19 September 2014

Theorem:

Let R be the ratio of advertising expenditure to the value of output. Let $-\epsilon$ be the residual elasticity of demand. Let m be an exogenous multiplicative shift in the profit margin. Then the elasticity of R with respect to m is $\epsilon - 1$, which is a really big number.

٠

PAPERS ON VARIATIONS IN MARKET POWER

.

- ▶ Bils (1987), Nekarda and Ramey (2010, 2011)
- ▶ Rotemberg and Woodford (1999)
- ▶ Bils and Kahn (2000)
- ▶ Chevalier and Scharfstein (1996)
- ▶ Edmond and Veldkamp (2009)

LITERATURE ON ADVERTISING

٠

- ▶ Dorfman and Steiner (1954)
- ▶ Bagwell, Handbook of IO (2007), 143 pages!

WEDGES

Profit-margin wedge m raises the markup of price over cost—for example, lowers residual elasticity of demand

WEDGES

Profit-margin wedge m raises the markup of price over cost—for example, lowers residual elasticity of demand

Product-market wedge f raises the purchaser's price relative to the seller's price—for example, a sales tax

.

Propositions

The elasticity of the advertising ratio R with respect to the profit-margin wedge m at the point f = m = 1 is $\epsilon - 1$.

PROPOSITIONS

The elasticity of the advertising ratio R with respect to the profit-margin wedge m at the point f = m = 1 is $\epsilon - 1$.

The elasticity of the advertising ratio with respect to the product-market wedge f is -1.

PROPOSITIONS

The elasticity of the advertising ratio R with respect to the profit-margin wedge m at the point f = m = 1 is $\epsilon - 1$.

The elasticity of the advertising ratio with respect to the product-market wedge f is -1.

The elasticity of the labor share λ with respect to the profit-margin wedge m is -1.

PROPOSITIONS

The elasticity of the advertising ratio R with respect to the profit-margin wedge m at the point f = m = 1 is $\epsilon - 1$.

The elasticity of the advertising ratio with respect to the product-market wedge f is -1.

The elasticity of the labor share λ with respect to the profit-margin wedge m is -1.

The elasticity of the labor share with respect to the product-market wedge f is -1.

FROM THESE PROPOSITIONS,

$$\log R = (\epsilon - 1) \log m - \log f + \mu_R$$

FROM THESE PROPOSITIONS,

$$\log R = (\epsilon - 1) \log m - \log f + \mu_R$$

and

$$\log \lambda = -\log m - \log f + \mu_{\lambda},$$

where μ^R and μ^{λ} are constant and slow-moving influences apart from m and f.

.

Solving for $\log m$ and $\log f$ yields

$$\log m = \frac{\log R - \log \lambda}{\epsilon} + \mu_m$$

Solving for $\log m$ and $\log f$ yields

$$\log m = \frac{\log R - \log \lambda}{\epsilon} + \mu_m$$

and

$$\log f = -\log \lambda - \frac{\log R - \log \lambda}{\epsilon} + \mu_f$$

.

Here μ_m and μ_f are constant and slow-moving influences derived in the obvious way from μ_R and μ_{λ} .

Advertising is a capital stock

$$A_t = a_t + (1 - \delta)A_{t-1}.$$

Advertising is a capital stock

$$A_t = a_t + (1 - \delta)A_{t-1}.$$

$$\kappa_t = \frac{r+\delta}{1+r} v_t.$$

Advertising spending / private GDP

LABOR SHARE

PROFIT-MARGIN WEDGE

PRODUCT-MARKET WEDGE

PERIODICITY

Periodicity: number of years between one peak and and the next in a cyclical component

PERIODICITY

Periodicity: number of years between one peak and and the next in a cyclical component

.

Periodicity of a component at frequency ω is $2\pi/\omega$

Baxter and King, 1999

Baxter and King, 1999

Linear filter $\phi(L)$

Baxter and King, 1999

Linear filter $\phi(L)$

The time series $\hat{x}_t = \phi(L)x_t$, with adroit choice of $\phi(L)$, can emphasize business-cycle periodicities—ranging from once every two years to once every 5 years—and attenuate higher periodicities

Baxter and King, 1999

Linear filter $\phi(L)$

The time series $\hat{x}_t = \phi(L)x_t$, with adroit choice of $\phi(L)$, can emphasize business-cycle periodicities—ranging from once every two years to once every 5 years—and attenuate higher periodicities

Gain applied to a periodicity with frequency ω is $|\phi(e^{i\omega})|$

GAIN FUNCTIONS FOR FILTERS THAT EMPHASIZE CYCLICAL MOVEMENTS

CALCULATED FILTERED TIME SERIES FOR THE PROFIT-MARGIN WEDGE

CALCULATED FILTERED TIME SERIES FOR THE PRODUCT-MARKET WEDGE

REGRESSIONS OF THE FILTERED MARKUP WEDGE ON THE EMPLOYMENT RATE

Employment timing	Filter	Coefficient	Standard error	Years	Upper-tail p- value for coefficient = -0.1
Contemporaneous	First difference	0.02	(0.05)	1951-2010	0.004
	Symmetric	0.01	(0.04)	1952-2008	0.003
Lagged one year	First difference	0.00	(0.05)	1952-2010	0.014
	Symmetric	0.00	(0.04)	1953-2008	0.006

Regressions of the filtered product-market wedge on the employment rate

Employment timing	Filter	Coefficient	Standard error	Years	Upper-tail p- value for coefficient = 0
Contemporaneous	First difference	-0.09	(0.18)	1951-2010	0.298
	Symmetric	-0.06	(0.17)	1952-2008	0.368
Lagged one year	First difference	-0.84	(0.14)	1952-2010	0.000
	Symmetric	-0.82	(0.14)	1953-2008	0.000

 $L_t = \theta \log m_t + \rho \log f_t + x_t$

$$L_t = \theta \log m_t + \rho \log f_t + x_t$$

Master wedge =
$$mf \frac{\epsilon}{\epsilon - 1}$$

$$L_t = \theta \log m_t + \rho \log f_t + x_t$$

Master wedge = $mf \frac{\epsilon}{\epsilon-1}$ Reasonable to take $\theta = \rho$

 $L_t = \theta \log m_t + \rho \log f_t + x_t$

Master wedge = $mf \frac{\epsilon}{\epsilon - 1}$ Reasonable to take $\theta = \rho$

From Hall, JPE, 2009, I take $\theta = -1$ as the main case, but examine the consequences of lower and higher values

٠

Contributions of Wedges to Employment Movements as Functions of the Parameter θ

Conclusions about the profit-margin wedge

The profit-margin wedge extracted from the advertising/GDP ratio R and the labor share λ has low volatility and no apparent cyclical movements

Conclusions about the profit-margin wedge

The profit-margin wedge extracted from the advertising/GDP ratio R and the labor share λ has low volatility and no apparent cyclical movements

The wedge is close to uncorrelated with both this year's employment and last year's

Conclusions about the profit-margin wedge

The profit-margin wedge extracted from the advertising/GDP ratio R and the labor share λ has low volatility and no apparent cyclical movements

The wedge is close to uncorrelated with both this year's employment and last year's

The evidence against a countercyclical profit-margin mechanism for cyclical movements of employment seems strong

Conclusions about the product-market wedge

The product-market wedge f is *not* correlated with current-year employment change, but is strongly correlated with previous-year employment change

Conclusions about the product-market wedge

The product-market wedge f is *not* correlated with current-year employment change, but is strongly correlated with previous-year employment change

The wedge's adverse effect operates not in the year of a recessionary employment contraction, but rather in the following year

Conclusions about the product-market wedge

The product-market wedge f is *not* correlated with current-year employment change, but is strongly correlated with previous-year employment change

The wedge's adverse effect operates not in the year of a recessionary employment contraction, but rather in the following year

The product-market wedge is responsible for the fall in the advertising/GDP ratio R and for the decline in the labor share λ , in the aftermath of an employment contraction

٠

OTHER INFLUENCES

- \blacktriangleright A Hicks-neutral productivity index, h
- A labor wedge or measurement error, f_L
- A capital wedge or measurement error, f_K
- ▶ An advertising wedge or measurement error, f_A

Model with other influences

$$R = \frac{\kappa A}{pQ} = \frac{\alpha}{f_A f_Q m} \frac{(m-1)\epsilon + 1}{\epsilon}$$

Model with other influences

$$R = \frac{\kappa A}{pQ} = \frac{\alpha}{f_A f_Q m} \frac{(m-1)\epsilon + 1}{\epsilon}$$
$$\lambda = \frac{W}{pQ} = \frac{1}{f_L f_Q m} \gamma \frac{\epsilon - 1}{\epsilon}$$

•

CONCLUSIONS

- The Hicks-neutral productivity index h and the capital wedge or measurement error f_K affect neither the advertising/sales ratio R nor the labor share λ .
- ► The new wedge f_A affects R with an elasticity of -1 and the new wedge f_L affects λ with an elasticity of -1; the margin wedge m remains the only wedge that has a high elasticity.
- ▶ The advertising wedge or measurement error, f_A , lowers R in the same way that f_Q does.
- ► The labor wedge or measurement error, f_L , lowers λ in the same way that f_Q does.
- Equal values of f_A and f_L have the same effect as f_Q of the same value.

Role of the two wedges in employment volatility

$$L_t = -\theta \log m_t - \delta \log f_t + x_t$$

Role of the two wedges in employment volatility

$$L_t = -\theta \log m_t - \delta \log f_t + x_t$$

Prior:
$$\theta = \delta = 1$$
.

OPTIMAL PRICE

$$\max_{p,A} \left(\frac{p}{f} - c\right) p^{-\epsilon} \bar{p}^{\bar{\epsilon}} A^{\alpha} \bar{A}^{-\bar{\alpha}} - \kappa A$$

OPTIMAL PRICE

$$\max_{p,A} \left(\frac{p}{f} - c\right) p^{-\epsilon} \bar{p}^{\bar{\epsilon}} A^{\alpha} \bar{A}^{-\bar{\alpha}} - \kappa A$$
$$p^* = \frac{\epsilon}{\epsilon - 1} f c$$

•

Profit-margin shock

$$p = m p^*$$

PROFIT-MARGIN SHOCK

$$p = m p^*$$

$$p = m f \frac{\epsilon}{\epsilon - 1} c$$

$$\frac{\alpha}{A} Q \left(\frac{p}{f} - c\right) = \kappa$$

$$\frac{\alpha}{A} Q \left(\frac{p}{f} - c\right) = \kappa$$
$$\frac{\kappa A}{pQ} = \alpha \frac{p/f - c}{p}$$

$$\frac{\alpha}{A} Q \left(\frac{p}{f} - c\right) = \kappa$$
$$\frac{\kappa A}{pQ} = \alpha \frac{p/f - c}{p}$$
$$R = \frac{\kappa A}{pQ} = \alpha \frac{(m-1)\epsilon + c}{f m \epsilon}$$

$$\frac{\alpha}{A} Q \left(\frac{p}{f} - c\right) = \kappa$$
$$\frac{\kappa A}{pQ} = \alpha \frac{p/f - c}{p}$$
$$R = \frac{\kappa A}{pQ} = \alpha \frac{(m-1)\epsilon + 1}{f \ m \ \epsilon}$$
With $f = m = 1, \ R = \frac{\alpha}{\epsilon}$

•

LABOR SHARE

$$\lambda = \frac{W}{pQ}$$

LABOR SHARE

$$\begin{split} \lambda &= \frac{W}{pQ} \\ \lambda &= \frac{\gamma \; c \; Q}{pQ} = \gamma \frac{\epsilon - 1}{\epsilon} \frac{1}{f \; m} \end{split}$$

IMPLICATIONS OF ALTERNATIVE VALUES OF THE RESIDUAL ELASTICITY OF DEMAND, WITH $\theta = -1$

Employment timing	Filter	Implied contributions of wedges to cyclical movements in the employment rate							
		e, residual elasticity of demand							
		3		6		12			
		$\theta \beta_m$	$\theta \beta_f$	$\theta \beta_m$	$\theta \beta_f$	$\theta \beta_m$	$\theta \beta_f$		
Contempo- raneous	First difference	-0.05 (0.09)	0.12 (0.18)	-0.02 (0.05)	0.09 (0.18)	-0.01 (0.02)	0.08 (0.18)		
	Symmetric	-0.02 (0.08)	0.07 (0.17)	-0.01 (0.04)	0.06 (0.17)	0.00 (0.02)	0.05 (0.18)		
Lagged one year	First difference	-0.01 (0.09)	0.84 (0.15)	0.00 (0.05)	0.84 (0.14)	0.00 (0.02)	0.83 (0.14)		
	Symmetric	0.00 (0.08)	0.82 (0.14)	0.00 (0.04)	0.82 (0.14)	0.00 (0.02)	0.82 (0.14)		

Implications of Alternative Values of the Depreciation Rate

Employment timing	Filter	Implied contributions of wedges to cyclical movements in the employment rate							
		δ , annual rate of depreciation							
		1		0.6		0.3			
		$\theta \beta_m$	$\theta \beta_f$	$\theta \beta_m$	$\theta \beta_f$	$\theta \beta_m$	$\theta \beta_f$		
Contempo- raneous	First difference	-0.15 (0.07)	0.22 (0.17)	-0.02 (0.05)	0.09 (0.18)	0.11 (0.04)	-0.04 (0.18)		
	Symmetric	-0.16 (0.06)	0.21 (0.17)	-0.01 (0.04)	0.06 (0.17)	0.14 (0.03)	-0.09 (0.17)		
Lagged one year	First difference	0.14 (0.07)	0.69 (0.15)	0.00 (0.05)	0.84 (0.14)	-0.02 (0.04)	0.85 (0.14)		
	Symmetric	0.17 (0.06)	0.65 (0.15)	0.00 (0.04)	0.82 (0.14)	-0.03 (0.04)	0.86 (0.14)		

COVARIANCE DECOMPOSITION

 $V(L_t) = \theta \operatorname{Cov}(m_t, L_t) + \theta \operatorname{Cov}(f_t, L_t) + \operatorname{Cov}(x_t, L_t)$

COVARIANCE DECOMPOSITION

$$V(L_t) = \theta \operatorname{Cov}(m_t, L_t) + \theta \operatorname{Cov}(f_t, L_t) + \operatorname{Cov}(x_t, L_t)$$
$$1 = \theta \frac{\operatorname{Cov}(m_t, L_t)}{V(L_t)} + \theta \frac{\operatorname{Cov}(f_t, L_t)}{V(L_t)} + \frac{\operatorname{Cov}(x_t, L_t)}{V(L_t)}.$$

COVARIANCE DECOMPOSITION

$$V(L_t) = \theta \operatorname{Cov}(m_t, L_t) + \theta \operatorname{Cov}(f_t, L_t) + \operatorname{Cov}(x_t, L_t)$$
$$1 = \theta \frac{\operatorname{Cov}(m_t, L_t)}{V(L_t)} + \theta \frac{\operatorname{Cov}(f_t, L_t)}{V(L_t)} + \frac{\operatorname{Cov}(x_t, L_t)}{V(L_t)}.$$
$$1 = \theta \beta_m + \theta \beta_f + \beta_x$$

.