EXTREME EVENTS AND THE FED

by

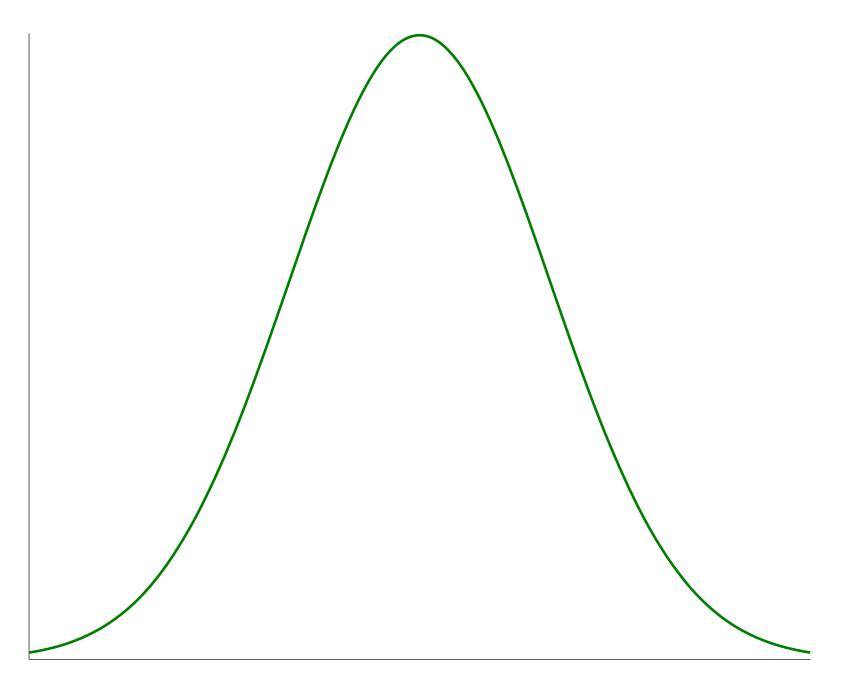
Jinill Kim

(Korea University)

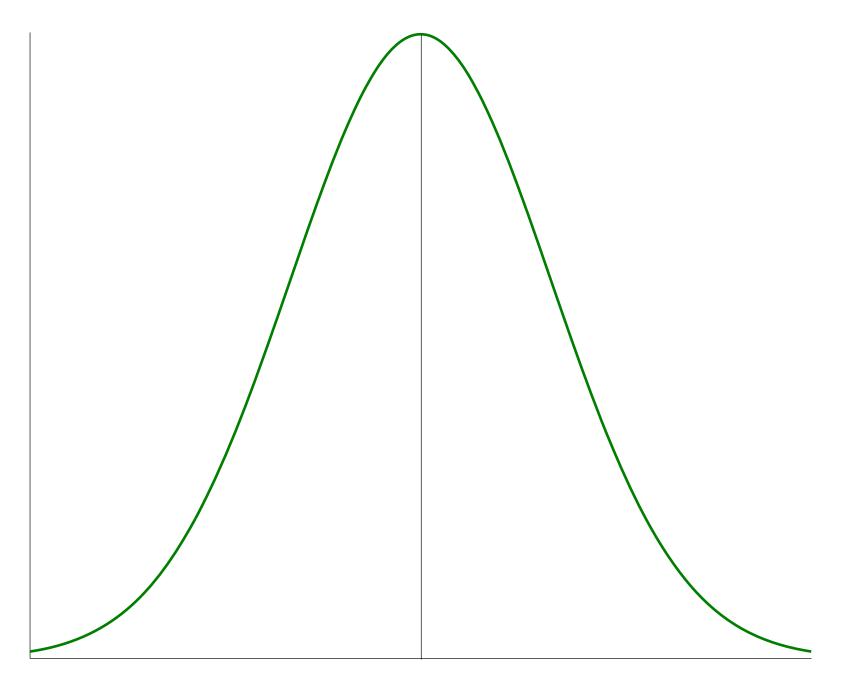
Francisco Ruge-Murcia

(McGill University and CIREQ)

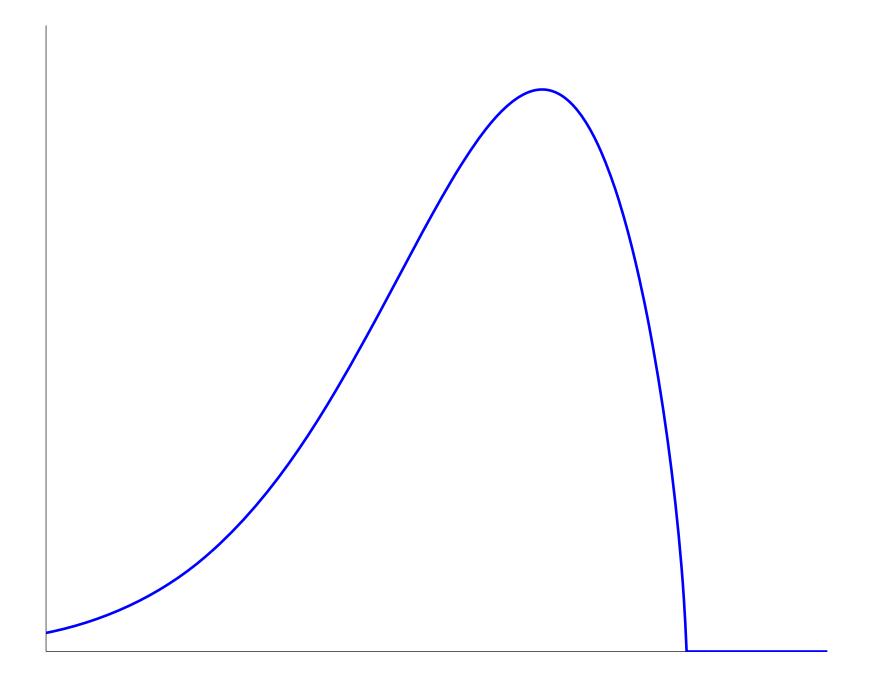
Extreme Value Theory

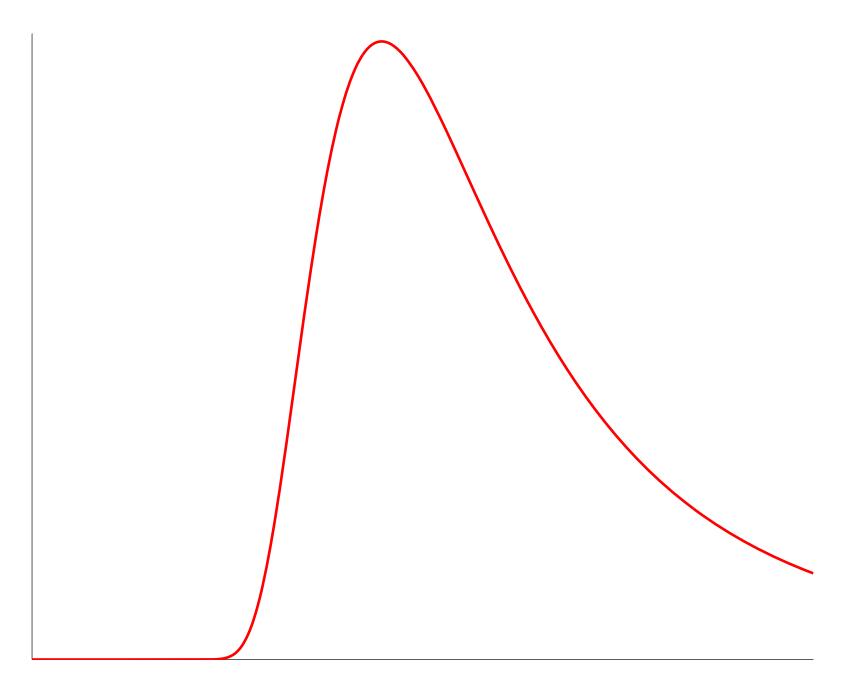

Branch of statistics concerned with extreme deviations from the median of probability distributions

Widely used in engineering, where designers seek to protect structures against infrequent, but potentially damaging, events


Economies are also subject to extreme shocks (e.g., oil shocks in the 1970s or the financial shocks in 2008)

It is important to design monetary policy with the possibility of extreme events in mind


Normal Distribution


Normal Distribution

Weibull Distribution

Frechete Distribution

This Paper

We study the positive and normative implications of extreme events for monetary policy

We construct and estimate a non-linear dynamic model with rigid prices and wages

Derive implications under three policies:

Taylor

Ramsey

Strict inflation targeting

Evaluate the relative contribution of model nonlinearity and shock asymmetry

One Key Issue (Svensson, 2003)

Act prudently and systematically incorporate the possibility of extreme shocks into policy (e.g., by adjusting the inflation target)

or

Follow a wait-and-see approach

Preview of the Results

Structural estimates support the view that shock innovations are drawn from asymmetric distributions

Due to risk, there is (or there should be) a prudence motive in monetary policy making

However, optimal (net) inflation is close to zero because inflation costs paid every period override the precautionary benefits of having a non-zero inflation target (see Coibion *et al.*, 2012)

Under both the Taylor and Ramsey policies, the central bank responds non-linearly and asymmetrically to shocks

Households

Monopolistic competitive power over their labor supply Face convex cost to adjust nominal wages

Firms

Produce differentiated goods using labor only Monopolistic competitive power Face convex costs to adjust nominal prices

Monetary Authority (the Fed)

Selects monetary policy following a Taylor-type rule

Households

Monopolistic competitive power over their labor supply Face convex cost to adjust nominal wages

Firms

Produce differentiated goods using labor only Monopolistic competitive power Face convex costs to adjust nominal prices

Households

Monopolistic competitive power over their labor supply Face convex cost to adjust nominal wages

Firms

Produce differentiated goods using labor only Monopolistic competitive power Face convex costs to adjust nominal prices

Ramsey Planner

Selects monetary policy to maximize households' welfare

Households

Monopolistic competitive power over their labor supply Face convex cost to adjust nominal wages

Firms

Produce differentiated goods using labor only Monopolistic competitive power Face convex costs to adjust nominal prices

Households

Monopolistic competitive power over their labor supply Face convex cost to adjust nominal wages

Firms

Produce differentiated goods using labor only Monopolistic competitive power Face convex costs to adjust nominal prices

Strict Inflation Targeter

Selects monetary policy to achieve an inflation target

Households

Household $n \in [0, 1]$ maximizes

$$E_{\tau} \sum_{t=\tau}^{\infty} \beta^{t-\tau} \left(\frac{(c_t^h)^{1-\chi}}{1-\chi} - \frac{(n_t^h)^{1+\psi}}{z_t(1+\psi)} \right)$$

where

$$c_t^h = \left(\int_0^1 (c_{j,t}^h)^{1/\mu} dj\right)^\mu$$

Households have monopolistic power over their labor supply and, thus, their nominal wage is a choice variable

Labor market frictions induce a cost in the adjustment of nominal wages (Φ_t^n)

Two types of financial assets: one-period nominal bonds and a complete set of Arrow-Debreu securities

Two types of financial assets: one-period nominal bonds and a complete set of Arrow-Debreu securities

The budget constraint is

$$c_t^h + \frac{Q_t A_t^h - A_{t-1}^h}{P_t} + \frac{B_t^h - i_{t-1} B_{t-1}^h}{P_t} = (1 - \Phi_t^h) \left(\frac{W_t^h n_t^h}{P_t}\right) + \frac{D_t^h}{P_t},$$

Two types of financial assets: one-period nominal bonds and a complete set of Arrow-Debreu securities

The budget constraint is

$$c_t^h + \frac{Q_t A_t^h - A_{t-1}^h}{P_t} + \frac{B_t^h - i_{t-1} B_{t-1}^h}{P_t} = (1 - \Phi_t^h) \left(\frac{W_t^h n_t^h}{P_t}\right) + \frac{D_t^h}{P_t},$$

where

$$\Phi_t^h = \left(\frac{\phi}{2}\right) \left(\frac{W_t^h}{W_{t-1}^h} - 1\right)^2$$

Two types of financial assets: one-period nominal bonds and a complete set of Arrow-Debreu securities

The budget constraint is

$$c_t^h + \frac{Q_t A_t^h - A_{t-1}^h}{P_t} + \frac{B_t^h - i_{t-1} B_{t-1}^h}{P_t} = (1 - \Phi_t^h) \left(\frac{W_t^h n_t^h}{P_t}\right) + \frac{D_t^h}{P_t},$$

where

$$\Phi^h_t = \left(\frac{\phi}{2}\right) \left(\frac{W^h_t}{W^h_{t-1}} - 1\right)^2$$

and

$$P_{t} = \left(\int_{0}^{1} (P_{i,t})^{1/(1-\mu)} di\right)^{1/(1-\mu)}$$

is the price index

Firms

Firm $j \in [0, 1]$ produces a differentiated good using the technology

$$y_{j,t} = x_t n_{j,t}^{1-\alpha}$$

where

$$n_{j,t} = \left(\int_{0}^{1} (n_{j,t}^{h})^{1/\varsigma} dh\right)^{\varsigma}$$

Firms have monopolistic power and, thus, their nominal price is a choice variable

Good market frictions induce a cost in the adjustment of nominal prices:

$$\Gamma_t^j = \left(\frac{\gamma}{2}\right) \left(\frac{P_{j,t}}{P_{j,t-1}} - 1\right)^2,$$

Equilibrium

Symmetric equilibrium: all households and firms are identical *ex-post*

Arrow-Debreu securities and bonds are not held

Economy-wide resource constraint

 $c_t = y_t - (y_t \Gamma_t + w_t n_t \Phi_t)$

The Fed

Sets the interest rate following the Taylor-type rule

 $\ln(i_t/i) = \eta_1 \ln(i_{t-1}/i) + \eta_2 \ln(\prod_t/\Pi) + \eta_3 \ln(n_t/n) + e_t,$

where $\eta_1 \in (-1, 1)$, η_2 and η_3 are parameters

Shocks

 $\xi_t = \left[\ln(z_t)\ln(x_t)\ln(e_t)\right]'$ $\xi_t = \rho \xi_{t-1} + \varepsilon_t$ where

[$-\rho_z$	0	0	٦
$\rho =$	0	ρ_x	0	
	0	0	$ ho_e$	

and $\varepsilon_t = [\varepsilon_{z,t} \ \varepsilon_{x,t} \ \varepsilon_{e,t}]'$ is a vector of i.i.d. innovations

Innovations are a generalized extreme value (GEV) distribution

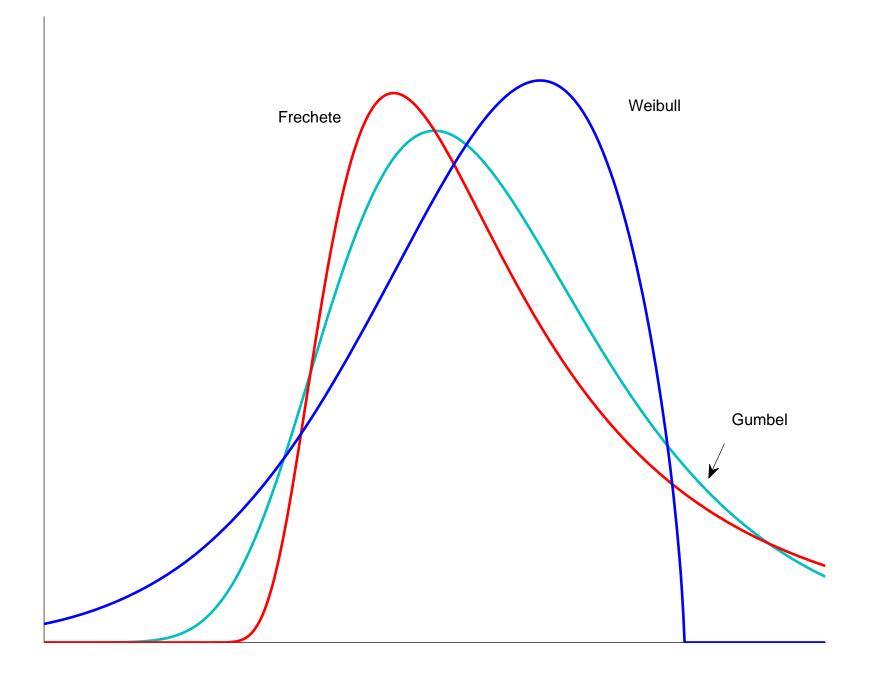
Define

Then

GEV Distribution

According to the Fisher-Tippett (1928) theorem, the maximum of an i.i.d. series converges in distribution to either the Gumbel, Fréchet or Weibull distributions

Jenkinson (1955) shows that these three distributions can be represented in a unified way using the GEV distribution


Three parameters: location, scale, and shape

The shape parameter controls the thickness of the tail of the distribution

Positive or negative skewness

Mean (variance) is not defined when shape parameter is larger than 1 (0.5)

GEV Distribution

Solution Method

Third-order approximation to policy functions (Jin and Judd, 2002)

In tensor notation

$$\begin{split} [f(x_t,\sigma)]^j &= [f(x,0)]^j + [f_x(x,0)]^j_a[(x_t-x)]^a \\ &+ (1/2)[f_{xx}(x,0)]^j_{ab}[(x_t-x)]^a[(x_t-x)]^b \\ &+ (1/6)[f_{xxx}(x,0)]^j_{abc}[(x_t-x)]^a[(x_t-x)]^b[(x_t-x)]^c \\ &+ (1/2)[f_{\sigma\sigma}(x,0)]^j[\sigma][\sigma] \\ &+ (1/2)[f_{x\sigma\sigma}(x,0)]^j_a[(x_t-x)]^a[\sigma][\sigma] \\ &+ (1/6)[f_{\sigma\sigma\sigma}(x,0)]^j[\sigma][\sigma][\sigma], \end{split}$$

where x_t is a vector with the state variables

If innovation distributions are symmetric, $(1/6)[f_{\sigma\sigma\sigma}(x,0)]^{j}[\sigma][\sigma][\sigma] = 0$

Estimation

Simulated Method of Moments (SMM)

$$\widehat{\boldsymbol{\theta}} = \operatorname*{argmin}_{\{\boldsymbol{\theta}\}} \mathbf{M}(\boldsymbol{\theta})' \mathbf{W} \mathbf{M}(\boldsymbol{\theta})$$

where

$$\mathbf{M}(\theta) = (1/T) \sum_{t=1}^{T} \mathbf{m}_{t} - (1/\lambda T) \sum_{t=1}^{\lambda T} \mathbf{m}_{t}(\theta)$$

T is the sample size, λ is a positive constant and **W** is a weighting matrix

Asymptotic Distribution

Under the regularity conditions in Duffie and Singleton (1993)

 $\sqrt{T} \left(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta} \right) \rightarrow N(\mathbf{0}, (1 + 1/\lambda) (\mathbf{J}' \mathbf{W}^{-1} \mathbf{J})^{-1} \mathbf{J}' \mathbf{W}^{-1} \mathbf{S} \mathbf{W}^{-1} \mathbf{J} (\mathbf{J}' \mathbf{W}^{-1} \mathbf{J})^{-1})$

where

$$\mathbf{S} = \lim_{T \to \infty} Var\left(\left(\frac{1}{\sqrt{T}}\right) \sum_{t=1}^{T} \mathbf{m}_t\right)$$

and

$$\mathbf{J} = E\left(\frac{\partial \mathbf{m}_{\iota}(\theta)}{\partial \theta}\right)$$

is a finite Jacobian matrix of full column rank

Data

Sample Period and Frequency

Quarterly from 1964Q2 to 2012Q4

Data

Sample Period and Frequency

Quarterly from 1964Q2 to 2012Q4

Series

Real per-capita consumption Hours worked Price inflation rate Wage inflation rate Nominal interest rate

Data

Sample Period and Frequency

Quarterly from 1964Q2 to 2012Q4

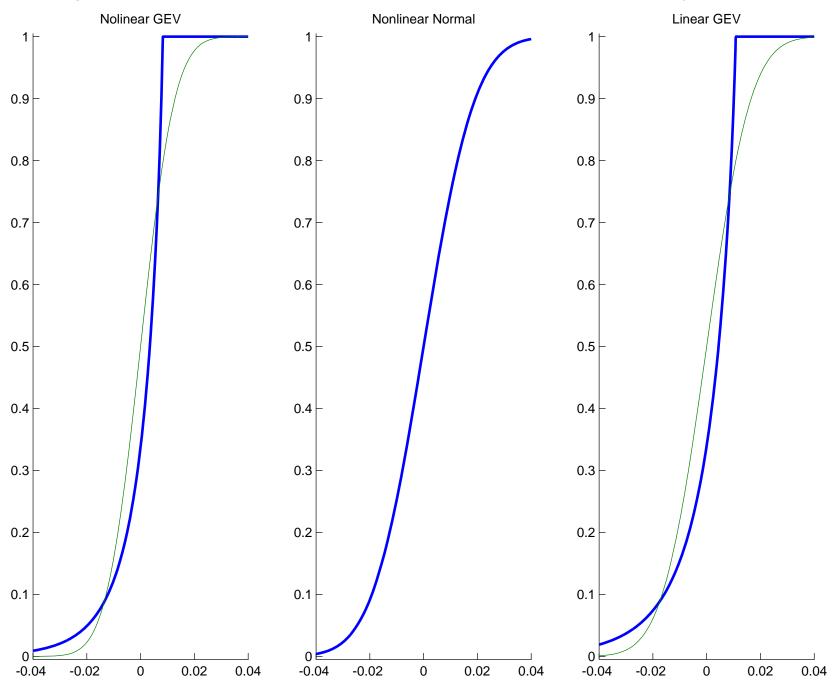
Series

Real per-capita consumption Hours worked Price inflation rate Wage inflation rate Nominal interest rate

Moments

Variances, covariances, autocovariances and skewness of all data series

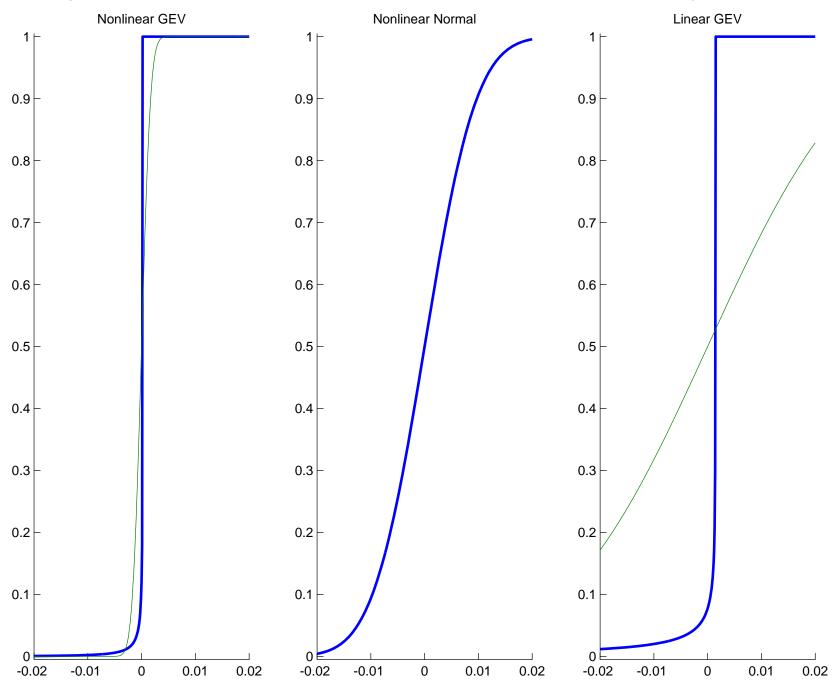
SMM Estimates: Nominal Rigidity


	Model						
	Nonlinear				Linear		
	GE	/	Norm	nal	GEV		
Parameter	Estimate	s.e.	Estimate	stimate s.e. Estir		s.e.	
Wages	<mark>230.7</mark>	0.001	282.3	0.002	<mark>9932.8</mark>	0.001	
Prices	14.12	0.021	45.64	0.072	31.30	0.043	

Note: s.e. are standard errors computed using a *k*-step block bootstrap with 5 steps and 19 replications. During the estimation $\beta = 0.995$, $\alpha = 1/3$, $\Pi = 1$, $\mu = 1.1$ and $\varsigma = 1.4$.

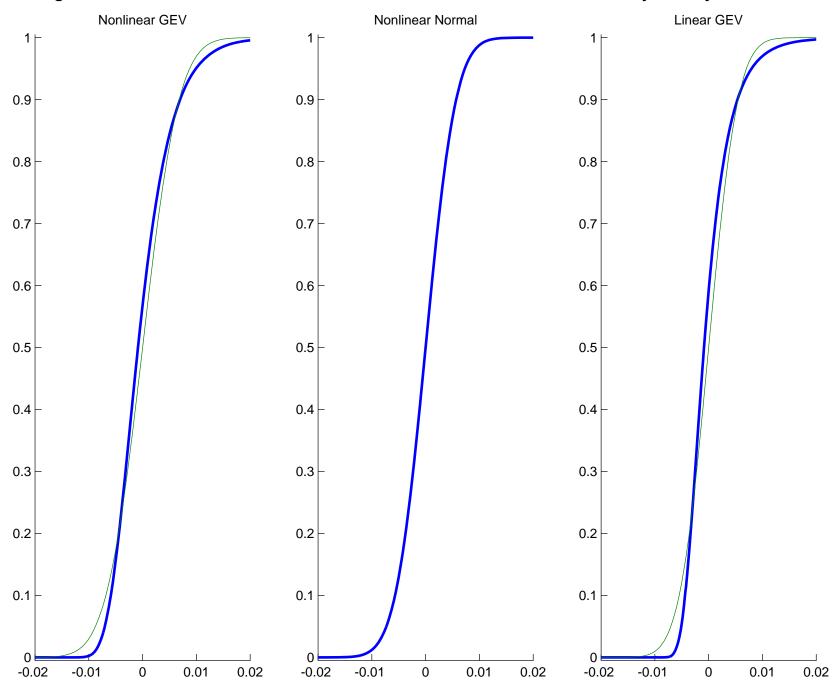
SMM Estimates: Productivity Shock

	Model						
	Nonlinear				Linear		
	GEV		Normal		GEV		
Parameter	Estimate	s.e.	Estimate	s.e.	Estimate	s.e.	
Autoregresive coefficient	0.958	0.021	0.848	0.024	0.933	0.025	
Scale (×10 ⁻²)	0.899	0.227	_	_	1.174	0.226	
Shape	<mark>-1.204</mark>	<mark>0.055</mark>	_	_	-1.189	0.212	
Standard deviation ($\times 10^{-2}$)	0.999	0.230	1.502	0.143	1.292	0.223	
Skewness	<mark>-2.655</mark>	0.182	0	_	-2.602	0.751	

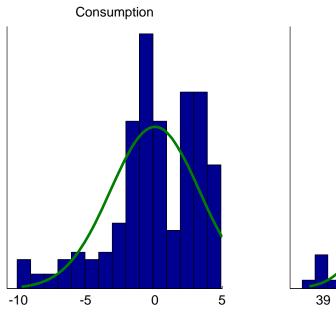

Figure 1: Estimated Cumulative Distribution Function of Productivity Shock

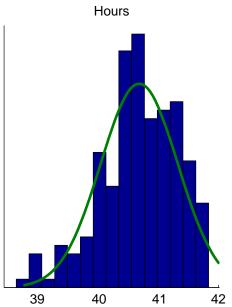
SMM Estimates: Labor Supply Shock

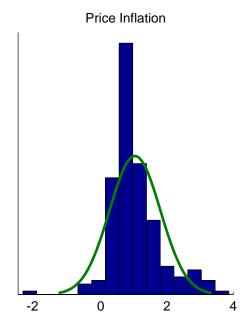
	Model						
	Nonlinear				Linear		
	GEV		Normal		GEV		
Parameter	Estimate	s.e.	Estimate	s.e.	Estimate	s.e.	
Autoregresive coefficient	0.996	0.011	0.968	0.015	0.996	0.002	
Scale ($\times 10^{-4}$)	0.418	0.615	-	-	0.715	0.644	
Shape	-3.755	0.062	_	_	-4.881	0.182	
Standard deviation ($\times 10^{-2}$)	0.132	0.106	0.758	0.401	2.107	1.243	
Skewness	<mark>-45.50</mark>	<mark>3.252</mark>	0	—	-165.6	26.16	


Figure 2: Estimated Cumulative Distribution Function of Labor Supply Shock

SMM Estimates: Taylor Rule

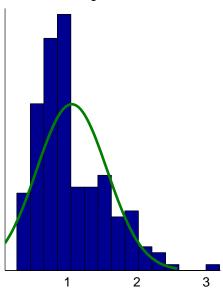

			Mod	el		
		Nonl	Linear			
	GE	J	Normal		GEV	
Parameter	Estimate	s.e.	Estimate	s.e.	Estimate	s.e.
Smoothing	0.844	0.060	0.862	0.063	0.693	0.043
Inflation	0.384	0.077	0.385	0.083	0.384	0.059
Output	0.143	0.037	0.137	0.048	0.063	0.050
Scale (×10 ⁻²)	0.420	0.098	_	_	0.298	0.082
Shape ($\times 10^{-1}$)	-0.917	1.887	_	_	0.775	0.851
Standard deviation ($\times 10^{-2}$)	0.532	0.133	0.443	0.114	0.428	0.136
Skewness	1.086	<mark>1.881</mark>	0	_	1.698	1.194

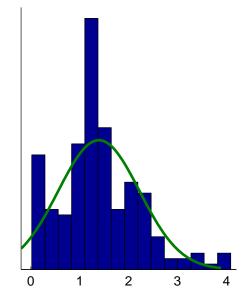

Figure 3: Estimated Cumulative Distribution Function of Monetary Policy Shock



		Model			
	U.S.	Nonlinear	Nonlinear	Linear	
	Data	GEV	Normal	GEV	
Consumption	-0.874				
Hours	-0.580				
Price inflation	0.656				
Wage inflation	1.023				
Nominal interest rate	0.641				

Figure 4: Asymmetry of U.S. Macroeconomic Data





Wage Inflation

		Model			
	U.S.	Nonlinear	Nonlinear	Linear	
	Data	GEV	Normal	GEV	
Consumption	-0.874	-0.566			
Hours	-0.580	-0.625			
Price inflation	0.656	1.150			
Wage inflation	1.023	0.899			
Nominal interest rate	0.641	0.703			

	Model			
U.S.	Nonlinear	Nonlinear	Linear	
Data	GEV	Normal	GEV	
-0.874	-0.566	0.014		
-0.580	-0.625	0.078		
0.656	1.150	0.094		
1.023	0.899	-0.066		
0.641	0.703	0.044		
	Data -0.874 -0.580 0.656 1.023	Data GEV -0.874 -0.566 -0.580 -0.625 0.656 1.150 1.023 0.899	U.S.NonlinearNonlinearDataGEVNormal-0.874-0.5660.014-0.580-0.6250.0780.6561.1500.0941.0230.899-0.066	

		Model			
	U.S.	Nonlinear	Nonlinear	Linea	
	Data	GEV	Normal	GEV	
Consumption	-0.874	-0.566	0.014	-0.72	
Hours	-0.580	-0.625	0.078	-0.53	
Price inflation	0.656	1.150	0.094	0.987	
Wage inflation	1.023	0.899	-0.066	0.991	
Nominal interest rate	0.641	0.703	0.044	0.659	

		Model				
	U.S.	Nonlinear	Nonlinear	Linear		
	Data	GEV	Normal	GEV		
Consumption	3.581					
Hours	3.190					
Price inflation	6.051					
Wage inflation	3.996					
Nominal interest rate	3.767					

		Model			
	U.S.	Nonlinear	Nonlinear	Linear	
	Data	GEV	Normal	GEV	
Consumption	3.581	3.419			
Hours	3.190	3.574			
Price inflation	6.051	5.701			
Wage inflation	3.996	4.312			
Nominal interest rate	3.767	3.972			

		Model			
	U.S.	Nonlinear	Nonlinear	Linear	
	Data	GEV	Normal	GEV	
Consumption	3.581	3.419	2.720		
Hours	3.190	3.574	3.092		
Price inflation	6.051	5.701	3.114		
Wage inflation	3.996	4.312	3.062		
Nominal interest rate	3.767	3.972	2.663		

		Model			
	U.S.	Nonlinear	Nonlinear	Linear	
	Data	GEV	Normal	GEV	
Consumption	3.581	3.419	2.720	3.796	
Hours	3.190	3.574	3.092	3.720	
Price inflation	6.051	5.701	3.114	4.715	
Wage inflation	3.996	4.312	3.062	4.227	
Nominal interest rate	3.767	3.972	2.663	3.695	

		Model			
	U.S.	Nonlinear	Nonlinear	Linear	
Series	Data	GEV	Normal	GEV	
Consumption	0.001				
Hours	0.011				
Price inflation	0.001				
Wage inflation	0.001				
Nominal interest rate	0.003				

		Model			
	U.S.	Nonlinear	Nonlinear	Linear	
Series	Data	GEV	Normal	GEV	
Consumption	0.001	0.001			
Hours	0.011	0.001			
Price inflation	0.001	0.001			
Wage inflation	0.001	0.001			
Nominal interest rate	0.003	0.001			

		Model			
	U.S.	Nonlinear	Nonlinear	Linear	
Series	Data	GEV	Normal	GEV	
Consumption	0.001	0.001	0.037		
Hours	0.011	0.001	0.249		
Price inflation	0.001	0.001	0.130		
Wage inflation	0.001	0.001	0.402		
Nominal interest rate	0.003	0.001	0.008		

		Model		
	U.S.	Nonlinear	Nonlinear	Linear
Series	Data	GEV	Normal	GEV
Consumption	0.001	0.001	0.037	0.001
Hours	0.011	0.001	0.249	0.001
Price inflation	0.001	0.001	0.130	0.001
Wage inflation	0.001	0.001	0.402	0.001
Nominal interest rate	0.003	0.001	0.008	0.001

Dynamics

Since model is nonlinear, impulse responses depend on sign, size, and timing (see Gallant, Rossi and Tauchen, 1993, and Koop, Pesaran, and Potter, 1996)

Consider innovations in the 1st and 99th percentiles

Innovations take place when system is at the stochastic steady state

Figure 8: Interest Rate Policy Function

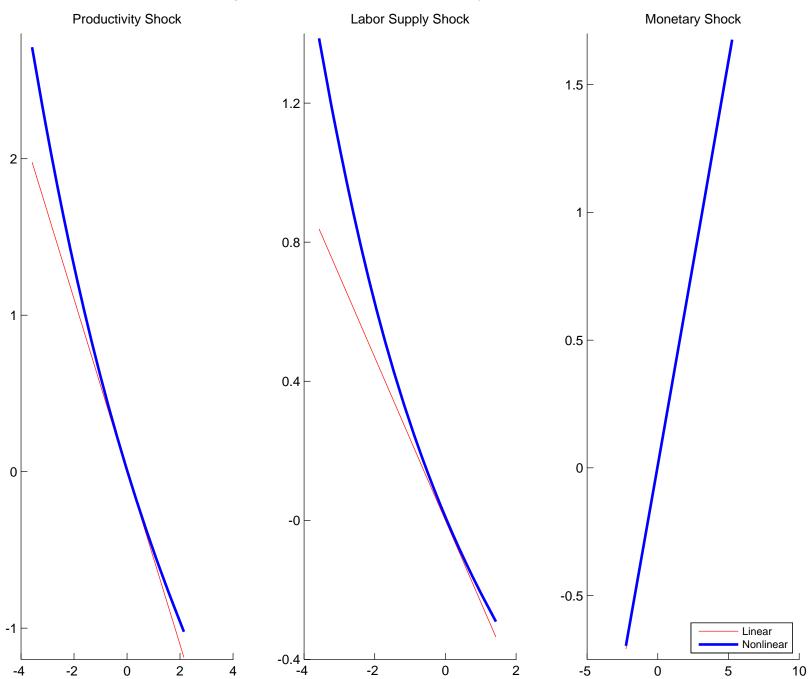


Figure 5: Responses to Extreme Productivity Shocks under Taylor Rule Policy

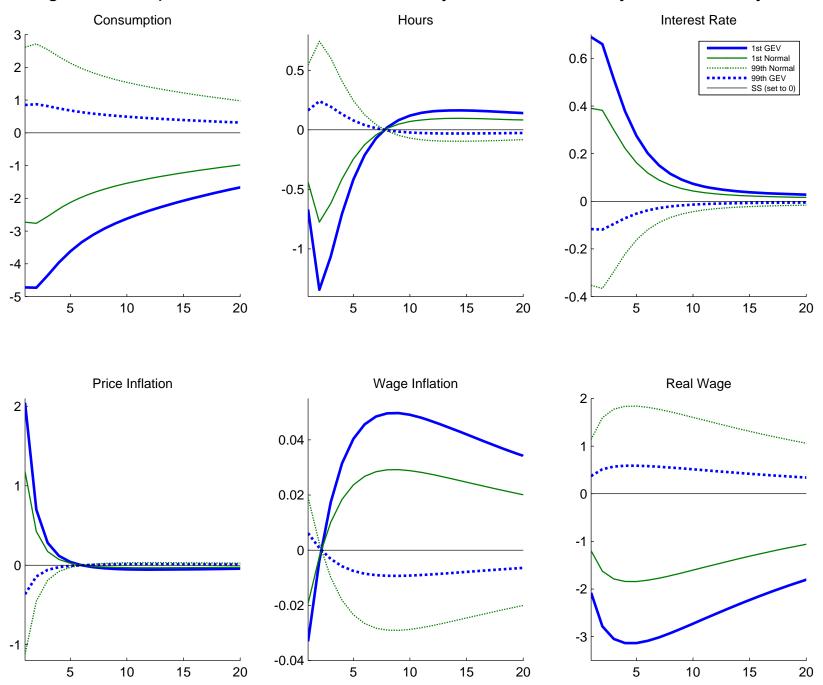
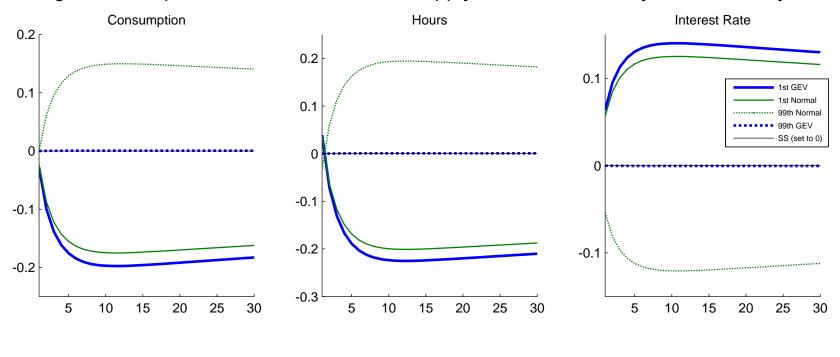



Figure 6: Responses to Extreme Labor Supply Shocks under Taylor Rule Policy

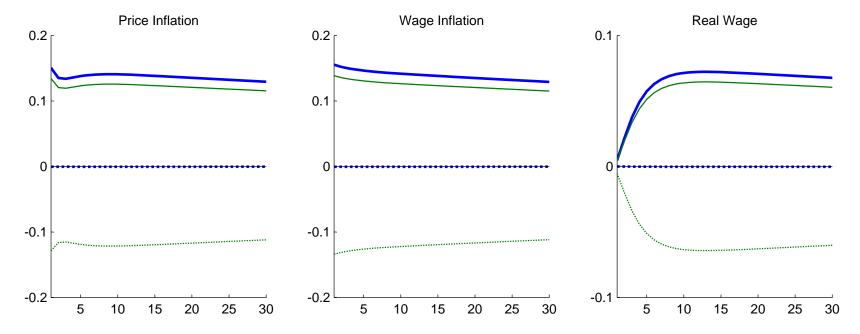
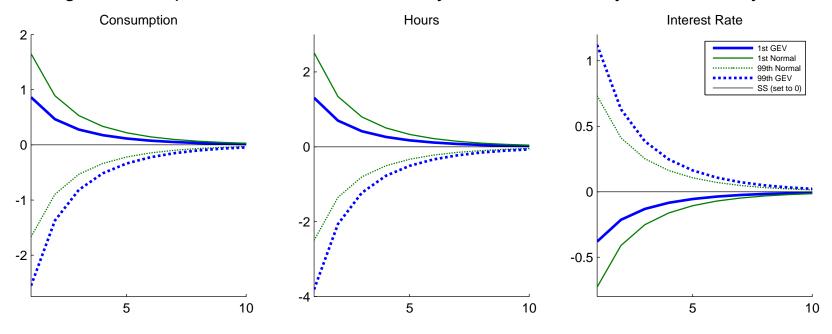
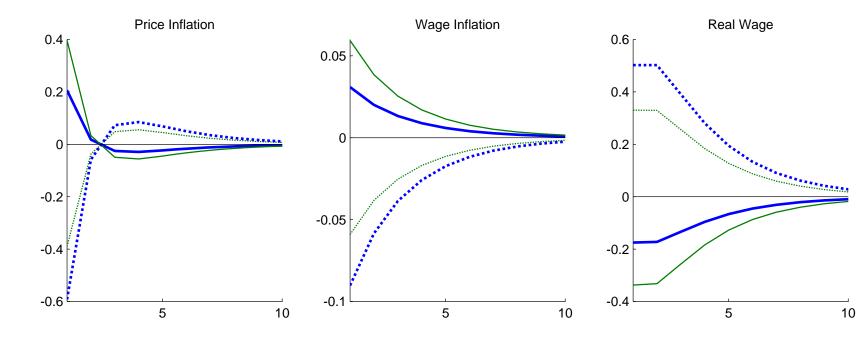




Figure 7: Responses to Extreme Monetary Shocks under Taylor Rule Policy

Ramsey Policy

A benevolent central bank chooses $\{c_t, h_t, w_t, i_t, \Omega_t, \Pi_t\}_{t=\tau}^{\infty}$ to maximize the households welfare subject to:

The social resource constraint

First-order conditions of firms and

First-order conditions of households

Dynamics

Consider innovations in the 1st and 99th percentiles

Innovations take place when system is at the stochastic steady state

Figure 11: Optimal Interest Rate Policy Function

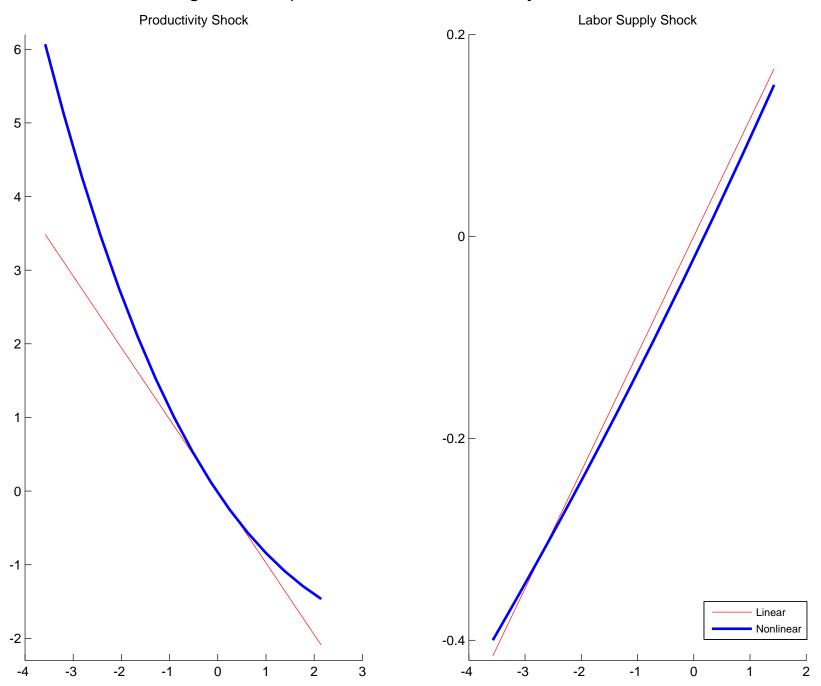


Figure 9: Optimal Responses to Extreme Productivity Shocks

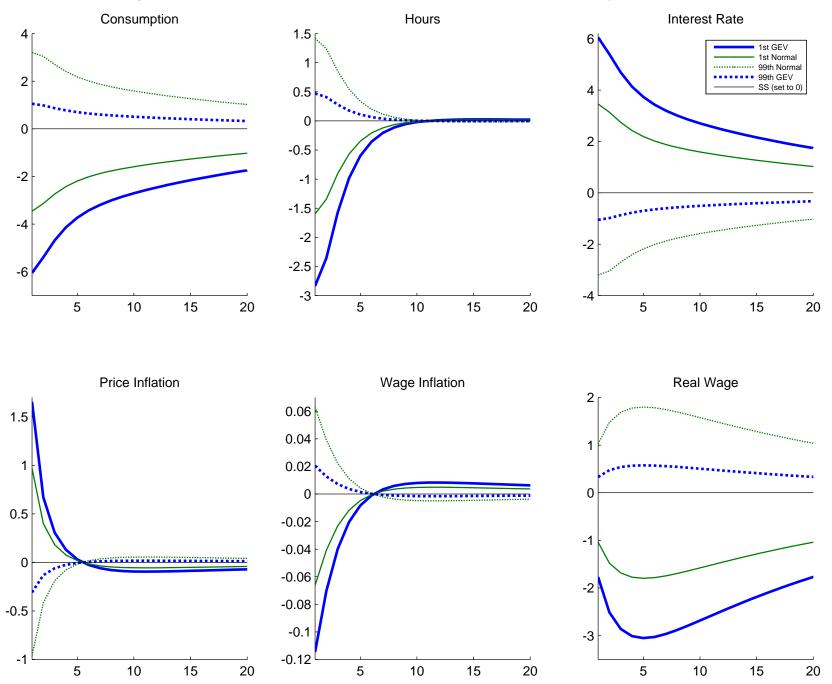
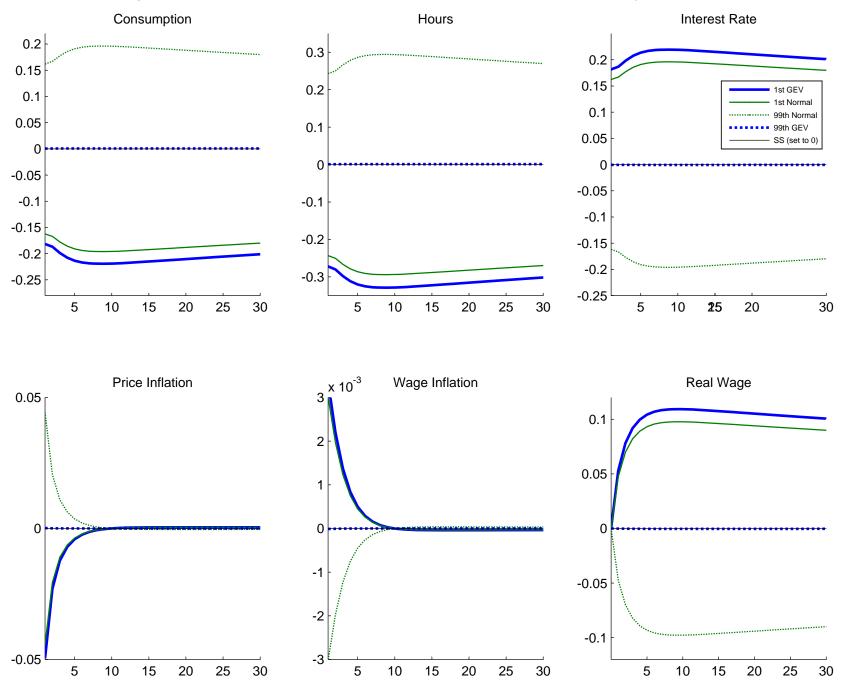
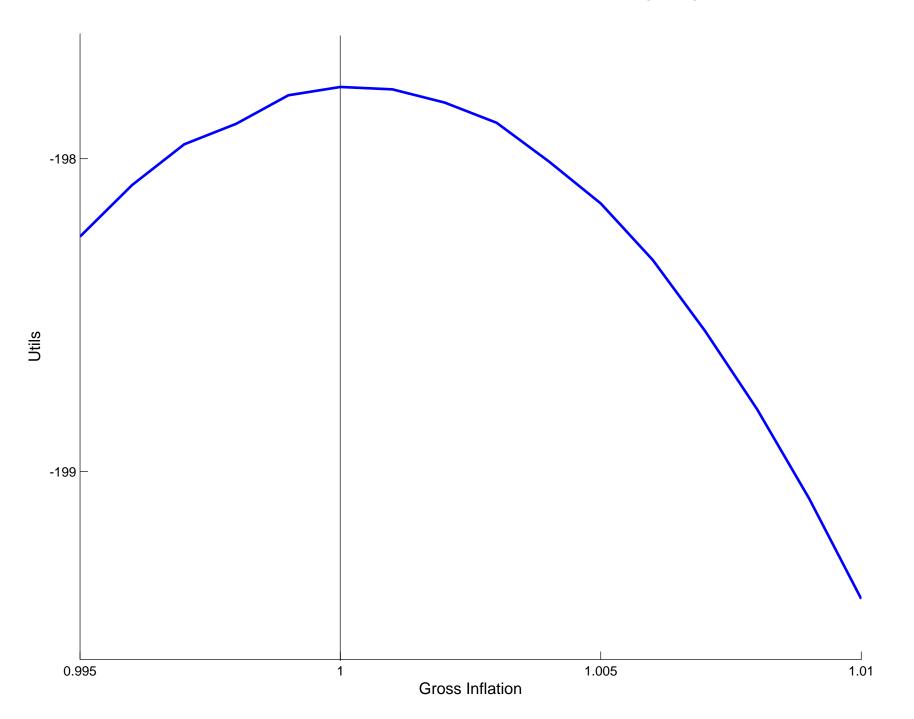



Figure 10: Optimal Responses to Extreme Labor Supply Shocks

Optimal Inflation

In the deterministic steady state, (gross) optimal inflation = 1.0

In the stochastic steady state, (gross) optimal inflation = 1.001


Comparison with Strict Inflation Targeting

Inflation targeter has less knowledge and flexibility than Ramsey

Optimal inflation may be different from that under Ramsey

In the stochastic steady state, (gross) optimal inflation ≈ 1.0

Optimal Inflation Rate under Strict Inflation Targeting

Summary

In an economy where extreme events can occasionally happen:

There is (or there should be) a prudence motive in monetary policy making

Summary

In an economy where extreme events can occasionally happen:

There is (or there should be) a prudence motive in monetary policy making

However, optimal (net) inflation is close to zero because inflation costs paid every period override the precautionary benefits of having a non-zero inflation target

Summary

In an economy where extreme events can occasionally happen:

There is (or there should be) a prudence motive in monetary policy making

However, optimal (net) inflation is close to zero because inflation costs paid every period override the precautionary benefits of having a non-zero inflation target

Under both the Taylor and Ramsey policies, the central bank responds non-linearly and asymmetrically to shocks