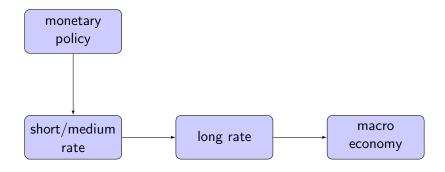
Monetary Policy Uncertainty and Economic Fluctuations

Drew D. Creal Chicago Booth Jing Cynthia Wu Chicago Booth & NBER

< 回 ト < 三 ト < 三 ト

Drew Creal (Chicago) and Cynthia Wu (Chicago & NBER)

Monetary policy transmission

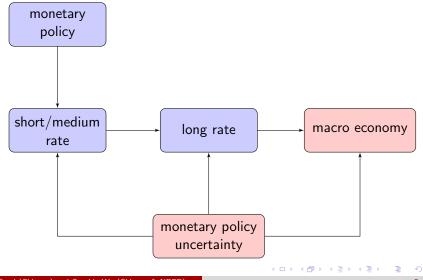


monetary polic	y			
uncertainty				

э

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

Question: monetary policy uncertainty \rightarrow macroeconomy



Drew Creal (Chicago) and Cynthia Wu (Chicago & NBER)

Contribution: a new macro-finance model for uncertainty

Uncertainty

- first moment: conditional mean of macro variables
- second moment: volatility of interest rates

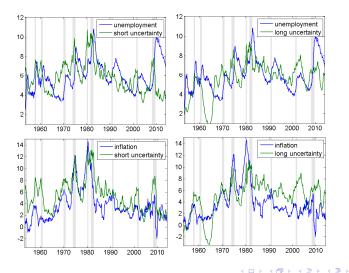
Term structure

- multiple volatility factors
- volatility factors and yield factors are distinct

▶ Literature

通 ト イヨ ト イヨト

Result highlight: two dimensions of uncertainty



Drew Creal (Chicago) and Cynthia Wu (Chicago & NBER)

Outline

- 8 Economic implication
- 4 Yield curve fitting

э

イロン イヨン イヨン イヨン

Factors

- $m_t: M \times 1$ Macro factors
- $g_t: G \times 1$ Gaussian yield factors
- $h_t: H \times 1$ yield volatility factors

イロン 不聞と 不同と 不同と

Dynamics

$$\begin{split} m_{t+1} &= \mu_m + \Phi_m m_t + \Phi_{mg} g_t + \Phi_{mh} h_t + \Sigma_m \varepsilon_{m,t+1}. \\ g_{t+1} &= \mu_g + \Phi_{gm} m_t + \Phi_g g_t + \Phi_{gh} h_t + \Sigma_{gm} \varepsilon_{m,t+1} + \Sigma_g D_t \varepsilon_{g,t+1}, \\ h_{t+1} &= \mu_h + \Phi_h h_t + \Sigma_{hm} \varepsilon_{m,t+1} + \Sigma_{hg} D_t \varepsilon_{g,t+1} + \Sigma_h \varepsilon_{h,t+1}. \end{split}$$

where the diagonal time-varying volatility is a function of h_t

$$D_t = \operatorname{diag}\left(\exp\left(rac{\Gamma_0 + \Gamma_1 h_t}{2}
ight)
ight).$$

 h_t enters the model through

- conditional mean: h_t
- conditional variance: D_t

イロト 不得 トイヨト イヨト

Impulse responses

Bond prices

Short rate

$$r_t = \delta_0 + \delta'_1 g_t.$$

Pricing equation

$$P_t^n = \mathbb{E}_t^{\mathbb{Q}} \left[\exp\left(-r_t\right) P_{t+1}^{n-1} \right]$$

under risk neutral dynamics

$$g_{t+1} = \mu_g^{\mathbb{Q}} + \Phi_g^{\mathbb{Q}} g_t + \Sigma_g^{\mathbb{Q}} \varepsilon_{g,t+1}^{\mathbb{Q}}$$

Drew Creal (Chicago) and Cynthia Wu (Chicago & NBER)

3

イロト イヨト イヨト イヨト

Bond prices

Bond prices are exponentially affine

$$P_t^n = \exp\left(\bar{a}_n + \bar{b}_n'g_t\right)$$

where

$$\begin{split} \bar{a}_n &= -\delta_0 + \bar{a}_{n-1} + \mu_g^{\mathbb{Q}'} \bar{b}_{n-1} + \frac{1}{2} \bar{b}_{n-1}' \Sigma_g^{\mathbb{Q}} \Sigma_g^{\mathbb{Q}'} \bar{b}_{n-1}, \\ \bar{b}_n &= -\delta_1 + \Phi_g^{\mathbb{Q}'} \bar{b}_{n-1}. \end{split}$$

Yields $y_t^n \equiv -\frac{1}{n} \log P_t^n$ are linear

$$y_t^n = a_n + b'_n g_t$$

with $a_n = -\frac{1}{n}\overline{a}_n$, $b_n = -\frac{1}{n}\overline{b}_n$. SDF

Novel approach

bond prices identical to Gaussian ATSMs

Drew Creal (Chicago) and Cynthia Wu (Chicago & NBER)

Bayesian estimation

Model

- non-Gaussian non-linear state space form
- likelihood not known in closed form

MCMC

- In each step, conditionally linear Gaussian state space model
- Kalman filter: draw parameters not conditioning on the state variables
- forward filtering and backward sampling: draw state variables jointly

particle filter: compute likelihood

▲圖▶ ▲ 圖▶ ▲ 圖▶

Observed yields

Stack

$$y_t^n = a_n + b'_n g_t$$

for different maturities $n_1, n_2, ..., n_N$ to

$$Y_t = A + Bg_t + \eta_t$$

where
$$A = (a_{n_1}, ..., a_{n_N})'$$
, $B = (b'_{n_1}, ..., b'_{n_N})'$.

Drew Creal (Chicago) and Cynthia Wu (Chicago & NBER)

12 / 29

æ

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

State space form I conditional on $h_{0:T}$

Transition equation

$$g_{t+1} = \mu_g + \Phi_{gm}m_t + \Phi_g g_t + \Phi_{gh}h_t + \Sigma_{gm}\varepsilon_{m,t+1} + \Sigma_g D_t\varepsilon_{g,t+1}$$

Observation equations

$$m_{t+1} = \mu_m + \Phi_m m_t + \Phi_{mg} g_t + \Phi_{mh} h_t + \Sigma_m \varepsilon_{m,t+1}$$

$$h_{t+1} = \mu_h + \Phi_h h_t + \Sigma_{hm} \varepsilon_{m,t+1} + \Sigma_{hg} D_t \varepsilon_{g,t+1} + \Sigma_h \varepsilon_{h,t+1}$$

$$Y_{t+1} = A + Bg_{t+1} + \eta_{t+1}$$

(日) (同) (日) (日) (日)

State space form II conditional on $g_{1:T}$

Transition equation

$$h_{t+1} = \mu_h + \Phi_h h_t + \Sigma_{hm} \varepsilon_{m,t+1} + \Sigma_{hg} D_t \varepsilon_{g,t+1} + \Sigma_h \varepsilon_{h,t+1}$$

Observation equation I

$$m_{t+1} = \mu_m + \Phi_m m_t + \Phi_{mg} g_t + \Phi_{mh} h_t + \Sigma_m \varepsilon_{m,t+1}$$

Observation equation II: Define $\tilde{g}_t = D_{t-1}^{\frac{1}{2}} \varepsilon_{gt}$, $\hat{g}_t = \log(\tilde{g}_t \odot \tilde{g}_t)$ is linear in h_t

$$\hat{g}_{t+1} = \Gamma_0 + \Gamma_1 h_t + \hat{\varepsilon}_{t+1}$$

Approximate the error with mixture of normals using Omori, Chib, Shephard, and Nakajima(2007).

イロト 不得 トイヨト イヨト

Sketch of MCMC algorithm

- Conditional on h_{0:T}, use state space form I
 - Draw θ_g using Kalman filter without depending on $g_{1:T}$
 - Draw $g_{1:T}$ using forward filtering and backward sampling
- ► Conditional on g_{1:T}, use state space form II
 - Draw θ_h using Kalman filter without depending on $h_{0:T}$
 - ▶ Draw $h_{0:T-1}$ using forward filtering and backward sampling
- Draw the remaining parameters

Particle filter

- Calculate the likelihood of the model: $p(Y_{1:T}; \theta)$
- Calculate filtered estimates
- ▶ We use the mixture Kalman filter, see Chen and Liu (2000)

3

(日) (同) (日) (日) (日)

Data

Monthly from June 1953 to December 2013 Yields

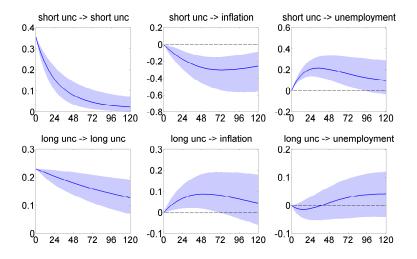
- Fama-Bliss zero-coupon yields from CRSP
- maturities: 1m, 3m, 1y, 2y, 3y, 4y, 5y
- g_t is 3m, 5y and 1y with errors
- h_t captures volatility of 3m and 5y

Macro

- FRED
- CPI inflation
- unemployment rate

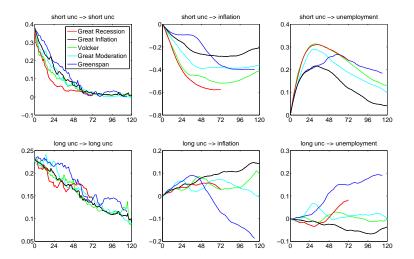
- 4 週 ト - 4 三 ト - 4 三 ト

Impulse responses



- ∢ ≣ →

Time-varying impulse responses



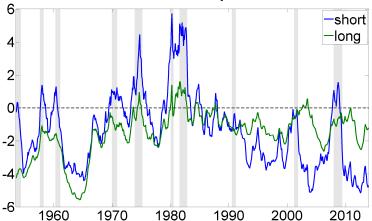
Drew Creal (Chicago) and Cynthia Wu (Chicago & NBER)

19 / 29

3

(日) (同) (日) (日) (日)

Magnitude of uncertainty



uncertainty

Drew Creal (Chicago) and Cynthia Wu (Chicago & NBER)

20 / 29

(人間) トイヨト イヨト

Uncertainty and recession

$$h_{jt} = \alpha + \beta \mathbb{1}_{recession,t} + u_{jt}$$

- Coeff: 2.3 for short term; 0.6 for long term
- *p*-values: 0 for both

3

・ロト ・四ト ・ヨト・

Economic implication

Yield curve fitting

Model specification

- ► *M* = 0, 2
- ► G = 3
- ► *H* = 0, 1, 2, 3

æ

イロト イヨト イヨト イヨト

0.5

1960

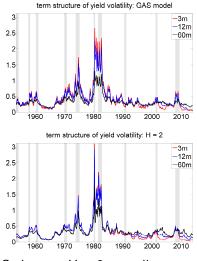
1970

1980

< 🗇 🕨

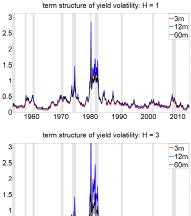
1990

Yield volatilities: how many factors?



BIC chooses H = 2 as well.

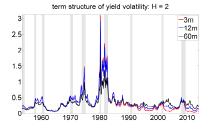
Drew Creal (Chicago) and Cynthia Wu (Chicago & NBER)

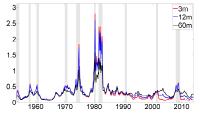


2010

2000

Yield volatilities: adding macro variables





(日) (同) (三) (三)

Cross section of yields

Table : measurement errors (bp)

		\mathbb{H}_1	\mathbb{H}_2	\mathbb{H}_3	macro
1m	0.2524	0.9917	1.0170	1.0539	1.0059
3m	0.1283	0.7155	0.6539	0.6196	0.7007
12m	0.1262	0.7726	0.7599	0.7583	0.7995
24m	0.0941	1.0499	0.9904	0.9586	0.9894
36m	0.0781	0.9577	0.8912	0.8489	0.8822
48m	0.1070	0.9103	0.8748	0.8598	0.8804
60m	0.0841	0.9382	0.8644	0.8728	0.9298

æ

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

Conclusion

We propose a new model

- study the effect of monetary policy uncertainty on macro variables
- uncertainty enters both the first and second moments
- the model has multiple volatility factors
- volatility factors evolve separately from yield factors

We find

- > 2 volatility factors capture the cross section of yield volatility
- increases in either of them lead higher unemployment rates
- but they interact with inflation in opposite directions.

- 4 目 ト - 4 日 ト - 4 日 ト

Literature: topic

Uncertainty

- first moment
 - Uncertainty: Baker, Bloom, and Davis(2013), Jurado, Ludvigson, and Ng(2013), Bekaert, Hoerova, and Lo Duca(2013)
- second moment
 - SV in VAR: Cogley and Sargent (2001, 2005), and Primiceri(2005)

Term structure models

- Spanned model: Dai and Singleton(2000) and Duffee(2002)
 - does not fit yield volatility
- Unspanned model: Collin-Dufresne and Goldstein(2002), Collin-Dufresne, Goldstein and Jones(2009)
 - restrict yield fitting
 - only 1 volatility factor

ヘロン 人間 とくほと くほとう

Literature: method

Volatility in mean with different applications

- ► GARCH : Engle, Lilien, and Robins(1987) and Elder(2004)
- ► SV: Jo (2013)

Bayesian

Chib and Ergashev(2009) and Bauer(2014)

Back

3

소리가 소문가 소문가 소문가 ...

Stochastic discount factor

Pricing equation I

$$P_t^n = \mathbb{E}_t^{\mathbb{Q}} \left[\exp\left(-r_t\right) P_{t+1}^{n-1} \right]$$

Pricing equation II

$$P_t^n = \mathbb{E}_t \left[\mathcal{M}_{t+1} P_{t+1}^{n-1} \right].$$

Pricing kernel

$$\mathcal{M}_{t+1} = \frac{\exp\left(-r_{t}\right) \rho^{\mathbb{Q}}\left(g_{t+1}|\mathcal{I}_{t};\theta\right)}{\rho\left(g_{t+1}|\mathcal{I}_{t};\theta\right)}$$

▶ Back

29 / 29

イロン イヨン イヨン イヨン