Understanding the Great Recession

Lawrence Christiano Martin Eichenbaum Mathias Trabandt

Conference in honor of Jim Hamilton, Federal Reserve Bank of San Francisco, 2014

Background

- GDP appears to have suffered a permanent (10%?) fall since 2008.
- Trend decline in labor force participation accelerated after the 'end' of the recession in 2009.
- Unemployment rate persistently high
 - recent fall primarily reflects the fall in labor force participation.
- Employment to population ratio fell sharply with little evidence of recovery.
- Vacancies have risen, but unemployment has fallen relatively little ('shift in Beveridge curve', 'mismatch').
- Investment and consumption persistently low.

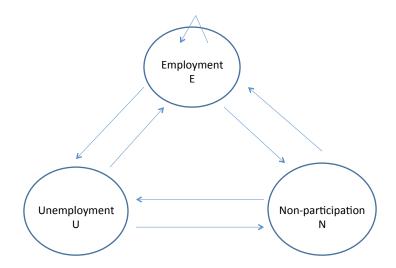
Questions

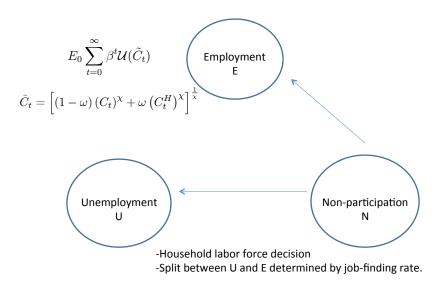
• What were the key forces driving U.S. economy during the Great Recession?

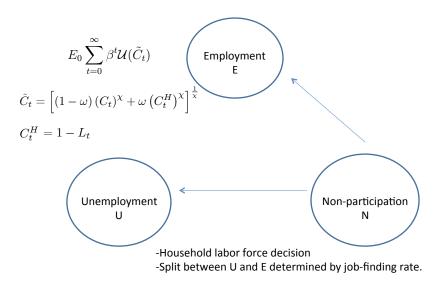
• Mismatch in the labor market?

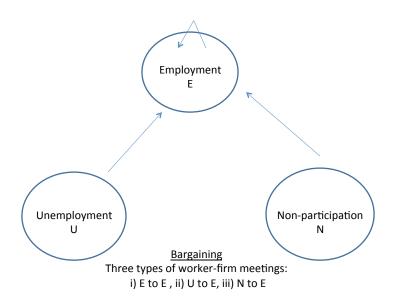
• Why was the drop in inflation so moderate?

To answer our questions we need a model


- Model must provide empirically plausible account of key macroeconomic aggregates
 - employment, vacancies, labor force participation, job finding rate, unemployment rate, real wages
 - output, consumption, investment, ...
- Novel features of labor market
 - Endogenize labor force participation.
 - Derive wage inertia as an equilibrium outcome.
- Estimate model using pre-2008 data.
- Use estimated model to analyze post-2008 data.


Questions and Answers

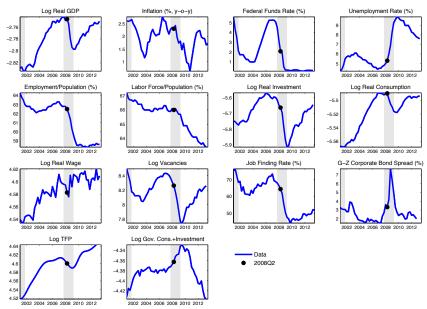

- What forces drove real quantities in the Great Recession?
 - Shocks to financial markets key drivers, even for variables like labor force participation.
 - Government shocks not important: because of size and timing (consistent with ZLB literature).
- Mismatch in the labor market?
 - Not a first order feature of the Great Recession.
 - We account for 'shift' in the Beveridge curve without resorting to structural shifts in the labor market.


Questions and Answers

- Why was the drop in inflation so moderate?
 - Prolonged slowdown in TFP growth during the Great Recession.
 - Rise in cost of firms' working capital as measured by spread between corporate-borrowing rate and risk-free interest rate.
 - Both forces exert countervailing pressure on inflation.

Modified version of Hall-Milgrom

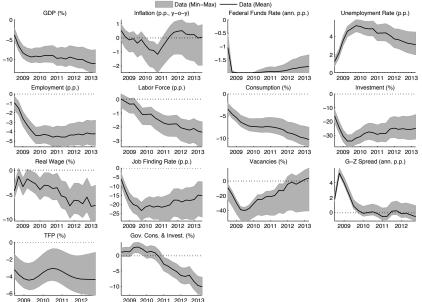
- Firms pay a fixed cost to meet a worker (must post vacancies, but these are costless).
- Then, workers and firms engage in alternating-offer bargaining.
 - Better off reaching agreement than parting ways.
 - Disagreement leads to continued negotiations.
- If bargaining costs don't depend too sensitively on state of economy, neither will wages.
 - firms suffer cost, $\gamma,$ when they reject an offer by the worker and make a counteroffer.
 - bargaining costs *somewhat* sensitive to state of business cycle:
 - protracted negotiations mean lost output/wages.
 - rejection of an offer risks, with probability δ , that negotiations break down completely.
- After expansionary shock, rise in wages is relatively small.


Estimated Medium-Sized DSGE Model

- Standard empirical NK model (e.g., CEE, ACEL, SW):
 - Calvo price setting frictions, but no indexation.
 - Habit persistence.
 - Variable capital utilization.
 - Working capital.
 - Adjustment costs: investment, labor force.
 - Taylor rule.
- Our labor market structure.
- Estimation strategy: Bayesian impulse response matching.
 - Shocks to monetary policy, neutral and investment-specific technology.
 - Our model performs well relative to this metric.

Estimated Parameters, Pre-2008 Data

- Estimation by impulse response matching, Bayesian methods.
- Prices change on average every 4 quarters.
- δ : roughly 0.1% chance of a breakup after rejection.
- γ : cost to firm of preparing counteroffer roughly 0.6 times one day's production.
- Posterior mode of hiring cost: 0.5% of GDP; replacement ratio: 30% of wage.
- Elasticity of substitution between home and market goods: 3.
 set a priori, see Aguiar-Hurst-Karabarbounis (2012).


The U.S. Great Recession

Quantifying the Great Recession

- Want a quantitative characterization of the Great Recession
 - the part of the post-2008 data that did not simply involve an unwinding of pre-2008 forces.
 - we seek to understand the difference between what *would have* happened absent Great Recession shocks and *what did happen*.
 - want the procedure to be as simple and transparent as possible.
- For each variable, we fit a linear trend from date x to 2008Q2, where $x \in \{1985Q1; 2003Q1\}$.
- We extrapolate the resulting trend lines for each variable from 2008Q3 to 2013Q2.
- We calculate the *target gaps* as the differences between the projected values of each variable and its actual value.

U.S. Great Recession: Target Gap Ranges

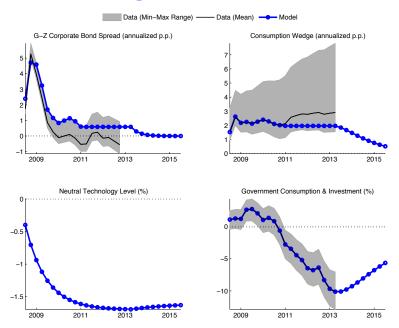
2009 2010 2011 2012

Two Financial Market Shocks

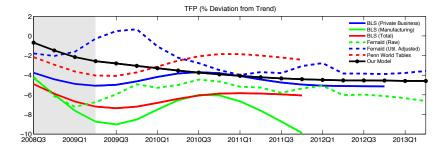
• Consumption wedge, Δ_t^b : Shock to demand for safe assets ('Flight to safety', see e.g. Fisher 2014):

$$1 = (1 + \Delta_t^b) E_t m_{t+1} R_t / \pi_{t+1}$$

Financial wedge, Δ_t^k: Reduced form of 'risk shock', Christiano-Davis (2006), Christiano-Motto-Rostagno (2014):


$$1 = (1 - \tilde{\Delta}_t^k) E_t m_{t+1} R_{t+1}^k / \pi_{t+1}$$

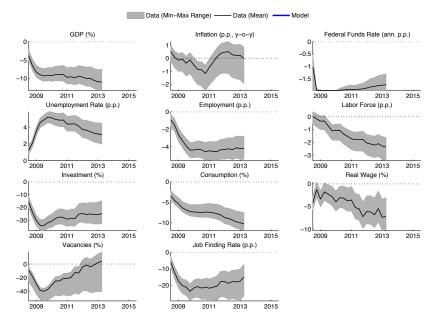
- Financial wedge also applies to working capital loans:
 - Interest charge on working capital: $R_t \left(1 + \hat{\Delta}_t^k\right)$
 - Estimated share of labor inputs financed with loans: 0.56.
 - Higher financial wedge directly increases cost to firms.


Measurement of Shocks

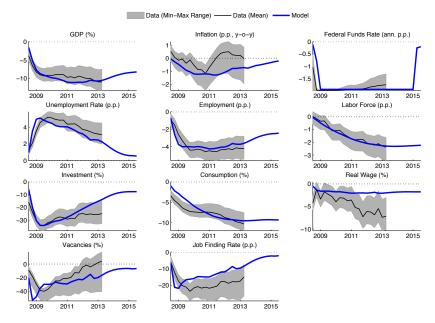
- Financial wedge, $\tilde{\Delta}_t^k$, measured using GZ spread data.
- **2** Consumption wedge, Δ_t^b , measured using the Euler equation for the risk-free asset and $E_t \pi_{t+1}$ and R_t data.
- **3** Neutral technology shock based on *TFP* data.
- **4** Government shock measured using G data.
- Stochastic simulation starting 2008Q3 (nonlinear model, no perfect foresight).

Exogenous Processes

Assessing model's implication for TFP


Monetary Policy in the Great Recession

• From 2008Q3 to 2011Q2:

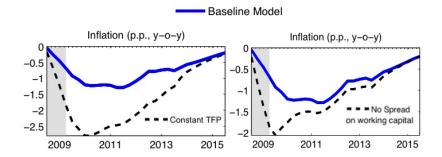

- Taylor-type feedback rule subject to the ZLB.

- After 2011Q2: 'forward guidance'
 - following 1 year transition, 'Evans rule'
 - keep funds rate at zero until either unemployment falls below 6.5% or inflation rises above 2.5%.

The U.S. Great Recession: Data vs. Model

The U.S. Great Recession: Data vs. Model

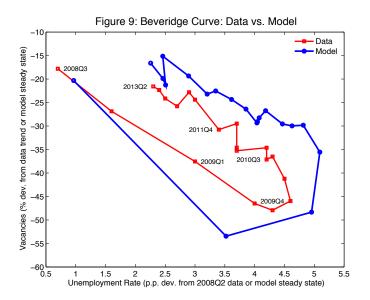
Decomposing What Happened into Shocks


- Our shocks roughly reproduce the actual data.
- We investigate the effect of a shock by shutting it off.
 - Resulting decomposition is not additive because of nonlinearity.
- Results:
 - *Financial wedge* accounts for the biggest effects on real quantitites.
 - Consumption wedge less important than financial wedge.
 - Government spending relatively small role.
 - TFP plays an important role in preventing drop in inflation.

Phillips Curve

- Widespread skepticism that NK model can account for modest decline in inflation during the Great Recession.
- One response: Phillips curve got flat or always was very flat (e.g. Christiano, Eichenbaum and Rebelo, 2011).
- Alternative: standard Phillips curve misses sharp rise in costs
 - Unusually high cost of credit to finance working capital.
 - Fall in TFP.

 \Rightarrow Both raise countervailing pressure on inflation.


Decomposition for Inflation

Beveridge Curve

- Much attention focused on 'sharp' rise in vacancies and relatively small fall in unemployment
 - It is argued that 'fish hook' shape is evidence of a 'shift' in matching function.
 - Argument based on assumption that unemployment is at steady state – misleading in the context of the Great Recession.
- In our model, no shift occurs in the matching technology.
 - Still, our model accounts for the 'fish hook' shape of the Beveridge curve.

The Beveridge Curve: Data vs. Model

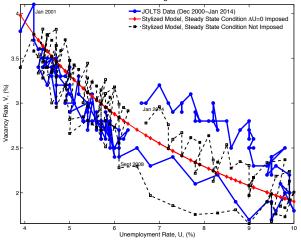
Model Predicts Fish Hook, Why?

• Simplest DMP style model

$$U_{t+1} - U_t = (1 - \rho)(1 - U_t) - f_t U_t$$

solving for f_t :

$$f_t = (1-\rho)\frac{(1-U_t)}{U_t} - \frac{U_{t+1} - U_t}{U_t} \stackrel{\text{matching function}}{\longleftarrow} \sigma_t (\frac{V_t}{U_t})^{\alpha}$$


solving for V_t :

 $V_t = \begin{bmatrix} (1-\rho)\frac{(1-U_t)}{\sigma_t U_t^{1-\alpha}} - & \underbrace{\frac{U_{t+1}-U_t}{\sigma_t U_t^{1-\alpha}}} \end{bmatrix}^{1/\alpha}$

• Naturally implies a 'fish hook' pattern (Pissarides).

Magnitude of Fish Hook in DMP Model

U.S. Beveridge Curve

 $(
ho=0.97, lpha=0.6, \sigma=0.84, ext{ monthly})$

Conclusion

- Bulk of movements in economic activity during the Great Recession due to financial frictions interacting with the ZLB.
 - ZLB has caused negative spending shocks to push the economy into a prolonged recession.
- Findings based on looking through lens of a NK model:
 - firms face moderate degrees of price rigidities,
 - no sticky wages.
 - endogenous labor force participation, standard labor market variables.
- No (or little) evidence for 'mismatch' in labor market.
- Modest fall in inflation is not a puzzle once fall in TFP and risky working capital channel are taken into account.