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Abstract

We demonstrate the equivalence between a commonly used out-of-sample test of equal

predictive accuracy and the difference between two Wald statistics. This equivalence greatly

simplifies the computational burden of calculating recursive out-of-sample tests and evalu-

ating their critical values. Next, we show that the limit distribution, which has previously

been expressed through stochastic integrals, has a simple representation in terms of χ2-

distributed random variables and we derive the density of the limit distribution. We also

generalize the limit theory to cover local alternatives and characterize the power properties

of the test. Our results shed new light on the test and establish certain weaknesses associ-

ated with using out-of-sample forecast comparison tests to conduct inference about nested

regression models.
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1 Introduction

Out-of-sample tests of predictive accuracy are used extensively throughout economics and fi-

nance and are regarded by many researchers as the “ultimate test of a forecasting model” (Stock

and Watson (2007, p. 571)). Such tests are frequently undertaken using the approach of West

(1996), McCracken (2007) and Clark and McCracken (2001, 2005) which accounts for the effect

of recursive updating in parameter estimates. This approach can be used to test the null of

equal predictive accuracy of two nested regression models evaluated at the probability limits

of the estimated parameters and gives rise to a test statistic whose limiting distribution (and,

hence, critical values) depends on integrals of Brownian motion. The test is burdensome to

compute and depends on nuisance parameters such as the relative size of the initial estimation

sample versus the out-of-sample evaluation period.

This paper shows that a recursively generated out-of-sample test of equal predictive accuracy

is equivalent to the difference between two simple Wald statistics based on the full sample

and the initial estimation sample, respectively. Our result has four important implications.

First, it greatly simplifies calculation of the critical values of the test statistic which has so far

relied on numerical approximation to integrals of Brownian motion but now reduces to simple

convolutions of chi-squared random variables. Second, our result simplifies computation of the

test statistic itself which no longer requires recursively updated parameter estimates. Third,

we greatly simplify the expressions of the asymptotic distribution and derive new results that

cover local alternatives, thus shedding light on the power properties of the test. Fourth, our

result provides a new interpretation of out-of-sample tests of equal predictive accuracy which

we show are equivalent to simple parametric hypotheses and so could be tested with greater

power using conventional test procedures.

2 Theory

Consider the predictive regression model for an h-period forecast horizon

yt = β′1X1,t−h + β′2X2,t−h + εt, t = 1, . . . , n (1)

where X1t ∈ R
k and X2t ∈ R

q. Also, define Xt = (X ′
1,t, X

′
2,t)

′ and β = (β′1, β′2)′.

To avoid “look-ahead” biases, out-of-sample forecasts generated by the regression model

(1) are commonly based on recursively estimated parameter values. This can be done by

1



regressing ys onXs−h = (X ′
1,s−h, X

′
2,s−h)

′, for s = 1, . . . , t, resulting in the least squares estimate

β̂t = (β̂′1t, β̂′2t)′, and using ŷt+h|t(β̂t) = β̂′1tX1t + β̂′2tX2t to forecast yt+h. The resulting forecast

can be compared to that of a smaller (nested) regression model,

yt = δ′X1,t−h + ηt,

whose forecasts are given by ỹt+h|t(δ̂t) = δ̂′tX1t, where δ̂t =
(∑t

s=1X1,s−hX
′
1,s−h

)−1∑t
s=1X1,s−hys.

1

West (1996) proposed to judge the merits of a prediction model through its expected loss

evaluated at the population parameters. Under mean squared error (MSE) loss, this suggests

testing2

H0 : E[yt − ŷt|t−h(β)]
2 = E[yt − ỹt|t−h(δ)]

2. (2)

McCracken (2007) considered a test of this null based on the test statistic

Tn =

∑n
t=nρ+1(yt − ỹt|t−h(δ̂t−h))

2 − (yt − ŷt|t−h(β̂t−h))
2

σ̂2ε
, (3)

where σ̂2ε is a consistent estimator of σ2ε = var(εt+h) and nρ is the number of observations

set aside for the initial estimation of β. This is taken to be a fraction ρ ∈ (0, 1) of the full

sample, n, i.e., nρ = �nρ�. Assuming homoskedastic forecast errors and h = 1, McCracken

(2007) showed that the asymptotic distribution of Tn is given as a convolution of q independent

random variables, each with a distribution of 2
´ 1
ρ u

−1B(u)dB(u)−´ 1ρ u−2B(u)2du. Results for

the case with h > 1 and heteroskedastic errors were derived in Clark and McCracken (2005).

We will show that the test statistic, Tn, amounts to taking the difference between two Wald

statistics, both testing the same null H0 : β2 = 0, but based on the full sample versus the initial

estimation sample, respectively. To prove this result, we make an assumption which ensures

that the least squares estimators and related objects converge at conventional rates in a uniform

sense. For any matrix (including vectors and scalars) we use the notation ‖A‖ = maxi,j |Aij |.

Assumption 1. For some positive definite matrix, Σ, we have

sup
u∈[0,1]

∥∥∥∥∥∥n−1

�nu�∑
t=1

Xt−hX
′
t−h − uΣ

∥∥∥∥∥∥ = op(1), (4)

1We assume that the initial values X−1, . . . , X−h+1 are observed.
2Another approach considers E[yt − ŷt|t−h(β̂t−h)]

2, which typically depends on t, see Giacomini and White
(2006).

2



sup
u∈[0,1]

∥∥∥∥∥∥
�nu�∑
t=1

X1,t−hηt

∥∥∥∥∥∥ = Op(n
1/2) and sup

u∈[0,1]

∥∥∥∥∥∥
�nu�∑
t=1

Xt−hεt

∥∥∥∥∥∥ = Op(n
1/2).

Assumption 1 ensures that recursive estimates satisfy that supt

∥∥∥β̂t−h − β
∥∥∥ and supt

∥∥∥δ̂t−h − δ
∥∥∥

are Op(n
−1/2), where the supremum is taken over t = nρ + 1, . . . , n.

For convenience we express Σ, implicitly defined by Assumption 1, as follows

Σ =

⎛
⎝ Σ11 •

Σ21 Σ22

⎞
⎠ ,

where the blocks in Σ refer to X1t and X2t, respectively. Define the auxiliary regression variable

Zt = X2t − Σ21Σ
−1
11 X1t,

which captures the part of X2t that is orthogonal to X1t, and note that Σzz = Σ22−Σ21Σ
−1
11 Σ12

is positive definite.

The autocovariances of {Zt−hεt} play an important role when h > 1. We make the following

assumption about these and the long-run variance of Zt−hεt.

Assumption 2. For some Γj ∈ R
q×q, j = 0, . . . , h− 1, we have

sup
u

∥∥∥∥∥∥ 1
n

�un�∑
t=1

Zt−hεtεt−jZ
′
t−h−j − uΓj

∥∥∥∥∥∥ = op(1),

where Ω =
∑h−1

j=−h+1 Γj, and Ω := plimn→∞
1
n

∑n
s,t=1 Zs−hεsεtZ

′
t−h is positive definite.

The last part of Assumption 2 imposes a type of unpredictability of the forecast errors

beyond the forecast horizon, h; this is easily tested by inspecting the autocorrelations of Zt−hεt.

The null hypothesis H0 in (2) is equivalent to H ′
0 : β2 = 0 which can be tested with

conventional tests. To this end, consider the Wald statistic based on the first m observations,

Wm = mβ̂′2m
[
σ̂2ε Σ̂

−1
zz

]−1
β̂2m,

where σ̂2ε and Σ̂zz are consistent estimators of σ2ε and Σzz, respectively. This statistic is based

on a “homoskedastic” estimator of the asymptotic variance, which causes the eigenvalues of

Ξ = σ−2
ε Σ−1

zz Ω, λ1, . . . , λq, to appear in the limit distribution. Specifically, Wm
d→ ∑q

i=1 λiχ
2
(1)
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under the null hypothesis; see, e.g., White (1994, theorem 8.10). The reason we focus on the

Wald statistic based on a “homoskedastic” variance estimator will be clear from our main result

which appears in the following theorem.

Theorem 1. Given Assumptions 1 and 2, the out-of-sample test statistic in (3) can be written

as

Tn =Wn −Wnρ + κ log ρ+ op(1),

where κ =
∑q

i=1 λi, in the following three cases: (i) β2 = 0 (null), (ii) β2 = n−1/2b (local

alternative), and (iii) β2 = b (fixed alternative) with k = 0, where b ∈ R
q/{0} is fixed. When

k > 0 and β2 = b, the remainder is Op(1).

Note that we have not assumed the underlying processes to be homoskedastic. The theorem

shows that Tn is related to the “homoskedastic” Wald statistics, regardless of the underlying

process being homoskedastic or not.

The complex out-of-sample test statistic for equal predictive accuracy, Tn, depends on

sequences of recursive estimates. It is surprising that this is equivalent to the difference between

two Wald statistics, one using the full sample, the other using the subsample t = 1, . . . , nρ.

The remainder term in Theorem 1 is op(1) except in the case where k > 0 and β2 =

b ∈ R
q/{0}. This may seem surprising but can be traced to a relationship between three

Wald statistics. Let W ′′ and W ′ denote the Wald statistics testing β = 0 vs β ∈ R
k+q and

β = 0 vs β1 ∈ R
k, β2 = 0, respectively, i.e., W ′′

m = σ̂−2
ε β̂′m

[∑m
t=1Xt−hX

′
t−h

]
β̂m and W ′

m =

σ̂−2
η δ̂′m

[∑m
t=1X1,t−hX

′
1,t−h

]
δ̂m. Under the null hypothesis (and local alternatives) it is well

known that W ′′ = W ′ +W + op(1), provided standard regularity conditions hold. However,

this identity does not hold under fixed alternatives unless k = 0, because k = 0 trivially implies

W ′′ =W . A more general, albeit less transparent, expression than that in Theorem 1 is stated

in the following result.

Theorem 2. Suppose that Assumption 1 holds while Assumption 2 holds for both Xt−hεt and

X1,t−hηt (in place of Zt−hεt), and let λ′′i , i = 1, . . . , k + q, and λ′j, j = 1, . . . , k, denote the

resulting eigenvalues. Further, suppose that (i) β2 = 0, (ii) β2 = n−1/2b, or (iii) β2 = b, with

b ∈ R
q/{0} fixed. Then the out-of-sample test statistic in (3) can be written as

Tn = (W ′′
n −W ′′

nρ
+ κ′′ log ρ)− σ2η

σ2ε
(W ′

n −W ′
nρ

+ κ′ log ρ) + op(1),

where κ′′ =
∑k+q

i=1 λ
′′
i and κ′ =

∑k
i=1 λ

′
i.
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Table 1: Finite Sample Correlation of Test Statistics (n = 200)

ρ π = 1−ρ
ρ DGP-1 DGP-2 DGP-3 DGP-4 DGP-5 DGP-6

0.833 0.2 0.962 0.972 0.959 0.954 0.969 0.955

0.714 0.4 0.975 0.980 0.971 0.963 0.971 0.956

0.625 0.6 0.977 0.979 0.975 0.960 0.973 0.943

0.556 0.8 0.979 0.98 0.977 0.955 0.971 0.947

0.500 1.0 0.980 0.978 0.975 0.96 0.969 0.941

0.455 1.2 0.980 0.976 0.975 0.954 0.967 0.935

0.417 1.4 0.979 0.974 0.976 0.954 0.962 0.934

0.385 1.6 0.978 0.973 0.974 0.948 0.959 0.936

0.357 1.8 0.977 0.973 0.975 0.948 0.959 0.926

0.333 2.0 0.975 0.972 0.975 0.948 0.958 0.927

Finite sample correlations between Tn and the expression based on Wald statistics in Theorem
1, for n = 200. The simulation design is based on Clark and McCracken (2005). DGP-1 and
DGP-2 assume i.i.d. (DGP-1) and serially correlated (DGP-2) processes with homoskedastic,
serially uncorrelated errors ; DGPs 3-4 assume heteroskedastic errors;, DGP-5 allows for serial
correlation in the errors, while DGP-6 allows for both serial correlation and heteroskedasticity
in the errors. The results are based on 10,000 replications. π = (1− ρ)/ρ is the notation used
in Clark and McCracken (2005).

The results in Theorems 1 and 2 are asymptotic in nature, but the relationship is very

reliable in finite samples, as is evident from the simulations reported in Table 1 and Figure

1. The former is based on just n = 200 observations and the latter is for n = 500. Thus the

correlations reported in Table 1 are for out-of-sample statistics that are based on sums with

as few as 67 terms. The simulations are computed using a design where the null hypothesis

holds, so that the remainder term is op(1). Correlations may be smaller under fixed alternatives

where the remainder term is Op(1), albeit in this case both Tn and Wn −Wnρ diverge at rate

n, thereby dominating the Op(1) term. For a general expression that is reliable under both the

null and alternative, one can instead use the expression of Theorem 2 that involves four Wald

statistics. Additional simulation results and details are available in an online appendix.

The equivalence between these test statistics holds without detailed distributional assump-

tions. This equivalence has interesting implications for the limit distributions which rely on the

following additional assumption that typically holds under standard regularity conditions used

in this literature, such as those in Hansen (1992) (mixing) or in De Jong and Davidson (2000)

(near-epoch).
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Figure 1: Q-Q plot for the Wald-based statistic against Tn, in a simulation study where n = 500
and ρ = 0.5. Small discrepancies are noted for small values of the test statistics, whereas the two
are almost indistinguishable for large realizations. The latter is the important region because
the test is rejected for large values of Tn. See the caption of Table 1 for a description of the
DGPs.
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Assumption 3.

Un(u) :=
1√
n

�un�∑
t=1

Zt−hεt ⇒ Ω1/2B(u) on D
q
[0,1],

where B(u) is a standard q-dimensional Brownian motion and D
q
[0,1] denotes the space of cadlag

mappings from the unit interval to R
q.

The relationship between Tn and Wald statistics implies that the existing expression for

the limit distribution of Tn can be greatly simplified and generalized to cover the case with

local alternatives. To this end we need to introduce Q, defined by Q′ΛQ = Ξ, Q′Q = I, where

Ξ = σ−2
ε Σ−1

zz Ω and Λ = diag(λ1, . . . , λq).

Theorem 3. Suppose that Assumptions 1-3 hold. Let β2 = cn−1/2b where σ−2
ε b′Σzzb = κ, and

c ∈ R. Define a = b′ΣzzΩ
1/2Q′ ∈ R

q. Then

Tn
d→

q∑
i=1

λi

[
2

ˆ 1

ρ
u−1Bi(u)dBi(u)−

ˆ 1

ρ
u−2B2

i (u)du+ (1− ρ)c2 + cai{Bi(1)−Bi(ρ)}
]
, (5)

where B = (B1, . . . , Bq)
′ is a standard q-dimensional Brownian motion. Moreover, the limit

distribution is identical to that of

q∑
i=1

λi
[
B2

i (1)− ρ−1B2
i (ρ) + log ρ+ (1− ρ)c2 + aic{Bi(1)−Bi(ρ)}

]
.

The contributions of Theorem 3 are twofold. First, the theorem establishes the asymptotic

distribution of Tn under local alternatives (c 
= 0), thereby generalizing the results in Clark

and McCracken (2005) who showed results for c = 0.3 Second, it simplifies the expression

of the limit distribution from one involving stochastic integrals to one involving (dependent)

χ2(1)-distributed random variables, B2
i (1) and ρ

−1B2
i (ρ). Below, we further simplify the limit

distribution under the null hypothesis to an expression involving differences of two independent

χ2-distributed random variables.

Theorem 4. Let B be a univariate standard Brownian motion. The distribution of 2
´ 1
ρ u

−1BdB−
´ 1
ρ u

−2B2du is identical to that of
√
1− ρ(Z2

1 − Z2
2 ) + log ρ, where Zi ∼ iidN(0, 1).

Theorems 3 and 4 show that the limit distribution of Tn/
√
1− ρ is invariant to ρ under the

null hypothesis, whereas the non-centrality parameter,
√
1− ρc2, and hence the power of the

3The expression in Clark and McCracken (2005) involves a q × q matrix of nuisance parameters. This was
simplified by Stock and Watson (2003) to that in (5) in the special case where c = 0.
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test, is decreasing in ρ. This property of the test might suggest choosing ρ as small as possible

to maximize power, although such a conclusion is unwarranted because the result relied on

ρ being strictly greater than zero, e.g., to ensure that
(
n−1

∑nρ

t=1Xt−hXt−h

)−1
is bounded in

probability and β̂t is well behaved. Still, the result shows that to obtain the same power for

ρ = 0.75 as one has with ρ = 0.25, one would need a 73% greater sample size.

Because the distribution is expressed in terms of two independent χ2-distributed random

variables, in the homoskedastic case where λ1 = · · · = λq = 1 it is possible to obtain relatively

simple closed-form expressions for the limit distribution of Tn:

Theorem 5. The density of
∑q

j=1

[
2
´ 1
ρ u

−1Bj(u)dBj(u)−
´ 1
ρ u

−2Bj(u)
2du

]
is given by

fq(x) =
1√

1− ρ2qΓ( q2)
2
e
−|x−q log ρ|

2
√
1−ρ

ˆ ∞

0

(
u(u+ |x−q log ρ|√

1−ρ
)
)q/2−1

e−udu.

For q = 1 and q = 2 the expression simplifies to

f1(x) =
1

2π
√
1−ρ

K0(
|x−log ρ|
2
√
1−ρ

) and f2(x) =
1

4
√
1−ρ

exp
(
− |x−2 log ρ|

2
√
1−ρ

)
,

respectively, where K0(x) =
´∞
0

cos(xt)√
1+t2

dt is the modified Bessel function of the second kind.

So in the case q = 2, the limit distribution is simply the non-central Laplace distribution.

The density for q = 1 is also readily available, since K0(x) is implemented in standard software.

3 Conclusion

We show that a test statistic that is widely used for out-of-sample forecast comparisons of

nested regression models is equal in probability to the difference between two Wald statistics of

the same null - one using the full sample and one using a subsample. This equivalence greatly

simplifies both the computation of the test statistic and the expression for its limit distribution.

In fact, the limit distribution can be expressed as a difference between two independent χ2-

distributions, and convolutions thereof. We also establish local power properties of the test.

These show that the power of the test is decreasing in the sample split point, ρ.

These results raise serious questions about testing the stated null hypothesis out-of-sample

in this manner. Subtracting a subsample Wald statistic from the full sample Wald statistic

dilutes the power of the test and does not lead to any obvious advantages, such as robustness

to outliers. Moreover, the test statistic, Tn, is not robust to heteroskedasticity, which causes
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nuisance parameters to show up in its limit distribution. In contrast, the conventional full

sample Wald test can easily be adapted to the heteroskedastic case by using a robust estimator

for the asymptotic variance of β̂2,n.

On a constructive note, one could use the simplified expressions derived here to develop a

test that is robust to potential mining over the sample split, analogous to the results derived

in Rossi and Inoue (2012). In the present context, one can establish the weak convergence

Tn(u) ⇒ B(1)′ΛB(1) − u−1B(u)′ΛB(u) + κ log u on D
q
[ρ,ρ̄], with 0 < ρ < ρ̄ < 1, where Λ =

diag(λ1, . . . , λq), which can be used to construct a robust inference procedure.
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Appendix of Proofs

We first prove a number of auxiliary results. To simplify the exposition, we write
∑

t, supt , and supu

as short for
∑n

t=nρ+1, supnρ+1≤t≤n, and supu∈[ρ,1], respectively.

Lemma A.1. Given Assumption 2, we have

− 1
n

∑
t

n
t εtZ

′
t−hΣ

−1
zz Zt−h−jεt−j = γj log ρ+ op(1),

where γj = tr{Σ−1
zz Γj}.
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Proof. Let xt = εtZ
′
t−hΣ

−1
zz Zt−h−jεt−j = tr{Σ−1

zz Zt−hεtεt−jZ
′
t−h−j}, since Σzz is symmetric. It follows

by Assumption 2 that supu

∣∣∣ 1n ∑�un�
t=1 xt − uγj

∣∣∣ = op(1). To establish the result in the lemma, we construct

the subsamples, Sb = tb−1 + 1, . . . , tb, for b = 1, . . . , B, where tb = nρ + �bn−nρ

B �. It can be shown that

there exists a K, so that supb=1,...,B | ntb − n
tb−1

| ≤ K
B . Let ζn(u) =

1
n

∑�un�
t=1 xt − �un�

n γj , and consider

1
n

n∑
t=nρ+1

n
t (xt − γj) =

1
n

B∑
b=1

∑
t∈Sb

(nt − n
tb
)(xt − γj) +

1
n

B∑
b=1

n
tb

∑
t∈Sb

(xt − γj).

The absolute value of the first term is bounded by

B∑
b=1

sup
t∈Sb

|nt − n
tb
|
∣∣∣ζn( tbn )− ζn(

tb−1

n )
∣∣∣ ≤ 2B

K

B
sup

b=0,...,B

∣∣ζn( tbn )∣∣ = op(1),

whereas the second term equals

B∑
b=1

n
tb

[
ζn(

tb
n )− ζn(

tb−1

n )
]
= ζn(

n
n )−

[
n
tB

− n
tB−1

]
ζn(

tB−1

n )− · · · −
[
n
t2

− n
t1

]
ζn(

t1
n )− n

t1
ζn(

nρ

n ),

whose absolute value is bounded by

|ζn(nn )|+
B − 1

B
K sup

b=1,...,B−1

∣∣ζn( tbn )∣∣+ 1
ρ

∣∣ζn(nρ

n )
∣∣ ≤ 3K

ρ
sup
t
ζ( t

n ) = op(1).

This proves that 1
n

∑
t
n
t (εtZ

′
t−hΣ

−1
zz Zt−h−jεt−j−γj) = op(1). The result now follows from 1

n

∑n
t=nρ+1

n
t γj =

γj
´ 1
ρ
u−1du+ o(1) = γj log ρ+ o(1).

Lemma A.2. Suppose Ut = Ut−1+ut ∈ R
q and let M be a symmetric q× q matrix. Then 2U ′

t−1Mut =

U ′
tMUt − U ′

t−1MUt−1 − u′tMut.

Proof. U ′
t−1Mut = (Ut − ut)

′Mut = U ′
tM(Ut − Ut−1)− u′tMut equals

U ′
tMUt − (Ut−1 + ut)

′MUt−1 − u′tMut = U ′
tMUt − U ′

t−1MUt−1 − u′tMUt−1 − u′tMut.

Rearranging terms and using u′tMUt−1 = U ′
t−1Mut yields the result.

Lemma A.3. Suppose that Assumption 1 holds and let θ̂t =M−1
11,tM12,t and θ = Σ−1

11 Σ12, where Mij,t =

n−1
∑t

s=1Xi,sX
′
j,s, i, j = 1, 2. Then (i) supt

∥∥∥∑t
s=1X1,s−hZ

′
s−hβ2

∥∥∥ = Op(n
1/2), (ii) supt

∥∥∥β̂t−h − β
∥∥∥ =

Op(n
−1/2), (iii) if β2 
= 0, then supt

∥∥∥θ̂t−h − θ
∥∥∥ = Op(n

−1/2), while supt

∥∥∥θ̂t−h − θ
∥∥∥ = op(1) if β2 = 0,

and (iv)

sup
t

[
n1/2(β̂2,t−h − β2)− n

t Σ
−1
zz Un,t

]
= op(1),

where Un,t = n−1/2
∑t

s=1 Zs−hεs.

Proof. Since X1,t−hη
′
t = X1,t−h(Yt−X ′

1,t−hδ) = X1,t−h(Yt−X ′
1,t−hδ−Z ′

t−hβ2+Z
′
t−hβ2) = X1,t−h(εt+

10



Z ′
t−hβ2), (i) follows by Assumption 1 and (ii) follows directly from the same Assumption. Next,∑t
s=1X1,s−hX

′
2,s−h =

∑t
s=1X1,s−h(X

′
1,s−hθ + X ′

2,s−h − X ′
1,s−hθ) =

∑t
s=1X1,s−h(X

′
1,s−hθ + Z ′

s−h),

which implies

θ̂t−h − θ =

(
t∑

s=1

X1,s−hX
′
1,s−h

)−1 t∑
s=1

X1,s−hZ
′
s−h,

so that for β2 
= 0 (iii) follows by using (i) and Assumption 1, while for β2 = 0, (iii) follows directly

from Assumption 1. Finally, we establish (iv) by noting that, from Assumption 1,

sup
t

⎡
⎣(n−1

t∑
s=1

Ẑs−hẐ
′
s−h

)−1

− n
t Σ

−1
zz

⎤
⎦ = op(1).

Next, since Zt−h − Ẑt−h = X2,t−h − θ′X1,t−h − X2,t−h + θ̂′t−hX1,t−h = (θ̂t−h − θ)′X1,t−h so that

Ẑt−h = Zt−h − (θ̂t−h − θ)′X1,t−h, we have

n−1/2
t∑

s=1

Ẑs−hεs−h = Un,t − n−1/2
t∑

s=1

(θ̂s−h − θ)′X1,s−hεs−h,

where (as a consequence of (iii) and Assumption 1) we can conclude that the last term is op(1) even if

one takes the supremum over t = nρ + 1, . . . , n.

Define

ξ1,t = (δ̂t − δ)′X1,t,

ξ2,t = β′
2Zt,

ξ3,t = (β̂2,t − β2)
′Zt,

ξ4,t = β̂′
2,t(Zt − Ẑt),

where Ẑt = X2,t −M21,tM
−1
11,tX1,t.

In the following we simplify notations and write ỹt|t−h and ŷt|t−h in place of ỹt|t−h(δ̂t−h) and

ŷt|t−h(β̂t−h).

Lemma A.4. We have

yt+h − ỹt+h|t = εt+h,t − ξ1,t + ξ2,t and yt+h − ŷt+h|t = εt+h,t − ξ1,t − ξ3,t + ξ4,t,

so that

(yt+h − ỹt+h|t)2 − (yt+h − ŷt+h|t)2 = ξ22,t + 2ξ2,tεt+h,t + 2ξ3,tεt+h,t − ξ23,t

−2ξ4,tεt+h,t − 2ξ1,t(ξ2,t + ξ3,t − ξ4,t)− ξ24,t + 2ξ3,tξ4,t.(A.1)

11



Proof. First, write the forecast error from the smaller model as

yt − ỹt|t−h = yt − δ̂′t−hX1,t−h = yt − δ′X1,t−h − β2Zt−h − (δ̂1,t−h − δ)′X1,t−h + β2Zt−h

= εt,t−h − (δ̂1,t−h − δ)′X1,t−h + β′
2Zt−h = εt,t−h − ξ1,t−h + ξ2,t−h.

Next, write the forecast error from the large model as

yt − ŷt|t−h = yt − β̂′
1,t−hX1,t−h − β̂′

2,t−hX2,t−h = yt − β̃′
1,t−hX1,t−h − β̂′

2,t−hẐt,t−h

= yt − δ′X1,t−h − β′
2Zt−h − (δ̂t−h − δ)′X1,t−h − (β̂2,t−h − β2)

′Zt−h + β̂′
2,t−h(Zt−h − Ẑt,t−h)

= εt,t−h − ξ1,t−h − ξ3,t−h + ξ4,t−h.

Using these expressions, the difference between the squared forecast error takes the form

(yt − ỹt|t−h)
2 − (yt − ŷt|t−h)

2

= (εt,t−h − ξ1,t−h + ξ2,t−h)
2 − (εt,t−h − ξ1,t−h − ξ3,t−h + ξ4,t−h)

2

= ξ22,t−h + 2(εt,t−h − ξ1,t−h)(ξ2,t−h + ξ3,t−h − ξ4,t−h)− (ξ3,t−h − ξ4,t−h)
2

= ξ22,t−h + 2ξ2,t−hεt,t−h + 2ξ3,t−hεt,t−h − ξ23,t−h

−2ξ4,t−hεt,t−h − 2ξ1,t−h(ξ2,t−h + ξ3,t−h − ξ4,t−h)− ξ24,t−h + 2ξ3,t−hξ4,t−h

The lemma shows that the loss differential involves eight terms. We next derive results for these.

Lemma A.5. Let

A =
∑
t

ξ22,t−h =
∑
t

β′
2Zt−hZ

′
t−hβ2,

B =
∑
t

ξ2,t−hεt = β′
2

∑
t

Zt−hεt,

C =
∑
t

ξ3,t−hεt =
∑
t

(β̂2,t−h − β2)
′Zt−hεt,

D =
∑
t

ξ23,t−h =
∑
t

(β̂2,t−h − β2)
′Zt−hZ

′
t−h(β̂2,t−h − β2).

Then

A+ 2B + 2C −D = σ2
ε(Wn −Wnρ

+ κ log ρ) + op(1).

Proof. First consider D. From Lemma A.3 and Assumption 1 it follows that

sup
t

∣∣∣∣∣
∑
t

(β̂2,t−h − β2)
′ [Zt−hZ

′
t−h − Σzz

]
(β̂2,t−h − β2)

∣∣∣∣∣ = op(1),

12



so that

D =
1

n

n∑
t=nρ+1

(nt )
2(β̂2,t−h − β2)

′Σ−1
zz (β̂2,t−h − β2) + op(1) =

1

n

n∑
t=nρ+1

(nt )
2U ′

n,tΣ
−1
zz Un,t + op(1),

where we used Lemma A.3.iv. Next, define un,t = n−1/2Zt−hεt, and apply Lemma A.3.iv to establish

C =
n∑

t=nρ+1

n
t U

′
n,t−hΣ

−1
zz un,t + op(1)

=
n∑

t=nρ+1

n
t U

′
n,t−1Σ

−1
zz un,t −

n∑
t=nρ+1

n
t

h−1∑
i=1

u′n,t−iΣ
−1
zz un,t + op(1)

=
n∑

t=nρ+1

n
t U

′
n,t−1Σ

−1
zz un,t + ξ + op(1),

where ξ = (γ1 + · · ·+ γh−1) log ρ, using Assumption 2 and Lemma A.1.

Applying Lemma A.2 to 2U ′
n,t−1Σ

−1
zz un,t, we find

2C =

n∑
t=nρ+1

n
t (U

′
n,tΣ

−1
zz Un,t − U ′

n,t−1Σ
−1
zz Un,t−1 − u′n,tΣ

−1
zz un,t) + 2ξ + op(1)

= U ′
n,nΣ

−1
zz Un,n − n

nρ
U ′
n,nρ

Σ−1
zz Un,nρ +

1
n

n∑
t=nρ+1

(nt )
2U ′

n,tΣ
−1
zz Un,t + σ2

εκ log ρ+ op(1). (A.2)

Here we used σ−2
ε κ = tr{Σ−1

zz Ω} =
∑h−1

j=−h+1 tr{Σ−1
zz n

−1
∑

t Zt−h−jεt−jεtZ
′
t−h}+op(1) =

∑h−1
j=−h+1 γj+

op(1). The penultimate term in (A.2) offsets the contributions from −D, whereas A+ 2B equals

β′
2

n∑
t=1

Zt−hZ
′
t−hβ2 − β′

2

nρ∑
t=1

Zt−hZ
′
t−hβ2 + 2n1/2β′

2Un,n − 2n1/2β′
2Un,nρ

.

With Wm = σ̂−2
ε β̂′

2,m

[∑m
t=1 Zt−hZ

′
t−h

]
β̂2,m = σ̂−2

ε (β̂2,m − β2 + β2)
′ [∑m

t=1 Zt−hZ
′
t−h

]
(β̂2,m − β2 + β2),

we have

σ̂2
ε(Wn −Wnρ

) = U ′
n,nΣ

−1
zz Un,n − n

nρ
U ′
n,nρ

Σ−1
zz Un,nρ

+ op(1)

+β′
2

n∑
t=nρ+1

Zt−hZ
′
t−hβ2 + 2n1/2β′

2(Un,n − Un,nρ),

and the result now follows.
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Lemma A.6. Let

E =
∑
t

ξ4,t−hεt =
∑
t

β̂′
2,t−h(Zt−h − Ẑt−h)εt,

F =
∑
t

ξ1,t−h(ξ2,t−h + ξ3,t−h − ξ4,t−h) =
∑
t

(δ̂t−h − δ)′X1,t−hẐ
′
t−hβ̂2,t−h,

G =
∑
t

ξ24,t−h =
∑
t

β̂′
2,t−h(Zt−h − Ẑt−h)(Zt−h − Ẑt,t−h)

′β̂2,t−h,

H =
∑
t

ξ3,t−hξ4,t−h =
∑
t

(β̂2,t−h − β2)
′Zt−h(Zt−h − Ẑt−h)

′β̂2,t−h.

If β2 = n−1/2b (including the case β2 = 0) then E,F,G = op(1) and H = op(n
−1/2). If β2 = b with

b 
= 0 then E,F,G are Op(1), whereas H = Op(n
−1/2).

Proof. To simplify the notation, we write ≤o to mean inequality in terms of orders of probability. First

consider E. Recall that Zt−h − Ẑt−h = (θ̂t−h − θ)′X1,t−h, so that

∑
t

β̂′
2,t−h(Zt−h − Ẑt−h)εt =

∑
t

β̂′
2,t−h(θ̂t−h − θ)′X1,t−hεt.

The order of this expression can be determined from

β′
2

∑
t

(θ̂t−h − θ)′X1,t−hεt +
∑
t

(β̂2,t−h − β2)
′(θ̂t−h − θ)′X1,t−hεt.

If β2 
= 0, these two terms are β′
2Op(1) +Op(n

−1/2), while if β2 = 0 the first term vanishes whereas the

second term is op(1). Turning to F , we have

∑
t

(δ̂t−h − δ)′X1,t−hẐ
′
t−hβ̂2,t−h =

∑
t

(δ̂t−h − δ)′X1,t−hẐ
′
t−hβ2 +

∑
t

(δ̂t−h − δ)′X1,t−hẐ
′
t−h(β̂2,t−h − β2)

≤o sup
t

∣∣∣δ̂t−h − δ
∣∣∣′ ∑

t

X1,t−hZ
′
t−hβ2

− sup
t

∣∣∣δ̂t−h − δ
∣∣∣′ ∑

t

X1,t−hX
′
1,t−h(θ̂t−h − θ)β2

+sup
t

∣∣∣δ̂t−h − δ
∣∣∣′ ∑

t

X1,t−hZ
′
t−h(β̂2,t−h − β2)

− sup
t

∣∣∣δ̂t−h − δ
∣∣∣′ ∑

t

X1,t−hX
′
1,t−h(θ̂t−h − θ)(β̂2,t−h − β2)

≤o Op(1)β2 +Op(1)β2 +Op(n
−1/2) + op(1).
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Similarly, for G we have

∑
t

β̂′
2,t−h(Zt−h − Ẑt−h)(Zt−h − Ẑt−h)

′β̂2,t−h =
∑
t

β̂′
2,t−h(θ̂t−h − θ)′X1,t−hX

′
1,t−h(θ̂t−h − θ)β̂2,t−h

≤o β′
2 sup

t

∣∣∣θ̂t−h − θ
∣∣∣′ ∑

t

X1,t−hX
′
1,t−h sup

t

∣∣∣θ̂t−h − θ
∣∣∣β2

+2β′
2 sup

t

∣∣∣θ̂t−h − θ
∣∣∣′ ∑

t

X1,t−hX
′
1,t−h

× sup
t

∣∣∣θ̂t−h − θ
∣∣∣ sup

t

∣∣∣β̂2,t−h − β2

∣∣∣
+sup

t

∣∣∣β̂2,t−h − β2

∣∣∣′ sup
t

∣∣∣θ̂t−h − θ
∣∣∣′ ∑

t

X1,t−hX
′
1,t−h

× sup
t

∣∣∣θ̂t−h − θ
∣∣∣ sup

t

∣∣∣β̂2,t−h − β2

∣∣∣
= β′

2Op(1)β2 + 2β′
2Op(n

−1/2) + op(1).

Finally, for H we observe

∑
t

(β̂2,t−h − β2)
′Zt−h(Zt−h − Ẑt−h)

′β̂2,t−h ≤o sup
t

∣∣∣β̂2,t−h − β2

∣∣∣′ ∑
t

Zt−hX
′
1,t−h sup

t

∣∣∣θ̂t−h − θ
∣∣∣β2

+sup
t

∣∣∣β̂2,t−h − β2

∣∣∣′ ∑
t

Zt−hX
′
1,t−h sup

t

∣∣∣θ̂t−h − θ
∣∣∣

× sup
t

∣∣∣β̂2,t−h − β2

∣∣∣
= Op(n

−1/2)β2 + op(n
−1/2).

Proof of Theorem 1. From Lemma A.4 it follows that

Tn =
A+ 2B + 2C −D − 2E − 2F −G+ 2H

σ̂2
ε

.

The theorem now follows by combining the results in Lemmas A.5 and A.6, where the Op(1) term that

arises when k > 0 and β2 = b 
= 0 stems from E, F , and G. �

Proof of Theorem 2. First, note that

(yt − ỹt|t−h)
2 − (yt − ŷt|t−h)

2 =
{
y2t − (yt − ŷt|t−h)

2
}− {

y2t − (yt − ỹt|t−h)
2
}
,

where y2t can be viewed as the squared prediction error from an auxiliary prediction model that always

predicts yt to be zero. We proceed by summing over t = nρ+1, . . . , n, and apply Lemma A.5 separately

to the two sums. Specifically, it follows that

∑
t

{
y2t − (yt − ŷt|t−h)

2
}
= A′′ + 2B′′ + 2C ′′ −D′′,
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where A′′ =
∑

t β
′Xt−hX

′
t−hβ, B

′′ = β′ ∑
tXt−hεt, etc. and the corresponding E′′, F ′′, G′′, and

H ′′ terms are all zero since there are no parameters to estimate in the smallest prediction model.

It follows directly from Lemma A.5 that the sum equals σ2
ε

{
W ′′

n −W ′′
nρ

+ κ′′ log ρ
}
+ op(1), where

κ′′ =
∑k+q

i=1 λ
′′
i , with λ′′i being the eigenvalues of σ−2

ε Σ−1Ω′′ and Ω′′ =
∑h−1

j=−h+1 Γ
′′
j , with Γ′′

j =

plimn→∞
1
n

∑n
t=1Xt−hεtεt−jX

′
t−h−j . Similarly, the sum over y2t − (yt − ỹt|t−h)

2 equals σ2
η{W ′

n −W ′
nρ

+

κ′ log ρ}+ op(1), where we note that σ2
η > σ2

ε unless β2 = 0, and κ′ =
∑k

i=1 λ
′
i, with λ

′
i being the eigen-

values of σ−2
η Σ−1

11 Ω
′ and Ω′ =

∑h−1
j=−h+1 Γ

′
j , with Γ′

j = plimn→∞
1
n

∑n
t=1X1,t−hηtηt−jX

′
1,t−h−j . This

completes the proof. �

Proof of Theorem 3. We establish the result by showing that the two expressions for the limit

distribution are identical. Then we derive the limit distribution for the difference between the two Wald

statistics and use their relation with Tn.

Consider F (u) = 1
uB

2(u)− log u (for u > 0). By Ito stochastic calculus:

dF = ∂F
∂BdB +

[
∂F
∂u + 1

2
∂2F
(∂B)2

]
du = 2

uBdB − 1
u2B

2du,

so
´ 1
ρ

2
uBdB − ´ 1

ρ
1
u2B

2du =
´ 1
ρ
dF (u) equals F (1)− F (ρ) = B2(1)− log 1−B2(ρ)/ρ+ log ρ.

Next, consider Wn −Wnρ
. Under Assumption 3, we have Un,�un� = n−1/2

∑�un�
t=1 Zt−hεt ⇒ U(u) =

Ω1/2B(u), so that

Wn −Wnρ = σ̂−2
ε [U ′

n,nΣ
−1
zz Un,n − n

nρ
U ′
n,nρ

Σ−1
zz Un,nρ ]

+σ̂−2
ε [β′

2

n∑
t=nρ+1

Zt−hZ
′
t−hβ2 + 2cn1/2β′

2(Un,n − Un,nρ
)] + op(1),

= B(1)′ΞB(1)− ρ−1B(ρ)′ΞB(ρ)

+(1− ρ)c2σ−2
ε b′Σzzb+ 2cσ−2

ε b′Ω1/2[B(1)−B(ρ)] + op(1).

Now define B̃(u) = QB(u), another q-dimensional standard Brownian motion, and use that σ−2
ε b′Σzzb =

κ to arrive at

B̃(1)′ΛB̃(1)− ρ−1B̃(ρ)′ΛB̃(ρ) + (1− ρ)c2κ+ 2σ−2
ε b′Ω1/2Q′[B̃(1)− B̃(ρ)]

=

q∑
i=1

λi

[
B̃2

i (1)− ρ−1B̃2
i (ρ) + (1− ρ)c2 + 2ai[B̃(1)− B̃(ρ)]

]
,

where we used that σ−2
ε b′Ω1/2Q′ = b′ΣzzΩ

1/2σ−2
ε Ω1/2Σ−1

zz Ω
1/2Q′ = b′ΣzzΩ

1/2ΞQ′ = b′ΣzzΩ
1/2Q′Λ =

(a1λ1, . . . , aqλq). Since B̃ and B are identically distributed, the limit distribution may be expressed in

terms of B instead of B̃. �

Proof of Theorem 4. Let B(u) be a standard one-dimensional Brownian motion and define U =

B(1)−B(ρ)√
1−ρ

and V = B(ρ)√
ρ , so that B(1) =

√
1− ρU +

√
ρV . Note that U and V are independent standard
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Gaussian random variables. Express the random variable B2(1)−B2(ρ)/ρ as a quadratic form:

(√
1− ρU +

√
ρV

)2

− V 2 =

⎛
⎝ U

V

⎞
⎠

′ ⎛
⎝ 1− ρ

√
ρ(1− ρ)√

ρ(1− ρ) ρ− 1

⎞
⎠

⎛
⎝ U

V

⎞
⎠ ,

and decompose the 2 × 2 symmetric matrix into Q′ΛQ, where Λ = diag(
√
1− ρ,−√

1− ρ) (the eigen-

values) and

Q =
1√
2

⎛
⎝ √

1 +
√
1− ρ

√
1−√

1− ρ

−
√

1−√
1− ρ

√
1 +

√
1− ρ

⎞
⎠ ,

so that Q′Q = I. Then the expression simplifies to
√
1− ρ(Z2

1 −Z2
2 ) where Z = Q(U, V )′ ∼ N2(0, I). �

Proof of Theorem 5. Let Z1i,Z2i, i = 1, . . . , q be i.i.d. N(0, 1), so that X =
∑q

i=1 Z
2
1,i and Y =∑q

i=1 Z
2
2,i are both χ2

q-distributed and independent. The distribution is given by the convolution

q∑
i=1

[√
1− ρ(Z2

1,i − Z2
2,i) + log ρ

]
=

√
1− ρ(X − Y ) + q log ρ.

To derive the distribution of S = X − Y , where X and Y are independent χ2
q-distributed random

variables, note that the density of a χ2
q is

ψq(u) = 1{u≥0}
1

2q/2Γ( q2 )
uq/2−1e−u/2.

We are interested in the convolution of X and −Y whose density is given by

fq(s) =

ˆ
1{u≥0}ψq(u)1{u−s≥0}ψq(u− s)du =

ˆ ∞

0∨s

ψq(u)ψq(u− s)du,

=

ˆ ∞

0∨s

1

2q/2Γ( q2 )
uq/2−1e−u/2 1

2q/2Γ( q2 )
(u− s)q/2−1e−(u−s)/2du

=
1

2qΓ( q2 )Γ(
q
2 )
es/2
ˆ ∞

0∨s

(u(u− s))
q/2−1

e−udu.

For s < 0 the density is 2−qΓ( q2 )
−2es/2

´∞
0

(u(u− s))
q/2−1

e−udu. Using the symmetry about zero, we

arrive at the expression

fq(s) =
1

2qΓ( q2 )
2
e−|s|/2

ˆ ∞

0

(u(u+ |s|))q/2−1
e−udu.

When q = 1 this simplifies to f1(s) =
1
2πK0(

|s|
2 ), where Kk(x) denotes the modified Bessel function of the

second kind. For q = 2 the expression for the density reduces to the simpler expression, f2(s) =
1
4e

− |s|
2 ,

which is the density of the Laplace distribution with scale parameter 2. �
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