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Climate change is real and threatens human well-being. This has led to numerous national and 

international initiatives1 and legislation2 aiming at reducing emissions of carbon and other 

greenhouse gases in order to combat climate change. One of the most far-reaching initiatives is 

the 21st Conference of the Parties 2015 (COP21), which resulted in the “Paris Agreement”, 

signed by 195 nations, to limit global warming to below 2°C (United Nations, 2015). In other 

words, the world has agreed on the transition from a brown, high-carbon economy to a green, 

low-carbon economy.  

However, how fast this transition will be and which path it will take is uncertain. In the 

nearer term, changes in environmental-economic policy like the introduction or repeal of carbon 

taxes or Donald Trump’s support of carbon-intensive firms (Ramelli et al., 2018) affect the 

exposure of investors to the transition from a high-carbon economy to a low-carbon economy. 

Firms are also directly exposed to risks because of technological changes and advances in 

renewable energy sources leading to “stranded assets”. These risks are long-term and cannot be 

diversified away in mean-variance efficient portfolios. This new kind of risk includes all 

positive and negative impacts on firm values that arise from uncertainty in the transition process 

from a brown to a green economy, suggesting that all firms including brown firms and green 

firms are exposed to carbon risk. We refer to these political, technology, and regulatory risks 

simply as “carbon risks.” 

If carbon risk is a risk factor, meaning that it is behind the comovement of assets, it is 

possible to develop a factor-mimicking portfolio that isolates this exposure. We develop a 

carbon risk mimicking portfolio, the “Brown-Minus-Green portfolio” (BMG) and add it to 

common asset pricing models. BMG is long in “brown” firms that are likely negatively affected 

by an unexpected shift to a low-carbon economy and short in “green” firms that are likely 

postively affected by an unexpected shift to a low-carbon economy. Green firms’ equity prices 

will respond positively to unexpected changes towards a low-carbon economy, whereas brown 

firms’ equity prices will respond negatively. Both brown and green firms are exposed to 

changes in the transition making them per se risky. 

To construct BMG, we use detailed carbon and transition-related information for over 

1,600 globally listed firms filtered from four major ESG databases and categorize these firms 

                                                      
1 For example: EU Action Plan on Financing Sustainable Growth, Sustainable Development Goals (SDGs), 

Greenhouse Gas Protocol Corporate Accounting and Reporting Standards, Recommendations of the Task Force 

on Climate-related Financial Disclosures (TCFD). 
2 For example: Implementation of several cap and trade emission trading schemes, e.g. in the European Union, 

Canada, USA, or China, as well as national legislation, e.g. the French Energy Transition Law. 
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as brown or green using an annual “Brown-Green-Score” (BGS).3 The BGS is a composite 

measure of three indicators designed to separately capture the sensitivity of firms’ “value 

chains” (e.g., current emissions), of their “public perception” (e.g., response to perceived 

emissions), and of their “adaptability” (e.g., mitigation strategies) to carbon risk. Tests show 

that the BMG significantly increases the explanatory power of common asset pricing models 

and suggest that it is equally important in explaining variation in global equity prices as the size 

factor.4 The cumulative BMG portoflio returns are negative in the second half of our sample 

period meaning green firms are outperforming brown firms. This is consistent with casual 

observations that the focus on tackling climate change has increased over the past years; green 

firms that support these goals are likely to outperform brown firms that thwart them when the 

globe is looking for solutions. 

Our approach is the first to study carbon risk globally. One of the key problems associated 

with measuring carbon risk in equities is the lack of data for most firms. Our markets based 

approach uses the information aggregation power of financial markets to identify how firms are 

exposed to carbon risk. We estimate carbon betas, a proxy for carbon risk, for more than 39,000 

globally listed firms and show how they can be used by investors, portfolio managers, policy-

makers, and firms.  

We report average carbon betas by country and industry. Carbon betas are high and positive 

in countries like South Africa, Brazil, and Canada, which means they are likely negatively 

affected if the world speeds up the transition to a low-carbon economy. Contrarily, average 

carbon betas are negative in European countries and Japan. On industry level, tech firms have 

carbon betas near zero on average, while basic material and energy firms have the highest 

positive carbon betas as expected. There are, however, significant differences in carbon betas 

within industries suggesting that carbon risk is not simply a proxy for certain industries. 

We show that investors can achieve comparable expected returns and Sharpe ratios for their 

portfolios with similar exposures to other systematic risks, e.g., to the Fama and French (1993) 

factors, or to specific industries, while reducing carbon beta via “best-in-class” approaches. We 

also show that carbon risk is related to firm characteristics independent of their industry. Firms 

investing in innovation and clean technology, proxied by R&D expenditures, have lower carbon 

betas while firms with dirty or “stranded” assets, proxied by property, plant and equipment 

                                                      
3 The BGS was designed in cooperation with data providers, climate consultancies, NGOs, asset managers, and 

central banks in a series of workshops. See https://carima-project.de/en/. 
4 The factor will be made freely accessible so that financial market participants will be able to measure the carbon 

risk of their portfolio via the carbon beta and close the gap in measuring carbon risk in asset prices. 
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(PPE) assets, have higher carbon betas. Analyzing the carbon risk of the financial industry, we 

show that banks’ and other financial firms’ carbon risk is strongly related to the carbon risk of 

the domestic firms they are likely to finance. 

To develop an understanding of the mechanism driving carbon risk, we apply the 

decomposition methodology developed by Campbell (1991) and Campbell and Vuolteenaho 

(2004). We decompose the market betas of carbon beta sorted test portfolios into components 

related to cash-flow news and discount-rate news. According to the model, the systematic risk 

of carbon risk sensitive portfolios is predominantly driven by the fundamental cash flow 

component and not the discount rate component. 

As the transition from a high-carbon to a low-carbon economy is ongoing and uncertain, 

capital markets may not yet agree upon new equilibrium equity prices. In this context, Daniel 

et al. (2018) present a model in which climate uncertainty is resolved slowly over time leading 

to transition periods between equilibriums. Systematic return differences between brown and 

green firms may thus reflect ongoing re-evaluations of firm fundamentals rather than changing 

expectations regarding discount rates. Our results are consistent with Daniel et al. (2018) and 

suggest a transition between an old brown and a new green equilibrium. 

The remainder of the paper is structured as follows: Section 1 reviews the literature. Section 

2 describes our carbon risk measurement methodology. Section 3 presents the data. Section 4 

tests the relevance of BMG. Section 5 reports the carbon betas across countries and industries 

and provides practical applications of carbon betas and its implications for investors, analysts, 

and regulators. Section 6 analyzes the drivers of BMG and carbon beta portfolios via a risk 

decomposition approach. Section 7 concludes. 

1 Related literature on climate change in finance and economics 

The literature on the economic impacts of climate change can be broadly grouped into five 

strands of research focusing on the macroeconomic assessment of climate change, policy 

impacts, investor perspectives, physical risks, and equity pricing implications.  

Recent studies show how climate change affects an economy and is a general source of 

uncertainty for society (Stern, 2008; Weitzman, 2014; IPCC, 2018). Despite evidence of 

increases in extreme weather (e.g., Diffenbaugh et al., 2018) and on possible climate change 

scenarios (e.g., Rogelj et al., 2018), the transition path of the economy remains difficult to 

predict. Most models predict negative relationships between global warming and the global 

economy, see for instance Stern (2007) and Nordhaus (2013). Most models translate economic 
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activity into greenhouse gas emissions and transform these via various functions into an 

estimate of damages and mitigation costs (Nordhaus, 1991a, 1991b, 1993; Rogelj et al., 2013). 

The models treat the atmosphere as an exhaustible resource with a fixed carbon holding 

capacity. In order to link science, economics, and policies of climate change, several integrated 

assessment models emerge; the most popular and Nobel Prize-winning model is the Dynamic 

Integrated model of Climate and the Economy (DICE; Nordhaus, 1993) and its Regional 

version (RICE; Nordhaus and Yang, 1996), respectively. The social planner’s role in these 

models is to find an optimal climate policy that trades off current and future consumption in the 

face of climate change effects and uncertainty. Dietz et al. (2016) estimate a climate value at 

risk model for global financial assets with average climate risks of 1.8% (US$ 2.5 trillion) and 

a 99th percentile of 16.9% (US$ 24.2 trillion). Campiglio et al. (2018) highlight the relationship 

between climate change and global financial stability. Overall, macro models suggest that 

macroeconomic risk and impacts are higher when climate change is not addressed.   

Research on optimal policies focuses on the provision of fiscal incentives for clean 

technologies and the efficient taxation of greenhouse gas emissions (Goulder and Mathai, 2000; 

Acemoglu et al., 2016; Lemoine and Rudik, 2017). The effectiveness of market-based policies 

(Fowlie et al., 2016), demand-side solutions (Creutzig et al., 2018), and CO2 taxes (Mardones 

and Flores, 2018) is still undetermined. However, it is unlikely that these policy incursions will 

leave firms’ cash flows unchanged. The uncertainties surrounding the economics of climate 

change are central to the design of climate policies (Hsiang et al., 2017) and are a key 

component driving climate and carbon risk.  

Krüger et al. (2018) suggest that climate concerns are important factors in the investment 

decisions of large institutional investors. Divestment movements, like the Portfolio 

Decarbonization Coalition (PDC) promote the divestiture of high-carbon firms making it more 

difficult and costly for firms to acquire funding (e.g., Cheng et al., 2014). Institutional investors 

have been shown to increase their allocations towards sustainable portfolios after climate 

change induced natural disasters (Brandon and Krüger, 2018). Some investors are inclined to 

forgo financial performance to satisfy their social preferences (Riedl and Smeets, 2017), and 

active-ownership engagement and long-term investing can even lead to improved shareholder 

value (Dimson et al., 2015; Nguyen et al., 2017). 

Numerous recent papers suggest that physical risks impact asset prices. Physical risks are 

costly to hedge and systematic (Engle et al., 2018) making understanding them central to the 

pricing of assets. Choi et al. (2018) show that high-carbon firms underperform low-carbon firms 
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during extreme heat events. Hong et al. (2019) demonstrate that food firms exposed to physical 

risks underperform in the long-run. Delis et al. (2018) show that banks price climate policy 

risks in their loans and have started to develop broader policies on the financing of brown 

businesses (e.g., Rainforest Action Network et al., 2017). Ortega and Taspinar (2018), Murfin 

and Spiegel (2018), and Rehse et al. (2018) report that physical risks influence prices in the real 

estate market. Barnett et al. (2018) demonstrate theoretically how climate uncertainty, including 

physical risks, can be priced in a dynamic stochastic equilibrium model. 

Finally, Krüger (2015) demonstrates that equity prices fall when firms report negative 

corporate social responsibility news of which environmental news is an important subset. 

Flammer (2013) shows that stock prices increase for environmentally responsible firms and 

Heinkel et al. (2001) in turn demonstrate that polluting firms have lower stock prices and thus 

higher cost of capital due to ethical investing. Oestreich and Tsiakas (2015) construct European 

country-specific “dirty-minus-clean” portfolios based on the number of free emission 

allowances during the first two phases of the EU Emissions Trading Scheme (ETS) which 

display positive returns during those time periods. De Haan et al. (2012) examine the 

relationship between corporate environmental performance (CEP) and stock returns and find a 

negative relationship between CEP and stock returns. Chava (2014) and El Ghoul et al. (2011) 

show that firms with higher carbon emissions also have higher costs of capital. Our study is 

closely related to this strand of literature but is the first to measure carbon risk in global asset 

prices via a capital market-based approach. 

2 Carbon risk measurement methodology 

In this section, we present our methodology to measure carbon risk. First, we describe how to 

identify green and brown firms using the “Brown-Green-Score” (BGS) using three indicators: 

value chain, public perception, and adaptability. Second, we use the BGS to build BMG as a 

mimicking portfolio for carbon risk. Third, we describe how we measure carbon risk of firms 

using carbon beta. Figure 1 provides an overview of our methodology. 

[Insert Figure 1 here.] 

2.1 BGS methodology 

We determine the fundamental characteristic of brown or green firms by calculating the BGS 

for each individual firm. This is based on three main indicators: value chain, public perception, 

and adaptability, capturing the impact of the transition process on a firm. Value chain comprises 
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production, processes, technology, and the supply chain and accounts for the current emissions 

of a firm. Public perception covers how carbon emissions and a firm’s carbon policy are 

perceived by its stakeholders (e.g., customers, investors, creditors, and suppliers). Adaptability 

captures strategies and policies that prepare a firm for changes with respect to the price of 

carbon, new technologies, regulation, and future emissions reduction and mitigation strategies. 

We review the related carbon, CSR, and ESG literature to provide further economic intuition 

for our indicators. 

Production processes as well as applied technologies cannot be transformed instantly and 

without costs (İşlegen and Reichelstein, 2011; Lyubich et al., 2018). However, regulatory 

interventions may provide support for required technological changes (Acemoglu et al., 2012) 

and prevent carbon leakage (Martin et al., 2014). Worldwide supply chains and their 

environmental impact are difficult to analyze, highly interrelated, and therefore extraordinarily 

vulnerable to climate related risk sources (Faruk et al., 2001; Xu et al., 2017). Therefore, a 

firm’s value chain is highly affected by changes in the transition process towards a green 

economy. 

A firm’s public perception can affect valuation. For instance, value can be created by 

establishing a comprehensive reporting system (Krüger, 2015). Value of firms with low social 

capital or trust can be destroyed during a crisis (Lins et al., 2017) or during negative events in 

the form of reputational risks. Firms may be valued higher if they can demonstrate their 

activities in support of the climate and are thus able to make use of positive media coverage 

(Cahan et al., 2015; Byun and Oh, 2018). Thus, public perception of a firm’s support of the 

transition process may impact its respective value. 

Finally, a firm’s ability to adapt quickly to changes in the transition process may prevent 

underperformance due to risks in its own value chain or public perception (Lins et al., 2017). 

Investors already value environmental corporate policies as a necessary risk prevention measure 

(Fernando et al., 2017). A firm’s adaptability is therefore a key indicator whether and to what 

extent it is affected by unexpected developments (Deng et al., 2013; Fatemi et al., 2015). In our 

framework, adaptability functions as a mediator between the value chain and the public 

perception category.  
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To compute BGS we use 55 variables containing firm specific information related to one 

of the three broader indicators described above.5 For each variable, we assign zero to firms 

below the median in a given year and one to firms above the median. In the next step, we 

average the 55 values assigned to a firm in a given year separately within the three indicators 

which results in subscores for value chain, public perception, and adaptablity. Finally, we 

calculate BGS for each firm i in each year t by combining the subscores using Eq. (1). 

   BGSi,t = (0.7 Value Chaini,t + 0.3 Public Perception
i,t

) 

          – (0.7 Value Chaini,t + 0.3 Public Perception
i,t

)  
1 – Adaptability

i,t

3
 

(1) 

The value chain subscore has a weight of 70% in the BGS to reflect its relative importance.6 

The public perception subscore carries 30% weight in the BGS.7 In order to take into account 

the mediating role of adaptability, we subtract the sum of the two previous subscores up to a 

third of their value depending on the firm’s adaptability subscore. An adaptability subscore of 

zero implies that a firm is in an excellent position to deal with an alteration of the transition 

process. However, a firm may still have high current and perceived emissions reflected in the 

two other risk indicators.8 As a result, the BGS ranges between zero and one, where zero 

denotes a green and one denotes a brown firm in the logic stated above. 

The final selection of variables, the mapping of the proxy variables to the risk indicators, 

and the aggregation of the subscores is the result of two workshops hosted for this purpose with 

acknowledged sustainability and finance experts from international institutions, consultancies, 

universities, asset managers, and NGOs. The variable selection was also subject to data 

availability and analysis. The weighting scheme has been tested for robustness and our results 

remain economically similar. 

2.2 BMG – A mimicking portfolio for carbon risk 

The BMG portfolio is constructed to mimic a factor related to carbon risk, similar in intuition 

to the Fama and French (1993) size and book-to-market factors. For the construction of BMG, 

                                                      
5 A description of the dataset follows in Section 3.1. For a full list of variables and their codes see the Internet 

appendix Table IA.1. 
6 We assume value chain to be the most important indicator, since production, processes, and supply chain 

management constitute the core of a firm. Moreover, governmental climate change related regulations are focused 

predominantly on current emissions, which are part of this indicator. 
7 Our results remain robust to changes in weights. 
8 As a robustness check, we allow firms to reduce their combined value chain and public perception subscores up 

to a half by their ability to adapt to the transition process. We can state that all results remain qualitatively similar. 
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we determine the annual BGS for each firm. Subsequently, we unconditionally allocate all firms 

each year into six portfolios based on their market equity (size) and BGS using the median and 

terciles as breakpoints, respectively. We use the value-weighted average monthly returns of the 

four portfolios “small/high BGS” (SH), “big/high BGS” (BH), “small/low BGS” (SL), and 

“big/low BGS” (BL) to calculate BMG following Eq. (2). Thus, BMGt is the return in month t 

of a self-financing portfolio which is long in brown firms and short in green firms: 

BMGt = 0.5 (SHt + BHt) −  0.5 (SLt + BLt) (2) 

Figure 2 plots cumulative returns of BMG and the corresponding long and short portfolios for 

the sample period from January 2010 to December 2016. The figure shows a strong contrast in 

the performance of the brown and the green portfolio over time. While the cumulative return of 

BMG is slightly positive in the period from 2010 to the end of 2012, the effect reverses in the 

period from 2013 to the end of 2015, in which the cumulative return of BMG drops from around 

+3% to around –30%, followed by an increase to around –20% in 2016. Hence, brown firms 

performed worse than green firms on average during our sample period. 

[Insert Figure 2 here.] 

2.3 Carbon beta – A capital market-based measure of carbon risk 

To measure the carbon risk of firms without primary carbon or transition-related information, 

we run time-series regressions explaining firms’ excess returns using an extended Carhart 

model (1997) following Eq. (3), where eri,t is the monthly return of firm i in month t in excess 

of the risk-free rate, αi is the firm’s mean abnormal return, βi are the sensitivities of the firm’s 

excess return to the risk factor returns, erM,t is the excess return on the global market portfolio, 

SMBt and HMLt are the global size and value factors, WMLt is the global momentum factor, 

BMGt is the global carbon risk mimicking portfolio, and εi,t is a zero-mean error term.9 

eri,t = αi + β
i

mkt
erM,t + β

i

smb
 SMBt + β

i

hml
 HMLt + β

i

wml
 WMLt + β

i

BMG
 BMGt + εi,t (3) 

The carbon beta β
i

BMG
 is thus a capital market-based measure of carbon risk that captures the 

sensitivity of a firm to carbon risk. Positive values represent “brown” firms which are likely 

negatively affected relative to others by unexpected shifts of the transition. Vice versa, negative 

carbon betas represent “green” firms which are likely negatively affected relative to others by 

unexpected shifts of the transition. 

                                                      
9 We thank Kenneth French for providing the data of the risk factors. 



11 

 

3 Data 

In this section, we describe the two data samples used. The “BGS data sample” of 1,637 global 

firms with detailed fundamental carbon and transition-related information is used to construct 

BMG and to conduct first tests of BMG. The “full sample” with return data for more than 39,000 

global firms is used for further tests of BMG and to analyze carbon risk on global equity prices. 

3.1 BGS data sample 

For the construction of BMG, we compile a unique dataset from four major ESG databases; (i) 

the Carbon Disclosure Project (CDP) Climate Change questionnaire dataset, (ii) the MSCI ESG 

Stats10 and the IVA ratings, (iii) the Sustainalytics ESG Ratings data and carbon emissions 

datasets, and (iv) the Thomson Reuters ESG dataset.11 We name this data sample “BGS data 

sample” and use it to compute BGS and to construct BMG. By merging four databases with 

different approaches in collecting data including estimations by analysts we minimize a 

potential self-reporting bias. 

We select variables from a total of 785 ESG variables available in the compiled dataset to 

quantify a firm’s BGS. 363 variables thereof are potentially useful for describing environmental 

issues leaving out social and governance aspects. 131 of the broader environmental variables 

are directly related to carbon and transition-related issues as opposed to, e.g., waste or water 

pollution. The final variable set is comprised of 55 proxy variables that cover all aspects of 

carbon risk with little or no redundancy.12 To our knowledge, this dataset contains the most 

comprehensive carbon and transition-related information in this research area. 

Next, we exclude all firms that are not identified as equity or which are not primary listed 

and delete all observations of zero returns at the end of a stock’s time series. We do not take 

into account firms operating in the financial sector.13 In the transition process, these firms 

behave quite differently compared to firms in other industries. As one example, the current 

practice of assigning carbon emissions does not apply to equity financing or lending, which 

makes financial institutions appear to be less prone to carbon risk.14 Furthermore, we include 

                                                      
10 Formerly KLD Stats. 
11 Formerly ASSET4 ESG database. 
12 We checked for empirical exclusionary criteria and used the expertise of the participants of our workshops to 

derive our final variable set. 
13 Technically, we exclude all firms classified with a Thomson Reuters Business Classification (TRBC) code equal 

to 55. 
14 There exists a separate strand of literature focusing on CSR particularly for the banking sector (e.g., Wu and 

Shen, 2013; Barigozzi and Tedeschi, 2015; Cornett et al., 2016). We conduct an analysis of the carbon risk of the 

financial industry in Section 5.4 using carbon betas to provide further insights on their exposure beyond their BGS. 
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only firms that are part of all four databases and provide detailed information for the majority 

of the BGS variables. This is a strict condition but gives us the possibility to overcome potential 

biases. We relax this condition in our carbon beta analysis in which we study all firms. Overall, 

this leads to our final BGS data sample of 1,637 globally listed firms. 

We obtain monthly returns as well as further financial information such as the monthly 

market value of equity and net sales from Thomson Reuters Datastream. The preparation of the 

financial data follows the recommendations of Ince and Porter (2006). Table 1 reports summary 

statistics for financial and environmental variables of the BGS data sample.  

[Insert Table 1 here.] 

To avoid penalizing large firms concerning absolute carbon emissions, energy use, and 

expenditures, we standardize all continuous variables by the firm’s net sales.15 Besides 

continuous variables, the sample contains a number of discrete and binary variables, and 

variables ranging within a predefined bandwidth, such as the database specific scores.  

3.2 Full sample 

In addition to the BGS data sample, we use a full sample obtaining all primary, major equity 

listings of global firms from Morningstar Direct. This final selection consists of 39,537 firms 

and is survivorship bias free. A comparison between the geographic and sectoral breakdown of 

both samples reported in Appendix A.2 shows that the BGS data sample is representative of the 

full sample.16 

4 Relevance of BMG 

In this section, we provide descriptive statistics for BMG and correlations between BMG and 

other common factors. Further, we test if BMG is a relevant determinant of variation in global 

equity prices by conducting sorted portfolio analyses within the BGS data sample as well as 

further tests for single firms using the full sample. 

                                                      
15 Standardized variables fall in the following categories: CO2e emissions, energy use, environmental expenditures, 

and provisions, and are marked in Table 1. 
16 Note that the full sample coincides with the BGS data sample. The level of coincidence, however, is low at 

3.82%. Alternatively, we eliminate all stocks that are included in the BGS data sample from the full sample. The 

results remain basically the same. 
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4.1 BMG summary statistics 

Table 2 reports summary statistics and correlations with common factors during our sample 

period. The average monthly return of BMG is negative at −0.25%, the standard deviation is 

1.95%. The correlations between BMG and the market, size, value, and momentum factor are 

relatively low.17 This suggests that BMG possesses unique return-influencing characteristics 

that are able to enhance the explanatory power of common factor models. 

[Insert Table 2 here.] 

4.2 BGS-decile portfolio analysis 

We construct BGS sorted portfolios to test if BMG is able to enhance the explanatory power of 

common factor models. We sort firms in the BGS data sample into annually rebalanced deciles 

such that decile 1 contains the firms with the lowest BGS, i.e. the greenest firms, and decile 10 

contains the firms with the highest BGS, i.e. the brownest firms. We run time-series regressions 

of the deciles’ equal-weighted monthly excess returns on the Carhart (1997) model and on a 

five factor Carhart + BMG model (Eq. 3).18 

The results of the global BGS-decile analysis are shown in Table 3 with our five factor 

model on the left and differences to the Carhart model on the right. The market betas are 

significant and close to one for all deciles. In order to test whether BMG is able to significantly 

increase the explanation of the variation in excess stock returns we apply the F-test on nested 

models (Kutner et al., 2005). For additional details on the BGS-deciles, all differences 

compared to the Carhart model in the alpha and the beta coefficients are reported. 

[Insert Table 3 here.] 

A comparison of the adjusted R2s and the results of the F-test confirm that BMG significantly 

enhances the explanatory power of the standard Carhart model, especially for the high BGS 

portfolios. In the case of BGS-decile 10, the adj. R2 increases by more than 12 percentage 

points. The table reports carbon beta loadings that increase strictly monotonically from the low 

BGS-decile, which displays a significantly negative loading of −0.328, to the high BGS-decile 

with a significantly positive loading of 1.019, similar to the market factor loading. The medium 

                                                      
17 We also conducted correlation and regression analyses on potentially related influencing factors including the 

oil price (oil spot and futures prices) as well as oil industry equity and commodity indices and carbon price (carbon 

certificates and respective derivatives). There are no remarkable results affecting our factor. 
18 Value-weighted decile portfolios show the same patterns, therefore our results remain robust. 
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BGS-deciles show carbon betas close to zero. Overall, BMG delivers the expected results and 

significantly enhances the explanatory power of common factor models in BGS-deciles.  

4.3 Comparison of common factor models 

We compare the results of common factor models with and without BMG using the full sample. 

Panel A of Table 4 shows the results of more than 39,000 single stock regressions. The first 

two models compares how (1) SMB and HML versus (2) BMG change the explanatory power 

of the CAPM. The average increase of model (1) in the adj. R2 is 1.02 percentage points. This 

increase is significant for 11.49% of the firms in the sample. In comparison, BMG alone 

increases the adj. R2 by 0.84 percentage points and significantly for 12.05% of the regressions. 

The following two models contrasts how (3) the Carhart (1997) momentum factor vs. (4) BMG 

changes the explanatory power of the Fama and French (1993) model. This comparison shows 

a seven times increase in the adj. R2 for BMG than for the momentum factor. Finally, the last 

model (5) provides further evidence that the BMG increases the explanatory power of common 

factor models, for example the Carhart (1997) model.  

[Insert Table 4 here.] 

For a more detailed assessment of the impact of BMG on the stock returns of single firms, Panel 

B of Table 4 reports the number of significant factor betas from the Carhart + BMG model. 

Based on two-sided t-tests, 4,493 firms (11.91%) show a significant carbon beta on a 5% 

significance level. This is comparable to the number of significant SMB betas (4,420) and 

higher than the number of significant HML (2,590) and WML betas (2,381). The average 

carbon beta is positive at 0.19.19 Overall, compared to common factors, BMG performs well 

highlighting its relative importance for explaining variation in global equity returns. We 

continue to confirm this conclusion by conducting a broad range of further asset pricing tests.20 

5 Carbon beta as a risk measure 

In this section, we highlight the variation of carbon betas in countries and industries. We also 

show that investors can manage the carbon beta of their portfolios without sacrificing 

                                                      
19 A similar analysis conducted with the BGS data sample can be found in the Internet appendix (Table IA.2). The 

results are economically the same. 
20 We have carried out numerous further investigations, including a factor spanning test, a comparison of BMG 

with further prominent factors, a maximum Sharpe ratio approach as well as latest asset pricing tests for different 

single and combined test assets. Additionally, we apply a democratic orthogonalization to make our factor 

perfectly uncorrelated to the other risk factors. We provide descriptive statistics, a decile table, and a comparison 

of common factor models with our orthogonalized factors. All results remain robust and BMG is essential in asset 

pricing. For all those analyses see Tables IA.3 – IA.9. 
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performance, exposure to common factors or to industry preferences. Taking an analyst’s 

perspective, we relate firm characteristics to carbon beta to analyze what influences firms’ 

sensitivity to the transition process. Finally, we take a closer look at the carbon risk of the 

financial industry. 

5.1 Carbon beta variation in countries and industries 

The carbon beta varies over countries and industries. For the country breakdown of the full 

sample, we aggregate the carbon beta of a country as the average of all firms operating in the 

respective country. As illustrated in Figure 3, carbon betas are high in most countries except in 

Europe and Japan. This is consistent with the intuition that the European Union is following an 

ambitious climate policy, for example with its 2030 climate and energy framework and the EU 

Action Plan. The countries with the most negative carbon betas are European countries, such 

as Italy (−0.663), Spain (−0.591), and Portugal (−0.505). The country with the highest average 

carbon beta is South Africa (0.433), consistent with the fact that the country delays climate 

action on a political level (Climate Action Tracker, 2018). South Africa is closely followed by 

Brazil (0.410) and Canada (0.401).  

[Insert Figure 3 here.] 

At industry level, the carbon betas are illustrated in Figure 4. We find low and negative carbon 

betas in financial services and technology firms, and positive carbon betas in industries with 

extraordinarily high carbon emissions and which are known to be sensitive to climate change 

and mitigation policies, i.e. the basic materials and energy sector.21 

[Insert Figure 4 here.] 

Overall, the breakdown of the carbon betas over countries and industries is consistent with our 

expectation of how carbon betas are distributed. Energy and basic materials firms are more 

positively exposed to an unexpected change in the transition process than the technology sector. 

Furthermore, the boxplots demonstrate that within industries, it is possible to cover a large 

bandwidth of carbon betas, e.g., in the basic materials sector we find highly negative as well as 

highly positive carbon betas. Thus, carbon risk is not merely an industry-specific phenomenon. 

                                                      
21 Both country and industry breakdown of betas show basically the same results for the BGS data sample which 

can be found in Figures IA.1 and IA.2 of the Internet appendix. 
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5.2 Carbon beta from an investor’s perspective 

We demonstrate how investors can take carbon risk into consideration via the inclusion of 

carbon beta into portfolio management. First, we use the distribution of carbon betas within 

industries to replicate common best-in-class strategies. We construct three globally diversified 

portfolios. The first represents the equal-weighted return of all firms in our full sample.22 The 

second (third) includes only the best-in-class (worst-in-class) firms of each industry according 

to their carbon beta, i.e. having a carbon beta above (below) the median of the respective 

industry carbon beta. For all three portfolios, we calculate annualized mean excess returns, 

standard deviations, and Sharpe ratios (SR). 

[Insert Table 5 here.] 

Panel A of Table 5 shows that an investor can construct a portfolio with a significantly lower 

carbon beta of −1.03 without changing the industry allocation of his or her portfolio, but with 

the same SR and a significant change in volatility of −0.04. Hence, it is possible for investors 

to take carbon beta into account and construct portfolios that are broadly diversified across 

industries and without sacrificing risk-or-return considerations. 

Some investors may be more interested in exposures to other common risk factors than in 

a diversified allocation across industries. We show that it is possible to construct a portfolio 

with similar risk-adjusted returns and similar exposure to common factors but lower carbon 

betas. First, we estimate the beta loadings of our Carhart + BMG model for all firms in the full 

sample. Second, we construct 5×5×5 conditionally sorted portfolios based on market, SMB, 

and HML beta quintiles. The resulting 125 portfolios consist of firms with similar 

characteristics regarding the factor exposures but potentially cover a broad range with respect 

to carbon beta. In the following, we apply the same methodology as for the industry best-in-

class approach. 

The results are presented in Panel B of Table 5. The average portfolio has an annual SR of 

0.44, while the low carbon beta portfolio generates a SR of 0.48. This represents an eight 

percentage points higher SR for the low carbon beta portfolio than for the high carbon beta 

portfolio. The low carbon beta portfolio also exhibits a decrease in volatility by −0.04. More 

importantly, the carbon beta difference between the low and the high carbon beta portfolios is 

−0.91. This means that investors can change their exposure to carbon beta independent of their 

                                                      
22 The results remain robust for value-weighted portfolios. 
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exposure to the market, SMB, and HML beta. Overall, the results show that investors can 

change their carbon beta without sacrificing performance, exposure to common factors, or to 

industry preferences. 

5.3 Carbon beta determinants from an analyst’s perspective 

Analysts are interested in the financial impacts of the transition process on a firm’s value. Thus, 

it is important for them to know the influencing factors of firms’ carbon betas. We conduct 

panel regressions and apply country, industry, and time fixed effects to account for unobserved 

differences. The most interesting variables we use to explain carbon betas are R&D 

expenditures, which may proxy for innovation and investment in new, clean technologies, and 

property, plant, and equipment (PPE) assets, that proxy for legacy production equipment as 

well as “stranded assets”.23 As control variables, we use common firm fundamental variables. 

For the BGS data sample, we explain the annual carbon beta using the three subscores value 

chain, public perception, and adaptability that are used to compute the BGS.24  

The results presented in Panel A of Table 6 show that all subscores are positively and 

significantly correlated with carbon betas. This suggests for instance, that firms with higher 

value chain subscores also have higher carbon betas. The same interpretation holds for public 

perception and adaptability. Moreover, higher R&D expenditures lead to lower carbon betas as 

innovation and investment in new, clean technology may reduce firms’ sensitivity to an 

unexpected change in the transition process towards a green economy. Conversely, higher PPE 

leads to higher carbon betas meaning that carbon beta is influenced by the presence of old 

technology and stranded assets. 

[Insert Table 6 here.] 

Panel B shows the results for the full sample without the risk indicators, as this data is not 

available for all firms. The results hold across both samples in that we find that R&D reduces 

the carbon beta, and PPE increases it. These panel regressions indicate that carbon beta is 

partially explained by firm characteristics related to a firm’s exposure to carbon risk. Carbon 

risk should also be considered by analysts looking to improve their forecasts. 

                                                      
23 The latter describes particular assets which may suffer from unanticipated or premature devaluations during the 

transition process towards a green economy. 
24 The analysis with only the risk indicators can be found in the appendix (Table A.3). 
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5.4 Carbon betas in the financial industry 

Firms operating in the financial services sector are not typically perceived as brown as they do 

not, for example, generally emit carbon in their daily operations. Therefore, the current practice 

of assigning carbon emissions does not apply to equity financing or lending financial 

institutions. Thus, they are not directly exposed to carbon risk. However, they can be highly 

involved in the financing of local firms with high carbon risk making a bank’s loan portfolio 

correlated with carbon risk. To study this relationship, we conduct an analysis of the carbon 

beta of banks and other financial services firms taking into consideration the carbon beta of 

their home countries. We compute the average carbon beta of all non-financial firms in each 

country, and are therefore able to distinguish between high, middle, and low carbon beta 

countries (CBC). In Table 7 Panel A the results are shown. 

[Insert Table 7 here.] 

A bank in a low CBC has on average a carbon beta of −0.337. In comparison with a high CBC, 

it has a significantly lower carbon beta of −0.587. There is also a significant difference between 

high and middle, and middle and low CBC betas.25 These results remain robust if we use 

financial services firms in general including banks (see Panel B). Hence, even though banks 

and other financial firms are not directly subject to high carbon risk, they are indirectly exposed 

to the carbon risk of the firms they finance. In other words, even the financial industry is 

strongly affected by carbon risk through their financing decisions. 

6 A risk decomposition of BMG and carbon beta portfolios 

In this section, we analyze the economic mechanisms driving BMG and the market beta of 

carbon beta sorted portfolios. We follow the decomposition approaches of Campbell (1991) 

and Campbell and Vuolteenaho (2004). The analysis is geared towards understanding whether 

changes in expectations about firm cash flows or changes in discount rates are driving BMG, 

carbon beta, and the correlation of firm’s returns with market returns.  

The methodology is based on a simple discounted cash flow model, where changes of firm 

values result from changing expectations regarding cash flows and discount rates. Cash flow 

changes have permanent wealth effects and may therefore be interpreted as fundamental re-

                                                      
25 We also use quartiles to highlight the fact that the results are not conditional on data sub-setting. 
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evaluations towards a new equilibrium. In contrast, discount rate changes have temporary 

wealth effects on the aggregate stock market driven by investor sentiment.  

We use the VAR methodology introduced by Campbell (1991) to decompose BMG and 

assume that the data are generated by a first-order vector autoregression (VAR) model.26 For 

the variance decomposition, we modify Campbell’s (1991) approach using the BMG time series 

as the first state variable. We use global versions of the Shiller PE-ratio, the term-spread, and 

the small stock value spread as additional state variables as per Campbell and Vuolteenaho 

(2004). In Table 8, we report the absolute and normalized results of the variance decomposition 

of BMG as well as correlations between the components. 11.86% of the total BMG variance 

can be attributed to discount-rate news whereas the remaining 88.14% are driven by cash-flow 

news. This suggests that BMG is mainly determined by expectations about future cash flows 

and not about changes in the discount rate that investors apply to these cash flows. This is 

consistent with the transition process of the economy that is highly sensitive to changes in 

technologies (investments) and customers preferences for goods and services (revenues).27 

[Insert Table 8 here.] 

In a second test, we follow Campbell and Vuolteenaho (2004) more closely and decompose 

market betas of carbon beta sorted portfolios into a cash-flow and a discount-rate beta.28 In their 

original paper, the authors apply this approach to Fama and French’s 25 size/book-to-market 

sorted portfolios to explain the value anomaly in stock returns. To adopt their methodology, we 

construct 40 carbon beta and size sorted test asset portfolios by sorting the over 39,000 stocks 

of the full sample into 20 5%-quantiles based on their individual carbon beta and splitting each 

portfolio by the stocks’ median market capitalization. 

[Insert Figure 5 here.] 

As shown in Figure 5, the cash-flow beta is higher than the discount-rate beta for all portfolios. 

This confirms that, during our sample period, returns are driven by fundamental re-evaluations 

of investor expectations about cash-flow news rather than about discount rates. Furthermore, 

the discount-rate beta is virtually the same for all 40 portfolios whereas the cash-flow betas 

                                                      
26 For further details on the model specification see Appendix A.1. 
27 Campbell, Polk, and Vuolteenaho (2010) explain that movements in stock prices are either driven by the 

characteristics of cash flows (fundamentals view) or by investor sentiment (sentiment view). 
28 For this analysis, we stick to the model specification of Campbell and Vuolteenaho (2004) using the excess 

market return as first state variable. Details are given in Appendix A.1. Results for the decomposition using BMG 

as first state variable can be found in Figure A.1. 
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show a U-shaped pattern. This suggests that the extreme portfolios, i.e. high absolute carbon 

beta firms, have higher cash-flow betas and are thus more exposed to fundamental re-

evaluations of firm values.29 

[Insert Table 9 here.] 

Motivated by this finding, we evaluate the prices of cash-flow and discount-rate beta risk. 

Following Campbell and Vuolteenaho (2004), rational investors should demand higher 

compensation for fundamental and therefore permanent cash-flow shocks (“bad beta”) than for 

transitory discount-rate shocks (“good beta”). In Table 9, we provide evidence in favor of this 

argument by applying the asset pricing models described in Campbell and Vuolteenaho (2004) 

to our 40 carbon beta/size sorted test asset portfolios. We show results of an unrestricted factor 

model and a two-factor ICAPM that restricts the price of the discount-rate beta to the variance 

of the market return. Like Campbell and Vuolteenaho (2004), we estimate both models with 

and without a constant to account for different assumptions about the risk-free rate. The price 

for cash-flow beta risk in the cross-section is almost ten times higher than for discount-rate beta 

risk (15.9% vs. 1.6% p.a. in the unrestricted factor model). In the two-beta ICAPM the results 

remain economically the same. Since carbon beta sensitive portfolios are predominantly prone 

to cash-flow news, we conclude that conservative investors demand a higher return for holding 

those portfolios due to their risk aversion for fundamental cash-flow risks. 

7 Conclusion 

The global economy is engaged in a transition process from a high-carbon to a low-carbon 

economy. Some firms are well positioned to deal with the carbon risk associated with an 

unexpected change in the transition process towards a green economy, whereas others are not. 

The carbon risk in this transition process is relevant at the firm, industry, and country level.  

To capture and quantify this new carbon risk, we develop a novel capital market-based 

measure, “carbon beta”, which is easy to calculate and requires only one firm specific input: 

stock returns. Carbon beta is designed to capture firms’ sensitivities to an unexpected change 

in the transition process towards a green economy. It is estimated using a carbon risk mimicking 

portfolio (BMG) that we construct from a subset of firms with detailed and reliable carbon and 

transition-related information. Extensive tests of BMG support our notion of its relative 

                                                      
29 In Figure IA.3, we show that extreme portfolios display higher systematic risk per se, which is primarily driven 

by cash-flow risk as shown in Figure 5. 
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importance for explaining variation in global equity returns during our sample period. BMG 

captures the effects of fundamental re-evaluations of firm values due to the ongoing transition 

between an old, brown equilibrium and a new, green equilibrium. 

The information contained in the carbon beta can be used by, e.g., investors, analysts, and 

regulators. Investors can assess the carbon risk in their portfolio and make portfolio allocation 

decisions to change their exposure to carbon risk. We show that this is possible without hurting 

performance or industry and factor allocations. The carbon betas can also be used by portfolio 

managers to show investors the steps they can take with respect to climate change. Investors, 

pension funds, and insurance firms can use this information to hedge carbon risk in their 

portfolios and their operations. Analysts can use carbon betas to integrate readily available 

information and sharpen their forecasts. We also demonstrate that banks and other financial 

services firms are strongly related to the carbon risk of domestic firms they are likely to finance. 

Finally, regulators and national governments can use the carbon beta to assess the carbon risk 

in the economy as a whole. This information will allow for more directed policy and for an 

external assessment of the carbon risk of an individual firm.  

The decomposition of market betas into cash-flow and discount-rate components reveals 

that high and low carbon beta firms, respectively, have higher cash-flow betas and are thus 

more exposed to fundamental re-evaluations of firm values than to discount-rate changes. 

Furthermore, the price for cash-flow betas is higher than for discount-rate betas, since investors 

demand a higher premium for fundamental risks. 

Carbon risk may impact cash flows by increasing current expenses, investments, and 

discount rates via changes in public perception. Assessing changes in carbon risk (betas) around 

regulatory and policy changes is a fruitful avenue of future research. For instance, simple carbon 

beta event studies can be used to assess the impact of the introduction of carbon pricing, 

taxation, cap-and-trade, R&D credit, or similar policies for the whole economy, within an 

industry and for individual firms. A broadening of carbon and environmental disclosure to make 

disclosure mandatory and comparable across jurisdictions is important. 

The quantification of carbon risk is thus a step towards a low-carbon future by aligning the 

incentives of investors, firms, regulators, and everyone that is impacted by climate change.  
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Figures and Tables 

 

Figure 1 

Carbon risk measurement methodology 
 

 
 

This figure shows our carbon risk measurement methodology. First, we generate a unique global dataset from 

four major ESG databases. Second, we extract 55 variables for 1,637 global firms and assign them to our three 

indicators, value chain, public perception, and adaptability. Thereby, we are able to determine the Brown-Green-

Score (BGS) for each firm. Third, we use the BGS to construct a Brown-Minus-Green factor (BMG). Lastly, 

we integrate BMG into the Carhart model to estimate the carbon beta as our measure for carbon risk. 
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Figure 2 

Cumulative returns of BMG and the long and short portfolios 
 

 

 
 

This figure shows cumulative returns of BMG and the weighted underlying long “small/high BGS” (SH) 

and “big/high BGS” (BH), and short portfolios “small/low BGS” (SL) and “big/low BGS” (BL) for the 

sample period from January 2010 to December 2016. 
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Table 1 

Descriptive statistics of variables 
     

Variable N Mean SD Median 
     

Panel A. Thomson Reuters Financials 
     

Returns (%) 76,700 0.74 9.01 0.69 

Market equity (US$ mio.) 76,700 20,959 38,749 8,557 

Net sales (US$ mio.) 76,405 18,528 35,278 7,643 

R&D (US$ mio.) 51,153 82 512 5 

PPE (US$ mio.) 120,554 1,068 5,782 95 

Leverage ratio 120,274 0.22 0.23 0.18 

Book-to-market ratio 121,508 0.80 3.56 0.59 

Cash (US$ mio.) 104,558 288 2,481 29 

Return on Assets 121,481 0.04 7.07 0.03 

Net sales full sample (US$ mio.) 121,532 2,351 10,998 294 
     

Panel B. Thomson Reuters ESG 
     

Energy Use Total (std.) 51,480 119,343 6,682,551 630.74 

CO2 Equivalents Emission Total (std.) 63,959 7,672 465,116 59.69 

Clean Technology 72,991 0.76 0.43 1.00 

Emission Reduction Prod. Process 72,806 0.49 0.50 0.00 

Sustainable Supply Chain 72,806 0.23 0.42 0.00 

Renewable Energy Use 72,806 0.32 0.47 0.00 

Climate Change Risks/Opportunities 72,806 0.23 0.42 0.00 

Energy Efficiency Policy 72,806 0.11 0.31 0.00 

Emission Reduction Target/Objective 52,780 0.03 0.16 0.00 

Energy Efficiency Target/Objective  36,525 0.05 0.22 0.00 

Environmental Investments Initiatives 75,350 0.33 0.47 0.00 

Environmental Exp. Investments 75,350 0.51 0.50 1.00 

Environmental Expenditures (std.) 29,999 0.01 0.04 0.00 

Environmental Partnerships  75,350 0.76 0.43 1.00 

Environmental Provisions (std.) 17,677 0.04 0.16 0.01 

Policy Emissions 75,350 0.89 0.32 1.00 

Environmental R&D Exp. (std.) 8,881 0.09 0.01 0.09 

Emission Reduction Score 72,806 16.18 19.76 7.64 

Resource Reduction Score 72,806 16.11 19.59 7.93 

Environmental Score 72,806 16.14 19.66 7.41 

Innovation Score 75,330 38.21 26.05 33.86 

Emissions Score 75,330 26.26 20.74 21.52 
     

Panel C. Carbon Disclosure Project 
     

Greenhouse Gas Emissions (std.) 61,760 47,611 1,541,905 61.29 

Regulatory Opportunities Sources 70,670 2.64 2.37 2.00 

Climate related Opport. Sources 70,670 1.18 1.04 1.00 

Regulatory Risks Sources 70,670 1.85 1.87 1.00 

Climate related Risks Sources 70,670 1.22 1.25 1.00 

Regulatory Opportunities 62,675 0.08 0.27 0.00 

Climate related Opportunities 62,648 0.14 0.34 0.00 

Regulatory Risks 62,792 0.94 0.24 1.00 

Climate related Risks 62,720 0.81 0.39 1.00 

Emission Reduction Target 6,871 0.72 1.18 0.00 

Disclosure Score 55,676 22.31 18.80 19.00 

Performance Band 58,595 4.30 2.12 3.00 
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Table 1 continued 
     

Variable N Mean SD Median 
     

Panel D. Sustainalytics 
     

Carbon Intensity 59,492 45.07 39.03 50.00 

Renewable Energy Use 59,492 85.08 34.78 100.00 

Supplier Environmental Programmes 29,321 64.37 34.59 70.00 

Sustainable Products & Services 33,978 73.55 30.90 75.00 

Scope of GHG Reporting 58,948 28.85 37.87 0.00 

Environmental Policy 72,552 39.84 33.38 50.00 

Green Procurement Policy 72,552 55.99 33.16 60.00 

Renewable Energy Programmes 59,428 78.94 27.49 75.00 

Environmental Management System 72,552 25.52 30.78 20.00 

Air Emissions Programmes 26,915 67.59 33.23 75.00 

Overall ESG Score 72,552 34.22 8.66 34.38 
     

Panel E. MSCI ESG 
     

Opportunities in Clean Tech 21,758 0.66 0.47 1.00 

Energy Efficiency 7,039 0.57 0.50 1.00 

Opportunities Renewable Energy 2,280 0.57 0.49 1.00 

Carbon Emissions 51,357 0.48 0.50 0.00 

Regulatory Compliance 13,137 0.10 0.30 0.00 

Climate Change Controversies 58,358 0.03 0.18 0.00 

Industry-adjusted Overall Score 75,171 4.25 2.30 4.20 

Carbon Emissions Score 63,802 2.87 2.46 2.67 

Climate Change Theme Score 46,298 2.83 2.67 2.30 

Environmental Pillar Score 75,146 4.32 2.03 4.40 
     

Panel F. Morningstar 
     

Returns (%) 2,686,759 1.13 17.08 0.00 

     

     

This table reports the descriptive statistics for all financial and carbon or transition-related variables in 

the BGS data sample grouped by their origin ESG databases (Panels A–E) for the period from January 

2010 to December 2016. Moreover, the table reports returns for the full sample in Panel F. Variables 

indicated as (std.) are standardized by net sales. All variables are scaled in such a way that higher values 

denote browner firms. A country and sector breakdown can be found in Table A.2 of the appendix. A 

list of all variable codes can be found in internet Appendix IA.1. 
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Table 2 

Factor descriptive statistics and correlations 
 

Factor 

Mean 

return (%) SD (%) T-stat. 

Correlations 

BMG erM SMB HML WML 
 

BMG −0.25 1.95 −1.17 1.00     

erM 0.76 4.02 1.74 0.09 1.00    

SMB 0.06 1.39 0.37 0.20 −0.02 1.00   

HML −0.00 1.68 −0.02 0.27 0.19 −0.06 1.00  

WML 0.57 2.53 2.06 −0.24 −0.20 0.00 −0.41 1.00 
 

 

This table displays descriptive statistics and correlations of the monthly global market (erM), size (SMB), value 

(HML) and momentum (WML) factors as well as BMG for the sample period from January 2010 to December 

2016. The factors erM, SMB, HML, WML, and the risk-free rate are provided by Kenneth French. 
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Table 3 

 BGS-decile portfolio performance 
                 

Decile  
Median 

BGS 

 Coefficient  ∆ Coefficient 

 Alpha erM SMB HML WML BMG 
Adj. R2 

(%) 
 ∆ Alpha ∆ erM ∆ SMB ∆ HML ∆ WML 

∆ Adj. R² 

(%) 
                 

Low 0.24  −0.001 1.143*** 0.142* −0.062 −0.159*** −0.328*** 95.32  −0.001a −0.003a,*** −0.099a −0.083a,* 0.036a,** 1.60*** 
   (−0.44) (39.59) (1.71) (−0.81) (−3.20) (−5.28)         

2 0.32  0.001 1.012*** 0.105 0.018 −0.078* −0.288*** 95.61  −0.001a −0.003a,*** −0.087a −0.073a 0.032a 1.58*** 
   (0.93) (41.12) (1.48) (0.28) (−1.84) (−5.42)         

3 0.37  0.002** 1.028*** 0.169** −0.055 −0.116** −0.143** 94.59  −0.001a,** −0.002a,*** −0.043a −0.037a 0.016a,** 0.32** 
   (2.10) (36.86) (2.10) (−0.76) (−2.40) (−2.38)         

4 0.42  0.001 1.046*** 0.171** −0.023 −0.077 −0.096 94.06  0.000a −0.001a,*** −0.029a,* −0.025a 0.011a 0.09 
   (0.45) (35.14) (1.99) (−0.30) (−1.49) (−1.50)         

5 0.45  0.000 1.011*** 0.142 0.006 −0.101* −0.015 93.55  0.000a 0.000a,*** −0.005a −0.003a 0.002* −0.08 
   (−0.32) (33.35) (1.62) (0.08) (−1.92) (−0.24)         

6 0.49  0.001 0.945*** 0.200** 0.060 −0.094* 0.127** 93.99  0.000a 0.001a,*** 0.038a,*** 0.032a −0.015a,** 0.26** 
   (0.67) (34.03) (2.49) (0.82) (−1.97) (2.11)         

7 0.53  0.001 0.991*** 0.212** −0.007 −0.074 0.415*** 94.06  0.001a 0.004a,*** 0.126a,*** 0.105a −0.046a,* 3.12*** 
   (0.57) (33.55) (2.49) (−0.09) (−1.45) (6.52)         

8 0.58  0.000 1.084*** 0.226** 0.022 −0.195*** 0.448*** 94.45  0.001a 0.005a,*** 0.136a,*** 0.114a −0.050a,*** 2.93*** 
   (0.04) (34.06) (2.46) (0.26) (−3.54) (6.54)         

9 0.64  −0.003** 1.078*** 0.085 −0.035 −0.072 0.688*** 93.06  0.002a,** 0.007a,*** 0.209a,** 0.175a −0.077a,* 6.88*** 
   (−2.34) (30.07) (0.83) (−0.37) (−1.16) (8.90)         

High 0.73  −0.001 1.092*** 0.214* −0.008 −0.165** 1.019*** 91.52  0.002a 0.010a,*** 0.309a,*** 0.258a −0.114a,** 12.47*** 
   (−0.76) (25.00) (1.70) (−0.07) (−2.18) (10.82)         
                 

                 

This table shows monthly median Brown-Green-Scores (BGS), alpha performance, and beta coefficients of the Carhart + BMG model for annually rebalanced, equal-weighted 

decile portfolios based on the BGS of the stocks in the BGS data sample for the period from January 2010 to December 2016. On the right panel, the table displays ∆ alphas 

and coefficients between the Carhart + BMG model and the Carhart model. *, **, *** denote significance on the 10%, 5%, and 1% level, respectively. For alphas and beta 

coefficients, significance statistics are based on two-sided t-tests. c, b, and a denote significance on the 10%, 5%, and 1% level, respectively, for ∆ values. Tests on the differences 

of coefficients are based on two-sided t-tests of bootstrapped ∆ values. Significance symbols in the last column are based on the one-sided F-test for nested models (H0: βi

BMG
 

= 0). 
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Table 4 

Comparison of common factor models 
 

   

Panel A. Significance tests for explanatory power of various models 
 

  

Avg. ∆ adj. R2  

(%) 

Significant at 5% 

F-test (%) 
   

   

(1) CAPM – Fama/French 1.02 11.49 

(2) CAPM – CAPM + BMG 0.84 12.05 
   

   

(3) Fama/French – Carhart 0.10 5.98 

(4) Fama/French – Fama/French + BMG 0.71 11.55 
   

   

(5) Carhart – Carhart + BMG 0.69 11.55 
   

Panel B. Significance tests for factor betas for the Carhart + BMG model 
 

   T-test of significance of coefficients 

  Avg.  

coefficient 

10% level   5% level   1% level 

  # %   # %   # % 
          

erM 0.935 24,627 65.30   21,587 57.24   15,957 42.31 

SMB 0.674 7,113 18.86   4,420 11.72   1,475 3.91 

HML −0.011 4,652 12.34   2,590 6.87   685 1.82 

WML −0.023 4,312 11.43   2,381 6.31   586 1.55 

BMG 0.190 6,824 18.09   4,493 11.91   1,892 5.02 
          

          

This table provides comparisons of common factor models including and excluding BMG. Panel A reports the 

average ∆ adj. R2 between different factor models run on single stocks from the full sample in the sample 

period from January 2010 to December 2016. Significance statistics are based on one-sided F-tests for nested 

models (H0: βi

BMG
 = 0). Panel B shows average beta coefficients as well as the absolute (#) and relative (%) 

number of statistically significant beta coefficients from Carhart + BMG model regressions run on single 

stocks from the full sample. Statistical significance is based on two-sided t-tests. 

 

  



36 

 

Figure 3 

Carbon beta landscape 
 

 

 
 

 
 

This figure shows the carbon beta of the full sample across the world. We include all countries with at least 30 firms in our full sample to correct for outliers. A 

greenish color indicates a low average carbon beta of the country, whereas a deep brown color states that, on average, the country’s firms have high carbon betas. 
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Figure 4 

Carbon beta industry breakdown 
 

 
 

This figure shows box plots of the carbon beta distributions within different industries based on the full sample in the period from January 2010 to December 2016. The 

industries are identified by the super sectors of the Morningstar Global Equity Classification Structure (MGECS). The diamonds indicate the median carbon beta per industry. 

The left and right box edges indicate the lower and upper quartiles, respectively. The whiskers indicate the minimum and maximum carbon betas within 1.5 times the 

interquartile ranges. The sectors are sorted in ascending order by their carbon beta. 



38 

 

Table 5 

Carbon beta in portfolios 
        

 SR 
Excess 

return 
SD βBMG βmkt βsmb βhml 

        

Panel A. 11 Industry portfolios 
        

All firms 0.41 0.17 0.41 0.01    

Best-in-class 0.43 0.17 0.39 −0.50    

Worst-in-class 0.40 0.17 0.43 0.52    

Best – Worst 0.04 0.00 −0.04*** −1.03***    
 

Panel B. 125 factor portfolios 

        

All firms 0.44 0.18 0.41 −0.02 0.65 0.88 0.21 

Best-in-class 0.48 0.19 0.39 −0.44 0.65 0.89 0.22 

Worst-in-class 0.40 0.18 0.44 0.47 0.65 0.87 0.20 

Best – Worst 0.08*** 0.01 −0.04*** −0.91*** 0.00 0.02 0.03 
        

        

This table shows the average Sharpe ratio (SR), yearly excess returns in %, and yearly volatility (SD) in % as 

well as the carbon beta of 11 industry portfolios in Panel A, and additionally the market (mkt), SMB, and HML 

beta for 125 factor portfolios in Panel B. The portfolios are conditionally constructed on the MKT, SMB, and 

HML beta of all stocks in the full sample, aggregated equal-weighted, and annually rebalanced. In both panels, 

a firm is categorized as worst-in-class (best-in-class) if its carbon beta is above (below) its respective group’s 

carbon beta median. The industry classification is based on the super sectors of the Morningstar Global Equity 

Classification Structure (MGECS).*, **, *** denote significance on the 10%, 5%, and 1% level of the 

differences, respectively. Significance tests are based on two-sided t-tests. 
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Table 6          

Panel regressions          
          

   

Panel A. BGS data sample  Panel B. Full sample 
          

 (1) (2) (3) (4)  (5) (6) (7) (8) 
          

Value Chain 0.49*** 0.19*** 0.32*** 0.54***      

          
          

Public Perception 0.58*** 0.23*** 0.52*** 0.60***      

          
          

Adaptability 0.74*** 0.23** 0.64*** 0.69***      

          
          

R & D −0.04** −0.03*** −0.06*** −0.03**  −0.02*** −0.02*** −0.02*** −0.02*** 

          
          

PPE 0.07** 0.08*** 0.06 0.07**  0.04*** 0.01** 0.04*** 0.04*** 

          
          

Leverage Ratio 0.04** −0.03** 0.06*** 0.04**  0.02*** −0.01*** 0.02*** 0.02*** 

          
          

Book-to-market Ratio −0.20*** 0.01 −0.22*** −0.19***  −0.16*** −0.00 −0.16*** −0.15*** 

          
          

Cash 0.01 0.01 −0.01 0.01  −0.04*** −0.01*** −0.04*** −0.04*** 

          
          

RoA 0.09*** −0.03** 0.07*** 0.10***  −0.00 −0.01*** −0.00 −0.00 

          
          

Net Sales −0.01 −0.06*** 0.03 −0.00  −0.02*** 0.00 −0.02*** −0.02*** 
          

          

Country fixed effects no yes no no  no yes no no 

Industry fixed effects no no yes no  no no yes no 

Time fixed effects no no no yes  no no no yes 
          

          

R² 0.16 0.59 0.21 0.17  0.12 0.39 0.12 0.15 

Within R²  0.06 0.14 0.16   0.01 0.12 0.11 
          

          

N 2,978 2,976 2,978 2,978  30,664 30,663 30,664 30,664 
          

          

This table shows panel regressions of carbon beta as the dependent variable on BG subscores and further firm fundamentals as well as 

country, industry, and time fixed effects. Standard errors are clustered on firm level. All accounting variables are logarithmized. *, **, 

*** denote significance on the 10%, 5%, and 1% level, respectively. Significance tests are based on two-sided t-tests. 
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Table 7     
Carbon betas in the financial industry 
     

     

 High CBC Middle CBC Low CBC  
     

     

Panel A. Bank terciles     
     

Average carbon beta 0.250 0.135 −0.337  
     

∆ middle CBC −0.116**    
     

∆ low CBC −0.587*** −0.472***   
     

Panel B. Financial services terciles     
     

Average carbon beta 0.267 0.121 −0.305  
     

∆ middle CBC −0.147***    
     

∆ low CBC −0.572*** −0.425***   
     

     

This table shows the average carbon beta of banks and financial services firms depending on the carbon 

beta of their domiciles. Countries are divided in terciles in Panel A and B based on their average carbon 

beta (carbon beta country, CBC). Banks and financial services firms are identified using the Morningstar 

Global Equity Classification Structure (MGECS). *, **, *** denote significance on the 10%, 5%, and 

1% level of the differences, respectively. Significance tests are based on two-sided t-tests. 
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Table 8     

Variance decomposition 
#     

 Variance components  

 Var(NCF) Var(NDR) –2 Cov(NCF, NDR) Corr(NCF, NDR) 
     

Absolute (%) 0.0394 0.0045 −0.0057 21.44 

 (0.00) (0.00) (0.00) (0.01) 
     

Normalized (%) 103.13 11.86 −14.99   
(0.17) (0.02) (0.04)  

     

     

This table shows the results of the variance decomposition of BMG for the sample period from January 

2010 to December 2016 following the methodology of Campbell (1991). We report both the absolute 

and normalized values of variances and covariance of the cash-flow news and discount-rate news for 

BMG. The standard errors in parentheses are calculated using a jackknife method. 
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Figure 5 

Beta decomposition of 40 carbon beta sorted portfolios 
 

 

 
 

 

This figure shows the beta decomposition of 40 test assets built out of the full sample in the period from January 

2010 to December 2016 following the methodology of Campbell and Vuolteenaho (2004). The 40 test assets 

are constructed by sorting all stocks into 20 5%-quantiles based on their carbon beta (portfolio group) and 

splitting each portfolio by the stocks’ median market capitalization. 
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Table 9      

Pricing cash-flow and discount-rate betas 
      

  Factor model   Two-beta ICAPM 

 Unrestricted α=0  Unrestricted α=0 
  

 

  

 

Rzb less Rrf (g0) 0.003 0  0.003 0 

% pa 3.837 0  3.763 0 

Std. error (0.004)   (0.003)  
      

      

𝛽̂𝐶𝐹  premium (g1) 0.013 0.016  0.013 0.017 

% pa 15.934 18.687  15.941 20.881 

Std. error (0.004) (0.002)  (0.003) (0.001) 
      

      

𝛽̂𝐷𝑅 premium (g2) 0.001 0.008  0.002 0.002 

% pa 1.571 10.054  1.907 1.907 

Std. error (0.012) (0.008)  (0.000) (0.000) 
      

      

R² 0.275 0.261  0.275 0.248 
      

      

This table shows premia estimated in the sample period from January 2010 to December 2016 following 

the methodology of Campbell and Vuolteenaho (2004). The asset pricing models are an unrestricted two-

beta model and a two-beta ICAPM with the discount-rate beta price constrained to equal the market 

variance. The second column per model shows a model with the zero-beta rate equal to the risk-free rate 

(α=0). Estimates are from a cross-sectional regression using value-weighted portfolio returns of 40 test 

assets conditionally sorted on carbon beta and size. Standard errors are from the respective cross-sectional 

regression.  
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Appendix A.1 

For the risk decomposition we use the VAR methodology of Campbell (1991) and assume that 

the data are generated by this first-order VAR model: 

𝑧𝑡+1 = 𝑎 + 𝛤𝑧𝑡 + 𝑢𝑡+1 (4) 

where 𝑧𝑡+1 is an m-by-1 state vector with 𝐵𝑀𝐺𝑡+1as its first element, 𝑎 and 𝛤 are an m-by-1 

vector and m-by-m matrix of constant parameters, and 𝑢𝑡+1 is an i.i.d. m-by-1 vector of shocks. 

Provided that the process in Equation (4) generates the data, t + 1 cash-flow and discount-rate 

news are linear functions of the t + 1 shock vector: 

𝑁𝐷𝑅,𝑡+1 = 𝑒1′𝜆𝑢𝑡+1 (5) 

𝑁𝐶𝐹,𝑡+1 = (𝑒1′ + 𝑒1′𝜆)𝑢𝑡+1 (6) 

where 𝑒1 is a vector with the first element equal to one and the others equal to zero and 𝜆 =

𝜌𝛤(𝐼 − 𝜌𝛤)−1 .30 

In specifying the aggregate VAR, we follow Campbell and Vuolteenaho (2004) by 

choosing global proxies for the four state variables. First, we use the log return on BMG. 

Second, we add the term yield spread (TY) as a weighted average of country specific interest 

rates by Thomson Reuters Datastream.31 TY is computed as the yield difference between the 

ten-year and the two-year treasury constant-maturity rate and denoted in percentage points. We 

construct our third variable, the price-earnings ratio (PE), as the log of the price of the Thomson 

Reuters Equity Global Index divided by the aggregate earnings of all firms in the index. Fourth, 

the small-stock value spread (VS) is the difference between the log book-to-market value of the 

small high-book-to-market portfolio and the log book-to-market value of the small low-book-

to-market portfolio.32 

The unexpected return variance is decomposed into three components following  

Campbell (1991): 

𝑉𝑎𝑟(𝐵𝑀𝐺𝑡 − 𝐸𝑡−1𝐵𝑀𝐺𝑡) = 𝑉𝑎𝑟(𝑁𝐶𝐹) + 𝑉𝑎𝑟(𝑁𝐷𝑅) − 2𝐶𝑜𝑣(𝑁𝐶𝐹, 𝑁𝐷𝑅) 

 

(7) 

                                                      
30 We set 𝜌 close to one as defined in Campbell and Vuolteenaho (2004). 
31 We use the weighting scheme of the MSCI World index as of the end of our sample period. 
32 The portfolios are constructed using all firms in the Thomson Reuters Equity Global Index following the 

approach of Fama and French (1993). As suggested in Chen and Zhao (2009), we used several state variable sets 

to determine the news components. Our results remain stable. 
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1 =
𝑉𝑎𝑟(𝑁𝐶𝐹)

𝑉𝑎𝑟(𝐵𝑀𝐺𝑡 − 𝐸𝑡−1𝐵𝑀𝐺𝑡)
+

𝑉𝑎𝑟(𝑁𝐷𝑅)

𝑉𝑎𝑟(𝐵𝑀𝐺𝑡 − 𝐸𝑡−1𝐵𝑀𝐺𝑡)
− 2

𝐶𝑜𝑣(𝑁𝐶𝐹 , 𝑁𝐷𝑅)

𝑉𝑎𝑟(𝐵𝑀𝐺𝑡 − 𝐸𝑡−1𝐵𝑀𝐺𝑡)
 (8) 

 

For the beta decomposition, we use the same approach, however, the first state variable equals 

the excess market return (𝑟𝑀). 

For the decomposition of the market beta into a cash-flow and a discount-rate beta we use 

the computation method of Campbell and Vuolteenaho (2004):  

𝛽𝑖,𝐶𝐹 =
𝐶𝑜𝑣(𝑟𝑖,𝑡, 𝑁𝐶𝐹)

𝑉𝑎𝑟(𝑟𝑀,𝑡 − 𝐸𝑡−1𝑟𝑀,𝑡)
 

(9) 

𝛽𝑖,𝐷𝑅 =
𝐶𝑜𝑣(𝑟𝑖,𝑡, −𝑁𝐷𝑅)

𝑉𝑎𝑟(𝑟𝑀,𝑡 − 𝐸𝑡−1𝑟𝑀,𝑡)
 

(10) 

where 𝑟𝑖,𝑡 is the return of a specific test asset. 

The decomposition for the 40 test assets based on carbon beta and size is shown in Table 

A.1 and graphically in Figure 5. 
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Table A.1          

Beta decomposition of carbon beta sorted portfolios 
1 
  

  
 

     

          

  CAPM Beta  𝛽𝐶𝐹   𝛽𝐷𝑅 

  Small Big  Small Big  Small Big 
              

Low  1.273 1.441  1.078 1.161  0.154 0.210 
  (0.002) (0.002)  (0.003) (0.002)  (0.002) (0.002) 

2  0.996 1.161  0.814 0.903  0.150 0.192 
  (0.002) (0.001)  (0.002) (0.002)  (0.002) (0.001) 

3  0.924 1.078  0.751 0.805  0.140 0.216 
  (0.002) (0.001)  (0.002) (0.002)  (0.001) (0.001) 

4  0.876 1.041  0.686 0.752  0.163 0.231 
  (0.001) (0.001)  (0.002) (0.001)  (0.001) (0.001) 

5  0.934 0.946  0.757 0.661  0.156 0.238 
  (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 

6  0.863 0.890  0.696 0.588  0.146 0.253 
  (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 

7  0.805 0.924  0.644 0.638  0.144 0.236 
  (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 

8  0.840 0.844  0.682 0.608  0.146 0.193 
  (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 

9  0.841 0.867  0.651 0.607  0.181 0.219 
  (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 

10  0.802 0.939  0.634 0.702  0.152 0.208 
  (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 

11  0.771 0.894  0.616 0.652  0.152 0.212 
  (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 

12  0.827 0.863  0.624 0.554  0.178 0.252 
  (0.001) (0.002)  (0.001) (0.001)  (0.001) (0.002) 

13  0.817 0.949  0.649 0.640  0.155 0.263 
  (0.001) (0.002)  (0.001) (0.001)  (0.001) (0.001) 

14  0.925 0.953  0.690 0.649  0.200 0.249 
  (0.002) (0.002)  (0.002) (0.001)  (0.002) (0.001) 

15  0.933 0.898  0.713 0.592  0.193 0.247 
  (0.002) (0.002)  (0.002) (0.002)  (0.002) (0.001) 

16  1.002 0.990  0.755 0.677  0.234 0.278 
  (0.002) (0.005)  (0.002) (0.004)  (0.002) (0.002) 

17  1.072 1.098  0.807 0.789  0.252 0.249 
  (0.003) (0.002)  (0.002) (0.002)  (0.002) (0.002) 

18  1.096 1.028  0.795 0.734  0.267 0.223 
  (0.003) (0.003)  (0.002) (0.002)  (0.002) (0.002) 

19  1.082 1.098  0.773 0.834  0.285 0.201 
  (0.003) (0.002)  (0.003) (0.003)  (0.002) (0.002) 

High  1.348 1.238  1.091 0.971  0.209 0.204 

  (0.003) (0.003)  (0.004) (0.004)  (0.003) (0.003) 
          

          

This table shows the calculated cash-flow (𝛽𝐶𝐹) and discount-rate beta (𝛽𝐷𝑅) for the sample period of 

January 2010 to December 2016 for the 40 test assets built on carbon beta and size. Standard errors are in 

parentheses and calculated by a bootstrap method conditional on the estimated news series using 2,500 

simulations. 
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Figure A.1 

Beta decomposition of 40 carbon beta sorted portfolios 
 

 
 

This figure shows the BMG beta decomposition of the 40 test assets built out of the full sample. The 40 test 

assets are constructed by sorting all stocks into 20 5%-quantiles based on their carbon beta (portfolio group) 

and splitting each portfolio by the stocks’ median market capitalization. The cash-flow and discount-rate betas 

are obtained by following the methodology of Campbell and Vuolteenaho (2004). 
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Appendix A.2 

Table A.2 

Geographic and sectoral breakdown of global firms 
 

 

Panel A. BGS data sample 

a. Geographic   b. Sectoral 

Country # %   Sector TRBC # % 
 

United States 418 25.53  Industrials 52 368 22.48 

Japan 227 13.87  Cyclical Consumer Goods & Services 53 277 16.92 

United Kingdom 193 11.79  Basic Materials 51 239 14.60 

Canada 97 5.93  Technology 57 191 11.67 

Australia 75 4.58  Non-Cyclical Consumer Goods & 

Services 
54 167 10.20 

France 66 4.03  Energy 50 118 7.21 

South Africa 59 3.60  Utilities 59 104 6.35 

Germany 53 3.24  Healthcare 56 109 6.66 

Taiwan 48 2.93  Telecommunications Services 58 64 3.91 

South Korea 36 2.20      

Other Europe 237 14.48      

Other Asia 78 4.76      

Other Americas 37 2.26      

Other Australasia 13 0.79      
 

Total 1,637 100.00   Total  1,637 100.00 
 

Panel B. Full sample 

a. Geographic   b. Sectoral 

Country # %   Sector MGECS # % 
 

United States 5,106 12.91   Consumer Cyclical 102 6,343 16.04 

China 4,104 10.38   Technology 311 6,276 15.87 

Japan 3,800 9.61   Industrials 310 6,234 15.77 

India 3,569 9.03   Basic Materials 101 5,637 14.26 

Canada 2,998 7.58   Financial Services 103 4,208 10.64 

South Korea 1,957 4.95   Healthcare 206 2,854 7.22 

Taiwan 1,860 4.70   Consumer Defensive 205 2,624 6.64 

Australia 1,775 4.49   Real Estate 104 2,367 5.99 

United Kingdom 1,711 4.33   Energy 309 1,560 3.95 

Malaysia 951 2.41   Utilities 207 873 2.21 

Other Europe 5,830 14.74   Communication Services 308 561 1.42 

Other Asia 4,197 10.6       

Other Americas 774 1.96       

Other Africa 691 1.74       

Other Australasia 156 0.39        

Other (no code 

available) 
58 0.15      

 

Total 39,537 100.00   Total  39,537 100.00 
 

 

This table shows the geographic (a.) and sectoral breakdown (b.) in absolute numbers and percentages for the 

BGS data sample (Panel A) and the full sample (Panel B) for the sample period from January 2010 to December 

2016. The BGS data sample sectoral breakdown is based on the Thomson Reuters Business Classification 

(TRBC). The full sample sectoral breakdown is based on the super sectors of the Morningstar Global Equity 

Classification Structure (MGECS). 
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Table A.3     

Panel regressions     
     

 (1) (2) (3) (4) 
     

Value Chain 0.88*** 0.47*** 0.53*** 0.86*** 

     
     

Public Perception 0.50*** 0.043 0.56*** 0.55*** 

     
     

Adaptability 1.76*** 0.92*** 1.30*** 1.74*** 

     
     

Country fixed effects no yes no no 

Industry fixed effects no no yes no 

Time fixed effects no no no yes 
     

     

R² 0.16 0.52 0.23 0.18 

Within R²  0.054 0.100 0.17 
     

     

N 6,681 6,680 6,681 6,681 
     

     

This table shows panel regressions of carbon beta as the dependent variable on 

BG subscores and country, industry, and time fixed effects. Standard errors are 

clustered on firm level. *, **, *** denote significance on the 10%, 5%, and 1% 

level, respectively. Significance tests are based on two-sided t-tests. 
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Table IA.1 

Descriptions of environmental variables of the four ESG databases 
 

Variable name Code Variable name Code 
 

Panel A. Thomson Reuters Panel C. CDP 
   

Energy Use Total ENRRDP033 Greenhouse Gas Emissions CC8. 

CO2 Equivalents Emission Total  ENERDP023 
Regulatory Opportunities 

Sources 
CC6.1a. 

Clean Technology ENPIDP066 Climate related Opp. Sources CC6.1c. 

Emission Reduction Prod. Process ENERO05V Regulatory Risks Sources CC5.1a. 

Sustainable Supply Chain ENRRDP058 Climate related Risks Sources CC5.1c. 

Renewable Energy Use ENRRDP046 Regulatory Opportunities CC6.1. 

Climate Change 

Risks/Opportunities 
ENERDP089 Climate related Opportunities CC6.1. 

Energy Efficiency Policy ENRRDP0122 Regulatory Risks CC5.1. 

Emission Reduction 

Target/Objective 
ENERDP0161 Climate related Risks CC5.1. 

Energy Efficiency 

Target/Objective  
ENRRDP0192 Emission Reduction Target CC3.1. 

Environmental Investments 

Initiatives 
ENERDP095 Disclosure Score Disclosure Score 

Environmental Expenditures 

Investment 
ENERO24V Performance Band 

Performance 

Band 

Environmental Expenditures ENERDP091   

Environmental Partnerships  ENERDP070   

Environmental Provisions ENERDP092   

Policy Emissions ENERDP0051   

Environmental R&D 

Expenditures 
ENPIDP023   

Emission Reduction Score ENER   

Resource Reduction Score ENRR   

Environmental Score ENVSCORE   

Innovation Score TRESGENPIS   

Emissions Score TRESGENERS   
  

Panel B. Sustainalytics Panel D. MSCI ESG 
  

Carbon Intensity E.1.9 Opportunities in Clean Tech ENV-str-A 

Renewable Energy Use E.1.11 Energy Efficiency ENV-str-O 

Supplier Environmental 

Programmes 
E.2.1.1 

Opportunities Renewable 

Energy 
ENV-str-M 

Sustainable Products & Services E.3.1.1 Carbon Emissions ENV-str-D 

Scope of GHG Reporting E.1.6 Regulatory Compliance ENV-con-B 

Environmental Policy E.1.1 Climate Change Controversies ENV-con-F 

Green Procurement Policy E.2.1 Industry-adj. Overall Score Ind.-adj. Score 

Renewable Energy Programmes E.1.8 Carbon Emissions Score 
Carbon Emissions 

Score 

Environmental Management 

System 
E.1.2 Climate Change Theme Score 

Climate Change 

Theme Score 

Air Emissions Programmes E.1.3.3 Environmental Pillar Score Env. Pillar Score 

Overall ESG Score Total ESG Score   
 

This table provides variable names and codes of the 55 environmental variables from the Thomson Reuters 

ESG, Carbon Disclosure Project (CDP), MSCI ESG KLD and Sustainalytics ESG datasets used to construct the 

stock specific Brown-Green-Score (BGS). 
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Table IA.2 

Comparison of common factor models – BGS data sample 
 

   

Panel A. Significance tests for explanatory power of various models 
 

  

Avg. ∆ adj. R2  

(%) 

Significant at 5% 

F-test (%) 
   

   

(1) CAPM – Fama/French 2.15 17.23 

(2) CAPM – CAPM + BMG 2.80 22.13 
   

   

(3) Fama/French – Carhart 0.21 8.61 

(4) Fama/French – Fama/French + BMG 2.55 21.07 
   

   

(5) Carhart – Carhart + BMG 2.62 21.67 
   

Panel B. Significance tests for factor betas for the Carhart + BMG model 
 

   T-test of significance of coefficients 

  Avg.  

coefficient 

10% level   5% level   1% level 

  # %   # %   # % 
          

erM 1.086 1,122 74.35   1,030 68.26   864 57.26 

SMB 0.122 314 20.81   211 13.98   81 5.37 

HML −0.095 218 14.45   128 8.48   48 3.18 

WML −0.124 245 16.24   145 9.61   43 2.85 

BMG 0.227 448 29.69   345 22.86   190 12.59 
          

          

This table provides comparisons of common factor models including and excluding BMG. Panel A reports the 

average ∆ adj. R2 between different factor models run on single stocks from the BGS data sample in the sample 

period from January 2010 to December 2016. Significance statistics are based on one-sided F-tests for nested 

models (H0: βi

BMG
 = 0). Panel B shows average beta coefficients as well as the absolute (#) and relative (%) 

number of statistically significant beta coefficients from Carhart + BMG model regressions run on single 

stocks from the BGS data sample. Statistical significance is based on two-sided t-tests. 
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Table IA.3 

Factor spanning tests 
 

 Dependent 

variable 

(1) 

BMG 

(2) 

erM 

(3) 

SMB 

(4) 

HML 

(5) 

WML 

  

erM 0.0095  −0.005 0.044 −0.074 
 (0.18)  (−0.13) (1.04) (−1.15) 

SMB 0.30** -0.044  −0.12 0.012 

 (2.07) (-0.13)  (−0.96) (0.07) 

HML 0.25* 0.31 −0.098  −0.53*** 

 (1.88) (1.04) (−0.96)  (−3.30) 

WML −0.11 −0.22 0.004 −0.23***  

 (−1.25) (−1.15) (0.07) (−3.30)  

BMG  0.044 0.17** 0.17* −0.17 

  (0.18) (2.07) (1.88) (−1.25) 

Intercept (%) −0.21 0.90** 0.10 0.14 0.58** 

 (−0.97) (1.99) (0.62) (0.80) (2.22) 

Adj. R² (%) 9.47 0.63 0.76 18.07 15.96 
 

 

This table shows the results of using four factors in regressions to explain average returns on the fifth factor for 

the sample period from January 2010 to December 2016. The factors erM, SMB, HML, and WML are provided 

by Kenneth French. *, **, *** denote significance on the 10%, 5%, and 1% level, respectively. The intercept and 

the adj. R2 are given in percent, t-values are shown in brackets and based on two-sided t-tests. 
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Table IA.4 

Comparing further prominent factors 
 

 

Panel A. Correlations 
 

 RMW CMA I/A ROE QMJ BAB 

BMG −0.07 −0.16 0.10 −0.32 −0.28 −0.33 
 

Panel B. Factor spanning tests 
 

 Dependent 

variable 

(1) 

BMG 

(2) 

BMG 

(3) 

BMG 

(4) 

BMG 
 

erM  0.049 0.010 −0.060 −0.026  
 (0.83) (0.16) (−0.73) (−0.50)  

SMB 0.381** −0.013 0.186 0.320**  

 (2.35) (−0.12) (1.03) (2.26)  

HML 0.463***  0.203 0.253*  

 (2.77)  (1.43) (1.95)  

WML   −0.097 −0.008  

   (−1.08) (−0.09)  

RMW 0.350     

 (1.40)     

CMA −0.233     

 (−0.95)     

I/A  0.078    

  (0.47)    

ROE  −0.363**    

  (−2.53)    

QMJ   −0.205   

   (−1.09)   

BAB    −0.469*  

    (−2.63)  

Intercept (%) −0.345 −0.382 −0.051 0.213  

 (−1.55) (−1.64) (−0.20) (0.81)  

Adj. R2 (%) 9.41 5.49 9.68 15.75  
 

 

This table shows the results of using different factors in regressions to explain average returns of BMG for the 

sample period from January 2010 to December 2016. The factors erM, SMB, HML, RMW, and CMA are 

provided by Kenneth French, the I/A and ROE factors are provided by Lu Zhang and the QMJ and BAB factors 

are provided by AQR Capital Management. *, **, *** denote significance on the 10%, 5%, and 1% level, 

respectively. The intercept and the adj. R2 are given in percent, t-values are shown in brackets and are based on 

two-sided t-tests. 
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Table IA.5 

Maximum Sharpe ratio approach 
  

Rank SR 
Return  

(%) 
SD (%) 

Optimal weights 

erM SMB HML WML BMG* 
 

1 0.32 0.35 1.06 0.17 0.14 0.17 0.34 0.18 

2 0.32 0.41 1.28 0.21   0.18 0.42 0.19 

3 0.31 0.44 1.37 0.24 0.16   0.40 0.20 

4 0.31 0.51 1.64 0.29     0.49 0.21 

5 0.31 0.43 1.37 0.24 0.11 0.16 0.49   

… … … … … … … … … 

22 0.17 0.68 4.01 1.00   0.00     

23 0.13 0.14 1.03   0.33 0.12   0.55 

24 0.13 0.16 1.22   0.38     0.62 

25 0.12 0.19 1.61     0.15   0.85 

26 0.03 0.05 1.39   1.00 0.00     
 

 

This table shows the maximum ex post Sharpe ratios (SRs) by combining the four factors and the reverse BMG* 

for the sample period from January 2010 to December 2016. The factor weightings in each row achieve the 

maximum SR. We report only the five best and worst cases according to the maximum SR. The factors erM, SMB, 

HML, and WML are provided by Kenneth French. 
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Table IA.6 

Asset pricing tests 
  

Factor model Mean α 
GRS Test 

statistic 
p-value 

Mean 

adj. R2 
Mean |α| SR SR2 

  

Panel A. 5x5 Size/Value Portfolios 
  

CAPM 0.0004 1.447 0.124 0.892 0.001 0.804 0.646 

CAPM + BMG 0.0006 1.359 0.169 0.896 0.001 0.794 0.630 

3F 0.0000 1.701 0.050 0.964 0.001 0.888 0.789 

4F + BMG 0.0001 1.612 0.071 0.964 0.001 0.882 0.778 

4F 0.0001 1.438 0.131 0.964 0.001 0.854 0.729 

5F + BMG 0.0001 1.382 0.159 0.965 0.001 0.850 0.722 

5F 0.0001 1.242 0.249 0.965 0.001 0.831 0.691 

6F + BMG 0.0001 1.120 0.355 0.966 0.001 0.809 0.655 

6F 0.0001 1.178 0.302 0.966 0.001 0.825 0.680 

7F + BMG 0.0001 1.082 0.394 0.966 0.001 0.807 0.652 
  

Panel B. 5x5 Size/Momentum Portfolios 
  

CAPM 0.0009 5.185 0.000 0.874 0.003 1.522 2.315 

CAPM + BMG 0.0012 4.984 0.000 0.880 0.003 1.520 2.310 

3F 0.0006 4.995 0.000 0.931 0.003 1.522 2.317 

4F + BMG 0.0007 4.774 0.000 0.931 0.003 1.518 2.306 

4F 0.0007 4.491 0.000 0.967 0.002 1.509 2.276 

5F + BMG 0.0008 4.351 0.000 0.967 0.002 1.507 2.272 

5F 0.0006 3.930 0.000 0.935 0.002 1.479 2.188 

6F + BMG 0.0006 3.719 0.000 0.936 0.002 1.475 2.174 

6F 0.0006 3.832 0.000 0.967 0.002 1.488 2.213 

7F + BMG 0.0007 3.662 0.000 0.967 0.002 1.485 2.206 
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Table IA.6 continued 
  

Factor Model Mean α 
GRS Test 

statistic 
p-value 

Mean 

adj. R2 
Mean |α| SR SR2 

        

Panel C. 5x5 Size/Operating Profitability Portfolios 
 

CAPM 0.0011 2.400 0.003 0.909 0.002 1.035 1.072 

CAPM + BMG 0.0013 2.310 0.005 0.911 0.002 1.035 1.071 

3F 0.0008 3.235 0.000 0.962 0.002 1.225 1.501 

4F + BMG 0.0008 3.192 0.000 0.963 0.002 1.241 1.541 

4F 0.0007 2.813 0.001 0.962 0.002 1.194 1.426 

5F + BMG 0.0007 2.831 0.001 0.963 0.002 1.216 1.478 

5F 0.0006 2.297 0.005 0.968 0.001 1.131 1.279 

6F + BMG 0.0005 2.206 0.008 0.969 0.001 1.136 1.290 

6F 0.0006 2.177 0.009 0.968 0.001 1.121 1.257 

7F + BMG 0.0005 2.123 0.011 0.968 0.001 1.131 1.279 
  

Panel D. 5x5 Size/Investment Portfolios 
  

CAPM 0.0008 2.050 0.013 0.909 0.002 0.957 0.916 

CAPM + BMG 0.0010 1.940 0.020 0.912 0.002 0.948 0.899 

3F 0.0005 2.286 0.005 0.966 0.002 1.030 1.061 

4F + BMG 0.0005 2.159 0.009 0.966 0.001 1.021 1.043 

4F 0.0004 1.956 0.020 0.966 0.001 0.996 0.991 

5F + BMG 0.0004 1.886 0.026 0.966 0.001 0.992 0.985 

5F 0.0003 1.580 0.080 0.971 0.001 0.938 0.880 

6F + BMG 0.0003 1.449 0.128 0.971 0.001 0.920 0.847 

6F 0.0003 1.519 0.101 0.971 0.001 0.937 0.877 

7F + BMG 0.0003 1.423 0.141 0.971 0.001 0.926 0.857 
  

 

This table shows the results of various asset pricing tests on four different global test assets. We include 25 global 

portfolios formed on Size/Value, Size/Momentum, Size/Operating Profitability, and Size/Investment from the 

Kenneth French Data Library. Comparing various models with and without BMG, better fitted models according 

to the GRS test are printed in bold. The sample period ranges from January 2010 to December 2016. The factors 

erM, SMB, HML, WML, RMW, and CMA are provided by Kenneth French. 
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Table IA.7 

Descriptive statistics - orthogonalized factors 
 

Factor 

Mean 

return (%) SD (%) T-stat. 

Correlations 

BMG erM SMB HML WML 
 

BMG⊥ −0.23 1.95 −1.10 0.9808     

erM
⊥

 0.84 4.02 1.92  0.9957    

SMB⊥ 0.08 1.39 0.55   0.9914   

HML⊥ 0.09 1.68 0.48    0.9537  

WML⊥ 0.64 2.53 2.31     0.9758 
 

 

This table displays descriptive statistics of the monthly democratically orthogonalized factors of the Carhart 

model and BMG for the sample period from January 2010 to December 2016. Correlations are reported between 

the orthogonalized factors and the original factors. The original factors erM, SMB, HML, and WML are provided 

by Kenneth French. 
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Table IA.8 

BGS-decile portfolio performance – orthogonalized factors 
 

 

Panel A. Carhart + BMG model 
 

 Coefficient   

 Decile Alpha
⊥

 erM
⊥ SMB⊥ HML⊥ WML⊥ BMG⊥ 

Adj. R2 

(%) 

∆Adj. R2 

(%) 
                  

Low  −0.001 1.138*** 0.086 0.072 −0.247*** −0.241*** 95.32 1.60*** 
            

2 0.001 1.007*** 0.053 0.119** −0.169*** −0.212*** 95.61 1.58*** 
            

3 0.002** 1.025*** 0.137* 0.076 −0.209*** −0.067 94.59 0.32** 
           

4 0.001 1.043*** 0.143* 0.106 −0.183*** −0.022 94.06 0.09 
            

5 0.000 1.013*** 0.123 0.147** −0.215*** 0.060 93.55 −0.08 
            

6 0.001 0.953*** 0.197** 0.206*** −0.223*** 0.206*** 93.99 0.26** 
            

7 0.001 1.000*** 0.247*** 0.180** −0.225*** 0.482*** 94.06 3.12*** 
           

8 0.000 1.104*** 0.262*** 0.252*** −0.362*** 0.539*** 94.45 2.93*** 
           

9 −0.003** 1.093*** 0.155 0.204** −0.256*** 0.740*** 93.06 6.88*** 
           

High −0.001 1.122*** 0.322** 0.292*** −0.383*** 1.091*** 91.52 12.47*** 
                  

Panel B. Decomposition of R2 on deciles level 
         

 Decomposed-R2 (%)    

Decile erM
⊥ SMB⊥ HML⊥ WML⊥ BMG⊥  

Systematic R2 

(%) 

Idiosyncratic 

variance 

(1-R2) (%) 
                

Low 92.76 0.06 0.06 1.73 0.99  95.60 4.40 
         

2 93.59 0.03 0.23 1.04 0.98  95.88 4.12 
         

3 93.00 0.20 0.09 1.54 0.10  94.92 5.08 
         

4 92.89 0.21 0.17 1.13 0.01  94.41 5.59 

         

5 91.73 0.16 0.34 1.63 0.08  93.94 6.06 

         

6 90.19 0.46 0.74 1.96 1.00  94.35 5.65 

         

7 86.78 0.64 0.49 1.74 4.76  94.42 5.58 

         

8 85.04 0.58 0.77 3.61 4.79  94.79 5.21 

         

9 82.11 0.20 0.50 1.78 8.89  93.48 6.52 

         

High 71.27 0.71 0.85 3.29 15.92  92.03 7.97 

         

         

Panel A shows the alpha performance and beta coefficients for annually rebalanced equal-weighted decile-

portfolios based on the Brown-Green-Score (BGS) of the stocks in the BGS data sample for the sample period. 

The factors are orthogonalized democratically. *, **, *** denote significance on the 10%, 5%, and 1% level, 

respectively. For the alphas and beta coefficients, significance statistics are based on two-sided t-tests. 

Significance symbols for the differences in adj. R2 are based on the one-sided F-test for nested models  

(H0: βi

BMG
 = 0). Panel B shows the decomposed-R2 of each democratically orthogonalized factor for the global 

BGS-deciles. The systematic variance is the sum of all decomposed-R2s, whereas the idiosyncratic variance 

equals 1-R2. The original factors erM, SMB, HML, and WML are provided by Kenneth French. 
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Table IA.9 

Comparison of common factor models - orthogonalized factors  
  

 

Panel A. Decomposition of R2 with orthogonalized factors on single stock level  

 

Avg. decomposed-R2 (%) Avg.  

systematic R2 (%) 

Avg. idiosyncratic 

variance (1-R2) (%) erM
⊥ SMB⊥ HML⊥ WML⊥ BMG⊥ 

  

12.31 2.30 1.73 1.87 2.42 20.63 79.37 
 

Panel B. Significance tests for orthogonalized factor betas for the Carhart + BMG model 
 

  T-test of significance of coefficients 
 

Avg. 

coeff. 

10% level  5% level  1% level 
 # %  # %  # % 

 

erM
⊥ 0.922 25,370 67.27   22,428 59.47   16,819 44.60 

SMB⊥ 0.686 7,236 19.19   4,504 11.94   1,537 4.08 

HML⊥ 0.086 4,876 12.93   2,754 7.30   786 2.08 

WML⊥ −0.168 5,656 15.00   3,434 9.11   984 2.61 

BMG⊥ 0.287 7,424 19.69   4,924 13.06   2,192 5.81 
 

 

This table provides a comparison of common regression models with orthogonalized factors. Panel A 

shows the average decomposed-R2 values of orthogonalized factors. Regressions are run based on the 

Carhart + BMG model with single stocks from the full sample. Furthermore, the average systematic R2 

and the average idiosyncratic variance obtained from the systematic variance are displayed. Panel B 

shows average coefficients as well as the absolute (#) and relative (%) numbers of statistically significant 

beta coefficients from the democratically orthogonalized Carhart + BMG model regressions run on single 

stocks from the full sample in the sample period from January 2010 to December 2016. Statistical 

significance is based on two-sided t-tests. 
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Figure IA.1 

Carbon beta landscape 
 

 

 
 

 
 

This figure shows the carbon beta of the BGS data sample across the world. We include all countries with at least 30 firms in our BGS data sample to correct for outliers. A 

greenish color indicates a low average carbon beta of the country, whereas a deep brown color states that, on average, the country’s firms have high carbon betas. 
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Figure IA.2 

Carbon beta industry breakdown 
 

 
 

This figure shows the carbon beta of the BGS data sample across sectors. The sectoral breakdown is based on the Thomson Reuters Business Classification (TRBC). The 

diamonds indicate the median carbon beta per industry. The left and right box edges indicate the lower and upper quartiles, respectively. The whiskers indicate the minimum 

and maximum carbon betas within 1.5 times the interquartile ranges. The sectors are sorted in ascending order by their carbon beta. 
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Figure IA.3 

CAPM betas of 40 carbon beta sorted portfolios 
 

 

 
 

 

This figure shows the market beta of the 40 test assets built out of the full sample. The 40 test assets are constructed by sorting all stocks 

into 20 5%-quantiles based on their carbon beta (portfolio group) and splitting each portfolio by the stocks’ median market capitalization. 

 


