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Abstract

This paper documents a significantly stronger relationship between the slope of the

yield curve and future excess bond returns on Treasuries from 2008-2015 than before

2008. This new predictability result is not matched by the standard shadow rate model

with Gaussian factor dynamics, but extending the model with regime-switching in the

(physical) dynamics of the factors at the lower bound resolves this shortcoming. This

extended model implies that, as the short rate rises away from the lower bound, bond

risk premiums behave as they did before 2008.
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1 Introduction

One of the most widely used dynamic term structure models (DTSMs) in recent years

has been the Gaussian shadow rate model (SRM) proposed by Black (1995) (see Kim and

Singleton (2012), Christensen and Rudebusch (2015), Bauer and Rudebusch (2016), Wu and

Xia (2016), and Andreasen and Meldrum (2018), among others). The popularity of the

SRM stems from its ability to enforce the zero lower bound (ZLB) on nominal bond yields

while preserving a (near-)linear relationship between bond yields and pricing factors away

from the ZLB. However, in this paper we show that this standard version of the SRM has

an important shortcoming in its ability to match key facts about the predictability of bond

returns and hence the dynamics of bond risk premiums. We address this shortcoming by

proposing a new SRM with regime-switching factor dynamics at the ZLB.

Beginning with the seminal studies of Fama and Bliss (1987) and Campbell and Shiller

(1991), the finance literature has devoted substantial attention to regressions of excess bond

returns on the slope of the yield curve, that is, the "yield spread" between long- and short-

maturity bonds. These regressions are commonly used as diagnostic tests of whether a

DTSM can explain deviations from the expectations hypothesis and generate predictability

in excess bond returns. Specifically, Dai and Singleton (2002) require that a well-specified

model should imply population regression coeffi cients that match those estimated from the

data, and they show that a 3-factor Gaussian affi ne term structure model (ATSM) estimated

on a data set when U.S. bond yields were away from the ZLB can satisfy this test.1 However,

Bauer and Rudebusch (2016) show that ATSMs imply material conditional probabilities of

negative nominal interest rates during the recent ZLB episode, which shows the importance

of also examining the performance of DTSMs that enforce the ZLB.

While the SRM provides the most popular way of enforcing the ZLB, its ability to match

important facts about return predictability has received relatively little attention, perhaps

1Other prominent studies that adopt this diagnostic test include Bansal and Zhou (2002), Wachter (2006),
Rudebusch and Wu (2007), Bansal and Shaliastovich (2013), and Kung (2015).
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because the task of assessing ZLB-consistent models is complicated by the nonlinearities in

the data close to the ZLB. A key assumption underpinning the diagnostic test of Dai and Sin-

gleton (2002) is that there is a stable linear relationship between excess bond returns and the

yield spread in the data. Indeed, many studies of DTSMs use data sets that start during the

1980s or early 1990s because of a possible structural break in this linear relationship during

the 1980s documented by Rudebusch and Wu (2007). In this paper, we document a further

shift in the linear relationship between excess returns and the yield spread that appears to

coincide with short-term interest rates reaching the ZLB in the United States in 2008. In

this case, however, it would be premature to simply exclude data from before 2008 when

estimating a SRM, for three reasons. First, it would leave us with a very short sample of

data to estimate the model, exacerbating existing small-sample problems.2 Second, it is not

yet clear whether the break in 2008 is permanent or whether it is a temporary phenomenon

associated with proximity to the ZLB. Third, it is worth exploring whether nonlinear term

structure models such as the SRM can generate the observed state-dependency in the rela-

tionship between excess returns and the yield spread. To our knowledge, the only previous

study considering the ability of the SRM to satisfy the Dai and Singleton (2002) diagnostic

test is Andreasen and Meldrum (2018), who focus only on the narrower question of whether

the standard SRM satisfies the test when interest rates are away from the ZLB.

To assess whether a term structure model is capable of explaining the shift in the regres-

sion coeffi cients at the ZLB, we propose a modification of the Dai and Singleton (2002) test.

Specifically, we argue that a well-specified DTSM should match the slope coeffi cients both

when the short rate is close to the ZLB and when it is away from the lower bound. We show

that the standard SRM matches the slope coeffi cients away from the lower bound but that

the model is unable to match the shift in these slope coeffi cients at the ZLB. This result

suggests that simply enforcing the ZLB by truncating the short rate at zero in a Gaussian

SRM is not suffi cient to capture the change in bond yield dynamics that occurred at the

2For discussions of small-sample problems in DTSMs, see, for example, Bauer, Rudebusch and Wu (2012),
Kim and Orphanides (2012), and Wright (2014).
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ZLB.

Given this finding, a natural question is whether we can extend the standard SRM to

match the observed shift in the relationship between excess returns and the yield spread.

We consider two extensions that both allow for a structural change in the parameters deter-

mining the prices of risk and hence the time-series dynamics of the factors, as in Bansal and

Zhou (2002) and Giacoletti, Laursen and Singleton (2018). The first extension we consider

introduces regime-switching in the SRM by allowing the time-series dynamics of the pricing

factors to change at the lower bound. We motivate this extension by a desire to accom-

modate the effects of various unconventional monetary policy measures that should have a

largely temporary effect on bond yields during the ZLB episode. The second extension we

consider allows for a permanent break in the time-series dynamics of the pricing factors in

2008 to accommodate long-lasting effects of recent developments, such as a possible "secular

stagnation," as proposed by Summers (2015). Our results show that the SRM with regime-

switching is able to match the shift in bond return predictability at the ZLB, meaning that

this shift can be attributed to a temporary re-pricing of risk among bond investors at the

lower bound that will revert once the short rate rises suffi ciently far from the ZLB. We

also find that the SRM with a permanent break does not improve on the performance of

the standard SRM, suggesting that bond market investors do not perceive the shift in the

relationship between excess returns and the yield spread to be permanent.

The remainder of this paper proceeds as follows. Section 2 documents the shift in bond

return predictability during the recent ZLB period. Section 3 shows that the standard SRM

cannot match this new empirical finding. Section 4 presents the two modifications of the

standard SRM. Section 5 shows that our key conclusions are robust to including data on

long-horizon interest rate surveys in the data set used to estimate the models, as proposed

by Kim and Orphanides (2012). Section 6 shows that our conclusions about the SRM with

a permanent break in the factor dynamics are robust to an alternative way of determining

the timing of the break. Section 7 provides some concluding comments.
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2 Shift in Bond Return Predictability at the ZLB

This section documents a significant shift in the ability of the yield spread to predict

future excess bond returns during the recent ZLB period. We proceed by showing instability

in the classic bond return predictability regressions in Section 2.1, while Section 2.2 presents

our new empirical finding about the nature of this instability. Section 2.3 provides various

robustness checks.

2.1 Instability in the Classic Return Predictability Regression

The risk premium implied by a long-maturity bond is often measured by its expected

return in excess of the return on a short-maturity bond. These expected returns are not

directly observed and therefore typically estimated by regressing realized excess bond returns

rx
(n)
t,t+h on a set of predictors zt. That is, by running the regression

rx
(n)
t,t+h = β

(n)
0 + β(n)′zt + ε

(n)
t,t+h, (1)

where ε(n)t,t+h is a residual. Here, rx
(n)
t,t+h ≡ p

(n−h)
t+h − p

(n)
t + p

(h)
t denotes the excess return on an

n-month bond relative to an h-period bond between time t and t+h, and p(n)t denotes the log

price at time t of a zero-coupon bond with n periods to maturity. A natural benchmark is

the expectations hypothesis, which implies β(n) = 0 and hence no bond return predictability.

One of the most prominent and robust predictors of excess bond returns is the slope of

the yield curve, as used in the seminal work of Campbell and Shiller (1991).3 Letting y(n)t

denote the yield at time t on an n period zero-coupon bond, the specification in Campbell

3A number of other yield curve and macroeconomic variables have recently been shown to predict excess
returns (see, for example, Cochrane and Piazzesi (2005), Ludvigson and Ng (2009), Joslin, Priebsch and
Singleton (2014), Cieslak and Povala (2015), and Bauer and Rudebusch (2019)).
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and Shiller (1991) is equivalent to

rx
(n)
t,t+h = β

(n)
0 + β

(n)
1

(
y
(n)
t − y

(h)
t

)
+ ε

(n)
t,t+h, (2)

where the yield spread y(n)t − y
(h)
t measures the slope of the yield curve.

A key assumption underpinning equation (2) is that there is a stable linear relationship

between excess bond returns and the yield spread. However, the recent financial crisis

has generated several unusual developments in the bond market that may have affected

the relationship. The most obvious is probably that U.S. short-term interest rates were

constrained by the ZLB from late 2008 to late 2015. This introduced an obvious nonlinearity

in the yield curve that most likely caused the yield spread y(n)t − y
(h)
t to be smaller than it

would otherwise have been, because the short-term yield y(h)t was constrained from below.

Such a slope compression is likely to have increased β(n)1 because a given yield spread during

the ZLB period carried a stronger signal about future bond returns than before the financial

crisis.

A second important development was the Large-Scale Asset Purchase (LSAP) programs

that the Federal Reserve used during the ZLB period to stimulate the U.S. economy. These

programs were mainly designed to temporarily lower long-term yields by reducing bond risk

premiums, as discussed in D’Amico, English, Lopez-Salido and Nelson (2012), Li and Wei

(2013), and Bonis, Ihrig andWei (2017). Thus, the LSAP programs are likely to have affected

both the level of excess bond returns and the yield spread, implying that the coeffi cients in

equation (2) may be affected.

Finally, there may have been a permanent reduction in expectations about the long-term

level of the short rate, perhaps due to concerns about a secular stagnation in the U.S. (see,

for instance, Summers (2015), Laubach andWilliams (2016), Del Negro, Giannone, Giannoni

and Tambalotti (2017), Christensen and Rudebusch (2019)). Such a shift in expectations

also seems capable of affecting the coeffi cients in equation (2).
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Figure 1: Chow Tests and Historical Bond Yields
The top chart reports the Chow test statistics for breaks in equation (2) using at least 15 percent
of the observations for the pre- and post-break sample. The reported 95 percent critical value for
the maximum Chow test statistic is taken from Andrews (1993). The bottom chart shows selected
historical bond yields. The yields are end-month from Gürkaynak, Sack and Wright (2007) starting
in January 1990 and ending in December 2018.
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Given these considerations, we formally test whether the coeffi cients in equation (2) are

constant across time using a monthly sample of U.S. bond yields fromGürkaynak et al. (2007)

between January 1990 and December 2018, adopting a 1-year holding period (h = 12). We

apply separate tests to regressions in equation (2) for various maturities. Given a sample

observed at times t = 1, 2, ..., T , the null hypothesis is that there is no structural break

between periods τ 1 > dκT e and τ 2 < b(1− κ)T c and the alternative hypothesis is that there

is a single break at an unknown time τB where τ 1 ≤ τB ≤ τ 2. Setting κ > 0 means that we

ensure that the pre- and post-break periods each contain at least a minimum proportion of

the total sample. For all candidate break points τ = τ 1, τ 1 + 1, ..., τ 2, we compute the Chow
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test statistic

F (τ) =
SSR1,T − (SSR1,τ−1 + SSRτ ,T )

(SSR1,τ−1 + SSRτ ,T ) / (T − 2k)
, (3)

where SSRi,j denotes the sum of squared residuals for equation (2) estimated on a sample

from period i to period j and the number of parameters in the restricted model is k = 2.

The Quandt (1960) likelihood ratio statistic for a break at an unknown time is given by

QLR = max
τ=τ1,...,τ2

F (τ) . (4)

Andrews (1993) tabulates the relevant critical values and we refer the reader to Stock (1994)

for further details.

The top chart in Figure 1 shows the Chow test statistics F (τ) for returns on 3-, 5-, 7-,

and 10-year bonds for all of the considered break points, where we set κ = 0.15 to ensure

that the pre- and post-break samples contain at least 15 percent of the observations. The

dashed line shows the Andrews (1993) 95 percent critical value for the QLR test statistic.

The bottom chart in Figure 1 shows time series of various U.S. interest rates. We find that

the Chow test statistics for all bond yields increase sharply around the time the effective

federal funds rate reached the ZLB in 2008, and reach their maximum values, well above the

Andrews (1993) 95 percent critical value, fairly soon thereafter.

In summary, the classic predictability regressions in equation (2) display evidence of a

break around 2008 when the U.S. short rate approached the ZLB.

2.2 Formalizing the Shift in Bond Return Predictability

The next step is to examine the nature of this break in the classic return predictability

regression. The first two of the unusual bond market developments mentioned above (that

is, the ZLB episode and the LSAP programs) were specific to the period between 2008 and

late 2015. These developments seem therefore likely to only have had an effect on bond

yields that is largely contained to that period. Hence, a natural extension of equation (2) is
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to allow for a threshold effect depending on the level of the short rate. That is, to consider

a regression of the form

rx
(n)
t,t+h = β

(n)
0,1I{rt≥c} + β

(n)
0,2I{rt<c} +

(
β
(n)
1,1I{rt≥c} + β

(n)
1,2I{rt<c}

)(
y
(n)
t − y

(h)
t

)
+ ε

(n)
t,t+h, (5)

where I{rt≥c} is an indicator function that takes a value of 1 at time t if the short rate rt ≥ c

and 0 otherwise. As a result, equation (5) allows the regression coeffi cients in equation (2)

to shift when rt becomes suffi ciently low.4

On the other hand, concerns about secular stagnation and a lower long-term level for the

short rate are not specific to the ZLB period and may therefore affect bond yields for several

years after the ZLB period. Hence, an alternative extension of equation (2) is to allow for a

permanent break at time τ . That is, to consider a regression of the form

rx
(n)
t,t+h = β

(n)
0,1I{t<τ} + β

(n)
0,2I{t≥τ} +

(
β
(n)
1,1I{t<τ} + β

(n)
1,2I{t≥τ}

)(
y
(n)
t − y

(h)
t

)
+ ε

(n)
t,t+h, (6)

where I{t<τ} is an indicator function that takes a value of 1 at time t if t < τ and 0 otherwise.

Given that there is only one ZLB period for the postwar U.S. economy in our sample,

it is hard to tell which of the nonlinear specifications in equations (5) and (6) we should

prefer. To avoid taking a view on the best specification at this stage, we simply estimate

the standard predictability regression in equation (2) using two separate samples. The first

sample ("Regime 1") runs from January 1990 to September 2008, excluding December 2003

when the short rate was slightly below 1 percent. The second sample ("Regime 2") runs

from October 2008 to November 2015, which is the period where the short rate was close

to the ZLB. Because the first sample includes only observations before October 2008 with a

short rate above 1 percent, and the second sample includes only observations after October

4An alternative specification would be to allow the coeffi cients of a return regression to transition smoothly
as the short rate approaches the ZLB. However, in most of our data set the short rate is either well away
from the ZLB or very close to it, so there is likely to be insuffi cient information to estimate the parameters
of such a smooth transition reasonably precisely.
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Figure 2: Bond Return Predictability

The top chart reports the slope coeffi cient in rx
(n)
t,t+h = β

(n)
0 + β

(n)
1

(
y
(n)
t − y(h)t

)
+ ε

(n)
t,t+h with

h = 12 when estimated from January 1990 to September 2008 (excluding December 2003) where
rt ≥ 0.01, and when estimated from October 2008 to November 2015 where rt < 0.01. The bottom
chart reports the difference in the slope estimates at a given maturity. The 95 percent confidence
interval for these differences are computed using a block bootstrap with 5,000 repetitions and a
block window of 24 months. In each bootstrap sample it is required that there are at least 50
observations where the short rate is above and below 1 percent, respectively. The x-axes report
maturity in years, and all yields are end-month from Gürkaynak et al. (2007) with rt measured by
the effective federal funds rate.
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2008 with a short rate below 1 percent, the estimates are consistent with either equation

(5) with c = 0.01 or equation (6) with τ = 225 (October 2008 is the 225th month of our

sample).

We estimate the regressions for both regimes using monthly observations of yields and

excess returns on bonds with maturities from 2 to 10 years using a 1-year holding period as

above. The gray circles in the top chart of Figure 2 for the pre-ZLB period reveal the usual

empirical pattern that the slope coeffi cients in equation (2) are positive and increase with

maturity. Our new empirical finding is that these slope coeffi cients are larger and increase
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faster with maturity during the recent ZLB period (the gray triangles) when compared to

the pre-ZLB period. The bottom chart in Figure 2 shows that these differences in the slope

coeffi cients are significant at the 5 percent level for maturities beyond 3 years.5 Thus, recent

developments in the bond market imply a shift in bond return predictability with a much

stronger relationship between the yield spread and excess bond returns than observed in the

pre-ZLB period.

2.3 Robustness

We examine the robustness of this shift in bond return predictability in Table 1, where

∆β
(n)
1 ≡ β

(n)
1,2 − β

(n)
1,1 refers to the change in the slope coeffi cient in equation (2). The first

column examines the importance of the holding period by considering biannual bond returns

(h = 6) instead of the annual horizon we use elsewhere. The shift in the slope coeffi cients is

again positive, and it is significant beyond the 4-year maturity.

Our new finding is also robust to measuring the slope of the yield curve by the second

principal component (PCA2) of bond yields, as shown by the second column in Table 1.

The next column shows that the shift in bond return predictability is also robust to

replacing the yield spread by the forward spread f (n,h)t − y(h)t , as in Fama and Bliss (1987),

where the forward rate is given by f (n,h)t = log
(
P
(n+h)
t /P

(n)
t

)
.

The fourth robustness check reported in Table 1 adds the Chicago Fed National Activity

Index (CFNAI) as in Joslin et al. (2014) and the inflation trend factor of Cieslak and Povala

(2015) as additional regressors to equation (2) to control for the effect of macro variables.

Table 1 shows that we again find a positive and significant shift in the ability of the yield

spread to predict future bond returns during the ZLB period.

The fifth column in Table 1 controls for the decline in the natural (or equilibrium) nominal

rate i∗t , which Bauer and Rudebusch (2019) show transmits to long-term bond yields. We use

the approach in Christensen and Rudebusch (2019) among others and measure the natural

5Unreported results show that allowing for a break in this way roughly doubles the R2 statistics across
the considered maturities.
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Table 1: Bond Return Predictability: Robustness
Column (1) estimates equation (2) with h = 6. Column (2) replaces y(n)t −y

(h)
t in equation (2) by the second

principal component of bond yields. Column (3) replaces y(n)t − y(h)t in equation (2) by the forward spread
f
(n,h)
t − y(h)t . Column (4) adds CFNAI and the inflation trend factor of Cieslak and Povala (2015) as two
additional macro control variables to equation (2). Column (5) adds I{rt<c}i∗t to equation (2) to control
for the effect of the natural nominal short rate i∗t , when measured by the expected 3-month Treasury bill
yield from 5 to 10 years ahead in the Blue Chip Economic Indicators survey. These alternative specifications
are estimated from January 1990 to September 2008 (excluding December 2003) where rt ≥ 0.01 and from
October 2008 to November 2015 where rt < 0.01. Standard errors are provided in parenthesis using a block
bootstrap with 5,000 repetitions and a block window of 24 months. In each bootstrap sample it is required
that there are at least 50 observations where the short rate is above and below 1 percent, respectively.
Significance at the 10, 5, and 1 percent level is denoted by ?, ??, and ? ? ?. All yields are end-month from
Gürkaynak et al. (2007) with rt measured by the effective federal funds rate.

(1) (2) (3) (4) (5)
h = 6 PCA2 f

(n,h)
t − y(h)t Macro Trend

n β
(n)
1 ∆β

(n)
1 β

(n)
1 ∆β

(n)
1 β

(n)
1 ∆β

(n)
1 β

(n)
1 ∆β

(n)
1 β

(n)
1 ∆β

(n)
1

2 0.65
(0.57)

0.83
(0.67)

0.04
(0.25)

0.45
(0.28)

0.17
(0.50)

0.79
(0.51)

0.12
(0.99)

2.09?
(1.13)

0.34
(0.99)

1.19
(1.00)

3 0.84
(0.63)

1.15
(0.80)

0.19
(0.46)

1.11??
(0.53)

0.34
(0.57)

1.05?
(0.61)

0.49
(1.07)

2.39?
(1.30)

0.66
(1.07)

1.65
(1.13)

4 0.96
(0.64)

1.53
(0.96)

0.39
(0.62)

1.95???
(0.70)

0.47
(0.59)

1.49??
(0.68)

0.75
(1.07)

2.84??
(1.36)

0.90
(1.08)

2.25?
(1.23)

5 1.05?
(0.63)

1.92?
(1.10)

0.64
(0.74)

2.88???
(0.84)

0.57
(0.60)

2.04???
(0.70)

0.97
(1.05)

3.41??
(1.36)

1.10
(1.05)

3.03??
(1.34)

6 1.10?
(0.61)

2.31?
(1.28)

0.91
(0.83)

3.82???
(1.00)

0.66
(0.61)

2.67???
(0.71)

1.15
(1.02)

4.06???
(1.36)

1.26
(1.02)

4.02???
(1.46)

7 1.15?
(0.60)

2.67??
(1.24)

1.19
(0.90)

4.70???
(1.21)

0.72
(0.62)

3.34???
(0.85)

1.32
(1.01)

4.76???
(1.43)

1.41
(0.99)

5.23???
(1.58)

8 1.19??
(0.59)

3.01??
(1.31)

1.46
(0.95)

5.50???
(1.47)

0.78
(0.63)

4.06???
(1.13)

1.46
(0.99)

5.48???
(1.61)

1.54
(0.97)

6.63???
(1.68)

9 1.22??
(0.59)

3.32??
(1.41)

1.73?
(1.00)

6.19???
(1.78)

0.83
(0.65)

4.87???
(1.47)

1.58
(0.99)

6.20???
(1.88)

1.65?
(0.96)

8.19???
(1.74)

10 1.25??
(0.59)

3.62??
(1.54)

1.99?
(1.03)

6.78???
(2.11)

0.88
(0.67)

5.78???
(1.85)

1.69?
(0.99)

6.91???
(2.21)

1.74?
(0.95)

9.87???
(1.78)

rate by its long-horizon expectations from 5 to 10 years into the future. Specially, we measure

i∗t by the average expected 3-month Treasury bill yield from 5 to 10 years ahead, as reported

biannually in the Blue Chip Economic Indicators survey.6 Given that i∗t operates as a level

factor affecting all yields equally, it should cancel out in the yield spread away from the

ZLB but not close to the bound, where short-term interest rates cannot respond one-to-one

with i∗t . This suggests that i
∗
t should only affect excess bond returns close to the ZLB, and

6The forecast horizons are not the same in each edition of the survey, so we linearly interpolate the mean
expectations across respondents to get short rate expectations at the desired horizon. This biannual series
is then extended to a monthly frequency by linear interpolation. The data source is Wolters Kluwer Legal
and Regulatory Solutions U.S., Blue Chip Economic Indicators.
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we therefore add the regressor I{rt<c}i∗t to equation (2). The last column in Table 1 shows

that controlling for i∗t cannot explain our new empirical result, as we also in this case find a

positive and significant shift in the ability of the yield spread to predict bond returns.7

Thus, the shift in bond return predictability documented in Section 2.2 is robust to

several modifications and extensions of the classic predictability regression in (2).

3 A Shortcoming of the Standard Shadow Rate Model

This section shows that the standard SRM with Gaussian factor dynamics cannot explain

the shift in bond return predictability documented in Section 2. We proceed by describing

the model in Section 3.1, our estimation method in Section 3.2, and the inability of the

standard SRM to generate stronger return predictability from the yield spread at the ZLB

in Section 3.3.

3.1 A Shadow Rate Model

Suppose that the U.S. economy can be described by a set of factors collected in xt of

dimension nx × 1 that evolves as

xt+1 = h (xt) + ΣεPt+1. (7)

The function h (xt) is potentially nonlinear and εPt+1 is an nx × 1 vector of independent

standard Gaussian innovations under the physical probability measure P, denoted εPt+1 ∼

NID (0, I). Throughout, we consider models with the standard 3 pricing factors (that is,

nx = 3). The stochastic discount factor Mt+1 is assumed to have the flexible form

Mt+1 = exp
{
−rt − λ (xt)

′ λ (xt)− λ (xt) ε
P
t+1

}
,

7Unreported results show that we also find a positive and significant shift in β(n)1 if we simply add our
measure of i∗t as an extra regressor in equation (2) to account for the effect of i

∗
t away from the ZLB and

close to the lower bound.
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where rt is the one-period nominal short rate and λ (xt) is a potentially nonlinear function

for the market prices of risk. Many macroeconomic models relate Mt+1 to consumption

and inflation. The precise structural underpinnings of Mt+1 are, however, not provided in

reduced-form DTSMs to reduce the risk of model misspecification, although the factors in

xt are linked to the U.S. economy at an overall level. The short rate is given by

rt = max {0, st} , (8)

where the use of the maximum function following Black (1995) constrains rt from below

at zero and st ≡ α + β′xt is an unconstrained "shadow rate." To make the bond pricing

tractable, it is assumed that the market prices of risk are given by

λ (xt) = Σ−1 (h (xt)−Φµ− (I−Φ) xt) , (9)

because it implies a first-order vector auto-regression (VAR) under the risk-neutral proba-

bility measure Q. That is,

xt+1 = Φµ+ (I−Φ) xt + ΣεQt+1, (10)

where εQt+1 ∼ NID (0, I).

The standard SRM with Gaussian factor dynamics is obtained by letting h (xt) = h0 +

Hxxt, implying that equation (7) reduces to

xt+1 = h0 + Hxxt + ΣεPt+1. (11)

Yields do not have closed-form expressions in this version of the SRM, and we therefore

use the second-order approximation of Priebsch (2013). For identification, we impose the

standard restrictions that β′ = 1, µ = 0, Σ is lower triangular, and Φ is in Jordan form with
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increasing diagonal elements (see Joslin, Singleton and Zhu (2011)). A preliminary analysis

reveals that the first eigenvalue of Φ is often indistinguishable from zero, meaning that the

pricing factors have a near unit root under Q. This implies that the unconditional mean of

the shadow rate under Q is badly identified, and we therefore impose Φ (1, 1) = α = 0 to

ensure identification (see Hamilton and Wu (2012)).8 Finally, the P transition parameters

h0 and Hx are unrestricted.

3.2 Estimation Method and Data

Most previous studies that estimate ZLB-consistent DTSMs use quasi-maximum likeli-

hood (QML) methods. However, the joint optimization of all parameters required by stan-

dard QML is computationally challenging and the asymptotic properties of these QML esti-

mators are unknown in nonlinear models such as the SRM. We overcome these limitations by

using the sequential regression (SR) approach of Andreasen and Christensen (2015), which

is computationally simpler and provides asymptotically Gaussian parameter estimates.

To apply the SR approach to the standard SRM, it is convenient to define two vectors

with partly overlapping sub-sets of parameters. First, θ1 collects the "Q parameters" in

equation (10) that determine the cross-sectional relationship between the pricing factors and

bond yields. Second, θ2 collects the "P parameters" in equation (11) that determine the time-

series dynamics of the pricing factors. Because Σ appears in both θ1 and θ2, it is convenient

to partition these vectors further as θ1 =

[
θ′11 vech (Σ)′

]′
and θ2 =

[
θ′22 vech (Σ)′

]′
,

where θ11 =

[
Φ (2, 2) Φ (3, 3)

]′
and θ22 =

[
h′0 vec (Hx)

′
]′
.

The SR approach proceeds in three steps. At step 1, θ1 and the pricing factors xt are

jointly estimated using nonlinear regressions from ny,t yields with maturitiesm1,m2, . . . ,mny,t

in period t. The observed yield with maturity mj at time t is denoted y
(mj)
t = gmj

(xt;θ1) +

vmj ,t, where gmj
(xt;θ1) is the model-specific function that relates the pricing factors to the

8Previous studies that have imposed these restrictions on Φ (1, 1) and α include Christensen and Rude-
busch (2015).
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cross section of yields and vmj ,t is a measurement error. We assume that these measurement

errors have zero means and finite, positive-definite covariance matrices. For a given value of

θ1, we obtain the pricing factors in each period by

x̂t (θ1) = arg min
xt∈Rnx

1

2ny,t

ny,t∑
j=1

(
y
(mj)
t − gmj

(xt;θ1)
)2
. (12)

The estimate of θ1 is then given by minimizing the sum of squared residuals from equation

(12). That is,

θ̂
step1

1 = arg min
θ1∈Θ1

1

2N

T∑
t=1

ny,t∑
j=1

(
y
(mj)
t − gmj

(x̂t (θ1) ;θ1)
)2
, (13)

where θ̂
step1

1 denotes the step 1 estimate of θ1, N =
∑T

t=1 ny,t, and Θ1 is the feasible domain

of θ1. Andreasen and Christensen (2015) show that θ̂
step1

1 is consistent and asymptotically

Gaussian for ny,t →∞ for all t given standard regularity conditions.

At step 2 of the SR approach, the time-series parameters θ2 are estimated using the

estimated factors x̂t

(
θ̂
step1

1

)
from step 1 with a correction for estimation uncertainty in

these factors. As shown in Andreasen and Christensen (2015), this procedure corresponds to

running a modified VAR, where all second moments are corrected for estimation uncertainty

in x̂t

(
θ̂
step1

1

)
. The details are provided in Appendix A.

At step 3 of the SR approach, the estimates of Σ from step 1 and 2 can be combined

optimally and, conditional on the optimal estimate of Σ, the remaining Q parameters θ11

and the P parameters θ2 are re-estimated. Preliminary results for our applications reveal

that Σ is estimated very imprecisely at step 1 compared with step 2.9 So, for simplicity, we

9This finding is similar to the result of Joslin et al. (2011) for affi ne DTSMs, because their estimates of
Σ from the time-series dynamics of their (observed) factors hardly change when taking account of the cross
section of bond yields.
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settle by conditioning on the estimate Σ̂step2 at step 2 and re-estimate θ11 as

θ̂
step3

11 = arg min
θ11∈Θ11

1

2N

T∑
t=1

ny,t∑
j=1

(
y
(mj)
t − gmj

(
x̂t

(
θ11, Σ̂

step2
)

;θ11, Σ̂
step2

))2
, (14)

where θ̂
step3

11 denotes the step 3 estimate of θ11 andΘ11 is the feasible domain of θ11. Finally,

we update the estimate of θ2 by re-running step 2 using the estimated factors from step 3,

that is x̂t

(
θ̂
step3

11 , Σ̂step2
)
.

The SR approach is designed for a setting with a large cross section, and we therefore

include more yields than typically used when estimating DTSMs. That is, we represent the

yield curve by 25 points, using the 3-month yield, the 6-month yield, yields in the 1-year to

3-year range at 3-month intervals, and yields in the 3- to 10-year range at 6-month intervals.

For the 3- and 6-month yields, we use Treasury bill yields, while yields with longer maturities

are obtained from the Gürkaynak et al. (2007) data set. Our monthly sample covers the

period from January 1990 through December 2018, where the starting point is chosen to

reduce the possibility of a structural break associated with the shift in U.S. monetary policy

during the 1980s (see Rudebusch and Wu (2007)).

3.3 Matching the Shift in Bond Return Predictability

We next examine whether the standard SRM can explain the shift in bond return pre-

dictability when the short rate approaches the ZLB. Given that the standard SRM has

constant parameters, it is obvious that it cannot match this shift by generating a permanent

break in the regression coeffi cients, as implied by equation (6). However, this model may

be able to match the shift in bond return predictability through a threshold effect due to

its nonlinear mapping between the pricing factors and bond yields. We therefore simulate a

sample of 1 million observations from the standard SRM and estimate equation (5) with a

threshold of 1 percent.

When the short rate is above 1 percent, the top chart in Figure 3 shows that the standard
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Figure 3: Bond Return Predictability: Standard SRM
The top chart shows the ability of the standard SRM to match the shift in the slope coeffi cients
in equation (5) with h = 12 and c = 0.01 using a simulated sample of 1 million observations. The
corresponding data moments are from equation (2) with h = 12 when estimated from January
1990 to September 2008 (excluding December 2003) where rt ≥ 0.01, and when estimated from
October 2008 to November 2015 where rt < 0.01. The bottom chart shows the difference in the
slope coeffi cients in equation (5) at a given maturity as implied by the standard SRM and the data.
All x-axes show the maturity in years.
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SRM (the black circles) matches closely the corresponding data moment (the gray circles).

This finding is perhaps not too surprising given that the standard SRM away from the

ZLB reduces to the Gaussian affi ne model, which is able to match these moments (see, for

instance, Dai and Singleton (2002)).10 Turning to the more interesting case when the short

rate is below 1 percent, we find that the standard SRM (the black triangles) is indeed able

10Our results for the pre-ZLB period contrast somewhat with the findings of Andreasen and Meldrum
(2018). They show that once the ZLB period is included in the estimation sample, the standard SRM
does not match the desired slope coeffi cients conditional on yields being away from the ZLB. Unreported
results indicate that the difference in the results is because bond yields are away from the ZLB for a greater
proportion of our sample than in the sample considered in Andreasen and Meldrum (2018), implying that
the presence of the ZLB period has a relatively small effect on the estimated time-series dynamics in our
case. The unreported results also show that our main results that the slope coeffi cients implied by the SRM
do not shift at the ZLB is robust to considering a shorter sample.
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to generate larger slope coeffi cients when compared to the loadings away from the ZLB. But

this increase in the slope coeffi cients is insuffi cient to match the shift in the data. This is

shown by the bottom chart in Figure 3, as the differences between the model-implied slope

coeffi cients lie outside the 95 percent confidence interval for the corresponding data moment

for maturities exceeding 3 years. Finally, in the Online Appendix we show that these results

are robust to reducing the value of the slope coeffi cients in equation (5) for both the model

and the data to 0.25 percent.

Thus, it appears that simply enforcing the ZLB by the standard SRM is insuffi cient to

capture the shift in bond return predictability that occurred during the recent ZLB period.

4 Two Extended Shadow Rate Models

This section proposes two extensions of the standard SRM by introducing nonlinearities

in the P dynamics of the pricing factors. Section 4.1 describes the two extensions, which

allow for i) regime-switching in the pricing factors or ii) a permanent break in the factor

dynamics. Section 4.2 shows that it is impossible to distinguish between these two models

(or the standard SRM) from the in-sample fit to the cross-section of yields, but that the

models have substantially different implications for the time-series dynamics of bond yields.

Section 4.3 shows that the SRM with regime-switching goes a long way in explaining the

shift in bond return predictability documented in Section 2, whereas the extension with a

permanent break performs even worse than the standard SRM.

4.1 Nonlinear Factor Dynamics in the SRM

As discussed in Section 2, there are at least two interpretations of the recent shift in

bond return predictability. If we believe that the shift is temporary, as implied by the

threshold regression in equation (5), it seems natural to accommodate regime-switching in
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the P dynamics of the pricing factors. That is, to replace equation (11) with

xt+1 = h
(1)
0 I{rt≥c} + h

(2)
0 I{rt<c} +

(
H(1)
x I{rt≥c} + H(2)

x I{rt<c}
)
xt + ΣεPt+1, (15)

where both the level and the persistence of the factors may change when rt falls below the

threshold c. In our application, we consider a threshold of 1 percent, which means that the

two regimes implied by the model are consistent with the two regimes for the predictability

regression in equation (2). The short rate and the Q dynamics remain given by equations

(8) and (10), respectively, meaning that bond prices also for this extended model can be

computed using the second-order approximation of Priebsch (2013). We refer to this modified

shadow rate model with regime-switching dynamics as the R-SRM.

Another possibility is to interpret the shift in bond return predictability as being perma-

nent, as implied by equation (6). In this case, it seems more natural to allow for a permanent

break in the P dynamics of the pricing factors. That is, to replace equation (11) with

xt+1 = h
(1)
0 I{t<τ} + h

(2)
0 I{t≥τ} +

(
H(1)
x I{t<τ} + H(2)

x I{t≥τ}
)
xt + ΣεPt+1, (16)

where both the level and the persistence of the factors are allowed to change after the τth

month in the sample. In our application, we set τ = 225 to obtain a break in October 2008,

which implies that the two regimes in the model are consistent with the two regimes for the

predictability regression in equation (2). We again compute bond yields using the second-

order approximation of Priebsch (2013), as the short rate and the Q dynamics remain given

by equations (8) and (10), respectively. We refer to this modified shadow rate model with a

permanent break as the B-SRM.

These two modifications of the standard SRM do not change the cross-sectional relation-

ship between the pricing factors and yields, but correspond to introducing nonlinearities in

the market prices of risk given by equation (9). To guide intuition for why such an extension

of the standard SRM has the potential to explain the shift in equation (2), consider the
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ATSM where rt = st with closed-form expressions for bond yields and returns. The slope

coeffi cient in equation (2) with h = 1 is then

β
(n)
1 =

(n− 1) bn−1λxV [xt]
(
1
n
bn + β′

)′(
1
n
bn + β′

)
V [xt]

(
1
n
bn + β′

)′ , (17)

where λx = Hx − (I−Φ) are the loadings of the market prices of risk on xt and yields are

given by y(n)t = − 1
n

(an + b′nxt) (see, for example, Duffee (2002) and Joslin et al. (2011)).

Thus, allowing for a shift in Hx without changing Φ induces a shift in λx that may explain

the observed shift in the predictability regression in equation (2). Our approach is therefore

related to Bansal and Zhou (2002), who introduce regime-switching dynamics into the prices

of risk in an ATSM, and to Giacoletti et al. (2018), who allow the parameters of the prices

of risk in an ATSM to vary period-by-period.

An even more flexible extension of the standard SRM than implied by the R-SRM and

the B-SRM would also allow for regime-switching in i) the short rate in equation (8), ii) the

Q dynamics in equation (10), and iii) the conditional covariance matrix Σ, as considered in

the regime-switching model of Dai, Singleton and Yang (2007). Such a model would display

greater flexibility in fitting the cross section of bond yields than implied by the standard

SRM and the two extensions we propose. However, previous studies have shown that the

standard SRM is able to fit the cross section of bond yields closely, both when yields are

away from and close to the ZLB (see, for example, Christensen and Rudebusch (2015) and

Andreasen and Meldrum (2018)). Hence, any improvements to the cross-sectional fit in a

more flexible SRM seems likely to be economically marginal and would increase the risk of

over-fitting the data. We therefore prefer to consider more parsimonious models that only

allow for structural changes in the P dynamics.

Estimation of the R-SRM and B-SRM proceeds as described in Section 3.2, except that

step 2 of the SR approach is extended by running either a threshold vector autoregression

(for the R-SRM) or an autoregression with a break (for the B-SRM). This implies that
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the additional parameters introduced in the R-SRM and the B-SRM in comparison to the

standard SRM are estimated in closed form and without any additional computational cost.

The details are described in Appendix B.

4.2 In-Sample Results

We start our comparison of the standard SRM, the R-SRM, and the B-SRM by examining

their in-sample fit to bonds yields.11 The results reported in Table 2 show that the root mean

squared errors (RMSEs) between observed and model-implied yields are almost identical for

the three models and below 10 basis points at all maturities. This result is fairly unsurprising

because all the models have the same short rate specification and Q dynamics, meaning that

the cross-sectional mapping between the pricing factors and bond yields only differs slightly

due to different estimates of Σ and Φ.

Table 2: In-Sample Fit to Bond Yields
This table reports the root mean squared errors (RMSEs) in annualized basis points between actual
and model-implied yields at selected maturities at step 3 of the SR approach.

Maturity (in months)
6 12 24 60 120

SRM 8.28 9.93 2.60 5.37 9.81
R-SRM 8.28 9.93 2.59 5.37 9.78
B-SRM 8.28 9.93 2.59 5.37 9.75

However, the models have different implications for the time-series dynamics of bond

yields due to the nonlinearities introduced in the P dynamics. For the R-SRM, we find a

significant shift in the persistence of the pricing factors, as we reject the null hypothesis of

H
(1)
x = H

(2)
x in a Wald test (p-value = 0.000). On the other hand, the intercepts in (15) do

not appear to shift when we approach the ZLB (p-value = 0.34). For the B-SRM, we get

qualitatively the same results, as we find a significant shift in the persistence of the pricing

factors but not in their intercepts after the break in October 2008.

11We provide parameter estimates for the three models in the Online Appendix.
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One way to illustrate these differences in P dynamics is to compare the model-implied

term premiums TP (n)t , which are defined as

TP
(n)
t = y

(n)
t −

1

n

n−1∑
i=0

Et [rt+i] . (18)

Given that the three models provide the same close fit to bond yields, any differences in TP (n)t

must primarily reflect different model-implied projections of the short rate as determined by

the P dynamics of the pricing factors. The top chart in Figure 4 shows the 10-year term

premiums implied by the three models. Over much of the sample, the three term premium

estimates are highly correlated. However, there are also important differences. For instance,

the term premium implied by the R-SRM before 2008 is somewhat higher when compared

to the term premium implied by the B-SRM. This is because the R-SRM assigns the last

three years of the sample (that is, December 2015 to December 2018) with low interest rates

to the regime away from the ZLB, whereas these observations in the B-SRM are in the

post-break regime. This implies that the R-SRM for the pre-ZLB regime has slightly lower

expected short rate paths than the B-SRM, which then generates higher term premiums in

the R-SRM than in the B-SRM. Another interesting difference appears toward the end of

the sample, where the B-SRM implies higher term premiums than either the standard SRM

or the R-SRM. This result arises because the model with the permanent break implies a

permanent downward shift in the long-run mean of the short rate, which generates a lower

expected short rate path in the B-SRM and hence higher term premiums than in the two

other models.

4.3 Matching the Shift in Bond Return Predictability

We next consider whether the two extensions of the standard SRM can match the shift

in bond return predictability documented in Section 2. For the R-SRM, it is natural to view

this shift as being generated by the proximity of the short rate to the ZLB. Thus, we adopt
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Figure 4: Model-Implied 10-Year Term Premiums
This figure reports model-implied 10-year term premiums. For the R-SRM, we compute the ex-
pected average short rate over the next 10 years in a given period using Monte Carlo integration
with 1 million draws.
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the same procedure as for the standard SRM in Section 3.3 and estimate equation (5) with a

threshold of 1 percent using a simulated sample of 1 million observations from the R-SRM.

The upper left chart in Figure 5 shows that the R-SRM preserves the satisfying ability of

the standard SRM to generate the desired degree of return predictability in the pre-ZLB

period when rt ≥ 0.01. Even more encouraging is the ability of the R-SRM to generate a

much stronger relationship between the yield spread and excess bond returns close to the

ZLB with rt < 0.01 than in the pre-ZLB period. This shift in return predictability is not as

strong as seen in the data, but the lower left chart in Figure 5 shows that the increase in the

slope coeffi cients lie within the 95 percent confidence interval for the sample moment at all

maturities.12

12In the Online Appendix we show that repeating the simulation with a lower threshold of 0.25 percent
does not materially change these results.
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Figure 5: Bond Return Predictability: Extended SRMs
The left charts show the ability of the R-SRM to match the shift in the slope coeffi cients in equation
(5) with h = 12 and c = 0.01 using a simulated sample of 1 million observations. The right charts
show the ability of the B-SRM to match the shift in the slope coeffi cients in equation (6) with
h = 12 using a simulated sample of 1 million observations with τ = 500, 001. The corresponding
data moments are from equation (2) with h = 12 when estimated from January 1990 to September
2008 (excluding December 2003) where rt ≥ 0.01, and when estimated from October 2008 to
November 2015 where rt < 0.01. All x-axes show the maturity in years.
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For the B-SRM, it seems natural to view the shift in bond return predictability as the

result of a permanent break. Thus, we obtain the model-implied predictability coeffi cients

for the B-SRM by estimating equation (6) on a simulated sample of 1 million observations

with a break at τ = 500, 001 to generate two regimes of 500, 000 observations. The top right

chart in Figure 5 shows that the B-SRM matches the degree of bond predictability in the

pre-ZLB sample, but the model is simply unable to explain the shift in bond predictability

after the break in 2008.

In summary, the R-SRM goes a long way in explaining the stronger link between the

yield spread and excess bond returns during the recent ZLB period, meaning that this shift

in return predictability can be attributed to a temporary re-pricing of risk. The results are

less encouraging for the B-SRM with a permanent break, as this model is unable to generate

stronger bond predictability after the break in 2008.

5 Matching Survey Expectations

This section shows that the conclusions of the previous section are robust to including

long-horizon surveys of short-term interest rate expectations in the data set used to estimate

the models. In Section 5.1 we show that none of the three models in Sections 3 and 4

can match these surveys when the models are estimated using only data on bond yields as

done above, which suggests that the models may not provide plausible implications for bond

risk premiums. As a robustness check, we therefore consider whether our key conclusions

are affected by including surveys in the data set used to estimate the models. Section 5.2

explains how survey expectations can be included when estimating the three SRMs using

the SR approach. Section 5.3 shows that this modification allows the three models to match

survey expectations reasonably well and that our key conclusion from Section 4 is unaffected,

that is, only the R-SRM is able to match the documented shift in bond return predictability.
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5.1 Out-of-Sample Fit to Surveys

We explore the ability of the three SRMs to match the expected short rate in 5 years and

the average expected short rate from 5 to 10 years ahead. That is, we focus on long-horizon

survey expectations and disregard more short-term expectations. This is because it is unclear

whether surveys represent the mean or the mode of respondents’probability distributions

and the model-implied mean and mode are likely to be materially different near the ZLB.13

The distinction between mean and mode should matter less at long horizons, where the

ZLB is likely to have a much smaller effect on the conditional model-implied short rate

distributions. Another benefit of including long-term short rate expectations is that they

serve as observable proxies for i∗t , and hence allow us to explore whether the models match

the evolution in the natural nominal short rate.

Our empirical source for these long-horizon expectations is the Blue Chip Economic

Indicators survey, where repondents every 6 months report a point expectation for the 3-

month Treasury bill yield at horizons up to 11 years ahead. The forecast horizons are not the

same in each edition of the survey, so we linearly interpolate the mean expectations across

respondents at different horizons to get a measure of the average expected 3-month Treasury

bill yield at a constant horizon of 5 years and from 5 to 10 years ahead - that is, Et
[
y
(3)
t+59

]
and Et

[
1
60

∑119
i=60 y

(3)
t+i

]
, respectively. These expectations are evaluated exactly in the SRM

and B-SRM and by Monte Carlo integration in the R-SRMs. We exploit the close correlation

between Et
[
y
(3)
t+i

]
and Et [rt+i] at long forecast horizons to approximate Et

[
y
(3)
t+59

]
by Et [rt+59]

and Et
[
1
60

∑119
i=60 y

(3)
t+i

]
by Et

[
1
60

∑119
i=60 rt+i

]
. This substantially reduces the computational

burden, because we avoid to repeatedly solve for the three-month yield in the SRMs.

The left charts in Figure 6 show the survey-based measure at the 5 year horizon (top left)

and at the 5-to-10 year ahead (bottom left) along with the corresponding expectations in

the three SRMs. The survey-based measures (the black plus signs) generally decline at both

13The SRM and extensions of it are only able to address differences between the mean and mode of the
conditional short rate distribution to a limited extent because the model implies that the mean must always
lie above the mode.
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horizons throughout the sample, from about 6.5 percent to about 3 percent. In contrast,

the short rate expectations implied by the standard SRM (the black line) are typically lower

than 3 percent, have no clear downward trend, and display only a weak correlation with the

two surveys. The short rate expectations from the R-SRM (the dark gray line) are generally

even further below the survey-based measure but are otherwise very similar to those from the

standard SRM. Finally, the B-SRM (the light gray line) implies long-horizon expectations

that are relatively stable (with the obvious exception of the drop at the time of the break in

October 2008), and these expectations differ therefore also substantially from the surveys.

Figure 6: Matching Long-Horizon Short Rate Surveys
This figure shows the ability of the SRMs to match the expected short rate in 5 years and the
average expected short rate from 5 to 10 years ahead as implied by responses to Blue Chip Economic
Indicators surveys. The left charts show the results for models estimated using only a panel of bond
yields, while the right charts show the results for models estimated using a data set that includes
a panel of bond yields and surveys. For the R-SRM, we compute the expected average short rate
at each month using Monte Carlo integration with 1 million draws.
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Thus, none of the considered models are able to produce plausible short rate expectations

at long horizons, and hence match the downward trend in the survey-based measure of the
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natural nominal short rate, when these models are estimated solely based on a panel of bond

yields.

5.2 Incorporating Surveys into the SR Approach

The reason that the SRMs do not produce short rate expectations at long horizons that

match those from surveys is most likely explained by the fairly short span of our sample

(from 1990 to 2018). Given the high persistence in bond yields, it is well-known that short

samples imply estimates of the P dynamics that may be biased and subject to substantial

estimation uncertainty (see Bauer et al. (2012), Kim and Orphanides (2012), and Wright

(2014)). The fact that the models do not match surveys well is potentially concerning because

if the models do not produce plausible short rate expectations, we should presumably also

be skeptical about their implications for the term premiums reported in Figure 4.

One well-known way to mitigate these problems is to incorporate survey data when

estimating DTSMs, as proposed by Kim and Orphanides (2012). We incorporate surveys

at step 2 of the SR approach when estimating the P parameters in θ2, but not at step 1

and 3 when determining the Q parameters and the pricing factors, because they are already

accurately identified from the considered panel of bond yields. Although this assumption

implies a degree of simplification, it means that we can continue to separate the Q and P

parameters, which is the key computational advantage of the SR approach.

More formally, at step 2 of the SR approach, we allow surveys to be measured with errors,

which we denote by η(5y)t and η(5−10y)t for the short rate expectations in 5 years and from

5 to 10 years ahead, respectively. Each of these errors are assumed to be independent and

identically distributed with zero mean and standard deviation ση. For the standard SRM

and the R-SRM, we augment the moment conditions for the P parameters by the first and

second moments of η(5y)t and η(5−10y)t when rt ≥ 0.01 and when rt < 0.01. That is, a total of

8 additional moment conditions. For the B-SRM, we include the first and second moments

of η(5y)t and η(5−10y)t both before and after the break point, which also imply 8 additional
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moment conditions. Further details are provided in Appendix C.

For our application, we assume that the measurement errors in surveys have a standard

deviation of 10 basis points, i.e. ση = 0.1, which seems reasonable given the fairly stable

evolution in the considered surveys.14

5.3 Estimation Results with Surveys

The in-sample fit to bond yields is basically unaffected by the inclusion of surveys, and

the three SRMs therefore display the same satisfying fit as reported in Table 2.15 For the

R-SRM we once again find a significant shift in the persistence of the pricing factors but not

in the intercepts. The shift in the persistence of the pricing factors is also significant in the

B-SRM (p-value = 0.000), but now we also find a significant shift in the intercepts (p-value

= 0.047) whereas it was insignificant without surveys.

The right charts in Figure 6 show that the models track the overall evolution in surveys

reasonably well once they are included in the estimation. That is, the standard SRM now

matches the downward trend in long-term short rate expectations, and hence this empirical

proxy for the equilibrium short rate. But it is also evident from Figure 6 that this model

generates too high short rate expectations at the end of our sample, up to 1 percentage point

higher than in the survey data. Figure 6 further shows that the R-SRM and the B-SRM

are also able to match the downward trend in surveys, and that these models produce less

elevated short rate expectations at the end of our sample when compared to the standard

SRM.

The bottom panel of Figure 4 reveals that the inclusion of surveys in the estimation

reduces the level of the 10-year term premium substantially in all three SRMs. The main

14A preliminary analysis also considered ση = 0.75 as in Kim and Orphanides (2012), but this implied
a very low weight to surveys in our estimation, and hence fairly small effects of including surveys at the
second step of the SR approach. The intention of this paper is not to suggest that ση = 0.1 is the optimum
calibration but to show that our key conclusions about return predictability are not changed once the models
fit the broad movements in the surveys.
15We provide parameter estimates for the three models including surveys in the estimation in the Online

Appendix.

30



differences between the three models now only appear at the end of our sample, where the

R-SRM implies a higher term premium than seen in the B-SRM.

Figure 7 finally explores the ability of the SRMs to match the shift in bond return

predictability once surveys are included in the estimation. The encouraging finding is that

the R-SRM remains able to match the shift, whereas both the standard SRM and the B-

SRM fail to generate a suffi ciently large shift in bond return predictability. In summary,

we conclude that the models are capable of matching long-term short rate expectations

reasonably closely without changing our fundamental conclusion that only the R-SRM is

able to match the documented shift in bond return predictability at the ZLB.

One caveat to this results is that all of the models, including the R-SRM, struggle to

explain the low short rate expectations since 2015. That result suggests that we should

not necessarily conclude that the levels of bond yields will revert back to where they were

pre-crisis, once the short rate has moved away from the ZLB. In unreported results, we show

that allowing for a permanent shift in the long-run mean of the factors in the R-SRM in

2015 allows the model to better match the long-horizon surveys. This permanent shift would

be consistent with recent studies (such as Summers (2015), Laubach and Williams (2016),

Del Negro et al. (2017), and Christensen and Rudebusch (2019)) arguing that the long-run

natural rate of interest has undergone a persistent decline in recent years.

6 Alternative Timing of a Permanent Break

We have so far assumed that the break in the B-SRM coincides with the start of the

ZLB period based on the instability of the predictability regression in equation (2). But a

different timing of the break point may be more suitable for the P dynamics in the B-SRM

and this may improve its performance. In this section, we therefore demonstrate that the

performance of the B-SRM does not improve by changing the timing of the break point

according to an alternative criterion.
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The alternative approach for determining the timing of the break point is to examine

the historical evolution of the estimated pricing factors directly. Here, we exploit a conve-

nient property of the SR approach that the pricing factors are estimated non-parametrically

without any assumption about the P dynamics, unlike typical QML estimators based on

Kalman filtering.16 This property of the SR approach implies that we can directly examine

the P dynamics for a structural break using the pricing factors estimated at step 1 of the

SR approach. Given that the timing of the break is unknown, we again compute Chow

test statistics using a range of candidate breakpoints as proposed by Quandt (1960). For a

candidate break point τ the Chow test statistic for the VAR model in equation (11) is given

by

C (τ) =
(|Σ1,T | − |Σ1,τ−1 + Στ ,T |) /k
|Σ1,τ−1 + Στ ,T | / (T − 2k)

, (19)

whereΣi,j is the estimated covariance matrix of the innovations from equation (11) estimated

on a sample from period i to period j and k = nx (nx + 1) is the number of parameters in

the model without a break. We again assume that both the pre- and post-break samples

contain at least 15 percent of the total number of observations. The solid line in Figure 8

shows the resulting Chow test statistics. These test statistics are generally higher during

the ZLB period than before but the maximum test statistic does not come until November

2013. This result suggests that a break in the P dynamics during the fall of 2013 may be

more appropriate than during the fall of 2008. One possible explanation for this result could

be that long-horizon expectations of future interest rates did not decline until relatively

recently, as discussed in Section 5. Another is that several bond yields did not appear to be

constrained by the ZLB until after 2010, as shown in Swanson and Williams (2014).

Given this finding, we consider whether a version of the B-SRM with a break in November

2013 (τ = 287) is able to match the documented shift in bond return predictability. To give

the model the best possible chance of matching this shift, we also re-estimate the regression

coeffi cients in the data using the same sample split. Hence, the gray markers on the top

16Here, we refer to the step 1 estimates of the pricing factors in the SR approach.
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Figure 8: Chow Tests for a Break in the Pricing Factors
This chart reports the Chow test statistic for breaks in the estimated pricing factors in the standard
SRM (first step estimates) using at least 15 percent of the observations for the pre- and post-break
sample.
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chart in Figure 9 show the slope estimates in equation (2) for the sub-sample from January

1990 through October 2013 ("Regime 1") and the sub-sample from November 2013 through

December 2018 ("Regime 2"). The black markers are for the B-SRM estimated using surveys

on short rate expectations as described in Section 5. The clear message from Figure 9 is that

this alternative timing for the break point does not change our conclusion from above, as the

B-SRM also in this case is unable to match the recent shift in bond return predictability.

7 Conclusion

This paper documents a shift in the predictability of excess bond returns during the

recent ZLB period that a standard SRM cannot replicate. This shows that simply enforcing

the ZLB by truncating the short rate at zero in a Gaussian model is insuffi cient to properly

34



Figure 9: Bond Return Predictability: Different Break Point in the B-SRM
The top chart shows the slope coeffi cient in equation (6) with h = 12 using a simulated sample
of 1 million observations with τ = 500, 001 using an estimated version of the B-SRM with a
break in November 2013. The corresponding data moments are from equation (2) with h = 12
when estimated from January 1990 to October 2013, and when estimated from November 2013 to
December 2018. The bottom chart shows the difference in the slope estimates at a given maturity.
The 95 percent confidence interval for these differences are computed using a block bootstrap with
5,000 repetitions and a block window of 24 months. In each bootstrap sample it is required that
there are at least 50 observations in each regime. The x-axes reports maturity in years, and all
yields are end-month from Gürkaynak et al. (2007)
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capture the change in bond yield dynamics that occurred at the ZLB. We find that this

new predictability result is consistent with a SRM that allows the time-series dynamics of

the pricing factors to change at the lower bound. In contrast, a SRM that introduces a

permanent break in the pricing factors in 2008 is not able to explain this shift in bond

return predictability at the ZLB. These conclusions are robust to including surveys of future

short-term interest rate expectations in the data set used to estimate the models and to

determining the timing of a potential permanent break directly from the estimated factors.

Our results suggest that once the short rate has risen suffi ciently far from the ZLB, bond
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risk premiums will behave as they did before the financial crisis. That may be consistent

with factors that were largely contained to the ZLB episode, such as the Federal Reserve’s

unconventional monetary policies, having a temporary effect on the predictability of excess

bond returns. However, we also note that none of the models we consider are able to match

the low level of long-horizon surveys since 2015, which is consistent with various recent

studies that point to a more persistent recent decline in the long-horizon natural interest

rate.
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Appendix A: Step 2 in the SR Approach

To estimate θ2 in Step 2 of the SR approach we follow Andreasen and Christensen (2015)

and use the moment conditions
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]
vec
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, (20)

where ε̂Pt denotes the estimated values of ε
P
t and ut ≡ x̂t

(
θ̂
step1

1

)
− xt. Consistent estimates

of the second moments Vt [ut+1], Ct [ut+1,ut], and Ct [ut,ut+1] follow from step 1 of the SR

approach. Thus, θ2 can be estimated using the generalized method of moments (GMM),

which has a closed-form solution as shown in Andreasen and Christensen (2015)

Appendix B: Estimating the Extended SRMs

The parameters to be estimated at step 2 can again be written as θ2 =

[
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For the R-SRM, consider the revised set of moment conditions are
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(2)
t

])
vech

(
Vt
[
εPt+1

]
+ Ωt+1

)


, (21)

where x̂
(1)
t (θ1) = x̂t

(
θ̂1

)
I{rt≥c}, x̂

(2)
t (θ1) = x̂t

(
θ̂1

)
I{rt<c}, u

(1)
t = utI{rt≥c}, u

(2)
t = utI{rt>c},

and

Ωt+1 = Vt [ut+1] + H(1)
x Vt

[
u
(1)
t

]
H(1)′
x + H(2)

x Vt
[
u
(2)
t

]
H(2)′
x

−Ct
[
u
(1)
t+1,u

(1)
t

]
H(1)′
x −H(1)

x Ct
[
u
(1)
t ,u

(1)
t+1

]
−Ct

[
u
(2)
t+1,u

(2)
t

]
H(2)′
x −H(2)

x Ct
[
u
(2)
t ,u

(2)
t+1

]
.

Andreasen, Engsted, Möller and Sander (2016) provide the closed-form solution for θ2 using

these moment conditions. It is easy to verify that a similar result applies for the B-SRM,

where regimes are defined based on the time point in the sample instead of the value of rt.

Appendix C: The SR Approach with Surveys

The model parameters to be estimated at step 2 are the same as when surveys are not

included. For the standard SRM and the R-SRM, we consider the following revised set of
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moment conditions

Rt =



Et
[
ε̂Pt+1I{rt≥c}

]
Et
[
ε̂Pt+1I{rt<c}

]
vec
(
Et
[
ε̂Pt+1x̂

(1)
t (θ1)

′
])

vec
(
Et
[
ε̂Pt+1x̂

(2)
t (θ1)

′
])

vech
(
Vt
[
ε̂Pt+1

])
Et
[
η
(5y)
t I{rt≥c}

]
Et
[
η
(5y)
t I{rt<c}

]
Et
[
η
(5−10y)
t I{rt≥c}

]
Et
[
η
(5−10y)
t I{rt<c}

]
Et
[(
η
(5y)
t

)2
I{rt≥c}

]
Et
[(
η
(5y)
t

)2
I{rt<c}

]
Et
[(
η
(5−10y)
t

)2
I{rt≥c}

]
Et
[(
η
(5−10y)
t

)2
I{rt<c}

]



−



0

0

0

0

vech
(
Vt
[
εPt+1

])
0

0

0

0

σ2η

σ2η

σ2η

σ2η



. (22)

Here, we ignore the estimation uncertainty in the factors as accommodating this feature

would make the estimation computationally infeasible.17 With more moment conditions

than parameters, we obtain the GMM estimates for θ2 using numerical optimization of the

squared residuals in equation (22), where we upscale the weight assigned to the survey-based

moments by 6 to account for the fact that surveys are only observed once every 6 months.

For the B-SRM, we use a similar estimation procedure with regimes defined based on the

break point in the sample instead of the value of rt. In the standard SRM and the B-SRM,

all short rate expectations are computed in closed form. In the R-SRM, the short rate

expectations are computed by Monte Carlo simulation.18

17Our experience with other SRMs suggests that the effects of allowing for estimation uncertainty in the
factors are generally very small when representing the yield curve by 25 points each period.
18We find that a simulation using 500 simulated short rate paths generated using antithetic shocks is

suffi ciently accurate to allow estimation of the model.
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