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Abstract

We study the transmission of monetary policy through risk premia in a heteroge-

neous agent New Keynesian environment. Heterogeneity in agents’ marginal propensity

to take risk (MPR) summarizes differences in risk aversion, constraints, rules of thumb,

background risk, and beliefs relevant for portfolio choice on the margin. An unexpected

reduction in the nominal interest rate redistributes to agents with high MPRs, lower-

ing risk premia and amplifying the stimulus to the real economy through investment.

Quantitatively, this mechanism rationalizes the empirical finding that the stock market

response to monetary policy shocks is driven by news about future excess returns.
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1 Introduction

In the data, expansionary monetary policy lowers risk premia. This finding has been es-

tablished for the equity premium in stock markets, the term premium on longer maturity

nominal bonds, and the external finance premium on risky corporate debt.1 The basic New

Keynesian framework as described by Woodford (2003) and Gali (2008) does not capture

this aspect of monetary policy transmission. As noted by Kaplan and Violante (2018), this

is equally true for an emerging body of heterogeneous agent New Keynesian models whose

focus on heterogeneous marginal propensities to consume has substantially enriched the im-

plications for aggregate consumption but less so for asset prices and therefore investment.

This paper demonstrates that a New Keynesian model with heterogeneous households

differing instead in risk-bearing capacity can quantitatively rationalize the observed effects

of policy on risk premia, amplifying its transmission to the real economy. An expansionary

monetary policy shock lowers the risk premium if it redistributes to households with a high

marginal propensity to take risk (MPR), defined as the marginal propensity to save in capital

relative to save overall. With underlying heterogeneity in risk aversion, portfolio constraints,

rules of thumb, background risk, or beliefs, high MPR agents borrow in the bond market

from low MPR agents to hold leveraged positions in capital. By generating unexpected

inflation, raising profit income relative to labor income, and raising the price of capital, an

expansionary monetary policy shock endogenously redistributes to high MPR households

and thus lowers the market price of risk. In a calibration matching micro-level portfolio

heterogeneity in the U.S. economy, this mechanism rationalizes the increase in the stock

market following an expansionary monetary policy shock driven by news about lower future

excess returns. The stimulus to investment is amplified relative to a counterfactual economy

without heterogeneity in exposures to a monetary policy shock and MPRs.

Our baseline environment enriches an otherwise standard New Keynesian model with

Epstein and Zin (1991) preferences and heterogeneity in risk aversion. Households consume,

supply labor, and choose a portfolio of nominal bonds and claims on capital. Production is

subject to aggregate TFP shocks. Monetary policy follows a standard Taylor (1993) rule.

Heterogeneity in risk aversion endogenously generates heterogeneity in MPRs and exposures

to a monetary policy shock. Epstein and Zin (1991) preferences allow us to flexibly model

this heterogeneity as distinct from households’ intertemporal elasticities of substitution. We

begin by analytically characterizing the effects of a monetary policy shock in a simple two-

period version of this environment, providing an organizing framework for the quantitative

analysis of the infinite horizon which follows.

1See Bernanke and Kuttner (2005), Hanson and Stein (2015), and Gertler and Karadi (2015), respectively.
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An expansionary monetary policy shock lowers the risk premium by endogenously redis-

tributing wealth to households with a high marginal propensity to save in capital relative

to save overall — that is, a high MPR. Redistribution to high MPR agents lowers the risk

premium because of market clearing in asset markets: to the extent agents on aggregate

wish to increase their portfolio share in capital, its expected return must fall relative to that

on bonds. An expansionary monetary policy shock redistributes across agents by revaluing

their initial balance sheets: it deflates nominal debt, raises the dividends from capital, and

raises the price of capital. More risk tolerant agents hold leveraged positions in capital by

borrowing in the nominal bond, and have a higher MPR. Hence, an expansionary monetary

policy shock will lower the risk premium by endogenously redistributing to these agents.

These insights are robust to alternative sources of heterogeneity beyond risk aversion. We

consider a richer environment in which agents may also face portfolio constraints or follow

rules-of-thumb as in models of limited participation or the financial accelerator; agents may

be subject to idiosyncratic background risk as in the large literatures on uninsured labor

or entrepreneurial income risk; and agents may have subjective beliefs regarding the value

of capital. In this general environment, the MPR continues to summarize the relevant

cross-sectional heterogeneity to evaluate the risk premium effects of redistributive shocks.

Moreover, because each of these forms of heterogeneity imply that agents holding more

levered positions in capital will be the ones with a high MPR, they continue to imply that

an expansionary monetary policy shock will lower the risk premium through redistribution.

The reduction in the risk premium matters for the real economy depending on the endoge-

nous reaction of the monetary feedback rule. Absent nominal rigidity, the investment effect

of a shock lowering the risk premium depends critically on agents’ intertemporal elasticities

of substitution, which in turn control the relative strength of income and substitution effects

and thus the equilibrium response of the safe real interest rate to the shock.2 With nominal

rigidity, the response of the real interest rate and thus investment also critically depends on

the monetary policy rule. In our environment, this logic applies to the risk premium effects

of the primitive monetary shock itself. Provided that the central bank’s feedback rule limits

the rise in the real interest rate following this shock, the decline in the risk premium will be

reflected in lower required returns to capital, amplifying the stimulus to investment.

Accounting for the risk premium effects of monetary policy is important given empirical

evidence implying that it may be a key component of the transmission mechanism. We refresh

this point from Bernanke and Kuttner (2005) using the structural vector autoregression

instrumental variables (SVAR-IV) approach in Gertler and Karadi (2015). Using monthly

2Intuitively, even if the risk premium falls, it could either be that the expected return to capital falls or
rises (and thus investment rises or falls), in the latter case because the safe real interest rate rises sufficiently.
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data from July 1979 through June 2012, we run a six-variable VAR including the excess

return on the S&P 500 and real return on a T-bill. Using Fed Funds surprises on FOMC

days as an instrument, we find that an unexpected loosening of monetary policy resulting

in a roughly 25bp reduction in the 1-year Treasury bond leads to an unexpected increase in

excess returns of 2pp. Using a Campbell and Shiller (1988) decomposition, 1.1pp (55%) of

this increase is driven by lower future excess returns, posing a strong challenge to existing

New Keynesian frameworks where virtually all of the effect on the stock market operates

instead through higher dividends or lower risk-free rates.

Extending the model to the infinite horizon, we investigate whether a calibration to

the U.S. economy is capable of rationalizing these facts. We parameterize the model to

match the cross-sectional heterogeneity in wealth, labor income, and financial portfolios in

the Survey of Consumer Finances, together disciplining the model-implied exposures to a

monetary policy shock and MPRs. We use global solution methods to solve the model and

capture the non-linear model dynamics with aggregate risk.3 Rationalizing the level of the

equity premium is not our contribution. To make the computational burden tractable, we

summarize the cross-sectional heterogeneity into three groups of households: two groups

corresponding to the small fraction with high wealth relative to labor income, but differing

in their risk tolerance and thus portfolio share in capital, and one group corresponding to

the large fraction holding little wealth relative to labor income.

In response to an expansionary monetary policy shock, we find that the redistribution

across households with heterogeneous MPRs can quantitatively explain the risk premium

effects of monetary policy found in the data. Using the same Campbell and Shiller (1988)

decomposition on model impulse responses as we used on the data, 45% of the excess re-

turn on equity in our baseline parameterization arises from a lower future excess returns,

compared to 55% in the data and 2% in an alternative parameterization with symmtric

households. Consistent with the analytical results, the effect on the risk premium is ampli-

fied in parameterizations with a more persistent shock and thus larger debt deflation; higher

stickiness and thus a larger increase in profit income relative to labor income; or higher

investment adjustment costs and thus a larger increase in the price of capital.

The reduction in the risk premium through redistribution in turn amplifies the effect of

policy on investment. To be consistent with our empirical analysis, we consider a monetary

shock which, in magnitude, generates a 25bp decline in a 1-year nominal bond yield.4 Relative

3Our model does not provide a novel way to rationalize the level of the equity premium. We add a
rare disaster to match this moment, following Barro (2006), but other approaches include adding long-run
risk (Bansal and Yaron (2004)), habits (Campbell and Cochrane (1999)), idiosyncratic risk (Gomes and
Michaelides (2008)), or limited participation and heterogeneous intertemporal elasticities of substitution
(Guvenen (2009)). To obtain an accurate solution especially given the disaster, we use a global method.

4While we do not include the 1-year bond in our set of traded assets, we can compute its hypothetical
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to the case with symmetric agents, our baseline parameterization increases the peak response

of investment to this shock from 3.3pp to 3.9pp. The amplification of output is more modest,

however, because of a countervailing effect on consumption. Consistent with the analytical

results, the amplification of the investment response is even stronger when the monetary

policy rule features a less aggressive tightening in response to the primitive monetary shock.

Related literature Our paper contributes to the rapidly growing literature on heteroge-

neous agent New Keynesian models by studying the transmission of monetary policy through

risk premia. Our characterization of the redistributive effects of monetary policy builds espe-

cially on the work of Doepke and Schneider (2006), Auclert (2018), Kaplan et al. (2018), and

Luetticke (2018). We build on Doepke and Schneider (2006) in our measurement of house-

hold portfolios, informing the heterogeneity in exposures to a monetary policy shock. We

build on Auclert (2018) by demonstrating that it is the covariance of households’ exposures

with MPRs rather than MPCs which matters for policy transmission through risk premia

rather than risk-free rates. And we build on Kaplan et al. (2018) and Luetticke (2018) by

demonstrating that this framework can match the stock market reaction to monetary policy

shocks when assets differ in their exposure to aggregate risk rather than in their liquidity.

In this sense, we bring to the HANK literature many established insights from het-

erogeneous agent and intermediary-based asset pricing. We belong to a small subset of this

literature that accounts for endogenous production, as in the work of Gomes and Michaelides

(2008) and Guvenen (2009). We build on these papers by further extending the environment

to feature nominal rigidities and focusing on the changes in wealth induced by a monetary

policy shock. In studying this question we follow Alvarez et al. (2009), who study the effects

of monetary policy on risk premia in an exchange economy with segmented markets. We

build on their analysis by studying this question in a New Keynesian model with production.

In recent work, Drechsler et al. (2018) also study the risk premium and output responses to

monetary policy shocks in a two-agent model. We demonstrate that these results are more

general than their specific model of banking, operating through the balance sheet revaluation

of heterogeneous agents in a more conventional New Keynesian setting.

Indeed, our paper most directly builds on prior work focused on risk premia in New

Keynesian economies. We clarify the sense in which Bernanke et al. (1999) served as a seminal

HANK model focused on heterogeneity in MPRs rather than MPCs.5 As we demonstrate,

yield by assuming that, in each state, the highest-valuation household prices the bond.
5In Bernanke et al. (1999), households can only trade bonds while entrepreneurs can trade bonds and

capital. In equilibrium, households have a zero MPR while entrepreneurs have a positive MPR. Changes
in the distribution of net worth across these agents thus affects credit spreads and economic activity. This
is consistent with the findings of Bhandari et al. (2019), who study monetary policy and risk premia in a
segmented markets model in the tradition of Bernanke et al. (1999).
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however, heterogeneity in MPRs need not rely on market segmentation but also can result

from differences in risk aversion, background risk, or beliefs, justifying its relevance even in

markets which may not be intermediated by specialists. In relating movements in the risk

premium to the real economy, we make use of the insight in Caballero and Farhi (2018),

Caballero and Simsek (2018), and DiTella (2018) that an increase in the risk premium will

induce a recession if the safe interest rate does not sufficiently fall in response. And like the

first two as well as Brunnermeier and Sannikov (2012), we emphasize the role of heterogeneity

in asset valuations in the determination of risk premia.6 Relative to these papers, our

contribution is to explore the importance of this mechanism for monetary transmission in a

quantitative DSGE matching micro heterogeneity in the U.S. economy.

Outline The remainder of the paper is structured as follows. In section 2 we characterize

our main insights in a two-period environment, characterizing the mechanisms through which

a monetary easing will endogenously redistribute to high MPR agents in a wide variety of

settings. This provides an organizing framework for our quantitative analysis in the infinite

horizon in section 3. Calibrated to the U.S. economy, the redistribution toward high MPR

agents rationalizes the empirical evidence on the effect of a monetary policy easing on the

equity premium and amplifies the stimulus through investment.

2 Analytical insights in a two-period environment

We first characterize our main conceptual insights in a two-period environment allowing us

to obtain simple analytical results. An expansionary monetary policy shock lowers the risk

premium on capital if it redistributes to households with relatively high MPRs. Heterogene-

ity in risk aversion induces a joint distribution of MPRs and monetary policy exposures such

that an expansionary shock lowers the risk premium. A similar result obtains with hetero-

geneity in portfolio constraints, rules-of-thumb, background risk, or beliefs. The transmission

of monetary policy through investment is amplified given the decline in the risk premium

provided that the monetary feedback rule limits any rise in the real interest rate.

2.1 Baseline environment and equilibrium

There are two periods, 0 and 1. While we later relax a number of the specific features of this

environment to demonstrate the generality of our results, this baseline environment is the

6This is complementary with another strand of the literature focused on movements in the quantity of
risk rather than price of risk in New Keynesian models, as in Ilut and Schneider (2014), Fernandez-Villaverde
et al. (2015), Basu and Bundick (2017), and other analyses of uncertainty shocks.
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one we will extend to the infinite horizon and study quantitatively in section 3 of the paper.

Households There is a unit measure of households indexed by i ∈ [0, 1], each comprising

a continuum of members j ∈ [0, 1] supplying a differentiated variety of labor. There is

full consumption insurance within each household. Household i has Epstein and Zin (1991)

preferences over consumption in each period {ci0, ci1} and labor supply {`i0(j)}1
j=0

vi0 =

(
(1− βi)

(
ci0Φi

(∫ 1

0

`i0(j)dj

))1−1/ψi

+ βi
(
E0

[
(ci1)1−γi

]) 1−1/ψi

1−γi

) 1

1−1/ψi

(1)

with discount factor βi, intertemporal elasticity of substitution ψi, relative risk aversion γi,

and (dis)utility of labor given by the function Φi(·). We assume for simplicity that households

exogenously supply one unit of non-differentiated labor in period 1, though of course this

assumption will be relaxed in the infinite horizon environment we study in the next section.

In addition to consuming and supplying labor, the household chooses its position in a

nominal bond Bi
0 and in capital ki0 subject to the resource constraints

P0c
i
0 +Bi

0 +Q0k
i
0 ≤ (1− τ)

∫ 1

0

W0(j)`i0(j)dj −
∫ 1

0

ACW
0 (j)dj +

(1 + i−1)Bi
−1 + (Π0 + (1− δ0)Q0)ki−1 + T i0, (2)

P1c
i
1 ≤ W1 + (1 + i0)Bi

0 + Π1k
i
0. (3)

Bi
−1 and ki−1 are its endowments in these same assets. In terms of the economy’s nominal

unit of account (“dollars”),7 the consumption good trades at Pt dollars at t, labor services

for member j earn an after-tax wage (1 − τ0)W0(j) dollars in period 0 and W1 dollars in

period 1, one dollar in bonds purchased at t yields 1 + it dollars at t + 1, and one unit of

capital purchased for Qt dollars at t yields a dividend Πt+1 plus non-depreciated value of

capital (1−δt+1)Qt+1 at t+1. We assume that capital fully depreciates after its use in period

1 (δ1 = 1), when the economy ends. Following Rotemberg (1982), in period 0 the household

pays a quadratic cost of setting its wage for member j

ACW
0 (j) =

χW

2
W0`0

(
W0(j)

W−1

− 1

)2

given some reference wage W−1 and aggregate wage bill W0`0 defined below. We assume

this is a cost paid to the government, rebated back to households through the i-specific

7Following Woodford (2003), we model the economy at the cashless limit.
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government transfers T i0.

Supply-side A union representing each labor variety j across households choosesW0(j), `0(j)

to maximize the social welfare of union members subject to the allocation rule

`i0(j) = `i(`0(j)) :=

∫ 1

0

`i(`0(j))di = `0(j) (4)

and Pareto weights {µi}.8 A representative labor packer purchases varieties supplied by each

union and combines them to produce a CES aggregator with elasticity of substitution ε and

which it can sell at price W0, earning profits

W0

[∫ 1

0

`0(j)(ε−1)/ε

]ε/(ε−1)

−
∫ 1

0

W0(j)`0(j)dj. (5)

The representative producer hires `0 units of the labor aggregator in period 0 and `1 units

of labor directly from households in period 1, and combines these with kt−1 units of capital

rented from households each period t to produce the final good with TFP zt. In period 0

the producer also uses
(

k0

k−1

)χx
x0 units of the consumption good to produce x0 new capital

goods, where χx indexes the degree of adjustment costs and here we assume the representative

producer takes k0 as given. Taken together, the producer earns profits

Π0k−1 = P0z0`
1−α
0 kα−1 −W0`0 +Q0x0 − P0

(
k0

k−1

)χx
x0, (6)

Π1k0 = P1z1`
1−α
1 kα0 −W1`1. (7)

Future TFP is uncertain in period 0, following

log z1 ∼ N

(
log z̄ − 1

2
σ2, σ2

)
. (8)

Policy The government sets τ = − 1
ε−1

to undo the effects of monopolistic competition in

the labor market. The government sets lump-sum transfers T i0 according to

T i0 =

∫ 1

0

ACW
0 (j)dj + τ

∫ 1

0

W0(j)`i0(j)dj, (9)

8We demonstrate the robustness of our analytical results to the case of individually-supplied labor by
each household in appendix B. In our quantitative analysis, we find the computation of the equilibrium more
robust with a union because it reduces the dimension of the fixed point to be solved. Hence, to provide
analytical insights closer to the model studied quantitatively, we assume the same union structure here.
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reflecting the rebating of wage adjustment costs and the payroll tax. Finally, the government

sets monetary policy {i0, P1} by committing to a fixed P1 = P̄1, eliminating inflation risk in

the nominal bond, and setting i0 according to the feedback rule

1 + i0 = (1 + ī)

(
P0

P−1

)φ
m0 (10)

consistent with a standard Taylor rule with reference price P−1, where m0 is the monetary

shock of interest. Note that in this two-period setting, the equilibrium can be locally unique

even when φ ≤ 1, including the useful benchmark case where φ = −1 and hence the real

interest rate between periods 0 and 1

1 + r1 ≡ (1 + i0)E0
P0

P1

=
(1 + ī)P−1

P̄1

m0,

so a shock to the nominal rate translates one-for-one into a shock to the real rate.

Market clearing Market clearing in goods each period is∫ 1

0

ci0di+

(
k0

k−1

)χx
x0 = z0`

1−α
0 kα−1, (11)∫ 1

0

ci1di = z1`
1−α
1 kα0 , (12)

in labor is [∫ 1

0

`0(j)(ε−1)/εdj

]ε/(ε−1)

= `0, (13)∫ 1

0

`i1di = `1, (14)

in the capital rental market is ∫ 1

0

kit−1di = kt−1, t ∈ {0, 1}, (15)

in the capital claims market is

(1− δ0)

∫ 1

0

ki−1di+ x0 =

∫ 1

0

ki0di, (16)
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and in bonds is ∫ 1

0

Bi
t−1di = 0. (17)

Equilibrium Given the state variables {W−1, {Bi
−1, k

i
−1}, i−1, z0,m0} and stochastic pro-

cess for z1 in (8), the definition of equilibrium is then standard:

Definition 1. An equilibrium is a set of prices and policies such that: (i) each house-

hold i chooses {ci0, Bi
0, k

i
0, c

i
1} to maximize (1) subject to (2)-(3), (ii) each union j chooses

{W0(j), `0(j)} to maximize the social welfare of its members subject to the allocation rule (4),

(iii) the labor packer chooses {`0(j)} to maximize profits (5), (iv) the representative producer

chooses {`0, x0} and `1 to maximize profits (6)-(7), (v) the government sets {T i0} according

to (9) and {i0, P1} according to P1 = P̄1 and (10), and (vi) the goods, labor, capital, and

bond markets clear according to (11)-(17).

Since labor varieties and unions j are symmetric, `0(j) = `0 and we drop j going forward.

We will analytically study this economy around the point with zero aggregate risk and

m0 = m̄0: {σ = 0, z1 = z̄1,m0 = m̄0}. For any variable n, we denote n̄ to be its value at the

point of approximation, and n̂ its log/level deviation from this point (except for σ, which

is a perturbation parameter but will not be denoted as σ̂). For expositional simplicity we

do not treat z0 as a perturbation parameter of interest, but we do so in appendix B. Like

monetary policy shocks, TFP shocks redistribute across agents, generating state-dependence

in the risk premium and affecting the transmission of TFP shocks to economic activity.

2.2 Limiting portfolios and MPRs

To understand the effects of monetary policy shocks through risk premia, it will prove useful

to first understand the determinants of households’ portfolios in equilibrium as well as their

marginal portfolio choices given an additional unit of income.

To do so, it is helpful to first re-write agents’ micro-level optimization problem as

max

(
(1− βi)

(
ci0Φi(`i0)

)1−1/ψi
+ βi

(
E0

[
(ci1)1−γi

]) 1−1/ψi

1−γi

) 1

1−1/ψi

s.t.

ci0 + bi0 + q0k
i
0 = yi0(w0`

i
0(`0), P0, π0, q0),

ci1 = w1 + (1 + r1)bi0 + π1k
i
0,

(18)

where we have denominated in lower-case the real analogs to the nominal variables introduced
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earlier, we have made use of the definition of the real interest rate

1 + r1 = (1 + i0)
P0

P1

,

and we have collected agents’ income — which they take as exogenous along with {q0, r1, π1}
— as a function of non-predetermined variables

yi0(w0`
i
0(`0), P0, π0, q0) ≡ w0`

i(`0) +
1

P0

(1 + i−1)Bi
−1 + (π0 + (1− δ0)q0)ki−1.

Defining as the real savings of household i

ai0 ≡ bi0 + q0k
i
0,

its equilibrium portfolio share in capital is given by
q0ki0
ai0

and its policy functions imply the

marginal propensities to consume, save in bonds, save in capital, and save overall{
∂ci0
∂yi0

,
∂bi0
∂yi0

,
∂ki0
∂yi0

,
∂ai0
∂yi0

}
,

where these partial derivatives hold fixed all prices and other variables which the household

takes as given in (18): `i0, which enters its utility, as well as r1 and the probability distribution

over w1 and π1, all of which determine its income in period 1. We then define a useful

summary of the household’s portfolio choice on the margin:

Definition 2. Household i’s marginal propensity to take risk (MPR) is given by

mpri0 ≡
q0

∂ki0
∂yi0

∂ai0
∂yi0

.

The MPR summarizes the degree to which the agent’s allocates the marginal dollar to

capital instead of the bond. As we clarify in an extension where monetary policy allows P1

to be stochastic in appendix B, it need not be that the nominal bond is riskless in real terms.

Nonetheless, we give the MPR its name because under any realistic calibration the payoff

on capital is more risky than on bonds.

We can better understand the structural determinants of households’ portfolios and

MPRs by taking their limits as aggregate risk falls to zero. In doing so, we apply techniques

developed in Devereux and Sutherland (2011) in the context of open-economy macroeco-

nomics to the present heterogeneous agent New Keynesian environment and our particular

statistics of interest. In their application, taking the difference across countries of a second-
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order approximation to optimal portfolio choice for each country enables them to charac-

terize cross-country portfolio shares as aggregate risk falls to zero. Analogous steps can be

used to characterize households’ portfolio shares in the present environment. Moreover, a

second-order approximation to the partial derivatives of the first-order conditions of (18)

with respect to yi0 can be used to characterize the marginal portfolio responses to income

as aggregate risk falls to zero. These steps lead to the first result of the paper, the proof of

which (along with all other proofs of results in the paper) is in appendix A:

Proposition 1. In this environment,

q̄0k̄
i
0

āi0
=

(
c̄i1

(1 + r̄1)āi0

)
γ

γi
− w̄1

(1 + r̄1)āi0
, (19)

mpri0 =
γ

γi
, (20)

where

γ =

[∫ 1

0

c̄i1∫ 1

0
c̄i
′

1 di
′

1

γi
di

]−1

(21)

is the harmonic average of risk aversion weighted by households’ period 1 consumption.

Intuitively, a household’s portfolio share in capital and MPR is higher the less risk averse

she is relative to the appropriately-defined average household in the economy. Even though

we are asking how the individual household allocates wealth both in equilibrium and in

response to a marginal dollar of income, the risk aversion of all other households is relevant

because this controls the prices facing the household in general equilibrium.

Proposition 1 further clarifies two useful points regarding the MPR. First, it captures a

dimension of heterogeneity in principle orthogonal to the marginal propensities to consume

and save which have been emphasized in prior work: while in the limit of zero aggregate

risk the latter are fully determined by agents’ attitudes towards consumption across dates

(discount factors and intertemporal elasticities of substitution), MPRs are governed by atti-

tudes towards consumption across states (relative risk aversion). Second, the MPR may be

quite distinct from observed portfolios because it captures portfolio allocation on the margin.

Indeed, an agent’s portfolio share in capital depends not only on risk aversion but her motive

to hedge labor income also subject to TFP shocks, captured by w̄1

(1+r̄1)āi0
in (19). While this

hedging motive matters for equilibrium portfolios, it is irrelevant on the margin.
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2.3 Monetary policy, redistribution, and risk premia

The distribution of household portfolios and MPRs play a key role in determining the effect

of a monetary policy shock on the expected excess returns on capital, to which we now turn.

Let 1 + rk1 denote the gross real returns on capital

1 + rk1 =
Π1

Q0

P0

P1

=
π1

q0

.

Combining agent i’s first-order conditions with respect to bonds and capital yields

E0

[(
ci1
)−γi

(rk1 − r1)
]

= 0.

Approximating this condition up to third order in the perturbation parameters, and using

market clearing in bonds and capital, we obtain:

Proposition 2. Up to third order in the perturbation parameters {σ, ẑ1, m̂0},

E0r̂
k
1 − r̂1 +

1

2
σ2 = γσ2 + ζm0m̂0σ

2 + o(|| · ||4), (22)

where γ was defined in (21) and

ζm0 = γ

∫ 1

0

ξ̄im0

(
mpr0 −mpri0

)
di, (23)

where ξ̄im0
≡ d[ci1/

∫ 1
0 c

i′
1 di
′]

dm0
is the effect of a monetary shock on household i’s consumption

share in period 1, and mpr0 ≡
∫ 1

0

c̄i1∫ 1
0 c̄

i′
1 di
′mpr

i
0 = 1 is the weighted average MPR in (20).

The coefficient of interest is ζm0 , summarizing the effect of a monetary policy shock

on the risk premium. As is evident, in this simple two-period model a monetary policy

shock affects the risk premium only through redistribution.9 If monetary policy does not

redistribute (ξ̄im0
= 0 for all i) or households have identical MPRs (mpri0 = mpr0 = 1 for all

i), the shock has no effect on the risk premium. Away from this case, redistributing wealth

to households with high MPRs will lower the risk premium. Intuitively, such redistribution

raises the relative demand for capital versus bonds, lowering the required excess returns to

clear asset markets.

The relevant measure of redistribution toward household i is the (endogenous) change in

9This is no longer the case in the infinite horizon where, for instance, monetary policy affects the future
path of real interest rates and thus the intertemporal hedging demand for capital.
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its future consumption share

ξ̄im0
≡
d
[
ci1/
∫ 1

0
ci
′

1 di
′
]

dm0

,

=
1∫ 1

0
c̄i
′

1 di
′

[
dci1
dm0

− c̄i1∫ 1

0
c̄i
′

1 di
′

∫ 1

0

dci
′

1

dm0

di′

]
. (24)

Using standard tools from price theory, we can decompose each household’s change in future

consumption as follows:

Proposition 3. A household’s change in future consumption in response to a monetary

policy shock is given by

dci1
dm0

= (1 + r̄1)
∂ai0
∂yi0︸︷︷︸
MPS

[
−

(1 + i−1)Bi
−1

P̄0

1

P̄0

dP0

dm0

+ ki−1

(
dπ0

dm0

+ (1− δ0)
dq0

dm0

)
︸ ︷︷ ︸

balance sheet revaluation

+

(
dw0`i0
dm0

+
1

1 + r̄1

dw1

dm0

)
︸ ︷︷ ︸

change in non-traded income

+ āi0
1

1 + r̄1

d(1 + r1)

dm0︸ ︷︷ ︸
income effect

+ ψici0
1

1 + r̄1

d(1 + r1)

dm0

+
(
ψi − 1

)
w̄0

(
1− τ̄ `i0

) d`i0
dm0︸ ︷︷ ︸

substitution effects

]

given the labor wedge for household i τ̄ `
i
0 ≡ 1− −c̄i0Φi

′
(¯̀i

0)/Φi(¯̀i
0)

(1−α)z̄0(¯̀
0)−αkα−1

.

The resulting redistribution summarized in (24) reflects heterogeneity in the marginal

propensity to save; heterogeneity in changes in wealth; and heterogeneity in substitution

effects. We focus on the second here.10

First, a cut in the nominal interest rate will trigger a revaluation of household balance

sheets. If it generates unexpected inflation ( dP0

dm0
< 0), it will redistribute toward net debtors

in the nominal bond. If it raises short-run profits ( dπ0

dm0
< 0) or raises asset prices capitalizing

the future stream of profits ( dq0
dm0

< 0), it will redistribute toward owners of capital. Second, a

cut in the nominal interest rate will change the net present value of non-traded labor income.

If in the short run it lowers the real wage ( dw0

dm0
> 0), the standard effect with sticky nominal

wages rather than prices, it will redistribute to agents supplying less labor. If it raises the

10The role of the marginal propensity to save and substitution effect due to a change in the real interest
rate is straightforward. The substitution effect due to a change in ¯̀i

0 reflects the non-separability of labor
from consumption in period 0 when ψi 6= 1.
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quantity of labor demanded ( d`0
dm0

< 0), it will redistribute to agents whose labor demand

is especially sensitive to the aggregate. Third, if a cut in the nominal interest rate lowers

the equilibrium real interest rate (d(1+r0)
dm0

> 0), it will redistribute wealth away from net

savers through a Slutsky income effect. These heterogeneous exposures to a monetary shock

have been previously exposited in the literature on HANK models, as by Auclert (2018).11

Our analysis demonstrates that it is their covariance with MPRs rather than MPCs which

matters for transmission through risk-premia rather than risk-free rates.

A sufficient condition for the aggregate effects of a monetary policy shock to take the

signs conjectured in the previous paragraph is that the degree of nominal rigidity ψW is

sufficiently high.12 In the useful benchmark case where households differ in risk aversion,

households’ endowments entering period 0 are consistent with their chosen portfolios that

period,13 and households are otherwise fully symmetric, Propositions 1-3 then imply that an

expansionary monetary policy shock will lower the risk premium through these channels.

By Proposition 1, more risk tolerant agents will hold levered positions in capital, and will

further allocate more of the marginal dollar to capital (have a higher MPR). By Proposition

3 and the above discussion, a monetary expansion will redistribute to these agents through

the balance sheet revaluation channel, devaluing their debt burden, raising their dividends

on capital, and raising the re-sale value of their capital. When agents are symmetric in

11We can re-arrange the terms in Proposition 3 to obtain a decomposition consistent with Auclert (2018).
Since q̄0 = π̄1

1+r̄1
, we have that

dq0

dm0
=

1

1 + r̄1

dπ1

dm0
− q̄0

1 + r̄1

d(1 + r̄1)

dm0
.

It follows that we can equivalently write the sum of the balance sheet revaluation, change in non-traded
income, and income effect as

[
−

(1 + i−1)Bi−1

P̄0

1

P̄0

dP0

dm0

]
+

[(
b̄i0 + q̄0(k̄i0 − (1− δ0)ki−1)

) 1

1 + r̄1

d(1 + r1)

dm0

]
+[

ki−1

(
dπ0

dm0
+ (1− δ0)

1

1 + r̄1

dπ1

dm0

)
+

(
dw0`i0
dm0

+
1

1 + r̄1

dw1

dm0

)]
.

The first bracketed term corresponds to the Fisher channel, the second bracketed term to the interest rate
exposure channel, and the third bracketed term to the earnings heterogeneity channel in Auclert (2018). In
our decomposition, we find it convenient to explicitly account for the effect on the price of capital to aid the
interpretation of our quantitative simulations in the next section.

12Consider the effects of an increase in the nominal price level P̄0 induced by the monetary policy shock on
aggregate labor ¯̀

0. First, by lowering the real wage, the increase in P̄0 will stimulate ¯̀
0 through the standard

Keynesian labor demand channel. Second, by raising the real interest rate, putting downward pressure on
investment and thus (through the resource constraint) upward pressure on consumption, the increase in
P̄0 will lower ¯̀

0 through the wealth effect on labor supply. A higher degree of nominal rigidity lowers the
importance of labor supply relative to labor demand in determining equilibrium in the labor market.

13In the infinite horizon, this is indeed the case when approximating around the deterministic steady-state.
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their claims on labor income, total wealth, and intertemporal elasticities of substitution,

the balance sheet revaluation channel will be the only one which redistributes across agents.

Taken together, Proposition 2 implies that the risk premium will fall. This is formalized in the

following result, where we further assume zero wage inflation at the point of approximation

(W−1 = W̄0) only to simplify the exposition of the proof.

Proposition 4. Suppose that at the point of approximation households’ initial endowments

in bonds and capital are identical to their choices in period 0 (Bi
−1 = P̄0b̄

i
0, ki−1 = k̄i0) and

there is zero wage inflation (W−1 = W̄0). Suppose households differ in risk aversion {γi} but

their total wealth and all other preference parameters, technologies, and endowments are fully

symmetric. Then for ψW sufficiently big, ζm0 > 0 and hence a cut in the nominal interest

rate lowers the risk premium on capital.

This analytical benchmark is useful because, as we later show, redistribution through

balance sheet revaluation indeed drives the risk premium effects of monetary policy in our

quantitative analysis in section 3.

2.4 Generalizations to other sources of heterogeneity

The preceding results do not rely on heterogeneity in preferences alone. We demonstrate in

this section that they generalize to environments with heterogeneity in portfolio constraints,

rules-of-thumb, background risk, or beliefs. Importantly, across these cases the MPR remains

the relevant statistic to evaluate the effects of redistribution on risk premia. The joint

distribution of exposures and MPRs induced by these sources of heterogeneity continue to

imply that expansionary monetary policy shocks will lower the risk premium.

Binding constraints or rules-of-thumb Suppose a measure of households in the set C

are not at an interior optimum in their portfolio choice because of the additional constraint

q0k
i
0 = ωi0a

i
0,

reflecting either a binding leverage constraint or a rule-of-thumb in their portfolio allocation.

When ωi0 = 0 in particular, this means the household cannot trade capital, as in models of

limited participation. Then in this setting we generalize Propositions 1-2 to:

Corollary 1. With binding constraints or rules-of-thumb, households’ limiting portfolios and
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MPRs are

q̄0k̄
i
0

āi0
=

{
ωi0 for i ∈ C,(

c̄i1
(1+r̄1)āi0

)
γ
γi
− w̄1

(1+r̄1)āi0
for i /∈ C,

mpri0 =

{
ωi0 for i ∈ C,
γ
γi

for i /∈ C,

where

γ =

(∫
i/∈C

c̄i1∫
i′ /∈C c̄

i′
1 di
′

1

γi
di

)−1(
1−

∫
i/∈C(1 + r̄1)b̄i1di∫

i/∈C c̄
i
1di

)
.

Up to third order in {σ, ẑ1, m̂0}, we obtain (22) with γ defined above and

ζm0 =

(∫
i/∈C

c̄i1∫ 1

0
c̄i
′

1 di
′

1

γi
di

)−1 ∫ 1

0

ξ̄im0

(
mpr0 −mpri0

)
di,

where ξ̄im0
≡ d[(1+r0)ai0/

∫ 1
0 c

i′
1 di
′]

dm0
for i ∈ C, ξ̄im0

≡ d[ci1/
∫ 1
0 c

i′
1 di
′]

dm0
for i /∈ C, and

mpr0 ≡
∫
i/∈C

c̄i1∫
i′ /∈C c̄

i′
1 di
′+
∫
i′∈C(1+r̄1)āi

′
0 di
′mpr

i
0di+

∫
i∈C

(1+r̄1)āi0∫
i′ /∈C c̄

i′
1 di
′+
∫
i′∈C(1+r̄1)āi

′
0 di
′mpr

i
0di = 1.

The risk premium γ now depends not only on the weighted average risk aversion of uncon-

strained households, but also the leverage which these households must take in aggregate to

hold the economy’s capital stock after accounting for the positions of constrained households.

For this reason, the effect of a monetary policy shock on the risk premium ζm0 depends on

the MPRs of constrained households. For instance, if wealth transfers to households who

cannot participate in the capital market and thus have mpri0 = 0, in equilibrium the re-

maining households must be induced to hold a more levered position in capital and thus the

risk premium must rise. This is consistent with prior asset pricing models with segmented

markets such as Guvenen (2009) and Chien et al. (2012) as well as macroeconomic models

of the financial accelerator such as Bernanke et al. (1999).

Background risk Suppose households of each type i are subject to idiosyncratic risk

beyond the aggregate risk already described: their labor productivity and quality of capital

together are subject to a shock εi1, where both are modeled as changes in the efficiency units

of each factor in the production function. εi1 is iid across households, independent of the

aggregate TFP shock z1, and follows

log εi1 ∼ N

(
−1

2
ηiσ2, ηiσ2

)
.
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Then in this setting we generalize Propositions 1-2 to:14

Corollary 2. With background risk, households’ limiting portfolios and MPRs are

q̄0k̄
i
0

āi0
=

(
c̄i1

(1 + r̄1)āi0

)
γ

γi(1 + ηi)
− w̄1

(1 + r̄1)āi0
,

mpri0 =
γ

γi(1 + ηi)
.

where

γ =

(∫ 1

0

c̄i1∫ 1

0
c̄i
′

1 di
′

1

γi(1 + ηi)
di

)−1

.

Up to third order in {σ, ẑ1, m̂0}, we obtain (22) with γ defined above and

ζm0 = γ

∫ 1

0

ξ̄im0

(
mpr0 −mpri0

)
di,

where ξ̄im0
≡ d[ci1/

∫
i′ /∈C c

i′
1 di
′]

dm0
and mpr0 ≡

∫ 1

0

c̄i1∫ 1
0 c̄

i′
1 di
′mpr

i
0 = 1.

This environment captures features of the large literatures in macroeconomics and asset

pricing with uninsurable labor income risk and/or entrepreneurial income risk. Corollary 2 is

consistent with the empirical finding that agents with greater background risk ηi uncorrelated

with the stock market will hold a lower portfolio share in stocks (Heaton and Lucas (2000)). It

also implies that agents with different amounts of background risk will have different MPRs.

Redistribution across these households in turn will induce changes in the risk premium owing

to their marginal trades in asset markets.

Subjective beliefs Suppose households differ in their beliefs regarding TFP. In particular,

agent i believes

log z1 ∼ N

(
log z̄1 −

1

2
ς iσ2, ς iσ2

)
even though the objective (true) probability distribution remains described by (8). Similar

to the environment studied in Caballero and Simsek (2018), we may label agents with ς i >

1 “pessimists” and agents with ς i < 1 “optimists”. Then in this setting we generalize

Propositions 1-2 to:

14We continue to define 1 + rk1 ≡ π1

q0
, a claim on capital aggregating over the idiosyncratic risk, even

though each agent i faces the set of asset returns {1 + r0, 1 + rk,i1 ≡ π1ε
i
1

q0
}.
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Corollary 3. With subjective beliefs, households’ limiting portfolios and MPRs are

q̄0k̄
i
0

āi0
=

(
c̄i1

(1 + r̄1)āi0

)
γ

γiς i
− w̄1

(1 + r̄1)āi0
,

mpri0 =
γ

γiς i
.

where

γ =

(∫ 1

0

c̄i1∫ 1

0
c̄i
′

1 di
′

1

γiς i
di

)−1

.

Up to third order in {σ, ẑ1, m̂0}, we obtain (22) with γ defined above and

ζm0 = γ

∫ 1

0

ξ̄im0

(
mpr0 −mpri0

)
di,

where ξ̄im0
≡ d[ci1/

∫
ci
′

1 di
′]

dm0
and mpr0 ≡

∫ 1

0

c̄i1∫ 1
0 c̄

i′
1 di
′mpr

i
0 = 1.

This validates the claim in Caballero and Simsek (2018) that differences in beliefs in their

paper could be replaced with differences in risk aversion, since heterogeneity in risk aversion

or in beliefs can generate the same distribution of MPRs.

Robustness of the effects of monetary policy In each of the above cases, the additional

dimension of heterogeneity continues to imply that households with a high portfolio share

in capital also have a high MPR. It follows that this remains true in an environment where

households can vary along all of these dimensions. Proposition 3 summarizing households’

exposure to a monetary policy shock remains unchanged. Hence, an expansionary monetary

policy shock will redistribute to high MPR agents as in the case with heterogeneity in risk

aversion alone, lowering the risk premium and generalizing Proposition 4:

Proposition 5. Suppose that at the point of approximation households’ initial endowments

in bonds and capital are identical to their choices in period 0 (Bi
−1 = P̄0b̄

i
0, ki−1 = k̄i0) and

there is zero wage inflation (W−1 = W̄0). Suppose households differ in risk aversion {γi},
being constrained and (among those that are) constraints {ωi}, the degree of background risk

{ηi}, and beliefs {ς i}; but their total wealth and all other preference parameters, technologies,

and endowments are fully symmetric. Then for ψW sufficiently big, ζm0 > 0 and hence a cut

in the nominal interest rate lowers the risk premium on capital.

In this sense, while our quantitative analysis focuses on differences in risk aversion, we ex-

pect that our insights are robust to these other potential sources of heterogeneity generating

the same distribution of MPRs and exposures to a monetary policy shock.
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2.5 Monetary policy, redistribution, and investment

Before turning to our quantitative analysis in the infinite horizon, we conclude our analysis

of this environment by asking how the risk premium effects of monetary policy matter for the

transmission of policy to the real economy. We focus in particular on aggregate investment.

In terms of the model’s state variables, new capital is given by15

k̂0 = δk0
m0
m̂0 + 1

2
δk0

m2
0
m̂2

0 + 1
6
δk0

m3
0
m̂3

0︸ ︷︷ ︸
effects absent
aggregate risk

+
1

2
δk0

σ2σ
2 + 1

2
δk0

m0σ2m̂0σ
2︸ ︷︷ ︸

effect with
aggregate risk

+o(|| · ||4) (25)

for some coefficients δk0
· . The first set of terms reflect the effects of a monetary policy shock

on investment in environments without aggregate risk, and they are well understood. They

reflect the standard channels through intertemporal substitution as well as heterogeneity

in the marginal propensities to consume versus save. We instead focus on the incremental

effects of a monetary policy shock in environments with aggregate risk, summarized in the

term δk0

m0σ2 . Equivalently, we seek to understand the investment responses which accompany

a change in the risk premium summarized by ζm0 in Proposition 2.

Since

1 + rk1 =
π1

q0

=
αz1k

α−1
0

q0

,

we have that

E0r̂
k
1 = − (1− α + χx) k̂0.

That is, the required return on capital falls in the amount of new capital both because the

marginal product of capital falls and the price of capital rises (reflecting optimal investment

among producers). Hence, if monetary policy redistributes to high MPR agents and thus

lowers the risk premium, to evaluate the effects on investment we must determine whether

the required return on capital falls (and thus investment rises) or the safe real interest rate

simply rises (and thus investment may remain unchanged or even fall).

Absent nominal rigidity, the equilibrium response of the real interest rate depends cru-

cially on agents’ intertemporal elasticity of substitution. This reflects the presence of offset-

ting income and substitution effects in response to the shock. As described in Gourio (2012)

and other papers in the literature on time-varying risk premia, in the case of log intertem-

poral preferences the real interest rate varies by exactly the amount to keep investment

unchanged. This can explain what Cochrane (2017) calls the “macro-finance separation” in

15Formally, we work with new capital k0 rather than investment x0 only for expositional simplicity: 1+rk1
is exactly log-linear in k0 but not x0, recalling that k0 = (1 − δ0)k−1 + x0. However, the results presented
here extend naturally from k0 to x0.
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joint analyses of asset pricing and business cycles such as Tallarini Jr. (2000).

With nominal rigidity, Caballero and Farhi (2018) and Caballero and Simsek (2018) point

out that the monetary policy rule also determines the extent to which the real interest rate

fluctuates. These authors demonstrate, for instance, that a decrease in the risk premium

will induce a boom if the nominal rate remains at the zero lower bound. In our environment,

these insights apply to the risk premium effect of a primitive monetary policy shock itself.

In the useful benchmark when monetary policy targets a constant real interest rate subject

to monetary policy shocks (φ = −1), we obtain:

Proposition 6. If monetary policy follows the rule (10) with φ = −1, then in (25)

1

2
δk0

m0σ2 = − 1

1− α + χx
ζm0 ,

given ζm0 characterized in Proposition 2.

Hence, if monetary policy lowers the risk premium by redistributing to high MPR house-

holds, as under the conditions in Proposition 5, it will amplify the stimulus to investment.

3 Quantitative relevance in the infinite horizon

We now evaluate the quantitative relevance of these insights in an extended infinite horizon

setting. We first revisit the empirical evidence on the equity premium response to monetary

policy shocks which poses a strong challenge to existing New Keynesian frameworks in which

the equity premium barely moves. We then calibrate our model to match standard “macro”

moments as well as novel “micro” moments from the Survey of Consumer Finances which

discipline the cross-sectional heterogeneity in MPRs and exposures to monetary policy. In

response to an unexpected monetary easing in our model economy, wealth endogenously

redistributes to relatively high MPR households, rationalizing the equity premium response

found in the data and contributing to the stimulus in real activity through investment.

3.1 Empirical effects of monetary policy shocks in U.S. data

The effects of an unexpected shock to monetary policy have been the subject of a large liter-

ature in empirical macroeconomics. In response to an unexpected loosening, this literature

finds that the price level rises and production expands, consistent with workhorse New Key-

nesian models. But, as found in Bernanke and Kuttner (2005) and a number of subsequent
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papers using asset pricing data, the evidence further suggests that risk premia fall, posing a

challenge to workhorse models where risk premia barely move.16

We refresh the findings in Bernanke and Kuttner (2005) using the structural vector

autoregression instrumental variables (SVAR-IV) approach in Gertler and Karadi (2015).

Using monthly data from July 1979 through June 2012, we first run a six-variable, six-lag

VAR using the 1-year Treasury yield, CPI, industrial production, S&P 500 return relative

to the 1-month T-bill, 1-month T-bill relative to the change in CPI, and smoothed dividend-

price ratio on the S&P 500.17,18 Over January 1991 through June 2012 we then instrument

the residuals in the 1-year Treasury yield (the monetary policy indicator) with an external

instrument: Fed Futures surprises on FOMC days aggregated to the month level from Gertler

and Karadi (2015). The identification assumptions are that the exogenous variation in the

monetary policy indicator in the VAR are due to the structural monetary shock and that the

instrument is correlated with this structural shock but not the five others in the VAR. Under

these assumptions, a first-stage regression of the monetary policy residual on the surprise,

followed by a second-stage regression of all other residuals on the predicted residual, can be

used to identify the effects of a monetary policy shock on all variables in the VAR.

We first demonstrate the validity of the first stage in Table 1. We consider 5 possible

measures of policy surprises constructed in Gertler and Karadi (2015): using the current

Fed Funds futures contract; the 3-month ahead Fed Funds futures contract; the 2-quarters

ahead 3-month Eurodollar contract; the 3-quarters ahead 3-month Eurodollar contract; or

the 4-quarters ahead 3-month Eurodollar contract. In all cases, the 1-year Treasury yield

rises given a positive surprise, as would be expected. The effects are statistically significant

at conventional levels, and for the first two instruments the F statistics above 10 exceed the

threshold of a strong instrument recommended by Stock et al. (2002). Since shocks in our

model will be to the current nominal interest rate, to maximize comparability we focus on

the current Fed Funds futures contract as our baseline instrument.

We then plot the impulse responses to a negative monetary policy shock using this in-

strument in Figure 1. Note that since the structural monetary policy shock is not observed,

its magnitude should be interpreted through the lens of the 22bp decrease in the 1-year yield

on impact. Consistent with the wider literature, industrial production and the price level

16This effect on risk premia may co-exist with the revelation of information due to the shock, a channel
studied by Nakamura and Steinsson (2018) and others. The analysis of Jarocinski and Karadi (forthcoming)
implies that by confounding “pure” monetary policy shocks with such information shocks in our analysis,
our estimates may understate the increase in the stock market following a pure monetary easing.

17The series for the 1-year Treasury yield, CPI, and industrial production are taken from the dataset
provided by Gertler and Karadi (2015). The remaining series are from CRSP.

18The smoothed dividend-price ratio is computed as the 3-month moving average of dividends paid in a
month divided by the price of the stock at the end of the month, value-weighted over stocks in the S&P 500.
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1-year Treasury yield
Current Fed Funds 0.85 0.25

(0.22) (0.43)
Expected Fed Funds, 3 mos ahead 1.15 1.26

(0.28) (0.46)
Expected 3-mo ED rate, 2 qtrs ahead 0.84 1.72

(0.31) (1.38)
Expected 3-mo ED rate, 3 qtrs ahead 0.68 -4.90

(0.30) (1.82)
Expected 3-mo ED rate, 4 qtrs ahead 0.70 3.04

(0.31) (1.05)
Observations 258 258 258 258 258 258
Adj R2 0.05 0.06 0.03 0.02 0.02 0.07
F -statistic 14.46 16.27 7.59 5.24 5.00 6.39

Table 1: effects of monetary policy instruments on first-stage residuals of VAR

Notes: heteroskedasticity-robust standard errors given in parenthesis. Two lags of the potential instrument
are included in each specification.

rise, and the real interest rate falls. Excess returns rise by 2pp in the first month but fall to

be small and negative in the months which follow. This is consistent with a decline in the

equity premium, also suggested by the fall in the dividend/price ratio.

Following Bernanke and Kuttner (2005), we can more formally decompose this 2pp excess

return on the stock market into the contribution from news about higher dividend growth,

lower real risk-free discount rates, and lower future excess returns using a Campbell and

Shiller (1988) decomposition:

(excess return)t − Et−1[(excess return)t] = (Et − Et−1)
∑
j=0

κj∆(dividends)t+j

− (Et − Et−1)
∑
j=0

κj(real rate)t+j − (Et − Et−1)
∑
j=1

κj(excess return)t+j, (26)

where κ = 1
1+ d

p

and d
p

is the steady-state dividend yield. Using the SVAR-IV to compute the

revised expectations in real rates and excess returns given the monetary shock, we obtain

the decomposition in Table 2.19 1.1pp (55%) of the increase in the stock market is due to

news about lower future excess returns, 0.7p (35%) is due to news about higher dividend

growth, and only 0.2pp (10%) is due to news about lower risk-free rates. Hence, the SVAR-

19Following Bernanke and Kuttner (2005), our VAR enables us to compute (excess return)t −
Et−1[(excess return)t], (Et − Et−1)

∑
j=0 ρ

j(real rate)t+j , and (Et − Et−1)
∑
j=1 ρ

j(excess return)t+j , and
we assign to dividend growth the residual implied by (26). The alternative of directly including dividend
growth on the S&P 500 in the VAR is made complicated by their strong seasonality in the data.
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Figure 1: effects of 1 SD monetary shock given current Fed Funds instrument

Notes: 95% confidence interval at each horizon is computed using the wild bootstrap (to account for uncer-
tainty in the coefficients of the VAR) with 10,000 iterations, following Mertens and Ravn (2013) and Gertler
and Karadi (2015).

IV approach validates the message from Bernanke and Kuttner (2005): monetary policy

shocks primarily change excess returns through their effects on risk premia.

The important role of the risk premium in explaining the change in excess returns is

robust to details of the estimation approach. In appendix C.1 we modify the estimation

approach along a number of dimensions. First, we change the number of lags used in the

VAR, ranging from 4 months to 8 months. Second, we change the sample periods over

which the VAR and/or first-stage is estimated. Third, we add variables to the VAR, such as

the Gilchrist and Zakrajsek (2012) excess bond premium and other credit spreads used in

Gertler and Karadi (2015) as well as the term spread and other variables known to predict

excess stock market returns used in Bernanke and Kuttner (2005). Fourth, we change the

instrument used for the monetary policy shock, using the three-month ahead Fed Funds

futures contract rather than the current contract. Across these cases we broadly confirm

the message of the baseline estimates above: in response to a monetary policy shock which

reduces the 1-year Treasury yield by 17-23bp, excess returns on impact rise by 1.6-3.2pp,

and news about future excess returns explains 35%-75% of this increase.
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Current excess return 2.06
[1.60,2.83]

Dividend growth news 0.72
[-0.35, 1.78]

Real rate news -0.21
[-0.54, 0.13]

Future excess return news -1.12
[ -2.46, -0.15]

Table 2: effects of 1 SD monetary shock on current excess returns and components

Notes: decomposition in (26) uses κ = 0.9962 following Campbell and Ammer (1993), and 95% confidence
interval in brackets is computed using the wild bootstrap (to account for uncertainty in the coefficients of
the VAR) with 10,000 iterations, following Mertens and Ravn (2013) and Gertler and Karadi (2015).

Unlike a local projection, the use of a VAR enables us to generate the long-horizon

forecasts needed to implement the decomposition in (26). As noted by Stock and Watson

(2018), we can test the assumption of invertibility implicit in the SVAR-IV approach both

by assessing whether lagged values of the instrument have forecasting power when included

in the VAR and by comparing the estimated impulse responses to those obtained using a

local projection with instrumental variables (LP-IV). We demonstrate in appendix C.1 that

both of these tests fail to reject the null hypothesis that invertibility in our application is

satisfied. We further provide a visual comparison of the impulse responses over 4 years using

the SVAR-IV and LP-IV approaches. Our estimates using the SVAR-IV lie within the (quite

large) confidence intervals obtained using the LP-IV at virtually every horizon.

3.2 Infinite horizon environment

We now extend the model to the infinite horizon to investigate whether redistribution can

quantitatively rationalize the stock market response to a monetary policy shock and, if so,

its implications for policy transmission to the real economy. We build on the environment

from section 2.1. We describe the necessary changes when moving to the infinite horizon

here and more fully describe the environment and our solution approach in appendix D.

3.2.1 Household preferences and constraints

Household i now maximizes a generalization of (1)

vit =

(
(1− β)

(
citΦ

(∫ 1

0

`it(j)dj

))1−1/ψ

+ βEt
[(
vit+1

)1−γi
] 1−1/ψ

1−γi

) 1
1−1/ψ

, (27)
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where labor supply is now chosen in each period. We assume for simplicity that β, ψ, and

Φ(·) are now identical across types. We parameterize the disutility of labor as in Shimer

(2010),

Φ(`it) =

(
1 + (1/ψ − 1) ξ̄

(`it)
1+1/ξ

1 + 1/ξ

) 1/ψ
1−1/ψ

, (28)

where ξ controls the Frisch elasticity of labor supply and ξ̄ scales the disutility of labor.

Finally, we account for a realistic short-sale constraint on capital kit ≥ 0.

3.2.2 Aggregate productivity

In the infinite horizon we need to specify the dynamics of aggregate productivity. In line with

previous work studying asset prices in production economies,20 we assume that productivity

zt follows a unit root process

log(zt) = log(zt−1) + σεzt + ϕt, (29)

where εzt is an iid shock from a standard Normal distribution and ϕt is a rare disaster equal

to zero with probability 1 − p and ϕ < 0 with probability p. We introduce the disaster to

help match the level of the equity premium in our calibration. We further assume that the

occurrence of the disaster destroys capital and reduces the reference wage in households’

wage adjustment costs in proportion to the decline in productivity. The first assumption

implies that aggregate output is

yt ≡ (exp zt`t)
1−α (kt−1 exp(ϕt))

α , (30)

where productivity is now labor-augmenting and thus consistent with balanced growth.

3.2.3 Monetary and fiscal policy

Finally, in the infinite horizon monetary policy generalizes (10) and follows a standard Taylor

(1993) rule as

1 + it = (1 + ī)

(
Pt
Pt−1

)φ
mt, (31)

where policy shocks follow an AR(1) process

logmt = ρ logmt−1 + ςεmt (32)

20See, for example, Tallarini Jr. (2000) or Barro (2006).
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where εmt is an iid shock from a standard Normal distribution.

Fiscal policy is characterized by τ = − 1
ε−1

and household-specific lump-sum taxes

T it =

∫ 1

0

ACW
t (j)dj + τ

∫ 1

0

Wt(j)`
i
t(j)dj + Pttr

i
t. (33)

Relative to (9) in the two-period environment, (33) adds another component of transfers

trit = ωit
[
(Πt + (1− δ)Qt)kt−1 exp(ϕt)

− (1 + it−1)Bi
t−1 − (Πt + (1− δ)Qt)k

i
t−1 exp(ϕt)

]
(34)

where ωit = ωi for all households except a positive measure, for whom ωit = ωt ensures that∫ 1

0
tritdi = 0. These transfers give us an additional degree of freedom to control the wealth

share of households and match the distribution in the data. We assume that households

anticipate these transfers in future periods except their own, which they assume to be zero.

3.2.4 Equilibrium and model solution

The optimization problems of households and union are naturally extended to incorporate

the dynamics of the infinite horizon, and the optimization problem of the representative

producer is unchanged. The definition of equilibrium then generalizes Definition 1.

We solve the model globally using numerical methods. While the perturbation approach

used in the two-period environment remains feasible in the infinite horizon, we turn to this

solution approach for two reasons. First, we find that household portfolios and MPRs solved

analytically at the deterministic steady-state have non-trivial differences from their values at

the stochastic steady-state solved globally.21,22 Second, a perturbation solution is ill-suited

21We wish to emphasize, however, that the qualitative insights of section 2 continue to be relevant in the
infinite horizon. For instance, setting p = 0 so that there is no disaster, we can prove the following analog
of Proposition 2 in this infinite horizon environment around the deterministic steady state (denominated
without time subscripts):

E0r̂
k
1 − E0r̂1 = Γσ2 + ζm0

m̂0σ
2 + o(|| · ||4),

where

ζm0 = ζ̃m0 + γ

∫ 1

0

ξ̄im0

(
mpr −mpri

)
di

and ζ̃m0
is the effect of a monetary shock on the risk premium in a counterfactual economy with γi = γ for

all i, given γ =
(

c̄i∫ 1
0
c̄i′di′

1
γ

)−1

, ξ̄im0
=

d[ci1/
∫ 1
0
ci

′
1 di

′]
dm0

, mpr =
∫ 1

0
c̄i∫ 1

0
c̄i′di′

mpridi, and mpri ≡
q0

∂ki
0

dyi
0

∂ai
0

dyi
0

. Hence,

beyond the risk premium effect of monetary policy in an otherwise identical economy with homogenous risk
aversion, it will lower the risk premium if it redistributes to households with relatively high MPRs.

22We use the term “stochastic steady state” to refer to the set of prices and policies to which the econ-
omy converges when agents fully anticipate the stochastic properties of productivity, monetary policy, and
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to handle the addition of a disaster to our exogenous driving forces.

Given this global solution approach, we now limit the degree of heterogeneity across

households to make the computational burden tractable. We divide the continuum of house-

holds into a finite number of groups within which households are perfectly symmetric. We

choose three groups in our baseline parameterization, denoted i ∈ {a, b, c} and where we now

understand the index i to refer to groups and the representative household of each group.

The fraction of households belonging to group i is denoted λi, where
∑

i λ
i = 1.

We solve a stationary transformation of the economy obtained by dividing all real vari-

ables except labor by zt and nominal variables by Ptzt. As is shown in appendix D, in

the transformed economy a sufficient characterization of the aggregate state in period t is

given by the monetary policy shock mt, scaled aggregate capital kt−1/ exp(σεzt ), scaled prior

period’s real wage wt−1/ exp(σεzt ), and wealth shares {sit} of I − 1 groups, where

sit ≡ λi
(1 + it−1)Bi

t−1 + (Πt + (1− δ)Qt)k
i
t−1 exp(ϕt) + trit

(Πt + (1− δ)Qt)kt−1 exp(ϕt)
. (35)

Productivity shocks inclusive of disasters only govern the transition across states, but do not

separately enter the state space itself.

We solve the model over a large grid of the aggregate states, making sure that the solution

is robust to larger grid sizes and boundaries. When forming expectations over prices and

policies, we use quadrature and linear interpolation over aggregate states, but (for house-

holds’ value functions) interpolate using cubic splines over individual wealth. The stochastic

equilibrium is determined through backward iteration, while dampening the updating of

the price of capital and individuals’ expectations over the dynamics of the aggregate states.

The code is written in Fortran and parallelized using OpenMP, so that convergence can be

achieved in less than twenty minutes on a modern computing system with eight cores. The

computational algorithm is further described in appendix D.

3.3 Parameterization and the stochastic steady-state

We now parameterize the model to match micro moments informing the heterogeneity across

groups as well as macro moments regarding the business cycle and asset prices.

3.3.1 Micro moments: the distribution of wealth, labor income, and portfolios

We first seek to replicate patterns in the distribution of wealth, labor income, and financial

portfolios in U.S. data, giving us confidence in the model-implied distribution of MPRs and

disasters, but no such shocks are ever realized.
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exposures to a monetary policy shock. We work with the 2016 Survey of Consumer Finances

(SCF) and proceed in two steps.

First, we decompose each household’s nominal wealth (Ai) into claims on the economy’s

capital stock (Qki, in positive net supply) and bonds (Bi, in zero net supply accounting

for the government and rest of the world).23 In the same spirit as Doepke and Schneider

(2006), the key step in doing this is to account for the implicit leverage households have on

capital claims through the leverage of firms and of financial intermediaries. In particular, if

household i owns $1 in equity in a firm which has net leverage

assets net of bonds

equity
= levfirm,

then we assign the household

{Qki = levfirm, Bi = 1− levfirm}.

If household i owns $1 in equity in an intermediary which has net leverage

assets net of bonds

equity
= levinter

and the intermediary’s assets net of bonds are equity claims on the above firm, then we

assign the household

{Qki = levinterlevfirm, Bi = 1− levinterlevfirm}.

We use the Financial Accounts of the United States as well as analyses of hedge funds and

private equity to inform these leverage assumptions. We outline the specific assumptions and

present the resulting aggregate decomposition of household net worth in appendix C.2. We

focus on measures of {Ai, Qki, Bi} excluding assets and liabilities associated with households’

primary residence and vehicles.24

Second, we stratify households by their wealth to labor income { Ai

W`i
} and capital portfolio

share {Qki
Ai
}, defining subsamples mapping to our three groups.25 We sort households on

these variables based on Proposition 1, which demonstrated that the capital portfolio share

23While all observations are as of 2016, we drop time subscripts anticipating that we will calibrate the
model’s stochastic steady-state to match these moments.

24As suggested by the large literatures on housing and consumer durables, households’ choices to accumu-
late these assets and associated liabilities reflect factors not well captured by our parsimonious framework.
For this reason, we exclude them from our calculation of cross-sectional moments.

25For each household we measure labor income as total wage and salary income for the previous calendar
year as reported in the SCF summary extract.
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Ai

W`i

≥ p60 < p60

Qki

Ai

≥ p99.5

Group a
Share households: 0.2%
Share

∑
iW`i: 0.0% Group c

Share
∑

iA
i: 0.2% Share households: 60.3%

Median Qki

Ai
: 6.6 Share

∑
iW`i: 77.3%

< p99.5

Group b Share
∑

iA
i: 11.3%

Share households: 39.5% Median Qki

Ai
: 0.3

Share
∑

iW`i: 22.7%
Share

∑
iA

i: 88.5%

Median Qki

Ai
: 0.7

Table 3: heterogeneity in wealth to labor income and the capital portfolio share

Notes: observations are weighted by SCF sample weights.

is informative about households’ risk aversion and thus MPR only after properly accounting

for their non-traded exposure to aggregate risk through labor income. Group a corresponds

to households with high wealth to labor income and a high capital portfolio share, group

b corresponds to households with high wealth to labor income but a low capital portfolio

share, and group c corresponds to households with low wealth to labor income. We define

“high” wealth to labor income as households in the top 40% of households ordered by this

measure, and a “high” capital portfolio share as households in the top 0.5% of households

ordered by this measure.

Table 3 summarizes the labor income, wealth, and financial portfolios of these three

groups which we seek to match. Group a households constitute 0.2% of households, earn a

negligible fraction of labor income, hold 0.2% of wealth, and have a median capital portfolio

share of 6.6. Group b households constitute 39.5% of households, earn 22.7% of labor income,

hold 88.5% of wealth, and have a median capital portfolio share of 0.7. Finally, group

c households constitute 60.3% of households, earn 77.3% of labor income, hold 11.3% of

wealth, and have a median capital portfolio share of 0.3. To better understand the nature of

households in each group, in Table 4 we first project an indicator for the household holding

private business assets on households’ group indicator. We find that households in group

a are especially more likely to hold private business assets. We then project an indicator

for the household head being older than 54 and out of the labor force, together capturing a

retired household head, on households’ group indicator. We find that households in group b

are especially more likely to be retired.
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1{hbusi = 1} 1{agei > 54, lf i = 0}
1{i = a} 0.45 0.26

(0.15) (0.12)
1{i = b} 0.12 0.52

(0.01) (0.01)
Observations 6,227 6,227
Adj R2 0.03 0.34

Table 4: projecting indicators for private business wealth or being retired on group status

Notes: observations are weighted by SCF sample weights and standard errors adjust for imputation and
sampling variability following Pence (2015). Each specification includes a constant term (not shown).

3.3.2 Macro moments: business cycle dynamics and asset prices

We also calibrate the model to match standard macro moments regarding the business cycle

and asset prices. In terms of the business cycle, we seek to match the volatilities of the growth

rates of consumption, investment and hours worked. We use NIPA data on consumption of

non-durables and services, investment in durables and capital, as well as hours worked and

wages, together with the time series of the working age population provided by the BLS, to

estimate quarterly per capita growth rates in those series over the sample period Q1 1948

to Q1 2018. In terms of asset prices, we seek to match the real interest rate and equity

premium. We estimate the annualized average real interest rate and equity premium over

July 1979 - June 2012 using the data from CRSP described in Section 3.1.

3.3.3 Parameterization

A model period corresponds to one quarter. After setting a subset of parameters in accor-

dance with the literature, we calibrate the remaining parameters to be consistent with the

macro and micro moments described above. We note that all stochastic properties of the

model are estimated using a simulation where no disasters are realized in sample.26

Externally set parameters A subset of model parameters summarized in Table 5 are

set externally in accordance with the literature. Among the model’s preference parameters,

we set the IES below, but close to, one, namely ψ = 0.95. The parameter also governs the

substitutability between consumption and labor and Shimer (2010) argues such a parame-

terization is in line with standard models of time allocation which predict that the marginal

utility of consumption is higher when households work more. The Frisch elasticity of labor

26We make this choice to maximize comparability between the model and data, since our data is all from
the post-World War II period.
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Description Value Notes

ψ IES 0.95 Shimer (2010)

ξ Frisch elasticity 0.75 Chetty et al. (2011)

λa measure of a households 0.2% SCF

λb measure of b households 22.7% SCF

α 1 - labor share 0.33

δ depreciation rate 2.5%

ε elast. of subs. across workers 10

τ undoes wage markup -0.11

χW Rotemberg wage adj costs 200 ≈ P(adjust) = 4 qtrs

φ Taylor coeff. on inflation 1.5 Taylor (1993)

η std. dev. MP shock 0.25%/4

ρ persistence MP shock 0

p disaster probability 0.5% Barro (2006)

ϕ disaster shock -10%

Table 5: externally set parameters

supply is set to ξ = 0.75, consistent with the micro evidence in Chetty et al. (2011). The

three types have measure λa = 0.2%, λb = 22.7% and λc = 77.1%, as determined in our

analysis of the SCF micro data in Table 3.

On the production side, we choose α = 0.33 for the capital share of production and a

quarterly depreciation rate of 2.5%, standard values in the literature. The disaster proba-

bility is set to p = 0.5%, which follows Barro (2006) and implies that a disaster shock is

expected to occur every 50 years. The depth of the disaster is set to ϕ = −10%, lower

than Barro (2006) but more consistent with the long-run effects of a disaster estimated by

Nakamura et al. (2013) after accounting for the recovery after an initial disaster. Following

literature standards, we choose an elasticity of substitution across worker varieties ε = 10

and Rotemberg wage adjustment costs of χW = 200, which together imply a Calvo (1983)-

equivalent frequency of wage adjustment around 4 quarters, consistent with the evidence in

Grigsby et al. (2019). The Taylor coefficient on inflation is set to φ = 1.5 and monetary

policy shocks have a standard deviation of ς = 0.25%/4 with zero persistence. Finally, we

assume that the wage markup is perfectly offset by τ = − 1
ε−1

= −1
9
.

Calibrated parameters We calibrate the remaining parameters to target the macro and

micro moments described above. While there is no one-to-one mapping between individual

model parameters and those moments, Table 6 reports in each line a parameter choice, as
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Description Value Moment Target Model

σ std. dev. prod. 0.75% σ(∆ log c) 0.6% 0.6%

φx capital adj cost 4 σ(∆ log x) 2.4% 2.4%

β discount factor 0.99 Er+1 1.4% 1.4%

γb RRA b 30 E
[
re+1 − r+1

]
7.1% 6.5%

γa RRA a 0.5 ka/aa 6.6 11.0

γc RRA c 30 kc/ac 0.3 0.0

T a/aat transfer to a -6% aa/
∑

i λ
iai 0.5% 4.0%

T c/act transfer to c 0.006% ac/
∑

i λ
ici 11.3% 17.8%

ξ̄ ` disutility 0.83 ` 1 1

Table 6: targeted moments and calibrated parameters

Notes: targeted business cycle moments are from Q1/48-Q1/18 NIPA and targeted asset pricing moments
are from 7/79-6/12 data underlying the VAR. The equity premium in the model is calculated assuming a
debt/equity ratio of 1.5 on a stock market claim. The stochastic properties of the model are estimated over
a sample with no disaster realizations.

well as a moment in model and data that this parameter is closely linked to.

The standard deviation of the productivity shock σ is set to 0.75%, which is a key deter-

minant of the model’s ability to match quarterly consumption growth volatility of 0.6%. The

scale of the capital adjustment cost is set to χx = 4 to dampen the volatility of investment

growth in order to match the data. The discount factor is one key determinant of the real

risk free rate. Due to the precautionary savings motive, β = 0.99 is high enough to match

the low annualized real rate observed in the data. Households’ risk aversion parameters,

γa = 0.5 and γb = γc = 30, are drivers of both the average risk premium in the economy and

households’ portfolio choices. The lump-sum wealth transfers across households are chosen

to approximate the measured wealth shares of the three groups; the reported values T i/ait

denote the size of the lump-sum transfers relative to households’ respective wealth in the

stochastic steady state. Finally we set the disutility of labor to ξ̄ = 0.83, which targets a

level of labor ` = 1.0 and only serves as a normalization.

3.3.4 Untargeted moments

Table 7 reports the values of several untargeted moments and their empirical counterparts

where available. In terms of macro moments, the model very closely matches the quar-

terly volatilities of output growth and employment growth. It undershoots the volatility of

expected real interest rates and, especially, the volatility of expected excess returns. This

implies that the time-variation in expected returns operating through productivity shocks is
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Moment (ann.) Data Model

σ(∆ log y) 0.9% 1.1%

σ(∆ log `) 0.9% 0.9%

σ (Er+1) 0.8% 0.2%

σ
(
E
[
re+1 − r+1

])
5.4% 0.1%

mpra 11.0

mprb 0.9

mprc 0.0

Table 7: untargeted macro and micro moments

Notes: business cycle moments are from Q1/47-Q1/18 NIPA and asset pricing moments are from 7/79-6/12
data underlying the VAR. The stochastic properties of the model are estimated over a sample with no disaster
realizations.

limited in the present calibration, recalling that productivity shocks and monetary shocks

are the only realized shocks when simulating the model (there are no disaster realizations)

and monetary policy shocks are fully transitory and have small standard deviation.27

In terms of micro moments, the model generates heterogeneity in MPRs at the stochastic

steady-state consistent with Proposition 1 in the analytical results. Group a agents are the

most risk tolerant and have the highest MPR, borrowing $10 for every $1 of the marginal

dollar in net worth to invest in capital. Group b and c agents are equally risk averse, but

group c agents have higher labor income to wealth, implying by Proposition 1 that they

seek to short capital. In the present environment, this implies that they are up against the

short-sale constraint on capital at the stochastic steady-state and hence their MPR is zero.

Quasi-experimental evidence is consistent with the positive covariance between MPRs

and capital portfolio shares in our calibration. Using data on Norwegian lottery winners,

the estimates of Fagereng et al. (2019) imply that the marginal propensity to save in stocks

relative to save overall rises with liquid assets.28 Using data on Swedish lottery winners,

27In appendix E we simulate the impulse responses following a productivity shock, demonstrating that
the endogenous redistribution induced by a productivity shock toward high MPR agents puts downward
pressure on the risk premium, as in the case of a monetary policy shock. However, as Table 7 makes clear,
this channel alone is quantitatively not strong enough to match the observed time-variation in excess returns.
In complementary work in Kekre and Lenel (2019), we build on the present framework to allow for additional
driving forces beyond productivity and monetary shocks and investigate the role of wealth redistribution in
explaining the joint dynamics of risk premia and quantities in a New Keynesian model of the business cycle.

28 In Table 8 of their paper, the authors report that the marginal propensity to save in stocks, bonds,
and mutual funds rises from 0.021 to 0.068, and the marginal propensity to save in these assets, deposits, or
repay debt rises from 0.435 to 0.672, from the first to fourth quartile in liquid assets. This implies an MPR
rising from 0.021/0.435 = 0.05 to 0.068/0.672 = 0.10.
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Briggs et al. (2015) find that lottery winners reduce their portfolio share in risky assets by

more if they are low wealth or not self-employed.29 These findings are consistent with a

positive covariance between MPRs and the portfolio share in risky assets since the latter is

rising in wealth.30 Using U.S. tax data, Hoopes et al. (2017) find that households with high

taxable income, dividend income, and private business income are more likely to sell stocks

following periods of market tumult. While this may reflect heterogeneous responses to prices

rather than changes in income, it remains consistent with the positive covariance between

MPRs and risky portfolio shares.

The evidence is more mixed on the magnitude of MPRs. The above studies using lottery

winners report average marginal propensities to save in risky assets relative to save overall

of 0.05-0.15,31 below those in our calibration even after accounting for reasonable estimates

of the leverage of firms and intermediaries in which households invest.32 However, using

the Panel Study of Income Dynamics, Brunnermeier and Nagel (2008) document significant

inertia in financial portfolios, with a negative change in the risky share after receiving one

dollar of cash or deposits but an increase in the risky share after receiving one dollar of

unexpected returns on risky assets. As lottery winnings are paid out as cash or riskless

deposits, they may understate households’ MPRs in response to dividends or capital gains,

more relevant for the balance sheet revaluation emphasized in this paper. Among recipients

of private business income, they may particularly understate the MPR because investment

in private businesses is not included in the definition of (traded) risky assets. Accumulating

further evidence on MPRs and refining the framework developed in this paper to match

these moments, much as the literature has been able to do for MPCs, would be valuable.

3.4 Impulse responses to a monetary policy shock

We now simulate the effects of a negative shock to the nominal interest rate. We compare

the impulse responses of the model with heterogeneity to a counterfactual economy with

fully symmetric households. In the symmetric case, we set γi = 9 across all groups, equal

to the harmonic mean of risk aversion in the model weighted by the consumption share of

each group at the stochastic steady state, and there are no transfers beyond the lump-sum

29See Figure 3 and Table 4 in their paper, respectively.
30The positive relationship between the portfolio share in risky assets and wealth is pervasive in the

literature, documented in the Scandinavian context by, for instance, Calvet et al. (2007).
31See footnote 28 for estimates from Fagereng et al. (2019). In Table B.8 of Briggs et al. (2015), the

authors report a marginal propensity to save in risky assets of 0.085 and marginal propensity to save in these
assets, safe assets, bank accounts, or repay debt of 0.58, implying a ratio of 0.15.

32Following section 3.3.1, we must account for firms’ and intermediaries’ net leverage to translate claims
on firm equity into claims on capital and thus the MPR. Applying net leverage of 2, reflecting the various
measures of leverage estimated in appendix C.2, yields MPRs implied by these estimates of 0.1-0.3.
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rebating of wage adjustment costs and wage subsidies. The difference between these two

impulse responses thus isolates the redistributive effects of monetary policy in our setting.

3.4.1 Model versus symmetric impulse responses

Figure 2 compares the impulse responses to a monetary policy shock for several variables of

interest. The first panel in the first row reports the change in the 1-year Treasury yield due

to the shock. We obtain this yield by assuming the Treasury bond is in zero net supply and

computing, in each period, the price that each household would be willing to pay for the

asset. We then set the price to that of the highest-valuation household. We price this asset

so we can calibrate the magnitude of the primitive shock to the nominal interest rate εm0 to be

consistent with the 22bp reduction in the Treasury yield which we estimate in Figure 1. The

second and third panels in the first row depict the resulting change in key expected returns

of interest: the expected real interest rate and the expected excess returns on capital. The

decline in the former reflects the monetary non-neutrality in our setting, while the decline in

the demonstrates that the risk premium declines substantially in our model relative to the

counterfactual economy with symmetric households.

The second and third rows demonstrate that redistribution drives the decline in the risk

premium in our model. The first panel of the second row demonstrates that realized excess

returns on capital are substantially positive on impact, followed by small negative returns

in the quarters which follow — consistent with the decline in the expected excess returns

in the previous panel, and exactly the pattern estimated in the data in Figure 1. Through

the lens of Proposition 3, the substantially positive excess returns on impact endogenously

redistribute to the high MPR a households who hold levered claims on capital.33 Indeed, the

second panel in this row demonstrates that the financial wealth share of a agents persistently

rises after the shock. In part this results from unexpected inflation which lowers the realized

real interest rate, shown in the third panel. In part it also results from an increase in the

price of capital, shown in the first panel of the third row. This reflects the increase in future

profits in the short-run because there are lower real wages and higher employment in this

sticky wage environment, shown in the second and third panels of this row.

The fourth row examines the consequences of this redistribution for the transmission of

the policy shock to the real economy. Comparing the investment response in the model to

the symmetric case, the stimulus to investment on impact is amplified from 3.3pp to 3.9pp.

Investment remains persistently higher in the following periods, leading to an amplification of

capital accumulation relative to the symmetric case. The amplification of investment in our

33 This redistribution occurs both from b and c households. On impact, we find that the financial wealth
share of the b households falls by 34pp and the financial wealth share of the c households falls by 28pp.
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Figure 2: impulse responses to negative monetary policy shock

Notes: all series are plotted as quarterly (non-annualized) deviations from the stochastic steady state, except
for the 1-year Treasury yield ∆i1y. b.p. denotes basis points (0.01%).
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% Excess return Data Model Symmetric

∆ Dividends 35% 22% 51%

−Real rates 10% 33% 47%

−Excess returns 55% 45% 2%

Table 8: Campbell and Shiller (1988) decomposition of excess returns after monetary shock

Notes: estimates from data correspond to Table 2. Comparable estimates obtained in the model assuming
a debt/equity ratio of 1.5 on a stock market claim.

model is countervailed by a mitigation of the stimulus through consumption. Nonetheless,

the overall stimulus to output slightly rises.

Quantitatively, the price and quantity effects of the monetary policy shock are consistent

with the empirical estimates even though these were not targeted in the calibration. First,

the impact effect on the stock market of 1.6pp is comparable to the 2pp increase estimated in

Figure 1. Second and crucially, a Campbell and Shiller (1988) decomposition on the model

impulse responses matches the role of news about lower future excess returns in driving this

increase in the stock market in the data. We summarize this decomposition in Table 8. The

performance of our model contrasts starkly with the counterfactual economy with symmetric

households, where essentially none of the transmission to the stock market operates though

news about future excess returns. Third, the peak stimulus to output in the model of 1.4pp

is comparable to the peak stimulus to industrial production estimated in Figure 1, giving us

confidence in the model’s predictions for transmission to the real economy.34

The difference between the model and symmetric impulse responses indeed is almost fully

accounted for by the balance sheet revaluation characterized in our analytical results and

described above. Figure 3 plots the differences between the model and symmetric impulse

responses for a subset of key variables of interest. It then compares this difference to the

impulse response in the model following a one-time transfer of wealth across households

exactly equal to the initial change in wealth shares in our model induced by the monetary

policy shock.35 As is evident, the difference in impulse responses is almost fully accounted

for by the balance sheet revaluation induced by the monetary policy shock.

34The shape of the quantity responses differs from the hump-shapes typically estimated in the data,
however. We expect that adding features such as investment adjustment costs (as opposed to the present
capital adjustment costs) could improve the model in this dimension, following Christiano et al. (2005).

35Following Figure 1 and footnote 33, we increase the wealth share of a households by 62bp, reduce the
wealth share of b households by 34bp, and reduce the wealth share of c households by 28bp in period 0.
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Figure 3: replicating wealth transfer of negative monetary policy shock

Notes: all series are plotted as quarterly (non-annualized) deviations. b.p. denotes basis points (0.01%).

3.4.2 Inspecting the mechanism through sensitivity analysis

We seek to further understand the sources and implications of the redistribution in the model

by now varying a set of key parameters. For six variables listed in each row, Table 9 reports

a “double difference”: we first compute the change in that variable in period 0 relative to

the economy’s stochastic steady state in period -1, and we then we compute the incremental

change in that variable in the model relative to the symmetric counterfactual. Each column

corresponds to a different parameterization, where only a single parameter is changed from

our baseline parameterization summarized in the first column.

The second column reports the results for an economy in which monetary policy shocks

are persistent, setting ρ = 0.3, demonstrating the importance of redistribution through debt

deflation. In that case, a monetary policy shock induces a stronger response of the inflation

rate relative to the baseline, as can be seen in row 1. Through this debt deflation channel,

the realized excess return on capital on impact rises in row 3 and the change in the wealth

share of the levered household group a increases in row 4. In line with proposition 2, the

larger redistribution to high MPR agents amplifies the decline in the risk premium in row 5.

Correspondingly, the monetary policy shock induces a larger investment response through

redistribution, seen in row 6.

An increase in the capital adjustment cost to χx = 10, as reported in the third column,

amplifies the redistribution through asset prices. In that case a monetary policy shock

induces a larger effect on the price of capital and therefore increases the unexpected return

on capital, as reported in rows 2 and 3, respectively. Redistribution is slightly larger and

the risk premium declines more than in the baseline case in rows 5. These effects are not

especially large because of the countervailing effect of a smaller inflation response in row 1:

the higher adjustment cost limits quantity responses in the capital market, evident in row

6, in turn dampening the response in the labor market.
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Row Baseline ρ = 0.3 χx = 10 χW = 0 φ = 1.1

1 ∆ log(P/P−1) 3.61bp 4.34bp 2.43bp 3.31bp 12.73bp

2 ∆ log(q) 6.69bp 7.92bp 11.98bp 5.74bp 7.40bp

3 ∆(rk − r) 10.49bp 12.55bp 14.47bp 9.96bp 27.80bp

1 ∆sa 62.33bp 79.33bp 66.97bp 51.59bp 76.38bp

2 ∆E[rk − r] −4.00bp −5.01bp −4.19bp −3.21bp −4.34bp

6 ∆ log(x) 53.14bp 62.98bp 44.03bp 50.93bp 57.56bp

Table 9: impact effects of a negative monetary policy shock across parameterizations

Notes: for each parameterization, each row reports the change in that variable on impact of the monetary
policy shock relative to the stochastic steady-state, differenced between the model and symmetric case. All
rows report quarterly (non-annualized) changes, and b.p. denotes basis points (0.01%).

The fourth column eliminates nominal wage rigidity by setting χW = 0, demonstrating

the role of changes in profit income in inducing redistribution across agents. When wage

rigidity is zero, the decline in the real wage and the stimulus to employment is mitigated. It

follows that the short-run increase in profits is mitigated. This not only reduces the increase

in the current dividend but it also reduces the increase in the price of capital which capitalizes

future dividends, evident in row 2. The decline in the risk premium is thus mitigated in row

5, even though the redistribution through debt deflation remains quite strong in row 1.

Finally, the last column reports the results when monetary policy is less responsive to

changes in the inflation rate by setting φ = 1.1, demonstrating the role of the monetary

feedback rule in mediating the transmission from risk premia to the real economy. A less

responsive Taylor rule dampens the extent to which risk premia movements are absorbed

by changes in the risk-free rate. Consistent with the discussion of Proposition 6, this will

lead to a stronger investment response. Comparing the response of investment in row 6 to

the baseline parameterization, we see that a less responsive Taylor rule leads to a stronger

investment response versus the baseline.

4 Conclusion

In this paper we revisit the monetary transmission mechanism in a New Keynesian environ-

ment with heterogeneous propensities to bear risk. An expansionary monetary policy shock

lowers the risk premium if it redistributes to households with high MPRs. Heterogeneity in

risk aversion, portfolio constraints, rules of thumb, background risk, or beliefs induce a joint

distribution of monetary policy exposures and MPRs such that an expansionary shock redis-

tributes in this way. In a calibration matching micro-level heterogeneity in the U.S. economy,
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this mechanism quantitatively rationalizes the stock market effects of monetary policy which

have eluded existing frameworks and amplifies its transmission through investment.
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A Proofs

In this appendix we prove the results stated in section 2.

Proposition 1

Proof. We first characterize households’ portfolio share in capital in the limit of zero aggre-

gate risk. Optimal portfolio choice is

E0(ci1)−γ
i

(rk1 − r1) = 0.

Up to first-order, optimal portfolio choice yields

E0r̂
k
1 − r̂1 = o(|| · ||2).

It follows that given the first-order expansion in terms of the states

r̂k1 = ẑ1 + δr
k
1
m0
m̂0 + o(|| · ||2),

r̂1 = δr1m0
m̂0 + o(|| · ||2),

with coefficients δ··, we can conclude

δr
k
1
m0

= δr1m0

by the method of undetermined coefficients.

Up to second-order, optimal portfolio choice yields

E0r̂
k
1 − r̂1 +

1

2
E0(r̂k1)2 − 1

2
r̂2

1 = γiE0ĉ
i
1

(
r̂k1 − r̂1

)
+ o(|| · ||3).

Using the above first-order approximations of r̂k1 and r̂1 in terms of the underlying states,

and the first-order approximation of ĉi1

ĉi1 = δc
i
1
z1
ẑ1 + δc

i
1
m0
m̂0 + o(|| · ||2),

it follows that optimal portfolio choice implies

E0r̂
k
1 − r̂1 +

1

2
σ2 = γiδc

i
1
z1
σ2 + o(|| · ||3). (36)
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Anticipating the result in Proposition 2 that

E0r̂
k
1 − r̂1 +

1

2
σ2 = γσ2 + o(|| · ||3),

it follows that

δc
i
1
z1

=
γ

γi
. (37)

Approximating up to first order the period 1 resource constraint and equilibrium wages and

profits

w1 = (1− α)z1k
α
0 ,

π1 = αz1k
α−1
0 ,

the method of undetermined coefficients implies

δc
i
1
z1

=
w̄1 + π̄1k̄

i
0

c̄i1
.

Substituting in (37) and re-arranging, we can conclude that

q̄0k̄
i
0

āi0
=

π̄1k̄
i
0

(1 + r̄1)āi0
=

c̄i1
(1 + r̄1)āi0

γ

γi
− w̄1

(1 + r̄1)āi0
,

where the first equality uses q̄0 = π̄1

1+r̄1
absent aggregate risk.

We now characterize households’ marginal responses to a unit of income in the limit of

zero aggregate risk. Differentiating households’ optimal portfolio choice condition yields

0 = Ei0mi
0,1

γi

ci1

(
rk1 − r1

) ∂ci1
∂yi0

where the household’s stochastic discount factor between periods 0 and 1 is

mi
0,1 ≡

βi

1− βi
(ci0)

1

ψi Φi(li0)
1− 1

ψi (cei0)
γi− 1

ψi (ci1)−γ
i

.

Differentiating households’ period 1 resource constraint yields

∂ci1
∂yi0

= (1 + r1)
∂bi0
∂yi0

+ π1
∂ki0
∂yi0

.
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Combining the previous two equations yields

0 = E0m
i
0,1

γi

ci1
(rk1 − r1)

(
(1 + r1)

∂bi0
∂yi0

+ π1
∂ki0
∂yi0

)
. (38)

A second-order approximation then implies

0 =

(
(1 + r̄1)

∂bi0
∂yi0

+ π̄1
∂ki0
∂yi0

)(
E0r̂

k
1 − r̂1 +

1

2
σ2

)

−

(
(1 + r̄1)

∂bi0
∂yi0

+ π̄1
∂ki0
∂yi0

)
γi + 1

c̄i1

(
w̄1 + π̄1k̄

i
0

)
σ2 + π̄1

∂ki0
∂yi0

σ2 + o(|| · ||3). (39)

Again anticipating the result in Proposition 2 that

E0r̂
k
1 − r̂1 +

1

2
σ2 = γσ2 + o(|| · ||3)

and the above result that
w̄1 + π̄1k̄

i
0

c̄i1
=

γ

γi
,

it follows from (39) that

q̄0
∂ki0
∂yi0

=
γ

γi
∂ai0
∂yi0

using q̄0 = π̄1

1+r̄0
and

∂bi0
∂yi0

+ q̄0
∂ki0
∂yi0

=
∂ai0
∂yi0

. The expression for mpri0 ≡
q̄0
∂ki0
∂yi0

∂ai0
∂yi0

then follows.

Proposition 2

Proof. We first derive the result up to second order. Multiplying both sides of (36) by
c̄i1
γi

,

integrating over all agents i, and making use of the market clearing conditions which imply

that ∫ 1

0

c̄i1di =

∫ 1

0

(
w̄1 + π̄1k̄

i
0

)
di,

we obtain

E0r̂1(z1)− r̂0 +
1

2
σ2 =

(
c̄i1∫ 1

0
c̄i
′

1 di
′

1

γi

)−1

σ2 + o(|| · ||3), (40)

defining γ as in the claim.

We now derive the result up to third order. The third-order approximation of optimal

47



portfolio choice for household i is

E0r̂
k
1 − r̂1 +

1

2
E0(r̂k1)2 − 1

2
r̂2

1

= γiE0ĉ
i
1

(
r̂k1 − r̂1

)
− 1

2

(
γi
)2 E0

(
ĉi1
)2 (

r̂k1 − r̂1

)
+

1

2
γiE0ĉ

i
1

(
(r̂k1)2 − r̂2

1

)
− 1

6

(
E0(r̂k1)3 − r̂3

1

)
+ o(|| · ||4). (41)

A second-order expansion of r̂k1 and r̂1 in terms of the underlying states yields

r̂k1 = ẑ1 + δr0m0
m̂0 +

1

2
δr0
m2

0
m̂2

0 +

(
−1

2
+ γ +

1

2
δr0σ2

)
σ2,

r̂0 = δr0m0
m̂0 +

1

2
δr0
m2

0
m̂2

0 +
1

2
δr0σ2σ

2

where we have already made use of the fact that, by the method of undetermined coefficients,

(40) implies

1

2
δ
rk1
m2

0
=

1

2
δr1
m2

0
,

1

2
δ
rk1
σ2 −

1

2
δr1σ2 +

1

2
= γ.

A second-order expansion of ĉi1 in terms of the underlying states yields

ĉi1 = δc
i
1
m0
m̂0 + δc

i
1
z1
ẑ1 +

1

2
δ
ci1
m2

0
m̂2

0 + δc
i
1
m0z1

m̂0ẑ1 +
1

2
δ
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z2
1
ẑ2

1 +
1

2
δ
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σ2σ

2 + o(|| · ||3).

Substituting these into (41) and collecting terms, we obtain

E0r̂
k
1 − r̂1 +

1

2
σ2 =

γiδc
i
1
z1
σ2 +

[
γi
(
δc
i
1
m0
γ + δc
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1
m0z1
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−
(
γi
)2
δc
i
1
m0
δc
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1
z1

+ γiδc
i
1
z1
δr1m0
− γδr1m0

]
m̂0σ

2 + o(|| · ||4).

Making use of (37) substantially simplifies this to

E0r̂
k
1 − r̂1 +

1

2
σ2 = γiδc

i
1
z1
σ2 + γiδc

i
1
m0z1

m̂0σ
2 + o(|| · ||4). (42)

Again multiplying both sides by
c̄i1
γi

, integrating over all agents i, and making use of the
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market clearing conditions, we obtain

E0r̂
k
1 − r̂1 +

1

2
σ2 = γσ2 +

γ∫ 1

0
c̄i1di

(∫ 1

0

c̄i1δ
ci1
m0z1

di

)
m̂0σ

2 + o(|| · ||4).

Then, taking a second-order approximation of the period 1 resource constraint and equilib-

rium wages and profits, the method of undetermined coefficients implies

c̄i1δ
ci1
m0z1

+ c̄i1δ
ci1
m0
δc
i
1
z1

= αw̄1δ
k0
m0

+ π̄1δ
ki0
m0
− (1− α)π̄1k̄

i
0δ
k0
m0
. (43)

It follows that ∫ 1

0

c̄i1δ
ci1
m0z1

di = −
∫ 1

0

c̄i1δ
ci1
m0
δc
i
1
z1
di+ π̄1

∫ 1

0

δk
i
0
m0
di,

using ∫ 1

0

αw̄1δ
k0
m0
di = αw̄1δ

k0
m0

= α(1− α)z̄1k̄
α
0 δ

k0
m0
,∫ 1

0

(1− α)π̄1k̄
i
0δ
k0
m0
di = (1− α)π̄1k̄0δ

k0
m0

= α(1− α)z̄1k̄
α
0 δ

k0
m0

implied by market clearing and the definition of equilibrium wages and profits.36 Since a

first-order approximation to capital claims market clearing implies∫ 1

0

δk
i
0
m0
di = k̄0δ

k0
m0
,

it further follows that ∫ 1

0

c̄i1δ
ci1
m0z1

di = −
∫ 1

0

c̄i1δ
ci1
m0
δc
i
1
z1
di+ π̄1k̄0δ

k0
m0
.

Moreover, since a first-order approximation to goods market clearing implies∫ 1

0

c̄i1δ
ci1
m0
di = αz̄1k̄

α
0 δ

k0
m0

36Note that we linearize rather than log-linearize with respect to {ki0, bi0, ai0} since in principle these may
be negative.
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and π̄1 = αz̄1k̄
α−1
0 , it further follows that∫ 1

0

c̄i1δ
ci1
m0z1

di = −
∫ 1

0

c̄i1δ
ci1
m0
δc
i
1
z1
di+

∫ 1

0

c̄i1δ
ci1
m0
di,

=

∫ 1

0

c̄i1δ
ci1
m0

(
1− δci1z1

)
di,

=

∫ 1

0

c̄i1δ
ci1
m0

(
1− γ

γi

)
di

where the final line uses (37). Hence, we can conclude

ζm0 =
γ∫ 1

0
c̄i1di

(∫ 1

0

c̄i1δ
ci1
m0z1

di

)
,

=
γ∫ 1

0
c̄i1di

∫ 1

0

c̄i1δ
ci1
m0

(
1− γ

γi

)
di.

Recall from Proposition 1 that mpri0 ≡
γ
γi

. Since the definition of (21) implies

∫ 1

0

c̄i1δ
ci1
m0

(
1− γ

γi

)
di =

∫ 1

0

(
c̄i1δ

ci1
m0
− c̄i1∫ 1

0
c̄i
′

1 di
′

∫ 1

0

c̄i
′

1 δ
ci
′

1
m0
di′

)(
1− γ

γi

)
di

and

1 =

∫ 1

0

c̄i1∫ 1

0
c̄i
′

1 di
′
mpri0di ≡ mpr0,

and we further have

d
[
ci1/
∫ 1

0
ci
′

1

]
dm0

=
1∫ 1

0
c̄i
′

1 di
′

(
dci1
dm0

− c̄i1∫ 1

0
c̄i
′

1 di
′

∫ 1

0

dci
′

1

dm0

di′

)
,

=
1∫ 1

0
c̄i
′

1 di
′

(
c̄i1δ

ci1
m0
− c̄i1∫ 1

0
c̄i
′

1 di
′

∫ 1

0

c̄i
′

1 δ
ci
′

1
m0
di′

)
,

we obtain the expression for ζm0 given in the claim.

Proposition 3

Proof. Assuming that
dci1
dm0

is continuous in σ, it is equivalent to characterize
dci1
dm0

and then

evaluate its limit at the deterministic steady-state (σ = 0) or simply compute
dc̄i1
dm̄0

at this

limit. It is expositionally simpler to do the latter, so we do that here.
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Re-consider agents’ micro-level optimization problem (18) given σ = 0:

max
(

(1− βi)
(
c̄i0Φi(¯̀i

0)
)1− 1

ψi + βi
(
c̄i1
)1− 1

ψi

) 1

1− 1
ψi s.t.

c̄i0 + āi0 = ȳi0(w̄0
¯̀i
0, P̄0, π̄0, q̄0),

c̄i1 = w̄1 + (1 + r̄1)āi0,

defining policy functions

c̄i1(ȳi0(w̄0
¯̀i
0, P̄0, π̄0, q̄0), ¯̀i

0, 1 + r̄1, w̄1),

where recall that

ȳi0(w̄0
¯̀i
0, P̄0, π̄0, q̄0) = w̄0

¯̀i
0 +

1

P̄0

(1 + i−1)Bi
−1 + (π̄0 + (1− δ0)q̄0)ki−1.

It follows that

dc̄i1
dm̄0

=
∂c̄i1
∂ȳi0

[
− 1

P̄0

Bi
−1

1

P̄0

dP̄0

dm̄0

+ ki−1

(
dπ̄0

dm̄0

+ (1− δ0)
dq̄0

dm̄0

)
+
dw̄0

¯̀i
0

dm0

]
+
∂c̄i1
∂ ¯̀i

0

d¯̀i
0

dm̄0

+
∂c̄i1

∂(1 + r̄1)

dr̄1

dm̄0

+
∂c̄i1
∂w̄1

dw̄1

dm̄0

, (44)

where each of the partial derivatives is evaluated with respect to the policy function above.

We now characterize each of these partial derivatives in turn.

First note that it is clearly the case that

∂c̄i1
∂w̄1

=
1

1 + r̄1

∂c̄i1
∂ȳi0

.

Then define the expenditure minimization problem dual to the utility maximization problem

above

min c̄i,h0 + āi,h0 s.t.(
(1− βi)

(
c̄i,h0 Φi(¯̀i,h

0 )
)1− 1

ψi

+ βi
(
c̄i,h1

)1− 1

ψi

) 1

1− 1
ψi ≥ ūi,

c̄i,h1 = w̄1 + (1 + r̄1)āi,h0 ,

where we use h superscripts to denote compensated (Hicksian) policies. Letting

ēi0(ūi, ¯̀i
0, 1 + r̄1, w̄1)
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denote the level of period 0 expenditure solving this problem, duality implies

c̄i1(ēi0(ūi, ¯̀i
0, 1 + r̄1, w̄1), ¯̀i

0, 1 + r̄1, w̄1) = c̄i,h1 (ūi, ¯̀i
0, 1 + r̄1, w̄1).

This leads to Slutsky identities

∂c̄i1
∂ ¯̀i

0

=
∂c̄i,h1

∂ ¯̀i
0

− ∂c̄i1
∂ȳi0

∂ēi0
∂ ¯̀i

0

,

∂c̄i1
∂(1 + r̄1)

=
∂c̄i,h1

∂(1 + r̄1)
− ∂c̄i1
∂ȳi0

∂ēi0
∂(1 + r̄1)

.

By the Envelope Theorem,

∂ēi0
∂ ¯̀i

0

= −c̄i,h0

Φi′(l̄i0)

Φi(l̄i0)
,

∂ēi0
∂(1 + r̄1)

= − 1

1 + r̄1

āi,h0 ,

so that we may further write the above identities as

∂c̄i1
∂ ¯̀i

0

=
∂c̄i,h1

∂ ¯̀i
0

+
∂c̄i1
∂ȳi0

(
c̄i,h0

Φi′(l̄i0)

Φi(l̄i0)

)
,

∂c̄i1
∂(1 + r̄1)

=
∂c̄i,h1

∂(1 + r̄1)
+
∂c̄i1
∂ȳi0

1

1 + r̄1

āi,h0 .

Substituting the above results into (44), using c̄i,h0 = c̄i0 and āi,h0 = āi0 implied by duality, and

collecting terms, we obtain

dc̄i1
dm̄0

=
∂c̄i1
∂ȳi0

[
− 1

P̄0

Bi
−1

1

P̄0

dP̄0

dm̄0

+ ki−1

(
dπ̄0

dm̄0

+ (1− δ0)
dq̄0

dm̄0

)
+
dw̄0

¯̀i
0

dm̄0

+
1

1 + r̄1

dw̄1

dm̄0

+
1

1 + r̄1

āi0
dr̄1

dm̄0

+ c̄i0
Φi′(l̄i0)

Φi(l̄i0)

d¯̀i
0

dm̄0

]
+
∂c̄i,h1

∂l̄i0

dl̄i0
dm̄0

+
∂c̄i,h1

∂(1 + r̄1)

dr̄1

dm̄0

(45)

We next characterize the compensated derivatives
∂c̄i,h1

∂l̄i0
and

∂c̄i,h1

∂(1+r̄1)
. The compensated
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policies solve the system

(1− βi)(Φi(l̄i0))
1− 1

ψi (c̄i,h0 )
− 1

ψi = βi(c̄i,h1 )
− 1

ψi (1 + r̄1),(
(1− βi)

(
c̄i,h0 Φi(¯̀i,h

0 )
)1− 1

ψi

+ βi(c̄i,h1 )
1− 1

ψi

) 1

1− 1
ψi = ūi,

c̄i,h1 = w̄1 + (1 + r̄1)āi,h0 .

Straightforward differentiation of this system yields

∂c̄i,h1

∂l̄i0
=

−Φi
′
(l̄i0)

Φi(l̄i0)

1
ψi

1

c̄i,h0

1
1+r̄1

+ 1
ψi

1

c̄i,h1

,

∂c̄i,h1

∂r̄0

=
1

1+r̄1
1
ψi

1

c̄i,h0

1
1+r̄1

+ 1
ψi

1

c̄i,h1

.

Differentiating the system defining uncompensated policies

(1− βi)(Φi(l̄i0))
1− 1

ψi (c̄i,h0 )
− 1

ψi = βi(c̄i,h1 )
− 1

ψi (1 + r̄1),

c̄i0 + āi0 = ȳi0

c̄i1 = w̄1 + (1 + r̄1)āi0,

implies that

∂c̄i1
∂ȳi0

=

1
ψi

1
c̄i0

1
ψi

1
c̄i0

1
1+r̄1

+ 1
ψi

1
c̄i1

.

Hence, making use of duality (c̄i0 = c̄i,h0 and so on), we can more succinctly write

∂c̄i,h1

∂l̄i0
=
∂c̄i1
∂ȳi0

(
−ψic̄i0

Φi′(l̄i0)

Φi(l̄i0)

)
,

∂c̄i,h1

∂r̄0

=
∂c̄i1
∂ȳi0

(
ψic̄i0

1

1 + r̄1

)
.

Combining the prior results and using

∂c̄i1
∂ȳi0

= (1 + r̄0)
∂āi0
∂ȳi0
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and the definition of the static labor wedge in this environment

τ̄ `
i
0 = 1− −c̄

i
0Φi′(l̄i0)/Φi(l̄i0)

w̄0

yields the stated result in the claim.

Proposition 4

Proof. Combining (24) with Proposition 3 and using

c̄i1 = c̄1,

∂ai0
∂yi0

=
∂a0

∂y0

,

ψi = ψ,

τ̄ `
i
0 = τ̄ `0 ,

¯̀i
0 = ¯̀

0,

d`i0
dm0

=
d`0

dm0

,

as assumed in the claim, we obtain

ξ̄im0
=

1

c̄1

(1 + r̄1)
∂a0

∂y0

[
−

(1 + i−1)Bi
−1

P0

1

P0

dP0

dm0

+ (ki−1 − k−1)

(
dπ0

dm0

+ (1− δ0)
dq0

dm0

)]
.

By Proposition 1 and the assumptions in the claim,

ki−1 = k̄i0 = ā0

[
c̄1

(1 + r̄1)ā0

γ

γi
− w̄1

(1 + r̄1)ā0

]
,

=
k̄0

α

(
γ

γi
− 1

)
+ k̄0,

Bi
−1 = P̄0b̄

i
0 = P̄0

[
ā0 − k̄i0

]
,

= −P̄0
k̄0

α

(
γ

γi
− 1

)
,

where

γ =

[∫ 1

0

1

γi
di

]−1
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and we use q̄0 = 1 following the assumption that k−1 = k̄0. It follows that

−
(1 + i−1)Bi

−1

P0

= (1 + i−1)
k̄0

α

(
γ

γi
− 1

)
,

ki−1 − k−1 =
k̄0

α

(
γ

γi
− 1

)
.

Hence,

ζm0 = γ

∫ 1

0

ξ̄im0
(mpr0 −mpri0)di,

= γ

∫ 1

0

ξ̄im0

(
1− γ

γi

)
di,

∝ −(1 + i−1)
1

P0

dP0

dm0

− dπ0

dm0

− (1− δ0)
dq0

dm0

(46)

where the second line uses Proposition 1 and the third line uses the above results.

To sign (46), we now compute { dP0

dm0
, dπ0

dm0
, dq0
dm0
} at the limit of σ = 0. Assuming these

derivatives are continuous in σ, their values at the limit of σ = 0 will be equal to { dP0

dm0
, dπ0

dm0
, dq0
dm0
}.

The limiting Euler equation

(
c̄i0
)− 1

ψ Φ(¯̀
0)1− 1

ψ = β(1 + r̄1)
(
c̄i1
)− 1

ψ

implies

− 1

ψ

1

c̄0

dc̄i0
dm̄0

+

(
1− 1

ψ

)
εΦ¯̀

0

1
¯̀
0

d¯̀
0

dm̄0

=
1

1 + r̄1

d(1 + r̄1)

dm̄0

− 1

ψ

1

c̄1

dc̄i1
dm̄0

, (47)

where we write the elasticity of Φ(`0) with respect to `0 evaluated at ¯̀
0

εΦ¯̀
0
≡ Φ′(¯̀

0)¯̀
0

Φ(¯̀
0)

.

The union’s limiting labor supply condition∫ 1

0

(v̄i0)
1
ψ (c̄i0)−

1
ψΦ(¯̀

0)1− 1
ψ

[
W̄0

P̄0

+ c̄i0
Φ′(¯̀

0)

Φ(¯̀
0)

+
W̄0

P̄0

χW

ε

W̄0

W−1

(
W̄0

W−1

− 1

)]
di = 0

implies

1

W̄0

dW̄0

dm̄0

− 1

P̄0

dP̄0

dm̄0

− 1

c̄0

(∫ 1

0

dc̄i0
dm̄0

di

)
−
(
ε−Φ′

¯̀
0
− εΦ¯̀

0

) 1
¯̀
0

d¯̀
0

dm̄0

+
χW

ε

1

W̄0

dW̄0

dm̄0

= 0. (48)

where we have used the symmetry across agents and W−1 = W̄0 at the point of approxima-
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tion, and further defined the elasticity of the marginal disutility of labor

ε−Φ′
¯̀
0
≡ −Φ′′(¯̀

0)¯̀
0

−Φ′(¯̀
0)

.

The limiting labor demand condition in period 0

W̄0

P̄0

= (1− α)z0
¯̀−α
0 kα−1,

implies
1

W̄0

dW̄0

dm̄0

− 1

P̄0

dP̄0

dm̄0

= −α 1
¯̀
0

d¯̀
0

dm̄0

. (49)

The limiting optimal investment condition

q̄0 =

(
k̄0

k−1

)χx
implies

dq̄0

dm̄0

= χx
1

k̄0

dk̄0

dm̄0

(50)

where we have used k−1 = k̄0 at the point of approximation. The limiting goods market

clearing condition in period 0∫ 1

0

c̄i0di+ q̄0

(
k̄0 − (1− δ0)k−1

)
= z0

¯̀1−α
0 kα−1

implies ∫ 1

0

dc̄i0
dm̄0

di+
dk̄0

dm̄0

+ δk̄0
dq̄0

dm̄0

= (1− α)z0
¯̀−α
0 kα−1

d¯̀
0

dm̄0

. (51)

where we use q̄0 = 1 and k̄0 = k−1 at the point of approximation. The limiting goods market

clearing condition in period 1 ∫ 1

0

c̄i1di = z̄1k̄
α
0

implies ∫ 1

0

dc̄i1
dm̄0

di = αz̄1k̄
α−1
0

dk̄0

dm̄0

. (52)

The limiting definition of the returns

1 + r̄1 =
αz̄1k̄

α−1
0

q̄0
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implies
1

1 + r̄1

d(1 + r̄1)

dm̄0

= (α− 1)
1

k̄0

dk̄0

dm̄0

− dq̄0

dm̄0

(53)

where we again use q̄0 = 1 at the point of approximation. Finally, the limiting Fisher

equation together with the monetary policy rules (10) and P1 = P̄1

1 + r̄1 =
(1 + ī)

(P−1)φ
(P̄0)1+φ

P̄1

m̄0

implies
1

1 + r̄1

d(1 + r̄1)

dm̄0

= (1 + φ)
1

P̄0

dP̄0

dm̄0

+
1

m̄0

. (54)

Combining (50), (53), and (54) yields

1

k̄0

dk̄0

dm̄0

= − 1

1− α + χx

(
(1 + φ)

1

P̄0

dP̄0

dm̄0

+
1

m̄0

)
. (55)

Combining (50), (51), (52), and (54) yields

1

c̄0

(
z0

¯̀−α
0 kα−1(1− α)

d¯̀
0

dm̄0

− (δ0χ
x + 1)

dk̄0

dm̄0

)
+ (1− ψ)εΦ¯̀

0

1
¯̀
0

d¯̀
0

dm̄0

=

− ψ
(

(1 + φ)
1

P̄0

dP̄0

dm̄0

+
1

m̄0

)
+ α

1

k̄0

dk̄0

dm̄0

.

Since by assumption W−1 = W̄0, it follows from the union’s optimal labor supply and the

representative producer’s optimal labor demand that each agent’s labor wedge is zero at the

point of approximation:

τ̄
`i0
0 = τ̄ `00 = 1− −c̄0Φ′(¯̀

0)/Φ(¯̀
0)

(1− α)z0
¯̀−α
0 kα−1

= 0.

Hence we can further simplify the above as

− ψεΦ¯̀
0

1
¯̀
0

d¯̀
0

dm̄0

= −ψ
(

(1 + φ)
1

P̄0

dP̄0

dm̄0

+
1

m̄0

)
+

(
α + (δ0χ

x + 1)
k̄0

c̄0

)
1

k̄0

dk̄0

dm̄0

. (56)

Combining (48), (49), (50), and (51) yields

χW

ε

1 + χW

ε

1

P̄0

dP̄0

dm̄0

=

(
α +

1

1 + χW

ε

(
ε−Φ′

¯̀
0
− 2εΦ¯̀

0

)) 1
¯̀
0

d¯̀
0

dm̄0

− 1

1 + χW

ε

(δ0χ
x + 1)

1

c̄0

dk̄0

dm̄0

, (57)

where we have again used the result that each agent’s labor wedge is zero at the point of
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approximation. Then (55)-(57) are 3 equations in the 3 unknowns { d¯̀
0

dm̄0
, dk̄0

dm̄0
, dP̄0

dm̄0
}. Solving

this system yields

m̄0

¯̀
0

d¯̀
0

dm̄0

= −

(
ψ +

α+(δ0χx+1)
k̄0
c̄0

1−α+χx

)
1

1− ε

χW
(δ0χx+1)

k̄0
c̄0

1+φ
1−α+χx

−ψεΦ¯̀
0

+

(
ψ +

α+(δ0χx+1)
k0
c0

1−α+χx

)
(1 + φ)

(
α
(

1+ ε

χW

)
+ ε

χW

(
ε−Φ′
¯̀
0
−2εΦ¯̀

0

)
1− ε

χW
(δ0χx+1)

k̄0
c̄0

1+φ
1−α+χx

) ,
m̄0

P̄0

dP̄0

dm̄0

=
1

1− ε
χW

(δ0χx + 1) k̄0

c̄0

1+φ
1−α+χx

×

−
(
ψ +

α+(δ0χx+1)
k̄0
c̄0

1−α+χx

)
α
(

1+ ε

χW

)
+ ε

χW

(
ε−Φ′
¯̀
0
−2εΦ¯̀

0

)
1− ε

χW
(δ0χx+1)

k̄0
c̄0

1+φ
1−α+χx

−ψεΦ¯̀
0

+

(
ψ +

α+(δ0χx+1)
k̄0
c̄0

1−α+χx

)
(1 + φ)

(
α
(

1+ ε

χW

)
+ ε

χW

(
ε−Φ′
¯̀
0
−2εΦ¯̀

0

)
1− ε

χW
(δ0χx+1)

k̄0
c̄0

1+φ
1−α+χx

)+

ε

χW
(δ0χ

x + 1)
k̄0

c̄0

1

1− α + χx

,
and then m̄0

k̄0

dk̄0

dm̄0
implied by (55). For χW sufficiently large, each will be negative. Indeed, in

the limit χW →∞, these imply

m̄0

¯̀
0

d¯̀
0

dm̄0

= −
ψ +

α+(δ0χx+1)
k̄0
c̄0

1−α+χx

−ψεΦ¯̀
0

+

(
ψ +

α+(δ0χx+1)
k̄0
c̄0

1−α+χx

)
(1 + φ)α

< 0,

m̄0

P̄0

dP̄0

dm̄0

= −α
ψ +

α+(δ0χx+1)
k̄0
c̄0

1−α+χx

−ψεΦ¯̀
0

+

(
ψ +

α+(δ0χx+1)
k̄0
c̄0

1−α+χx

)
(1 + φ)α

< 0,

m̄0

k̄0

dk̄0

dm̄0

= − 1

1− α + χx
−ψεΦ¯̀

0

−ψεΦ¯̀
0

+

(
ψ +

α+(δ0χx+1)
k̄0
c̄0

1−α+χx

)
(1 + φ)α

< 0.

Since
dπ̄0

dm̄0

= (1− α)
π̄0

¯̀
0

d¯̀
0

dm̄0

∝ d¯̀
0

dm̄0

and
dq̄0

dm̄0

= χx
1

k̄0

dk̄0

dm̄0

∝ dk̄0

dm̄0

,

it follows from (46) that ζm0 > 0.
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Corollary 1

Proof. First consider the case of a household i facing a binding leverage constraint or rule-

of-thumb (i ∈ C). If the household maintains

q0k
i
0 = ωi0a

i
0

in response to a marginal change in income, clearly

q0
∂ki0
∂yi0

= ωi0
∂ai0
∂yi0

and so

mpri0 ≡
q0

∂ki0
∂yi0

∂ai0
∂yi0

= ωi0.

Provided the household remains constrained in the limit of zero aggregate risk, it follows

that

q̄0k̄
i
0

āi0
= ωi0,

mpri0 = ωi0.

Now consider a household i at an interior optimum in portfolio choice (i /∈ C). Optimal

portfolio choice remains

E0(ci1)−γ
i

(rk1 − r1) = 0.

As in the proof of Propositions 1 and 2, we successively consider higher-order approximations

and repeatedly make use of the method of undetermined coefficients and market clearing.

The first- and second-order approximations imply (36) as in the proof of Proposition 1.

As before,

δc
i
1
z1

=
w̄1 + π̄1k̄

i
0

c̄i1
.

Multiplying both sides of (36) by
c̄i1
γi

but now integrating only over agents i′ /∈ C and dividing

by
∫
i/∈C

[
w̄1 + π̄1k̄

i
0

]
di yields

E0r̂
k
1 − r̂1 +

1

2
E0σ

2 = γσ2 + o(|| · ||3)
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for γ as defined in the claim, noting that∫
i/∈C

[
w̄1 + π̄1k̄

i
0

]
di∫

i/∈C c̄
i
1di

= 1−
∫
i/∈C(1 + r̄1)b̄i1di∫

i/∈C c̄
i
1di

.

Moreover, by (36) we obtain (37) for i /∈ C. It follows then that, as in the proof of Proposition

1, we obtain

q̄0k̄
i
0

āi0
=

(
c̄i1

(1 + r̄1)āi0

)
γ

γi
− w̄1

(1 + r̄1)āi0
,

mpri0 =
γ

γi

for i /∈ C.

A third-order approximation implies (41) as in the proof of Proposition 2. Using the same

steps outlined therein yields (42). Multiplying both sides by
c̄i1
γi

but now again integrating

only over agents i /∈ C and dividing by
∫
i/∈C

[
w̄1 + π̄1k̄

i
0

]
di yields

E0r̂
k
1 − r̂0 +

1

2
σ2 = γσ2 +

γ∫
i/∈C

[
w̄1 + π̄1k̄i0

]
di

(∫
i/∈C

c̄i1δ
ci1
m0z1

di

)
m̂0σ

2 + o(|| · ||4).

By the period 1 resource constraint and equilibrium wages and profits, we again obtain (43).

Integrating again only over agents i /∈ C yields∫
i/∈C

c̄i1δ
ci1
m0z1

di = −
∫
i/∈C

c̄i1δ
ci1
m0
δc
i
1
z1
di+

∫
i/∈C

[
αw̄1δ

k0
m0

+ π̄1δ
ki0
m0
− (1− α)π̄1k̄

i
0δ
k0
m0

]
di,

=

∫
i/∈C

c̄i1δ
ci1
m0

(
1− δci1z1

)
di+

∫
i/∈C

[
αw̄1δ

k0
m0

+ π̄1δ
ki0
m0
− (1− α)π̄1k̄

i
0δ
k0
m0
− c̄i1δc

i
1
m0

]
di,

=

∫
i/∈C

c̄i1δ
ci1
m0

(
1− δci1z1

)
di+∫

i/∈C

[
αw̄1δ

k0
m0

+ π̄1δ
ki0
m0
− (1− α)π̄1k̄

i
0δ
k0
m0
−(

αw̄1δ
k0
m0

+ (1 + r̄1)δb
i
0
m0

+ b̄i0δ
r1
m0

+ π̄1δ
ki0
m0
− (1− α)π̄1k̄

i
0δ
k0
m0

) ]
di,

=

∫
i/∈C

c̄i1δ
ci1
m0

(
1− δci1z1

)
di−

∫
i/∈C

[
(1 + r̄1)δb

i
0
m0

+ b̄i0δ
r1
m0

]
di,

=

∫
i/∈C

c̄i1δ
ci1
m0

(
1− δci1z1

)
di+

∫
i∈C

[
(1 + r̄1)δb

i
0
m0

+ b̄i0δ
r1
m0

]
di,

=

∫
i/∈C

c̄i1δ
ci1
m0

(
1− δci1z1

)
di+

∫
i∈C

[
(1 + r̄1)δa

i
0
m0

+ āi0δ
r1
m0

] (
1− ωi0

)
di,

where the third equality substitutes in for c̄i1δ
ci1
m0 implied by the period 1 resource constraint
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and equilibrium wages and profits; the fifth equality uses bond market clearing
∫ 1

0
bi0di = 0

both at the point of approximation and up to first order; and the final equality uses bi0 =

(1−ωi0)ai0 both at the point of approximation and up to first order among constrained agents.

Using (37) and the expression for γ as defined in the claim, then note that∫
i/∈C

c̄i1δ
ci1
m0

(
1− δci1z1

)
di =∫
i/∈C

(
c̄i1δ

ci1
m0
− c̄i1∫ 1

0
c̄i
′

1 di
′

∫ 1

0

c̄i
′

1 δ
ci
′

1
m0
di′

)(
1− γ

γi

)
+

(∫ 1

0

c̄i
′

1 δ
ci
′

1
m0
di′
)(∫

i′ /∈C c̄
i′
1 di
′∫ 1

0
c̄i
′

1 di
′
−
∫
i′ /∈C

[
w̄1 + π̄1k̄

i′
0

]
di′∫ 1

0
c̄i
′

1 di
′

)
.

Furthermore,∫
i∈C

[
(1 + r̄1)δa

i
0
m0

+ āi0δ
r1
m0

] (
1− ωi0

)
di =∫

i∈C

[
(1 + r̄1)δa

i
0
m0

+ āi0δ
r1
m0
− (1 + r̄1)āi0∫ 1

0
c̄i
′

1 di
′

∫ 1

0

c̄i
′

1 δ
ci
′

1
m0
di′

] (
1− ωi0

)
+

(∫ 1

0

c̄i
′

1 δ
ci
′

1
m0
di′
)(

(1 + r̄1)
∫
i′∈C ā

i′
0 (1− ωi′0 )di′∫ 1

0
c̄i
′

1 di
′

)
.

Since bond market clearing implies∫
i′ /∈C c̄

i′
1 di
′∫ 1

0
c̄i
′

1 di
′
−
∫
i′ /∈C

[
w̄1 + π̄1k̄

i′
0

]
di′∫ 1

0
c̄i
′

1 di
′

+
(1 + r̄1)

∫
i′∈C ā

i′
0 (1− ωi′0 )di′∫ 1

0
c̄i
′

1 di
′

= 0,

it follows that∫
i/∈C

c̄i1δ
ci1
m0

(
1− δci1z1

)
di+

∫
i∈C

[
(1 + r̄1)δa

i
0
m0

+ āi0δ
r1
m0

] (
1− ωi0

)
di =∫

i/∈C

(
c̄i1δ

ci1
m0
− c̄i1∫ 1

0
c̄i
′

1 di
′

∫ 1

0

c̄i
′

1 δ
ci
′

1
m0
di′

)(
1− γ

γi

)
+

∫
i∈C

[
(1 + r̄1)δa

i
0
m0

+ āi0δ
r1
m0
− (1 + r̄1)āi0∫ 1

0
c̄i
′

1 di
′

∫ 1

0

c̄i
′

1 δ
ci
′

1
m0
di′

] (
1− ωi0

)
.

Furthermore note that using the definition of γ given in the claim and bond market clearing,

1 =

∫
i/∈C

c̄i1∫
i′ /∈C c̄

i′
1 di
′ +
∫
i′∈C(1 + r̄1)āi

′
0 di
′mpr

i
0di+

∫
i∈C

(1 + r̄1)āi0∫
i′ /∈C c̄

i′
1 di
′ +
∫
i′∈C(1 + r̄1)āi

′
0 di
′mpr

i
0di = mpr0.

61



Finally, since

d
[
ci1/
∫ 1

0
ci
′

1

]
dm0

=
1∫ 1

0
c̄i
′

1 di
′

(
dci1
dm0

− c̄i1∫ 1

0
c̄i
′

1 di
′

∫ 1

0

dci
′

1

dm0

di′

)
,

=
1∫ 1

0
c̄i
′

1 di
′

(
c̄i1δ

ci1
m0
− c̄i1∫ 1

0
c̄i
′

1 di
′

∫ 1

0

c̄i
′

1 δ
ci
′

1
m0
di′

)
,

and

d
[
(1 + r1)ai0/

∫ 1

0
ci
′

1

]
dm0

=
1∫ 1

0
c̄i
′

1 di
′

(
d(1 + r1)ai0

dm0

− (1 + r1)ai0∫ 1

0
c̄i
′

1 di
′

∫ 1

0

dci
′

1

dm0

di′

)
,

=
1∫ 1

0
c̄i
′

1 di
′

(
(1 + r̄1)δa

i
0
m0

+ āi0δ
r1
m0
− (1 + r̄1)āi0∫ 1

0
c̄i
′

1 di
′

∫ 1

0

c̄i
′

1 δ
ci
′

1
m0
di′

)
,

we can combine all of the previous results to write

γ∫
i/∈C

[
w̄1 + π̄1k̄i0

]
di

(∫
i/∈C

c̄i1δ
ci1
m0z1

di

)
= γ

∫ 1

0
c̄i1di∫

i/∈C

[
w̄1 + π̄1k̄i0

]
di

∫ 1

0

ξ̄im0

(
mpr0 −mpri0

)
di

for ξ̄im0
=

d[ci1/
∫ 1
0 c

i′
1 ]

dm0
for i /∈ C and ξ̄im0

=
d[(1+r1)ai0/

∫ 1
0 c

i′
1 ]

dm0
for i ∈ C. Again noting that

∫ 1

0
c̄i1di∫

i/∈C

[
w̄1 + π̄1k̄i0

]
di

=

(
1−

∫
i/∈C(1 + r̄1)b̄i0di∫

i/∈C c̄
i
1di

)−1 ∫ 1

0
c̄i1di∫

i/∈C c̄
i
1di

.

yields the expression for ζm0 given in the claim.

Corollary 2

Proof. The period 1 consumption of each household i is now

ci1 = w1ε
i
1 + (1 + r1)bi0 + π1ε

i
1k

i
0,

where the real wage and real profits per unit of capital remain

w1 = (1− α)z1k
α
0 ,

π1 = αz1k
α−1
0

62



since, by the law of large numbers, the aggregate efficiency units of labor supplied remains 1

and aggregate capital among agents of type i remains ki0.37 Define the capital return facing

each household i

1 + rk,i1 ≡
π1ε

i
1

q0

,

distinct from the return on capital aggregating over idiosyncratic risk

1 + rk1 ≡
π1

q0

.

Then household i’s optimal portfolio choice is now

E0

(
ci1
)−γi (

rk,i1 − r1

)
= 0.

Using approximations up to first and second order as in the proof of Proposition 1 yields

the analog to (36) in this environment,

E0r̂
k,i
1 − r̂1 +

1

2
(1 + ηi)σ2 = γi

(
δc
i
1
z1

+ ηiδ
ci1
εi1

)
σ2 + o(|| · ||3). (58)

Given the definitions of the idiosyncratic and aggregate capital returns,

r̂k,i1 = ε̂i1 + r̂k1 .

By assumption,

E0ε̂
i
1 = −1

2
ηiσ2.

It follows that

E0r̂
k,i
1 = −1

2
ηiσ2 + E0r̂

k
1 ,

so that (58) implies for the aggregate capital claim

E0r̂
k
1 − r̂1 +

1

2
σ2 = γi

(
δc
i
1
z1

+ ηiδ
ci1
εi1

)
σ2 + o(|| · ||3). (59)

By the period 1 resource constraint and equilibrium wages and profits,

δc
i
1
z1

=
w̄1 + π̄1k̄

i
0

c̄i1

37Recall that we are assuming a double continuum of households now, where the continuum of households
of type i are each subject to a distinct shock εi1 which is iid within and across i.
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as in the baseline environment and

δ
ci1
εi1

=
w̄1 + π̄1k̄

i
0

c̄i1
= δc

i
1
z1
.

Hence, (59) implies

E0r̂
k
1 − r̂1 +

1

2
σ2 = γi

(
1 + ηi

)
δc
i
1
z1
σ2 + o(|| · ||3). (60)

Multiplying both sides by
c̄i1

γi(1+ηi)
, integrating over all agents i, and making use of the market

clearing conditions, we obtain

E0r̂
k
1 − r̂1 +

1

2
σ2 = γσ2 + o(|| · ||3)

for γ as defined in the claim. Furthermore, it follows from (60) that we generalize (37) to

δc
i
1
z1

=
γ

γi(1 + ηi)
,

which implies
w̄1 + π̄1k̄

i
0

c̄i1
=

γ

γi(1 + ηi)

and thus the expression for
q̄0k̄i0
āi0

given in the claim.

Differentiating each household’s optimality conditions and resource constraints general-

izes (38) to

0 = E0m
i
0,1

γi

ci1

(
rk,i1 − r1

)(
(1 + r1)

∂bi0
∂yi0

+ π1ε
i
1

∂ki0
∂yi0

)
.

A second-order approximation then generalizes (39) to

0 =

(
(1 + r̄1)

∂bi0
∂yi0

+ π̄1
∂ki0
∂yi0

)(
E0r̂

k,i
1 − r̂1 +

1

2
(1 + ηi)σ2

)

−

(
(1 + r̄1)

∂bi0
∂yi0

+ π̄1
∂ki0
∂yi0

)
γi + 1

c̄i1

(
w̄1 + π̄1k̄

i
0

)
(1 + ηi)σ2 + π̄1

∂ki0
∂yi0

(1 + ηi)σ2 + o(|| · ||3).

Using the above results, this implies

q̄0
∂ki0
∂yi0

=
γ

γi(1 + ηi)

∂ai0
∂yi0

,

from which the expression for mpri0 in the claim follows.
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Finally, optimal portfolio choice up to third order, the above results, and steps analogous

to those used in the proof of Proposition 2 yields the analog of (42)

E0r̂
k
1 − r̂1 +

1

2
σ2 = γi

(
δc
i
1
z1

+ δ
ci1
εi1
ηi
)
σ2 + γi

(
δc
i
1
m0z1

+ δ
ci1
m0εi1

ηi
)
m̂0σ

2 + o(|| · ||4). (61)

A second order expansion of the period 1 resource constraint implies

c̄i1δ
ci1
m0z1

+ c̄i1δ
ci1
m0
δc
i
1
z1

= αw̄1δ
k0
m0

+ π̄1δ
ki0
m0
− (1− α)π̄1k̄

i
0δ
k0
m0
,

= c̄i1δ
ci1
m0εi1

+ c̄i1δ
ci1
m0
δ
ci1
εi1
,

from which we can conclude

δc
i
1
m0z1

= δ
ci1
m0εi1

since δ
ci1
εi1

= δ
ci1
z1 as argued above. It follows from (61) that

E0r̂
k
1 − r̂1 +

1

2
σ2 = γi

(
1 + ηi

)
δc
i
1
z1
σ2 + γi

(
1 + ηi

)
δc
i
1
m0z1

m̂0σ
2 + o(|| · ||4).

Then multiplying both sides by
c̄i1

γi(1+ηi)
, integrating over all agents i, and making use of the

market clearing conditions, we obtain

E0r̂
k
1 − r̂1 +

1

2
σ2 = γσ2 +

γ∫ 1

0
c̄i1di

(∫ 1

0

c̄i1δ
ci1
m0z1

di

)
m̂0σ

2 + o(|| · ||4).

Then following similar steps as in the proof of Proposition 2, using

δc
i
1
z1

=
γ

γi(1 + ηi)
= mpri0

implied by the above results, yields the expression for ζm0 given in the claim.

Corollary 3

Proof. Denote with Ei0 the expectation under household i’s subjective beliefs, and E0 that

under the objective (true) probability distribution. Household i’s optimal portfolio choice is

then characterized by

Ei0
(
ci1
)−γi (

rk1 − r1

)
= 0.
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Using approximations up to first and second order as in the proof of Proposition 1 yields the

analog to (36) in this environment,

Ei0r̂k1 − r̂1 +
1

2
ς iσ2 = γiδc

i
1
z1
ς iσ2 + o(|| · ||3). (62)

By the definition of returns,

r̂k1 = ẑ1 + (α− 1)k̂0 − q̂0

where there is no uncertainty over k̂0 or q̂0 as of period 0. Hence,

Ei0r̂k1 +
1

2
ς iσ2 = E0r̂

k
1 +

1

2
σ2.

Hence, (62) implies

E0r̂
k
1 − r̂1 +

1

2
σ2 = γiδc

i
1
z1
ς iσ2 + o(|| · ||3). (63)

By the period 1 resource constraint and equilibrium wages and profits,

δc
i
1
z1

=
w̄1 + π̄1k̄

i
0

c̄i1

as in the baseline environment. Multiplying both sides by
c̄i1
γiςi

, integrating over all agents i,

and making use of the market clearing conditions, we obtain

E0r̂
k
1 − r̂1 +

1

2
σ2 = γσ2 + o(|| · ||3)

for γ as defined in the claim. Furthermore, it follows from (63) that we generalize (37) to

δc
i
1
z1

=
γ

γiς i
,

which implies
w̄1 + π̄1k̄

i
0

c̄i1
=

γ

γiς i

and thus the expression for
q̄0k̄i0
āi0

given in the claim.

Differentiating each household’s optimality conditions and resource constraints general-

izes (38) to

0 = Ei0mi
0,1

γi

ci1

(
rk1 − r1

)(
(1 + r1)

∂bi0
∂yi0

+ π1
∂ki0
∂yi0

)
.
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A second-order approximation then generalizes (39) to

0 =

(
(1 + r̄1)

∂bi0
∂yi0

+ π̄1
∂ki0
∂yi0

)(
Ei0r̂k1 − r̂1 +

1

2
ς iσ2

)

−

(
(1 + r̄1)

∂bi0
∂yi0

+ π̄1
∂ki0
∂yi0

)
γi + 1

c̄i1

(
w̄1 + π̄1k̄

i
0

)
ς iσ2 + π̄1

∂ki0
∂yi0

ς iσ2 + o(|| · ||3).

Using the above results, this implies

q̄0
∂ki0
∂yi0

=
γ

γiς i
∂ai0
∂yi0

,

from which the expression for mpri0 in the claim follows.

Finally, optimal portfolio choice up to third order, the above results, and steps analogous

to those used in the proof of Proposition 2 yields the analog of (42)

E0r̂
k
1 − r̂1 +

1

2
σ2 = γiδc

i
1
z1
ς iσ2 + γiδc

i
1
m0z1

ς im̂0σ
2 + o(|| · ||4). (64)

Multiplying both sides by
c̄i1
γiςi

, integrating over all agents i, and making use of the market

clearing conditions, we obtain

E0r̂
k
1 − r̂1 +

1

2
σ2 = γσ2 +

γ∫ 1

0
c̄i1di

(∫ 1

0

c̄i1δ
ci1
m0z1

di

)
m̂0σ

2 + o(|| · ||4).

Then following similar steps as in the proof of Proposition 2, using

δc
i
1
z1

=
γ

γiς i
= mpri0

implied by the above results, yields the expression for ζm0 given in the claim.

Proposition 5

Proof. We first note that, in the general environment featuring portfolio constraints / rules-

of-thumb, background risk, and subjective beliefs regarding aggregate TFP, households’
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limiting portfolios and MPRs are

q̄0k̄
i
0

āi0
=

{
ωi0 for i ∈ C,(

c̄i1
(1+r̄1)āi0

)
γ

γi(1+ηi)ςi
− w̄1

(1+r̄1)āi0
for i /∈ C,

(65)

mpri0 =

{
ωi0 for i ∈ C,

γ
γi(1+ηi)ςi

for i /∈ C,
(66)

where

γ =

(∫
i/∈C

c̄i1∫
i′ /∈C c̄

i′
1 di
′

1

γi(1 + ηi)ς i
di

)−1(
1−

∫
i/∈C(1 + r̄1)b̄i1di∫

i/∈C c̄
i
1di

)
. (67)

Up to third order in {σ, ẑ1, m̂0}, we obtain (22) with γ as in (67) and

ζm0 = γ

(
1−

∫
i/∈C(1 + r̄1)b̄i1di∫

i/∈C c̄
i
1di

)−1 ∫ 1

0
c̄i1di∫

i/∈C c̄
i
1di

∫ 1

0

ξ̄im0

(
mpr0 −mpri0

)
di, (68)

where ξ̄im0
≡ d[(1+r0)ai0/

∫ 1
0 c

i′
1 di
′]

dm0
for i ∈ C and ξ̄im0

≡ d[ci1/
∫ 1
0 c

i′
1 di
′]

dm0
for i /∈ C, and mpr0 =∫

i/∈C
c̄i1∫

i′ /∈C c̄
i′
1 di
′+
∫
i′∈C(1+r̄1)āi

′
0 di
′mpr

i
0di +

∫
i∈C

(1+r̄1)āi0∫
i′ /∈C c̄

i′
1 di
′+
∫
i′∈C(1+r̄1)āi

′
0 di
′mpr

i
0di = 1. The proof of

these results combines the proofs in Corollaries 1-3 and we do not repeat it here.

A household’s limiting change in future consumption in response to a monetary policy

shock
dci1
dm0

remains characterized by Proposition 3. Given the limiting period 1 budget

constraint

c̄i1 = w̄1 + (1 + r̄1)āi0, (69)

a household’s limiting change in (1 + r1)ai0 in response to a monetary policy shock is char-

acterized by

d(1 + r1)ai0
dm0

=
dci1
dm0

− dw1

dm0

. (70)

Then, under the assumptions that agents are identical except for {γi, ωi0, ηi, ς i} and

whether or not they are constrained, it follows that for unconstrained households (i /∈ C)

ξ̄im0
=

1

c̄1

(1 + r̄1)
∂a0

∂y0

[
−(1 + i−1)

P0

Bi
−1

1

P0

dP0

dm0

+ (ki−1 − k−1)

(
dπ0

dm0

+ (1− δ0)
dq0

dm0

)]
.

68



as in the baseline case. By (65)

ki−1 = k̄i0 = ā0

[
c̄1

(1 + r̄1)ā0

γ

γi(1 + ηi)ς i
− w̄1

(1 + r̄1)ā0

]
,

=
k̄0

α

(
γ

γi(1 + ηi)ς i
− 1

)
+ k̄0,

Bi
−1 = P̄0b̄

i
0 = P̄0

[
ā0 − k̄i0

]
,

= −P̄0
k̄0

α

(
γ

γi(1 + ηi)ς i
− 1

)
,

where we use q̄0 = 1 and, by (67),

γ =

[∫
i/∈C

1

γi(1 + ηi)ς i
di

]−1
∫
i/∈C

[
w̄1 + π̄1k̄

i
0

]
di

c̄1

.

It follows that

−
(1 + i−1)Bi

−1

P0

= (1 + i−1)
k̄0

α

(
γ

γi(1 + ηi)ς i
− 1

)
,

ki−1 − k−1 =
k̄0

α

(
γ

γi(1 + ηi)ς i
− 1

)
.

Hence,

γ

(
1−

∫
i/∈C(1 + r̄1)b̄i1di∫

i/∈C c̄
i
1di

)−1 ∫ 1

0
c̄i1di∫

i/∈C c̄
i
1di

∫
i/∈C

ξ̄im0
(mpr0 −mpri0)di,

=

[∫
i/∈C

1

γi(1 + ηi)ς i
di

]−1 ∫
i/∈C

ξ̄im0

(
1− γ

γi(1 + ηi)ς i

)
di,

=

[∫
i/∈C

1

γi(1 + ηi)ς i
di

]−1
[
− 1

c̄1

(1 + r̄1)
∂a0

∂y0

k̄0

α

∫
i/∈C

(
1− γ

γi(1 + ηi)ς i

)2

di

]
×[

(1 + i−1)q̄0
1

P0

dP0

dm0

+
dπ0

dm0

+ (1− δ0)
dq0

dm0

]
. (71)

where the second equality uses (66) and the third equality uses the above results.
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For constrained households (i ∈ C),

ξ̄im0
=

1

c̄1

[
d(1 + r1)ai0

dm0

− (1 + r̄1)ā0

c̄1

∫ 1

0

dci1
dm0

di

]
,

=
1

c̄1

[
d(1 + r1)ai0

dm0

−
∫ 1

0

dci1
dm0

di

]
+

1

c̄1

w̄1

c̄1

∫ 1

0

dci1
dm0

di,

=
1

c̄1

(1 + r̄1)
∂a0

∂y0

[
−(1 + i−1)

P0

Bi
−1

1

P0

dP0

dm0

+ (ki−1 − k−1)

(
dπ0

dm0

+ (1− δ0)
dq0

dm0

)]
−

1

c̄1

dw1

dm0

+
1

c̄1

w̄1

c̄1

∫ 1

0

dci1
dm0

di,

=
1

c̄1

(1 + r̄1)
∂a0

∂y0

[
−(1 + i−1)

P0

Bi
−1

1

P0

dP0

dm0

+ (ki−1 − k−1)

(
dπ0

dm0

+ (1− δ0)
dq0

dm0

)]
+

w̄1

c̄1

[
1

c̄1

∫ 1

0

dci1
dm0

di− 1

w̄1

dw1

dm0

]
,

where the second equality uses (69) and the third equality uses (70) as well as Proposition

3. By (65)

ki−1 = k̄i0 =
ā0ω

i
0

q̄0

,

= k̄0(ωi0 − 1) + k̄0,

Bi
−1 = P̄0b̄

i
0 = P̄0ā0(1− ωi0),

= −P̄0k̄0

(
ωi0 − 1

)
.

It follows that

−
(1 + i−1)Bi

−1

P̄0

= (1 + i−1)k̄0

(
ωi0 − 1

)
,

ki−1 − k−1 = k̄0

(
ωi0 − 1

)
.
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Hence,

γ

(
1−

∫
i/∈C(1 + r̄1)b̄i1di∫

i/∈C c̄
i
1di

)−1 ∫ 1

0
c̄i1di∫

i/∈C c̄
i
1di

∫
i∈C

ξ̄im0
(mpr0 −mpri0)di,

=

[∫
i/∈C

1

γi(1 + ηi)ς i
di

]−1 ∫
i∈C

ξ̄im0

(
1− ωi0

)
di,

=

[∫
i/∈C

1

γi(1 + ηi)ς i
di

]−1

×([
− 1

c̄1

(1 + r̄1)
∂a0

∂y0

k̄0

∫
i∈C

(
1− ωi0

)2
di

] [
(1 + i−1)q̄0

1

P0

dP0

dm0

+
dπ0

dm0

+ (1− δ0)
dq0

dm0

]
+

(∫
i∈C

(1− ωi0)di

)
w̄1

c̄1

[
1

c̄1

∫ 1

0

dci1
dm0

di− 1

w̄1

dw1

dm0

])
. (72)

Now note that the characterization of dP0

dm0
, dπ0

dm0
, and dq0

dm0
is unchanged from the proof of

Proposition 4. Furthermore, since limiting goods market clearing in period 1∫ 1

0

c̄i1di = z̄1k̄
α
0

implies
1

c̄1

∫ 1

0

dc̄i1
dm̄0

di = α
1

k̄0

dk̄0

dm̄0

while limiting labor demand in period 1

w̄1 = (1− α)z̄1k̄
α
0

implies
1

w̄1

dw̄1

dm̄0

= α
1

k̄0

dk̄0

dm̄0

,

we have that [
1

c̄1

∫ 1

0

dci1
dm0

di− 1

w̄1

dw1

dm0

]
= 0.
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Hence, combining (71) and (72) in (68) implies

ζm0 = γ

(
1−

∫
i/∈C(1 + r̄1)b̄i1di∫

i/∈C c̄
i
1di

)−1 ∫ 1

0
c̄i1di∫

i/∈C c̄
i
1di

∫ 1

0

ξ̄im0
(1−mpri0)di

∝ −(1 + i−1)
1

P0

dP0

dm0

− dπ0

dm0

− (1− δ0)
dq0

dm0

,

> 0

for χW sufficiently large.

Proposition 6

Proof. Recall that the monetary policy rule (10) and P1 = P̄1 implies a real interest rate

1 + r1 =
(1 + ī)

P φ
−1

(P0)1+φ

P̄1

m0,

which then implies the exact log-linear relationship

r̂1 = (1 + φ)P̂0 + m̂0.

When φ = −1, it follows that

r̂1 = m̂0.

Given the expansion in state variables

r̂k1 = δr1m0
m̂0 + ẑ1 +

1

2
δ
rk1
σ2σ

2 +
1

2
δ
rk1
z2
1
z2

1 +
1

2
δ
rk1
m0σ2m̂0σ

2 +
1

2
δ
rk1
m0z2

1
m̂0z

2
1 + o(|| · ||4),

it follows from Proposition 2 that

1

2
δ
rk1
m0σ2 +

1

2
δ
rk1
m0z2

1
= ζm0 .

Now by the definition of the return on capital, we have the exact log-linear relationship

r̂k1 = ẑ1 − (1− α + χx) k̂0
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as derived in the main text. It follows by the method of undetermined coefficients

1

2
δ
rk1
m0σ2 = − (1− α + χx)

1

2
δk0

m0σ2 ,

1

2
δ
rk1
m0z2

1
= 0.

Hence, the above results imply

1

2
δ
rk1
m0σ2 = − 1

1− α + χx
ζm0 ,

proving the claim.

B Additional analytical results

In this appendix we provide supplementary analytical results accompanying section 2. We

exclude proofs of these supplemental results for brevity, but they are available on request.

B.1 Individually supplied labor

We first demonstrate the robustness of our analytical results to individually-supplied labor

rather than the union set-up assumed in the main text.

B.1.1 Modified environment and equilibrium

We dispense with the index j and assume households directly supply distinct varieties of

labor to the market at wages {W i
0}. Household preferences thus can be written

vi0 =

(
(1− βi)

(
ci0Φi

(
`i0
))1−1/ψi

+ βi
(
E0

[
(ci1)1−γi

]) 1−1/ψi

1−γi

) 1

1−1/ψi

and the resource constraints become

P0c
i
0 +Bi

0 +Q0k
i
0 ≤ (1− τ)W i

0`
i
0 − AC

W,i
0 +

(1 + i−1)Bi
−1 + (Π0 + (1− δ0)Q0)ki−1 + T i0,

P1c
i
1 ≤ W1 + (1 + i0)Bi

0 + Π1k
i
0

with adjustment costs

ACW,i
0 =

χW

2
W0`0

(
W i

0

W−1

− 1

)2

.

73



The labor packer directly hires labor from households and combines it using the CES aggre-

gator, earning profits

W0

[∫ 1

0

(`i0)(ε−1)/ε

]ε/(ε−1)

−
∫ 1

0

W i
0`
i
0di.

The notation in the government transfer condition (9) and labor market clearing condition

(13) must be changed, and the equilibrium in Definition 1 is otherwise the same.

In equilibrium households will generically supply different amounts of labor and earn

different wages solving

W i
0

P0

+ ci0
Φi′(`i0)

Φi(`i0)
+
W0

P0

χW

ε

`0

`i0

W i
0

W−1

(
W i

0

W−1

− 1

)
= 0,

`i0 =

(
W i

0

W0

)−ε
`0,

conditional on their choice of consumption ci0 and the aggregates {W0, P0, `0}. This contrasts

with labor supply in the baseline economy, where households earn identical wages and the

representative union’s labor supply condition is

∫ 1

0

µi
(
vi0
) 1

ψi
(
ci0
)− 1

ψi Φi(`i(`i0))
1− 1

ψi `i
′
(`0)

[
W0

P0

(
`i(`0)

`0`i
′(`0)

1

1− ε
− ε

1− ε

)
+ ci0

Φi′(`i(`0))

Φi(`i(`0))

+
W0

P0

1

`i′(`0)

χW

ε

W0

W−1

(
W0

W−1

− 1

)]
di = 0.

given the allocation rule `i(·) defined in (4) and Pareto weights {µi}.

B.1.2 Robustness of results

Now each household is characterized by a marginal propensity to work
∂`i0
∂yi0

and marginal

propensity to set its wage
∂wi0
∂yi0

in addition to its marginal propensities to consume, save in

bonds, save in capital, and save overall. Nonetheless, Proposition 1 remains unchanged.

The characterization of the risk premium up to third order in Proposition 2 is unchanged.

However, the monetary policy exposures ξ̄im0
now reflect households’ alternative adjustment

on the supply-side. In particular, Proposition 3 must be adjusted to reflect the fact that

each household is no longer a price-taker in the labor market. However, when households

are identical except for risk aversion and their portfolio shares, these changes are irrelevant

for ξ̄im0
; that is, balance sheet revaluation remains the only source of redistribution. This is

formalized in the following result:
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Proposition 7. Consider the case with individually-supplied labor by each household but

assume the conditions of Proposition 4 hold. Then

ξ̄im0
=

1

c̄1

(1 + r̄1)
∂a0

∂y0

[
−

(1 + i−1)Bi
−1

P0

1

P0

dP0

dm0

+ (ki−1 − k−1)

(
dπ0

dm0

+ (1− δ0)
dq0

dm0

)]

where c̄1 is the identical level of consumption across households and ∂a0

∂y0
the identical marginal

propensity to save of households at the point of approximation.

It immediately follows that Proposition 4 remains unchanged. The generalizations to

other forms of heterogeneity in Corollaries 1-3 are unchanged, and thus Proposition 5 is

unchanged as well. Finally, the effect of a monetary policy shock on capital accumulation

operating through the change in the risk premium in Proposition 6 is unchanged.

B.2 Inflation risk in the nominal bond

We next demonstrate the robustness of our analytical results to inflation risk in the nominal

bond.

B.2.1 Modified environment and equilibrium

We generalize the baseline environment described in section 2.1 so that the monetary au-

thority lets the future price level vary with TFP

P1 = P̄1(z1)θ.

The baseline environment featured θ = 0. It is further straightforward to add another source

of risk in P1 corresponding to a distinct monetary policy shock, but we do not do that for

expositional parsimony. Beyond this change to monetary policy, the definition of equilibrium

in Definition 1 is otherwise unchanged.

In the baseline economy the realized real interest rate was given by

1 + r1 ≡ (1 + i0)
P0

P1

=
1 + ī

P φ
−1

P 1+φ
0

P̄1

m0

and thus was known with certainty as of period 0. In contrast in the present economy the

realized real interest rate given by

1 + r1 ≡ (1 + i0)
P0

P1

=
1 + ī

P φ
−1

P 1+φ
0

P̄1(z1)θ
m0

75



is uncertain as of period 1.

B.2.2 Robustness of results

Proposition 1 must be adjusted because households’ limiting portfolios and MPRs are af-

fected by the presence of inflation risk:

Proposition 8. With inflation risk in the nominal bond,

q̄0k̄
i
0

āi0
=

1

1 + θ

[(
c̄i1

(1 + r̄1)āi0

)
γ

γi
− w̄1

(1 + r̄1)āi0
+ θ

]
,

mpri0 =
1

1 + θ

[
γ

γi
+ θ

]
,

where γ remains characterized by (21).

Expected excess returns up to third order are also modified:

Proposition 9. Up to third order in the perturbation parameters {σ, ẑ1, m̂0},

E0r̂
k
1 − E0r̂1 +

1

2

(
1− θ2

)
σ2 = γ (1 + θ)σ2 + ζm0m̂0 (1 + θ)2 σ2 + o(|| · ||4),

where γ is defined in (21) and ζm0 is defined in (23).

Intuitively, as θ → −1, the real payoff to the nominal bond perfectly replicates that of

capital, eliminating any excess returns on capital and the effect of a monetary policy shock on

those expected excess returns. Aside from an appropriate re-scaling of each term, however,

it remains the case that the distribution of monetary policy exposures and MPRs determines

the effect of a monetary shock on the risk premium.

Proposition 3 characterizing the change in households’ consumption in response to a

monetary policy shock is unchanged. It follows that the balance sheet revaluation underlying

Proposition 4 remains unchanged. The generalizations to other forms of heterogeneity in

Corollaries 1-3 must be modified like the above results, but Proposition 5 remains unchanged.

Finally, the effect of a monetary policy shock on capital accumulation operating through the

change in the risk premium in Proposition 6 is unchanged.

B.3 Effect of TFP shocks

We next demonstrate that our analytical insights extend beyond monetary policy shocks to

any shock which redistributes across agents in period 0 or (in expectation) period 1. Here we

focus on a TFP shock in period 0, corresponding to our quantitative analysis of productivity
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shocks in appendix E. Formally, we treat ẑ0 as another perturbation parameter of interest.

For expositional simplicity, we assume m̂0 = 0, though it is straightforward to consider both

TFP and monetary shocks since they simply enter additively.

We first obtain the analog of Proposition 2 for a TFP shock:

Proposition 10. Up to third order in the perturbation parameters {σ, ẑ1, ẑ0},

E0r̂
k
1 − r̂1 +

1

2
σ2 = γσ2 + ζz0 ẑ0σ

2 + o(|| · ||4),

where γ was defined in (21) and

ζz0 = γ

∫ 1

0

ξ̄iz0
(
mpr0 −mpri0

)
di,

where ξ̄iz0 ≡
d[ci1/

∫ 1
0 c

i′
1 di
′]

dz0
is the effect of a TFP shock on household i’s consumption share in

period 1 and mpr0 ≡
∫ 1

0

c̄i1∫ 1
0 c̄

i′
1 di
′mpr

i
0 = 1 is the weighted average MPR in (20).

As is evident, ζz0 parallels ζm0 for a monetary shock. In this simple two-period environ-

ment, a TFP shock affects the risk premium only through redistribution. If a positive TFP

shock redistributes wealth to households with high MPRs, it will lower the risk premium.

The change in consumption relevant to evaluate the redistributive effects of a TFP shock

is analogous to Proposition 3:

Proposition 11. A household’s change in future consumption in response to a TFP shock

is given by

dci1
dz0

= (1 + r̄1)
∂ai0
∂yi0︸︷︷︸
MPS

[
−

(1 + i−1)Bi
−1

P̄0

1

P̄0

dP0

dz0

+ k−1

(
dπ0

dz0

+ (1− δ0)
dq0

dz0

)
︸ ︷︷ ︸

balance sheet revaluation

+

(
dw0`i0
dz0

+
1

1 + r̄1

dw1

dz0

)
︸ ︷︷ ︸

change in non-traded income

+ āi0
1

1 + r̄1

d(1 + r1)

dz0︸ ︷︷ ︸
income effect

+ ψici0
1

1 + r̄1

d(1 + r1)

dz0

+
(
ψi − 1

)
w̄0

(
1− τ̄ `i0

) d`i0
dz0︸ ︷︷ ︸

substitution effects

]

given the steady-state labor wedge for household i τ̄ `
i
0 ≡ 1− −c̄i0Φi

′
(¯̀i

0)/Φi(¯̀i
0)

(1−α)z̄0(¯̀
0)−αkα−1

.

When households are symmetric in all respects except risk aversion and their portfolio

shares, only the balance sheet revaluation channel will redistribute across them. However,
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a TFP shock can have different effects on prices, profits, and the price of capital than a

monetary policy shock. For instance, for χW sufficiently large, as is assumed in Proposition

4, we can prove that dP0

dz0
< 0, dq0

dz0
> 0, and the sign of dπ0

dz0
depends on parameters. It follows

that the effect of a positive TFP shock on the risk premium depends on parameters, because

it both redistributes away from levered, high MPR households by raising the real value of

their debt burden, redistributes toward these same households by raising the price of capital,

and has an ambiguous effect on redistribution through short-run profits.

Corollaries 1-3 generalize as above to the case of TFP shocks, but again the risk premium

effects of a TFP shock under the conditions of Proposition 5 are ambiguous. Whatever the

sign of this risk premium response, we obtain the following analog of Proposition 6:

Proposition 12. If monetary policy follows the rule (10) with φ = −1, then

δk0

z0σ2 = − 1

1− α + χx
ζz0 ,

given ζz0 characterized in Proposition 10.

Again, provided the monetary policy rule keeps the real interest rate constant, an increase

(decrease) in the risk premium induced by the TFP shock will lower (raise) investment.

C Empirical appendix

In this appendix we provide supplemental material for our empirical analyses provided in

section 3.

C.1 The effect of monetary shocks

We first provide supplemental evidence on the empirical effects of a monetary policy shock

studied in section 3.1.

C.1.1 Robustness to details of estimation approach

Here we demonstrate that the broad messages of our baseline estimates are robust to the

number of lags in the VAR, sample periods used in both stages of the SVAR-IV, variables

included in the VAR, and instrument used.

Table 10 summarizes the impact effect of a monetary policy shock on the 1-year Treasury

yield (the monetary policy indicator) and the excess return on the S&P 500, as well as the

share of the latter driven by news about future excess returns in the Campbell and Shiller
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Current
1-year

Treasury
yield (p.p.)

Current
excess return

(p.p.)

Share future
excess return

news (%)

Baseline -0.22 2.06 55%
Number of lags in VAR
4 -0.21 1.95 49%
5 -0.22 1.91 51%
7 -0.23 1.96 59%
8 -0.23 2.03 52%

Sample periods
VAR: 1/91-6/12, IV: 1/91-6/12 -0.14 1.60 35%
VAR: 7/79-6/12, IV: 1/91-9/01 -0.21 3.21 47%
VAR: 7/79-6/12, IV: 10/01-6/12 -0.17 -2.07 39%

Variable added to VAR
Excess bond premium -0.21 2.33 74%
Mortgage spread -0.24 1.64 50%
3-month commercial paper spread -0.19 2.31 62%
5-year Treasury rate -0.17 1.69 75%
10-year Treasury rate -0.17 1.63 73%
Term spread -0.21 2.06 62%
Relative bill rate -0.18 2.68 66%
Change in 3-month Treasury rate -0.19 2.39 61%

3-month ahead FF as IV -0.20 2.31 62%

Table 10: robustness of 1 SD monetary shock on current excess returns and components

Notes: series for the Gilchrist and Zakrajsek (2012) excess bond premium, mortgage spread, 3-month com-
mercial paper spread, 5-year Treasury rate, and 10-year Treasury rate are taken from the dataset provided
by Gertler and Karadi (2015). The term spread (10-year Treasury rate less 1-month Treasury yield), relative
bill rate (difference between the 3-month Treasury rate and its 12-month moving average), and change in
the 3-month Treasury rate are constructed using CRSP.

(1988) decomposition (26). First, we find that the baseline results using 6 lags in the VAR are

little affected if 4-8 lags are used instead. Second, we find that the results are broadly robust

to using the same January 1991 - June 2012 period for both the VAR and IV regressions,

or limiting the analysis of monetary policy shocks to the first half of the IV sample alone

(January 1991 - September 2001). The expansionary monetary policy shock in fact lowers

excess returns when using the second half of the IV sample alone (October 2001 - June

2012), but we note that the instrument is weak over this sub-sample (having a first-stage F

statistic of 4.67, not shown). Third, we find that news about future excess returns tends to

be, if anything, even more important when adding other variables included in the analyses

of Bernanke and Kuttner (2005) and Gertler and Karadi (2015) on which we build. Finally,
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1-yr
Trea-
sury

CPI
Industrial
produc-

tion

1-mo
real rate

1-mo
excess
return

Dividend/
price

SW [2018] test 0.50 0.62 0.97 0.78 0.68 0.72
Granger causality test 0.07 0.15 0.88 0.12 0.45 0.93

Table 11: tests of invertibility assumed in the VAR

Notes: the first row is the bootstrapped p-value for the null hypothesis that the SVAR-IV and LP-IV impulse
responses depicted in Figure 4 are the same 1, 13, 25, and 37 months after shock, using the test statistic
provided in Stock and Watson (2018). We construct the variance matrix needed for this statistic using the
10,000 iterations of the wild bootstrap used to construct confidence intervals for our SVAR-IV estimates in
the main text. The second row is the p-value for the null hypothesis that the coefficients on 6 lags of the
instrument are jointly equal to zero when added to the VAR.

we find that our results are similar when using as the instrument the three-month ahead

Fed Funds futures contract instead of the current contract, recalling that this was the other

strong instrument indicated by Table 1.

C.1.2 Testing invertibility and comparing SVAR-IV and LP-IV

We now demonstrate that the assumption of invertibility used in the VAR is validated by

statistical tests suggested in the literature. Relatedly, we demonstrate that our estimated im-

pulse responses lie within the (quite large) confidence intervals obtained using an alternative

local projection instrumental variables approach (LP-IV) at virtually every horizon.

We implement the LP-IV by projecting each outcome variable h months ahead on the

1-year Treasury yield, instrumenting for the latter using the Fed Funds futures surprise also

used in our baseline SVAR-IV. Following Stock and Watson (2018), to make this specification

comparable with the SVAR-IV and further improve the precision of estimates, we include

6 lags of each of the variables included in the VAR as controls. Moreover, given the serial

correlation of the instrument discussed in Ramey (2016) and Stock and Watson (2018), we

include a lag of the instrument as an additional control. Figure 4 plots the estimates at each

horizon h ∈ {0, . . . , 47}, along with the point-wise 95% heteroskedasticity-robust confidence

interval. These estimates are extremely noisy, but their confidence intervals contain our

baseline estimates at virtually every horizon for each variable.

Stock and Watson (2018) discuss two tests of the invertibility assumption implicit in the

SVAR-IV, the first of which formalizes this comparison of the SVAR-IV and LP-IV estimates.

They propose a Hausman-type test statistic of the null hypothesis that invertibility is satisfied

by comparing the impulse response at horizon h for a given variable under both approaches.

The first row of Table 11 summarizes the p-value for this test in our setting jointly applied

at horizons h ∈ {1, 13, 25, 37} for each variable, demonstrating that we cannot reject the
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Figure 4: effects of monetary shock using SVAR-IV (blue) versus LP-IV (red)

Notes: heteroskedasticity-robust 95% confidence intervals at each horizon are computed for LP-IV. Since
both the SVAR-IV and LP-IV approaches only identify impulse responses up to a normalization on the initial
response of the monetary policy indicator (because the structural shock is not observed), for comparability
we multiply all LP-IV estimates and confidence intervals by the same constant such that the initial point
estimate for the 1-year Treasury is the same as in the SVAR-IV.

null at standard significance levels. They also recommend the use of the complementary

Granger causality test discussed in Forni and Gambetti (2014): if invertibility is satisfied,

lagged values of the instrument should not have predictive power given the variables included

in the VAR. We include 6 lags of our instrument in the VAR and construct an F statistic

associated with the null hypothesis that these coefficients are jointly zero for each variable

in the VAR. We again cannot reject the null at standard significance levels.

C.2 Micro moments from the SCF

We now provide supplemental details on our measurement of household portfolios using the

2016 SCF described in section 3.3. Table 12 summarizes the assumptions we use on leverage

and portfolio shares for each of the components of household net worth reported in the SCF.

They are informed by the following analysis.
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Moment Value Source
Firm net leverage (except private business) 1.5 FA, nonfin corp business
Active managed private business net leverage 1.5 FA, nonfin noncorp business
Non-active managed private business net leverage 4 Axelson et al. (2013)
Other mutual fund leverage 1.36 Ang et al. (2011)
Quasi-liquid retirement account equity share 0.57 FA, pension fund holdings
Combination mutual fund equity share 0.67 FA, mutual fund holdings
Other mutual fund equity share 0.67 assumed same as above
Other managed assets equity share 0.67 assumed same as above

Table 12: assumptions used to decompose household net worth in SCF

Notes: references to FA (Financial Accounts of the United States) are for 2016 as reported in Q1 2019
release.

Firm net leverage (except private business). For all household wealth in firm equity

except that of private businesses (reflected in stock mutual funds, directly held stocks, and

other categories of wealth described below), we use levfirm = 1.5. The Q1 2019 Financial

Accounts of the United States (FA), nonfinancial corporate business table (S.5.a) reports for

2016 $41,861.0bn in total assets, $1,252.5bn in currency and deposit assets, $199.4 in debt

security assets, $157.9 in loan assets, and $27,916.7-1,536.7 in equity plus net worth. Hence,

we compute net leverage as 41,861.0−1,252.5−199.4−157.9
27,916.7−1,536.7

= 1.5.

Active managed private business net leverage. For wealth in actively managed

private business, we use levfirm = 1.5. The Q1 2019 FA, nonfinancial noncorporate business

table (S.4.a) reports for 2016 $18,688.6bn in total assets, $1,188.3bn in currency and deposit

assets, $72.8 in debt security assets, $45.7 in loan assets, $12.9+11,561.1 in equity plus net

worth. Hence, we compute net leverage as 18,688.6−1,188.3−72.8−45.7
12.9+11,561.1

= 1.5.

Non-active managed private business net leverage. For wealth in non-actively

managed private business, we use levfirm = 4. This is the average leveraged buy-out (LBO)

leverage reported by Axelson et al. (2013) in their Table 8. We map non-actively managed

private business to LBOs because (i) non-actively managed private business wealth includes

private equity (the specific question asked in the SCF is: Do you (or anyone in your family

living here) own or share ownership in any other businesses, business investments or other

private equity that are not publicly traded and where you do NOT have an active management

role? ), and (ii) assets under management in buyout funds comprises more than half of all

assets under management in private equity globally (McKinsey (2018)).

Other mutual fund leverage. For wealth in other mutual funds, we use levinter = 1.36.

This is the average leverage of long-only hedge funds reported by Ang et al. (2011) in their

Table 2B. We map other mutual funds to hedge funds because the specific question asked in
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the SCF is: Do you have any other mutual funds, ETFs, hedge funds, or REITs?

Quasi-liquid retirement account equity share. We assume that 57% of wealth

in retirement accounts is held in firm equity (to which we apply levfirm = 1.5 charac-

terized above). The Q1 2019 FA, private and public pension funds table (L.117) reports

for 2016 $4,907.9bn in corporate equities, $3,768.1bn in mutual funds, $21,197.1bn in to-

tal financial assets, and $,8203.2bn in miscellaneous assets, most of which is unfunded DB

entitlements. Hence, we compute the equity share excluding these miscellaneous assets as
4,907.9+3,768.1×0.67

21,197.1−8,203.2
= 0.57.

Combination mutual fund equity share. We assume that 67% of wealth in combi-

nation mutual funds is held in firm equity (to which we apply levfirm = 1.5 characterized

above). The Q1 2019 FA, mutual fund holdings table (L.122) reports for 2016 $9,069.9bn

in corporate equities and $13,615.6 in total financial assets. Hence, we compute the equity

share as 9,069.9
13,615.6

= 0.67.

Other mutual fund equity share. We assume that 67% of wealth in other mutual

funds is held in firm equity (to which we apply levinter = 1.36 and levfirm = 1.5 characterized

above). We set 67% to be the same as for combination mutual funds.

Other managed assets equity share. We assume that 67% of wealth in other managed

assets is held in firm equity (to which we apply levfirm = 1.5 characterized above). We set

67% to be the same as for combination mutual funds.

All other categories of wealth. For all other categories of wealth not mentioned above,

we assume they are fully bonds (in zero net supply) or capital (in positive net supply).

Table 13 decomposes the aggregate net worth of U.S. households into claims on capital

and bonds using these assumptions.

D Infinite horizon environment and solution

In this appendix we describe the infinite horizon environment studied and our computational

algorithm used in section 3.

D.1 Environment and equilibrium

We first extend the environment described in section 2.1 to the infinite horizon. We closely

follow the exposition in that section.

Households The unit measure of households is now organized into a finite set of I groups

with measures {λi} such that
∑

i λ
i = 1, where households are identical within groups. Each
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$2016bn∑
iB

i
∑

iQk
i
∑

iA
i

1 Transaction accounts 4,940 0 4,940
2 CDs 620 0 620
3 Stock mutual funds -3,123 9,062 5,939
4 Tax-free bond mutual funds 1,329 0 1,329
5 Govt bond mutual funds 276 0 276
6 Other bond mutual funds 404 0 404
7 Combination mutual funds -12 769 757
8 Other mutual funds -386 1,397 1,011
9 Savings bonds 104 0 104
10 Directly held stocks -3,019 8,761 5,742
11 Directly held bonds 1,179 0 1,179
12 Cash value life insurance 914 0 914
13 Other managed assets -53 3,284 3,231
14 Quasi-liquid retirement assets 1,934 13,067 15,001
15 Other misc financial assets 0 659 659
16 Vehicles 0 2,717 2,717
17 Primary residence 0 24,176 24,176
18 Residential RE excl primary residence 0 6,301 6,301
19 Non-residential RE 0 3,694 3,694
20 Actively-managed businesses -8,538 25,552 17,015
21 Non-active-managed businesses -6,997 9,329 2,332
22 Other misc non-fin assets 0 559 559
23 Mortgage on primary residence -8,310 0 -8,310
24 Mortgage excl primary residence -1,128 0 -1,128
25 Other lines of credit -127 0 -127
26 Credit card balance -316 0 -316
27 Installment loans -1,976 0 -1,976

Vehicle installment -733 0 -733
28 Other debt -176 0 -176
29 Total -22,462 109,327 86,865
30 Total, excl primary residence and vehicles -13,419 82,434 69,015

Table 13: decomposition of household net worth in SCF

Notes: observations are weighted by SCF sample weights.
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household continues to be comprised of a continuum of members j ∈ [0, 1] supplying a differ-

entiated variety of labor, and there remains full consumption insurance within households.

The representative household i has Epstein and Zin (1991) preferences (27) with disutility

of labor each period (28) following Shimer (2010). Each period, the household faces the

resource constraint

Ptc
i
t +Bi

t +Qtk
i
t ≤ (1− τ)

∫ 1

0

Wt(j)`
i
t(j)dj −

∫ 1

0

ACW
t (j)dj +

(1 + it−1)Bi
t−1 + (Πt + (1− δ)Qt)k

i
t−1 exp(ϕt) + T it , (73)

where the Rotemberg (1982) cost of setting the wage for member j is

ACW
t (j) =

χW

2
Wt`t

(
Wt(j)

Wt−1 exp(ϕt)
− 1

)2

.

The household further faces a short-sale constraint on capital

kit ≥ 0. (74)

Supply-side A union continues to represent each labor variety j across households. Each

period, it chooses Wt(j), `t(j) to maximize the social welfare of union members subject to

the allocation rule (4) and Pareto weights {µi}. We now assume for simplicity that the

allocation rule and Pareto weights are symmetric: `i(`t) = `t and µi = 1. The labor packer

combines varieties supplied by the union as in the two-period model, earning profits each

period

Wt

[∫ 1

0

`t(j)
(ε−1)/ε

]ε/(ε−1)

−
∫ 1

0

Wt(j)`t(j)dj. (75)

The representative producer hires `t units of the labor aggregator in period t and combines

it with kt−1 exp(ϕt) units of capital rented from households. It further uses
(

kt
kt−1 exp(ϕt)

)χx
xt

units of the consumption good to produce xt new capital goods, where it again takes kt as

given. Taken together, it earns profits

Πtkt−1 exp(ϕt) = Pt (zt`t)
1−α (kt−1 exp(ϕt))

α −Wt`t +Qtxt − Pt
(

kt
kt−1 exp(ϕt)

)χx
xt. (76)

Productivity follows (29).

Policy The government follows a standard Taylor (1993) rule (31) where monetary policy

shocks mt follow (32). The government continues to set τ = − 1
ε−1

and now sets household-
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specific lump-sum taxes as in (33) given (34). We assume that ωat = ωa and ωbt = ωb are

constant, and ωct ensures that
∑

i λ
itrit = 0. As noted in the main text, we assume that

households anticipate this last component of transfers for all agents except themselves.

Market clearing Market clearing in goods each period is now

∑
i

λicit +

(
kt

kt−1 exp(ϕt)

)χx
xt = (zt`t)

1−α (kt−1 exp(ϕt))
α , (77)

in labor is [∫ 1

0

`t(j)
(ε−1)/εdj

]ε/(ε−1)

= `t, (78)

in the capital rental market is ∑
i

λikit−1 = kt−1, (79)

in the capital claims market is

(1− δ)
∑
i

λikit−1 exp(ϕt) + xt =
∑
i

λikit, (80)

and in bonds is ∑
i

λiBi
t = 0. (81)

Equilibrium Given initial state variables {W−1, {Bi
−1, k

i
−1}, i−1, z0,m0} and the stochastic

processes (29)-(32), the definition of equilibrium naturally generalizes Definition 1:

Definition 3. An equilibrium is a sequence of prices and policies such that: (i) each house-

hold i chooses {cit, Bi
t, k

i
t} to maximize (27) subject to (73)-(74), (ii) each union j chooses

{Wt(j), `t(j)} to maximize the utilitarian social welfare of its members subject to the sym-

metric allocation rule {`it(j) = `t(j)}, (iii) the labor packer chooses {`t(j)} to maximize

profits (75), (iv) the representative producer chooses {`t, xt} to maximize profits (76), (v)

the government sets {T it } according to (33)-(34) and it according to (31), and (vi) the goods,

labor, capital, and bond markets clear according to (77)-(81).

Since labor varieties and unions j are symmetric, `t(j) = `t and we again drop j going

forward.
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D.2 First-order conditions

We now outline households’ and firms’ optimality conditions.

Households Defining the realized real interest rate and real return on capital

1 + rt+1 ≡ (1 + it)
Pt
Pt+1

,

1 + rkt+1 =≡ (Πt+1 + (1− δ)Qt+1) exp(ϕt+1)

Qt

Pt
Pt+1

,

the representative household i’s optimal consumption and savings decisions are characterized

by

1 = Etmi
t,t+1(1 + rt+1),

1− νt = Etmi
t,t+1(1 + rkt+1),

νtkt = 0, where νt ≥ 0.

given the real stochastic discount factor

mi
t,t+1 = β

(
ceit
)γi−1/ψ (

vit+1

)1/ψ−γi
(
cit+1

)− 1
ψ Φ(`t+1)1− 1

ψ

(cit)
− 1
ψ Φ(`t)

1− 1
ψ

and certainty equivalent ceit = Et
[(
vit+1

)1−γi
] 1

1−γi
.

Unions Defining the real wage wt ≡ Wt

Pt
, the representative union sets

∑
i

λi
(
vit
) 1
ψ
(
cit
)− 1

ψ

[
wt + cit

Φ′(`t)

Φ(`t)

+ wt
χW

ε

[
wt

wt−1 exp(ϕt)

Pt
Pt−1

(
wt
wt−1

Pt
Pt−1

− 1

)

− Etmi
t,t+1

(
wt+1

wt exp(ϕt+1)

)2
Pt+1

Pt

`t+1

`t

(
wt+1

wt exp(ϕt+1)

Pt+1

Pt
− 1

)]]
= 0.
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Producers Defining the real price of capital qt ≡ Qt
Pt

, the representative producer follows

wt = (1− α)z1−α
t `−αt (kt−1 exp(ϕt))

α ,

qt =

(
kt

kt−1 exp(ϕt)

)χx
.

D.3 Re-scaled economy

We now characterize the equilibrium conditions of an equivalent, stationary economy ob-

tained by dividing households’ resource constraints and market clearing conditions by the

price level Pt, and further dividing these conditions as well as the first-order conditions in

the prior subsection by zt. We denote real variables in lower-case (except for the nominal

rate it) and further defined the re-scaled variables

c̃it ≡
cit
zt
, c̃it+1 ≡

cit+1

zt+1

, c̃eit ≡
ceit
zt
, b̃it ≡

bit
zt
, k̃it ≡

kit
zt
, k̃t ≡

kt
zt
, w̃t ≡

wt
zt
, (82)

m̃i
t,t+1 ≡ mi

t,t+1

(
zt+1

zt

)−γ
, (83)

k̃it−1 ≡
kit−1

exp(σεzt )
, k̃t−1 ≡

kt−1

exp(σεzt )
, w̃t−1 ≡

wt−1

exp(σεzt )
. (84)

Then the household’s optimality conditions and constraints are equivalent to:

1 = Etm̃i
t,t+1 exp

(
γi
[
σεzt+1 + ϕt+1

])
(1 + rt+1), (85)

1− νt = Etm̃i
t,t+1 exp

(
γi
[
σεzt+1 + ϕt+1

])
(1 + rkt+1), (86)

νtk̃t = 0, where νt ≥ 0, (87)

m̃i
t,t+1 = β

(
c̃eit
)γi−1/ψ (

ṽit+1

)1/ψ−γi
(
c̃it+1

)− 1
ψ Φ(`t+1)1− 1

ψ

(c̃it)
− 1
ψ Φ(`t)

1− 1
ψ

, (88)

c̃eit = Et
[
exp

((
1− γi

) [
σεzt+1 + ϕt+1

]) (
ṽit+1

)1−γi
] 1

1−γi
, (89)

c̃it + b̃it + qtk̃
i
t = w̃t`

i
t + ñit−1, (90)

k̃t ≥ 0. (91)

The definition of household wealth inclusive of transfers implies:38

ñit−1 =
1

λi
sitk̃t−1. . (92)

38We distinguish wealth inclusive of transfers nt ≡ (1 + rt)b
i
t−1 + (πt + (1− δ)qt)kit−1 + trit from financial

wealth at ≡ (1 + rt)b
i
t−1 + (πt + (1− δ)qt)kit−1.
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The representative union’s optimality condition is equivalent to:

∑
i

λi
(
ṽit
) 1
ψ
(
c̃it
)− 1

ψ

[
w̃t + c̃it

Φ′(`t)

Φ(`t)

+ w̃t
χW

ε

[
w̃t
w̃t−1

Pt
Pt−1

(
w̃t
w̃t−1

Pt
Pt−1

− 1

)
(93)

− Etm̃i
t,t+1 exp

(
γi
[
σεzt+1 + ϕt+1

])(w̃t+1

w̃t

)2
Pt+1

Pt

`t+1

`t

(
w̃t+1

w̃t

Pt+1

Pt
− 1

)]]
= 0.

The representative producer’s optimality condition and flow of funds are equivalent to:

w̃t = (1− α)`−αt k̃αt−1, (94)

qt =

(
k̃t

k̃t−1

)χx

, (95)

πtk̃t−1 = α`1−α
t k̃αt−1. (96)

The specifications of fiscal and monetary policy imply:

sit+1 = (1− ωit+1)
(1 + rt+1)b̃t + (πt+1 + (1− δ)qt+1)k̃it exp(ϕt+1)

(πt+1 + (1− δ)qt+1)k̃t exp(ϕt+1)
+ ωit+1λ

i, (97)

1 + it = (1 + ī)

(
Pt
Pt−1

)φ
mt. (98)

The definitions of real returns remain:

1 + rt+1 ≡ (1 + it)
Pt
Pt+1

, (99)

1 + rkt+1 =≡ (πt+1 + (1− δ)qt+1) exp(ϕt+1)

qt
. (100)
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The market clearing conditions are equivalent to:

∑
i

λic̃it +

(
k̃t

k̃t−1

)χx

x̃t = `1−α
t k̃αt−1, (101)∑

i

λik̃it = k̃t, (102)

(1− δ)
∑
i

λik̃it−1 + x̃t =
∑
i

λik̃it, (103)∑
i

λib̃it = 0. (104)

Finally, the evolution of exogenous state variables is:

logmt+1 = ρ logmt + ςεmt+1. (105)

After solving this transformed economy, we can simulate prices and quantities in the

original economy by reversing the re-scaling in (82)-(84), where zt follows (29).

D.4 Global solution algorithm

We now outline the computational algorithm used to solve the transformed economy.

Grids The model is solved over a discretized grid of aggregate states S. Each node is

defined by the current monetary policy shock m(S), the wealth shares sa(S) and sc(S) of

groups a and c, the scaled capital chosen in the previous period k̃−1(S) as chosen in the

previous period, as well as the scaled real wage w̃−1(S) set in the previous period. In the

transformed, stationary economy, productivity shocks inclusive of disasters only govern the

transition across states. The grid over states is given by a mesh grid over vectors of each

state variable. In each dimension we choose a vector length of at least five nodes, where the

vector’s upper and lower bound are iteratively updated to make sure that the state variables

stay well within the chosen limits in ten simulations of 500 years each. We verify that the

model solutions are robust to grid boundaries and size for the chosen values.

Expectations and interpolation When forming expectations, we use Gauss-Hermite

quadrature for integration. Expectations over future states will typically not lie on the grid,

and we use linear interpolation over aggregate states to find variable values for those states.

The value functions of the representative household in each group are solved over a vector

of individual wealth inclusive of transfers ni−1, so that households can entertain a range of
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portfolio and savings choices when optimizing. We use cubic splines to interpolate over the

idiosyncratic wealth levels, which also enables us to calculate value function derivatives.

Solution algorithm We look for a stationary solution to the model and use backward

iteration until all equilibrium objects converge. We assume that convergence is satisfactory

when relative period-to-period changes are smaller than 10−6. For each state S, the solution

objects are the price of capital q(S), the nominal rate i(S), the chosen real wage w(S), the

inflation rate ΠP (S) = P (S)/P (S−1), labor supply `(S), capital choices of each household

group ki(S), real bond choices of each group bi(S), and the value functions of each group

over a vector of wealth vi(ni−1, S).

The solution algorithm starts from an initial guess for vi(ni−1, S), q(S), i(S), w(S), ΠP (S),

and `(S) and proceeds as follows.

1. With this guess at hand we can solve each representative household’s savings and

portfolio choice problem (85)-(91) given its current wealth inclusive of transfers implied

by (92), the interest rates implied by (96), (99), (100), and the evolution of state

variables implied by (97), (102), and (105).

2. Observing the excess demand for bonds relative to the market clearing condition (104),

we adjust i(S) to lower the absolute value of the excess demand, returning to step 1,

until excess bond demand relative to the aggregate capital stock is smaller than 10−12.

3. The resulting choice of individual capital holdings, together with the market clearing

condition (102), allows us to update the price of capital q(S) according to (95).

4. We use the union’s first-order condition (93) to update the wage choice w(S), given

labor demand for the representative producer (94).

5. Given the equilibrium nominal rate, we use the Taylor rule (98) to update ΠP (S).

6. Finally, we update the value functions vi(ni−1, S) by solving the optimization problem

(85)-(91) of all representative households for wealth away from the current state.

7. Using the updated equilibrium objects, we define new guesses vi(ni−1, S), q(S), i(S),

w(S), ΠP (S), and `(S) and return to step 1. For numerical stability we dampen the

updating of most equilibrium objects.

At the conclusion of the algorithm, a policy function for x(S) is implied by the capital

accumulation condition (103), and goods market clearing (101) is satisfied by Walras’ Law.

The solution code is written in Fortran and parallelized using OpenMP. Convergence can

be achieved in less than twenty minutes on a modern computing system with eight cores.
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E Additional quantitative results

In this appendix we provide supplementary quantitative results accompanying section 3.

We focus on impulse responses to a productivity shock accompanying the main analyses

of monetary shocks in the main text. We again compare in Figure 5 the impulse responses of

the model with heterogeneity to a counterfactual economy with fully symmetric households.

The first row again reports the change in the 1-year Treasury yield, expected real returns,

and expected excess returns. The first panel demonstrates that the central bank following

a standard Taylor (1993) rule will cut the nominal interest rate in response to the price

deflation induced by this shock. The second and third panels demonstrate that the expected

real interest rate and the expected excess returns on capital decline following the shock. The

decline in the former is a standard real business cycle response to the shock and also reflects

the endogenous monetary easing in this New Keynesian setting. The decline in the latter

demonstrates that productivity shocks induce a countercylical risk premium in our setting.

The second and third rows demonstrate that redistribution drives the decline in the risk

premium following the positive TFP shock. The first panel of the second row demonstrates

that, as in the case of a negative monetary policy shock, realized excess returns on capital are

substantially positive on impact and followed by small negative returns in the quarters which

follow. Through the lens of Proposition 11 characterized in appendix B, the substantially

positive excess returns on impact endogenously redistribute to the high MPR a households

who hold levered claims on capital, evidenced in the financial wealth share of a households

in the second panel in this row. As described in appendix B, however, the mechanisms are

more nuanced than in the case of a monetary shock. On the one hand, unexpected deflation

raises the real interest rate, shown in the third panel. On the other hand, the increase in the

price of capital raises the return on capital, shown in the first panel of the third row. This in

part reflects higher profits, in turn resulting from lower real wages and higher employment

shown in the second and third panels of this row. These effects in fact result from an increase

in labor supply, owing to a decline in consumption in this environment. On balance, the

return to capital increases and outweighs the higher realized real interest rate, and wealth

redistributes to the high-MPR a households, lowering the risk premium.

The fourth row examines the consequences of this redistribution for the transmission of

the policy shock to the real economy. Comparing the investment response in the model to

the symmetric case, we find additional stimulus to investment on impact. The increase in

investment more than offsets a decline in consumption to drive an increase in output.
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Figure 5: impulse responses to positive productivity policy shock

Notes: all series are plotted as quarterly (non-annualized) deviations from the stochastic steady state, except
for the 1-year Treasury yield ∆i1y. b.p. denotes basis points (0.01%).
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