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Abstract

This paper develops a New Keynesian model featuring financial intermediation,

short and long term bonds, credit shocks, and scope for unconventional monetary

policy. The log-linearized model reduces to four key equations – a Phillips curve, an

IS equation, and policy rules for the short term nominal interest rate and the central

bank’s long bond portfolio (QE). The four equation model collapses to the standard

three equation New Keynesian model under a simple parameter restriction. Credit

shocks and QE appear in both the IS and Phillips curves. Optimal monetary policy

entails adjusting the short term interest rate to offset natural rate shocks, but using

QE to offset credit market disruptions. The ability of the central bank to engage in

QE significantly mitigates the costs of a binding zero lower bound.
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1 Introduction

The textbook three equation New Keynesian (NK) model (see, e.g., Woodford 2003 or Gaĺı

2008) has enormous influence in both policy circles and among academic researchers due

to its elegance and tractability. The model boils down to a forward-looking IS equation

characterizing aggregate demand, a Phillips curve describing aggregate supply, and a rule

for the central bank’s principal policy tool, the short term interest rate. The model has

yielded several important insights, including the potential desirability of inflation targeting,

the gains from policy commitment over discretion, and the importance of having the policy

rate track the “natural” or “neutral” rate of interest.

In spite of its myriad uses, the textbook model has proven inadequate for examining

a range of issues that have come to the fore in policy circles over the last decade. As

it abstracts from the financial sector, the model is unable to address the consequences of

financial market disruption of the sort that rocked the global economy in 2007-2009. It is also

incapable of directly speaking to the potential benefits and costs of quantitative easing (QE)

type policies. QE policies were among the first and most prominent of several unconventional

policy interventions deployed to fight the global financial crisis once policy rates were lowered

to zero. There is now a nascent literature incorporating QE into medium-scale DSGE models

(e.g. Gertler and Karadi 2011, 2013; Carlstrom, Fuerst and Paustian 2017; or Sims and Wu

2019b). While this work has proven useful and generated several important insights, these

quantitative frameworks lack the simplicity and transparency of the textbook three equation

model.

Our paper bridges the gap between the complicated quantitative DSGE models that have

been developed to study QE with the elegance and tractability of the textbook three equation

model. Our model incorporates financial intermediaries, short and long term bonds, credit

market shocks, and scope for central bank bond holdings to be economically relevant. The

linearized version of our model reduces to four, rather than three, key equations. The IS

and Phillips curves are similar to the three equation benchmark. The innovation is that
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credit shocks and central bank long bond holdings appear additively in both the IS and

Phillips curves. This differs from many ad-hoc treatments of financial disturbances, which

often simply include residuals in the IS equation meant to proxy for credit spreads (see, e.g.,

Smets and Wouters 2007). The model is closed with a rule for the short term policy rate

(as in the benchmark three equation model) and a rule for the central bank’s long bond

portfolio.

We study optimal monetary policy in the context of our four equation model. Reflecting

central banks’ dual mandate, we focus on an objective function that minimizes a weighted

sum of volatilities of inflation and the output gap. Because credit shocks appear in the

Phillips curve, the so-called “Divine Coincidence” (Blanchard and Gaĺı 2007) does not hold,

and it is not possible to achieve the global minimum of the loss function with just one

policy instrument. Optimal policy entails adjusting the short term interest rate to track

fluctuations in the natural rate of interest (as in the benchmark three equation model),

but adjusting the long bond portfolio to offset the effects of credit market disturbances.

Our model therefore has an implication that differs from the conventional wisdom among

policymakers that adjustment of short term interest rates is sufficient to meet a dual mandate

of price and output stability – in general, quantitative easing policies ought to be used all

the time to counter credit market shocks, not only when policy rates are constrained by the

zero lower bound (ZLB).

We also explore the implications of the ZLB for policy. A couple of interesting results

emerge. First, credit market shocks need not have differential effects at the ZLB in compar-

ison to normal times. Adjusting the long bond portfolio in exactly the same way as it would

absent a ZLB constraint, the central bank is able to stabilize both inflation and the output

gap in response to credit shocks at the ZLB. Second, QE policies can serve as an effective (al-

beit imperfect) substitute for conventional policy actions in response to natural rate shocks.

Without QE available, output and inflation react suboptimally to natural rate shocks when

the short term policy rate is constrained, the more so the longer the anticipated period of
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the ZLB. A central bank can partially offset these non-optimal responses by adjusting its

long bond portfolio. We derive an analytical expression for the optimal QE rule at the ZLB

as a function of the relative welfare weight on the output gap in the loss function. Though

it is not possible to completely stabilize both inflation and the gap, a central bank engaging

in QE operations can significantly reduce the costs of the ZLB.

Our model has important implications for central banks facing a dual mandate to stabilize

both inflation and real economic activity due to the failure of the Divine Coincidence. First,

how much QE is desired at the ZLB depends critically on how much weight the central

bank puts on inflation vs. output fluctuations. The more weight the central bank puts

on the output gap, the less QE is required in response to a shock to the neutral rate of

interest. Second, suppose the central bank were not allowed to respond to a credit shock

with bond purchases. This was the operating framework of modern central banks prior to

the Great Recession. The direction for the optimal short rate response to a credit shock

depends on whether the central bank cares more about inflation or output stabilization. For

a positive credit shock, a central bank focusing solely on inflation would increase the short

rate; whereas if the central bank only cares about the output gap, it would instead cut the

short rate. Alternatively, if a central bank can use bond purchases all the time as a policy

instrument, there need not be any conflict between the two aspects of the dual mandate.

In the background of our four equation linear model, there are a number of different

agents. The production side of the economy is identical to the standard three equation

model. There are two types of households, which we refer to as the “parent” and the “child.”

The representative parent consumes, supplies labor, and has an equity share in production

firms and financial intermediaries. It saves through one period nominal bonds. Each period,

it makes an equity transfer to financial intermediaries, provides a lump sum transfer to the

child, and receives dividends. The representative child does not supply labor and has no

equity interest in firms or intermediaries. It is less patient than the parent. The child may

not buy or sell short term debt, but may issue long term nominal bonds. It finances its
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consumption as well as the coupon payments on outstanding debt via the lump sum transfer

it receives from the parent.

Debt markets are segmented such that only financial intermediaries can simultaneously

access both the short term savings of the parent and the long term bonds issued by the child.

Market segmentation is crucial for QE policies to work. New financial intermediaries are born

each period and exist for only one period. They each receive a fixed amount of startup net

worth at birth and return accumulated net worth to the parent upon exiting. Because of this

setup, there is effectively a representative intermediary. In addition to startup net worth,

the representative intermediary finances its operations with short term bonds. On the asset

side of the balance sheet, it holds long term bonds issued by the child and interest-bearing

reserves issued by the central bank. The intermediary is subject to a risk-weighted leverage

constraint. Long bonds receive a risk-weight of one, while reserves have a risk-weight of

zero. Risk-weighted assets cannot exceed an exogenous multiple of net worth. We refer to

stochastic fluctuations in the leverage multiple as credit shocks. The model is calibrated

such that the risk-weighted leverage constraint always binds so that the return on long term

bonds is higher than that on short term bonds in expectation. The structure of financial

intermediaries can be considered as a special case of Gertler and Karadi (2011, 2013) and

Sims and Wu (2019b).

Unconventional monetary policy allows the central bank to also hold long term bonds

issued by the child, and to in effect serve as an additional financial intermediary. It finances

these holdings by creating interest-bearing reserves. It sets the interest rate on reserves, or

the policy rate, according to some policy rule. In equilibrium, the interest rate on reserves

equals the interest rate on short term bonds. Quantitative easing policies have effects iso-

morphic to positive credit shocks – when the central bank buys long term bonds, it eases

the constraint facing the intermediary, leading to an expansion in the supply of credit and a

reduction in long-short interest rate spreads.

Linearizing the model about the steady state, many of these details drop out, leaving a
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four equation system. In addition to the two policy rules, the linearized IS curve expresses

the current output gap as a function of the expected future output gap and the spread

between the real short term interest rate and the natural rate of interest, which is identical

to the textbook three equation model. What is new in our model is a term related to credit

shocks and the central bank’s long bond portfolio. The Phillips curve relates current inflation

to the current output gap, expected future inflation, and a new term capturing credit shocks

as well as the central bank’s long bond portfolio. Under the parameter restriction that all

households are parents, both the IS and Phillips curves reduce to their standard expressions

in the benchmark three equation model. Importantly, credit shocks and the central bank’s

long bond portfolio appear in both the IS and Phillips curves. This means that such shocks

have both “demand” and “supply” effects, and also means that credit shocks generate a sort

of endogenous “cost-push” term.

Our paper relates to a large literature on monetary policy in the New Keynesian model

more generally and to that on unconventional policy actions in particular. Clarida et al.’s

(1999) seminal work concerns monetary policy design in the canonical three equation New

Keynesian model. Eggertsson and Woodford (2003) and Adam and Billi (2006, 2007) make

early contributions on the consequences of a binding ZLB for optimal policy. Gertler and

Karadi (2011, 2013), Carlstrom, Fuerst and Paustian (2017), Sims and Wu (2019b), and Mau

(2019) all represent attempts to model large scale asset purchases in a quantitative DSGE

framework.

Distinct from this strand of the literature, one important contribution of our paper is

to incorporate the financial frictions giving rise to effective QE policies in these papers into

the tractable small-scale New Keynesian model of Clarida, Gaĺı and Gertler (1999) that is

so popular among academics and policymakers alike. In that sense, our paper is similar

to Cúrdia and Woodford (2011, 2016), Wu and Zhang (2017), and Piazessi, Rogers and

Schneider (2019). Wu and Zhang (2017) propose replacing the policy rate in the three

equation New Keynesian model with the shadow Federal Funds rate at the ZLB, meant as
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a summary statistic for unconventional interventions. Cúrdia and Woodford (2011, 2016)

and Piazessi, Rogers and Schneider (2019) focus on a model where there are two short term

rates with a wedge between them. We differ in that our model features short and long term

debt instruments, which we consider a more plausible description of the intended channels

of QE.

The implications of our model also relate to an empirical literature suggesting that un-

conventional policy actions have been successful antidotes to the ZLB – see, for example,

Swanson and Williams (2014), Wu and Xia (2016), Wu and Zhang (2017, 2019), Gaŕın,

Lester and Sims (2019), Debortoli, Gaĺı and Gambetti (2016), Mouabbi and Sahuc (2017),

Swanson (2018a,b), and Sims and Wu (2019a). Different from this literature, we emphasize

why and how the substitutability between conventional and unconventional policy tools is

not perfect.

The remainder of the paper is organized as follows. Section 2 presents the model. Sec-

tion 3 discusses optimal central bank policy. Section 4 offers concluding thoughts.

2 Model

This section presents our model. We first present the four equation linearized model in

Subsection 2.1, on which we base our subsequent analysis. The full non-linear model is

derived from first principles in Subsection 2.2. Subsection 2.3 studies positive properties of

a calibrated version of the model before turning to normative issues in Section 3. Details

are available in Appendixes A - C.

2.1 The Four Equation Model

The principal equations of our linearized model are an IS curve:

xt = Et xt+1 −
1− z
σ

(
rst − Et πt+1 − rft

)
− z
[
b̄FI (Et θt+1 − θt) + b̄cb (Et qet+1 − qet)

]
, (2.1)
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and a Phillips Curve:

πt = γζxt −
zγσ

1− z

[
b̄FIθt + b̄cbqet

]
+ β Et πt+1. (2.2)

Lowercase variables with a t subscript denote log deviations about the non-stochastic

steady state. πt is inflation and xt = yt − yft denotes the output gap, where yft is the

equilibrium level of output consistent with price flexibility and no credit shocks. Similarly,

rft denotes the natural rate of interest – i.e. the real interest rate consistent with output

equaling potential. It follows an exogenous process. θt captures credit conditions in the

financial market; positive values correspond to more favorable conditions. This is described

further in Subsection 2.2. We take it to be exogenous and henceforth refer to it as a credit

shock. qet denotes the real market value of the central bank’s long term bond portfolio. rst

is the short term nominal interest.

Letters without t subscripts are parameters or steady state values. σ, β, and γ are

standard parameters – σ measures the inverse intertemporal elasticity of substitution, β is

a subjective discount factor, and γ is the elasticity of inflation with respect to real marginal

cost.1 b̄FI and b̄CB are parameters measuring the steady state long-term bond holdings of

financial intermediaries and the central bank, respectively, relative to total outstanding long

term bonds. These coefficients sum to one, i.e. b̄FI + b̄CB = 1.

As described in Subsection 2.2, there are two kinds of households in our model. We will

refer to these types of households as “parent” and “child,” respectively. The parent is the

standard household in a textbook New Keynesian model – it consumes, borrows or saves

via one-period bonds, supplies labor, and owns firms. The child does not supply labor nor

does it have an equity interest in production firms. It is less patient than the parent and

finances its consumption by issuing long term bonds. It pays the servicing cost of these long

term bonds with a transfer from the parent each period. The parameter z ∈ [0, 1) represents

1In particular, γ = (1−φ)(1−φβ)
φ is the standard expression in the three equation model, where φ ∈ [0, 1)

measures the probability of non-price adjustment.
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the share of children in the total population. ζ is the elasticity of real marginal cost with

respect to the output gap; it is conceptually similar to the corresponding parameter in the

standard three equation model, but augmented to account for two types of households.2 Our

model collapses to the standard three equation NK model when z = 0. In this case, credit

shocks and the central bank’s long bond portfolio are irrelevant for the equilibrium dynamics

of output and inflation. In addition, ζ reduces to the same expression as in the standard

model.

Our four equation New Keyneian model consists of (2.1)-(2.2), together with policy rules

for the short term interest rate rst and central bank’s long bond portfolio qet. Simple rule-

based policies are specified in Subsection 2.3 for positive analyses, whereas we discuss optimal

policies in Section 3.

QE vs. Conventional Monetary Policy Let us highlight an important difference be-

tween a QE shock and a conventional monetary policy shock concerning the impact on

inflation. In our model, a QE shock is less inflationary than a conventional monetary policy

rate cut. This finding is in-line with the results in the richer model of Sims and Wu (2019b),

and empirically consistent with the lack of inflationary pressures from the expansive QE

operations in the US and other parts of the world in the wake of the Great Recession.

Economically, this finding emerges because the qet term enters in both the IS, (2.1), and

Phillips Curves, (2.2). In particular, qet enters with a positive sign in the IS relationship,

and hence serves as a positive demand shock, but with a negative sign in the Phillips Curve,

and hence acts as a sort of endogenous “cost-push” shock. Both of these channels make QE

expansionary for output, but have competing effects on inflation.

2In particular, ζ = χ(1−z)+σ
1−z , where χ is the inverse Frisch labor supply elasticity for the parent.
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2.2 Derivation of the Four Equation Model

In this subsection, we present, from first principles, the economic environment giving rise to

the linearized four equation model laid out in Subsection 2.1. The economy is populated by

the following agents: two types of households (parent and child), a representative financial

intermediary, production firms, and a central bank. We discuss the problems of each below.

2.2.1 Parent

A representative parent receives utility from consumption, Ct and disutility from labor, Lt.

It discounts future utility flows by β ∈ (0, 1). Its lifetime utility is:

Vt = max Et
∞∑
j=0

βj

[
C1−σ
t+j − 1

1− σ
− ψ

L1+χ
t+j

1 + χ

]
. (2.3)

σ > 0 is the inverse elasticity of intertemporal substitution, χ ≥ 0 is the inverse Frisch

elasticity, and ψ > 0 is a scaling parameter.

The nominal price of consumption is Pt. The parent earns nominal income from labor,

with a wage of Wt, receives dividends from ownership in firms and financial intermediaries,

Dt and DFI
t , respectively, and receives a lump sum transfer from the central bank, Tt. It

can save via one period nominal bonds, St, which pay gross nominal interest rate Rs
t . In

addition, it makes a time-varying transfer, Xb
t , to the child each period, as well as a fixed

transfer, XFI , to financial intermediaries.

PtCt + St ≤ WtLt +Rs
t−1St−1 + PtDt + PtD

FI
t + PtTt − PtXb

t − PtXFI . (2.4)

The objective is to pick a sequence of consumption, labor, and one period bonds to

maximize (2.3) subject to the sequence of (2.4). The optimality conditions are standard:
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ψLχt = C−σt wt, (2.5)

Λt−1,t = β

(
Ct
Ct−1

)−σ
, (2.6)

1 = Rs
t Et Λt,t+1Π−1

t+1. (2.7)

In (2.5), wt = Wt/Pt is the real wage; and in (2.7), Πt = Pt/Pt−1 is gross inflation. Λt−1,t

is the parent’s stochastic discount factor.

2.2.2 Child

The child gets utility from consumption, Cb,t, and does not supply labor. Its flow utility

function is the same as the parent, but it discounts future utility flows by βb < β; i.e. it is

less patient than the parent. Its lifetime utility is:

Vb,t = Et
∞∑
j=0

βjb

[
C1−σ
b,t+j − 1

1− σ

]
. (2.8)

The child can borrow/save through long term bonds, the new issuance of which is denoted

by CBt. These bonds are structured as perpetuities with decaying coupon payments, as in

Woodford (2001). Coupon payments decay at rate κ ∈ [0, 1]. Issuing one unit of bonds in

period t obligates the issuer to a coupon payment of 1 dollar in t + 1, κ dollars in t + 2, κ2

dollars in t + 3, and so on. The total coupon liability due in t + 1 from past issuances is

therefore:

Bt = CBt + κCBt−1 + κ2CBt−2 + . . . . (2.9)

The attractive feature of these decaying coupon bonds is that one only needs to keep

track of the total outstanding bonds, Bt, rather than individual issues. In particular:
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CBt = Bt − κBt−1. (2.10)

New issuances in period t trade at market price Qt dollars. Because of the structure of

coupon payments, the prices of bonds issued at previous dates are proportional to the price

of new issues; i.e. bonds issued in t − j trade at κjQt in t. The total value of the bond

portfolio can therefore conveniently be written as QtBt.

The nominal value of consumption plus coupon payments on outstanding debt cannot

exceed the value of new bond issuances plus the nominal value of the transfer from the

parent. The flow budget constraint facing the child is therefore:

PtCb,t +Bt−1 ≤ Qt (Bt − κBt−1) + PtX
b
t . (2.11)

Define the gross return on the long bond as:

Rb
t =

1 + κQt

Qt−1

. (2.12)

The optimality condition for the child is an Euler equation for long term bonds, where

Λb,t−1,t denotes its stochastic discount factor:

Λb,t−1,t = βb

(
Cb,t
Cb,t−1

)−σ
, (2.13)

1 = Et Λb,t,t+1R
b
t+1Π−1

t+1. (2.14)

2.2.3 Financial Intermediaries

A representative financial intermediary (FI) is born each period and exits the industry in

the subsequent period. It receives an exogenous and fixed amount of real net worth from

the parent household, XFI . It also attracts deposits, SFIt , from the parent household. It

can hold newly issued long bonds issued by the child, CBFI
t , or reserves on account with the
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central bank, REFI
t . The FI is structured as a special case of intermediaries in Sims and Wu

(2019b) and Gertler and Karadi (2011, 2013), with intermediaries exiting after each period

with probability one. Because the probability of exit after each period is unity, we can think

of there being a (newly born) representative FI each period.

The balance sheet condition of the FI is:

QtCB
FI
t +REFI

t = SFIt + PtX
FI . (2.15)

The FI pays interest, Rs
t , on short term debt, earns interest, Rre

t , on reserves, and earns

a return on long term bonds carried from t into t+ 1, Rb
t+1.

Upon exiting after period t, the FI therefore returns a dividend to the parent household

that satisfies:

DFI
t+1 =

(
Rb
t+1 −Rs

t

)
Qt

(
CBFI

t + κBFI
t−1

)
+ (Rre

t −Rs
t )RE

FI
t +Rs

tPtX
FI (2.16)

The FI may freely choose CBFI
t and REFI

t ; it takes the stock of bonds over which it serves

as a custodian, κQtB
FI
t−1, as given.

The FI is subject to a risk-weighted leverage constraint. We assume that this constraint

applies to both newly purchased as well the outstanding stock of long bonds (in addition

to on-balance sheet assets and liabilities as shown in (2.15), the FI acts as a custodian of

the existing stock of long term bonds.) The value of the bonds over which the FI serves

as custodian is κQtB
FI
t−1. Long term bonds receive a risk weight of unity, while reserves on

account with the central bank have a risk weight of zero. The leverage constraint is:

Qt

(
CBFI

t + κBFI
t−1

)
≤ ΘtPtX

FI . (2.17)

In other words, (2.17) says that the value of long bonds held by the FI cannot exceed

a time-varying multiple, Θt, of its nominal net worth, PtX
FI . We assume that Θt obeys a

known stochastic process and refer to changes in Θt as credit shocks.
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The objective of the FI is to maximize the expected one period ahead value of (2.16),

discounted by the nominal stochastic discount factor of the parent household, i.e. Λt,t+1Π−1
t+1,

subject to (2.17). Letting Ωt denote the multiplier on the constraint, the first order conditions

are:

Et Λt,t+1Π−1
t+1

(
Rb
t+1 −Rs

t

)
= Ωt, (2.18)

Et Λt,t+1Π−1
t+1 (Rre

t −Rs
t ) = 0. (2.19)

(2.19) says that the FI will hold an indeterminate amount of reserves so long as the return

on reserves, Rre
t , equals the cost of funds, Rs

t . Absent a leverage constraint, the FI would

buy newly issued long bonds up until the point at which the expected return on long bonds

equals the cost of funds. The constraint being binding, i.e. Ωt > 0, generates excess returns.

2.2.4 Production

The production side of the economy is split into three sectors: final output, retail output,

and wholesale output. There is a representative final good firm and representative wholesale

producer. There are a continuum of retailers, indexed by f ∈ [0, 1].

The final output good, Yt, is a CES aggregate of retail outputs, with ε > 1 the elasticity

of substitution. This gives rise to a standard demand function for each variety of retail

output and an aggregate price index:

Yt(f) =

(
Pt(f)

Pt

)−ε
Yt, (2.20)

Pt =

[∫ 1

0

Pt(f)1−εdf

] 1
1−ε

. (2.21)

Retailers purchase wholesale output at price Pm,t and repackage it for sale at Pt(f). Pm,t
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has the interpretation as nominal marginal cost. Retailers are subject to a Calvo (1983)

pricing friction – each period, there is a probability 1−φ that a retailer may adjust its price,

with φ ∈ [0, 1]. When given the opportunity to adjust, retailers pick a price to maximize the

present discounted value of expected profits, where discounting is by the stochastic discount

factor of the parent household. Optimization results in an optimal reset price, P∗,t, that is

common across updating retailers. Letting pm,t = Pm,t/Pt denote real marginal cost, the

optimal reset price satisfies:

P∗,t =
ε

ε− 1

X1,t

X2,t

, (2.22)

X1,t = P ε
t pm,tYt + φEt Λt,t+1X1,t+1, (2.23)

X2,t = P ε−1
t Yt + φEt Λt,t+1X2,t+1. (2.24)

The wholesale firm produces output, Ym,t, according to a linear technology in labor:

Ym,t = AtLt. (2.25)

At is an exogenous productivity disturbance obeying a known stochastic process. Letting

wt = Wt/Pt denote the real wage, the optimality condition is standard:

wt = pm,tAt. (2.26)

2.2.5 Central Bank

The central bank can hold a portfolio of long bonds, Bcb
t . It finances this portfolio via the

creation of reserves, REt. Its balance sheet condition is:

QtB
cb
t = REt. (2.27)
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We will refer to the real value of the central bank’s bond portfolio as QEt = Qtb
cb
t , where

bcbt = Bcb
t /Pt, and shall assume that the central bank may freely choose this (equivalently, it

can freely choose reserves). The central bank potentially earns an operating surplus that is

returned to the parent household via a lump sum transfer.3 This transfer satisfies:

PtTt = Rb
tQt−1Bcb,t−1 −Rre

t−1REt−1. (2.28)

2.2.6 Aggregation and Equilibrium

Market-clearing requires that REt = REFI
t and St = SFIt (i.e. the FI holds all reserves

issued by the central bank and all one period bonds issued by the parent household), while

Bt = BFI
t +Bcb

t (i.e. the total stock of long term bonds issued by the child must be held by

the FI or the central bank). Some algebraic substitutions give rise to a standard aggregate

resource constraint:

Yt = Ct + Cb,t. (2.29)

Aggregating across retailers gives rise to the aggregate production function, where vpt is

a measure of price dispersion:

Ytv
p
t = AtLt. (2.30)

We assume that the transfer from parent to child, Xb
t , is time-varying in a way that

represents a complete payoff of outstanding debt obligations each period:

PtX
b
t = (1 + κQt)Bt−1. (2.31)

3Alternatively, we could assume that the transfer is returned to the fiscal authority, who then adjusts
the lump sum tax/transfer levied on households accordingly. Because we are not interested in describing
fiscal policy, it is simpler to instead assume that the central bank provides rebates to the parent household
directly.
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Neither the parent nor the child behaves as though it can influence the value of Xb
t .

The particular assumption embodied in (2.31) implies that, even though the child solves

a dynamic problem and has a forward-looking Euler equation, (2.14), its consumption is

effectively static:

PtCb,t = QtBt. (2.32)

This assumption on the parent-child transfer allows us to eliminate a state variable and

simplifies the system to four equations, although it is not crucial for the qualitative or

quantitative properties of the model.

At and Θt obey conventional AR(1) processes in the log. We define potential output,

Y f
t , as the equilibrium level of output consistent with price flexibility (i.e. φ = 0) and where

the credit shock is constant, i.e. Θt = Θ. The natural rate of interest, Rf
t , is the gross real

short term interest rate consistent with this level of output. Xt = Yt/Y
f
t is the gross output

gap. The full set of equilibrium conditions are contained in Appendix A. The system can be

greatly simplified, and the equilibrium conditions log-linearized about a zero inflation steady

state can be reduced to the four equation system presented at the beginning of this section;

i.e. (2.1)-(2.2) along with rules for the short term policy rate and the central bank’s long

bond portfolio. Details of the linearization may be found in Appendix B.

2.3 The Four vs. the Three Equation Model

Before turning to normative optimal policy analysis in Section 3, we first explore the positive

properties of the linearized model as described above in Subsection 2.1.

For the purpose of studying positive properties of the model, we suppose that the short

term rate follows a Taylor-type rule while the long bond portfolio obeys an exogenous process:

rst = ρrr
s
t−1 + (1− ρr)

[
φππt + φxxt

]
+ srεr,t, (2.33)
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qet = ρqqet−1 + sqεq,t. (2.34)

rft and θt, the natural rate of interest and credit shock, respectively, obey stationary

AR(1) processes:

rft = ρfr
f
t−1 + sfεf,t, (2.35)

θt = ρθθt−1 + sθεθ,t. (2.36)

A full description and justification of the underlying parameter values of the non-linear

model is provided in Appendix C. Here, we focus only on the parameter values necessary

for solving the linearized model. These parameter values are listed in Table 1. The dis-

count factor and elasticity of substitution take on standard values. The child-share of total

consumption is set to one third. Given our calibrations of other steady state parameters

(discussed further in Appendix C), we have b̄FI = 0.7 and b̄cb = 0.3. The elasticity of infla-

tion with respect to real marginal cost is γ = 0.086 and the elasticity of the output gap with

respect to real marginal cost is ζ = 2, implying a slope of the Phillips Curve of 0.21. The

parameters of the Taylor rule are standard. The autoregressive parameters in the exogenous

processes are all set to 0.8.

Figure 1 displays impulse responses to a one percent positive shock to potential output.4

The solid black lines are responses in our baseline four equation model, whereas the dashed

blue lines depict responses in the conventional three equation model (i.e. our model imposing

z = 0). These responses are familiar and do not differ much in our model compared to the

more standard three equation model. Output increases but by less than potential, resulting

4As written, the linearized model presented in Subsection 2.1 writes the exogenous process in terms of
the natural rate of interest. As shown in Appendix B, there is a mapping between the natural rate of interest
and potential output. When comparing the four equation to the three equation model, the mapping between
the natural rate of interest and potential output is not identical due to the presence of z in the four equation
model. The comparison is more natural for an equal sized shock to potential output rather than the natural
rate of interest.
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Table 1: Parameter Values of Linearized Model

Parameter Value Description (Target)
β 0.995 Discount factor
z 0.33 Consumption share of child
σ 1 Inverse elasticity of substitution
b̄FI 0.70 Weight on leverage in IS/PC curves
b̄cb 0.30 Weight on QE in IS/PC curves
γ 0.086 Elasticity of inflation w.r.t. marginal cost
ζ 2 Elasticity of gap w.r.t. marginal cost
ρr 0.8 Taylor rule smoothing
φπ 1.5 Taylor rule inflation
φx 0 Taylor rule gap
ρf 0.8 AR natural rate
ρθ 0.8 AR leverage
ρq 0.8 AR QE

Note: this table lists the values of calibrated parameters of the linearized four equation model.

in a negative output gap. This puts downward pressure on inflation, which is met with policy

accommodation with the short term interest rate declining. Relative to three equation model,

output reacts slightly less on impact in our model, though this difference is not large.

Figure 2 plots impulse responses to a conventional monetary policy shock. The size and

sign of the shock are chosen to generate the same impact response of output to the potential

output shock in the four equation model. Output (and hence the output gap) rises on impact

before reverting to its pre-shock value. Inflation rises and follows a similar dynamic path as

output. As in the case of the potential output shock, there is little meaningful difference in

the responses of variables in our four equation model relative to the baseline three equation

model.

Figure 3 plots impulse responses to a leverage (θt) or QE (qet) shock. Because these

differ only according to scale in the linear system (i.e. b̄FI 6= b̄cb), because we have assumed

equal AR parameters (0.8), and because the shock sizes are normalized to produce the same

impact response of output, the IRFs of endogenous variables to a leverage or QE shock are

identical. We therefore only show one set of impulse responses.

Unlike responses to the other shocks, in Figure 3, there is a meaningful difference between

the four equation model and the three equation model. In the three equation model, both
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Figure 1: IRFs to Shock to Potential Output
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Notes: Black solid lines: IRFs to a one percentage point shock to potential output in the four equation
model. Output and the output gap are expressed in percentage points, while the responses of inflation and
the short term interest rate are expressed in annualized percentage points. Blue dashed lines: IRFs to the
same-sized natural rate shock in the baseline three equation NK model.

shocks are irrelevant for the dynamics of endogenous variables. In our four equation model,

an increase in leverage (equivalently a central bank purchase of long bonds) is expansionary

for output. In the current calibration, such an expansion also results in an increase in

inflation and a resulting increase in the short term interest rate. That financial shocks have

economic effects in-line with the traditional understanding of an aggregate demand shock

and the fact that there is scope for QE policies represent a key advancement in our four

equation model relative to the standard three equation model. These properties are critical

for understanding the post-Crisis economy.

As noted above, an expansionary QE shock is less inflationary than a conventional mone-
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Figure 2: IRFs to Policy Shock

0 5 10 15 20

Horizon

0

0.2

0.4

0.6

O
ut

pu
t

0 5 10 15 20

Horizon

0

0.2

0.4

0.6

O
ut

pu
t G

ap

0 5 10 15 20

Horizon

0

0.5

1

In
fla

tio
n

0 5 10 15 20

Horizon

-0.6

-0.4

-0.2

0

In
te

re
st

 R
at

e
4 eq NK
3 eq NK

Notes: Black solid lines: IRFs to a conventional monetary policy shock. The size and sign of the shock
are chosen to generate the same impact response of output as in Figure 1. Output and the output gap are
expressed in percentage points, while the responses of inflation and the short term interest rate are expressed
in annualized percentage points. Blue dashed lines: IRFs to the same-sized policy shock in the baseline three
equation NK model.

tary policy shock. Quantitatively comparing Figure 2 with Figure 3, one observes that a QE

shock that increases output by the same amount as a conventional policy rate cut results in

about one-third the response of inflation. Another important difference between a QE shock

and a conventional policy shock concerns how each affects the yield curve. Though a long

term interest rate does not appear in the baseline four equation model in Subsection 2.1,

one is operating in the background and can be inferred from an alternative representation
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Figure 3: IRFs to Leverage/QE Shock
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Notes: Black solid lines: IRFs to a leverage (θt) or QE (qet) shock. The size and sign of the shocks are chosen
to generate the same impact response of output as in Figure 1. Because the QE and leverage shock only
differ according to scale in the linearized model (i.e. b̄FI 6= b̄cb) and the AR parameters are the same, the
normalized impulse responses are identical. Output and the output gap are expressed in percentage points,
while the responses of inflation and the short term interest rate are expressed in annualized percentage
points. Blue dashed lines: IRFs to the same-sized policy shock in the baseline three equation NK model.

of the IS curve (which is derived in Appendix B):

yt = Et yt+1 −
1

σ
(rst − Et πt+1)− z

σ

(
Et rbt+1 − rst

)
. (2.37)

Et rbt+1 is the expected return on the long bond in the model. Hence, the last term in (2.37)

can be interpreted as an excess return.

The conventional expansionary monetary policy shock results in a steeping of the yield

curve (i.e. an increase in the long rate relative to the short rate). In contrast, a stimulative
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Figure 4: Response of Excess Return of Long Bond to Monetary and QE Shocks
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Notes: This figures plots the responses of the annualized excess return, i.e. Et rbt+1 − rst , inferred from
(2.37), to a conventional monetary policy shock (solid black) and a QE shock (dashed blue). The shocks are
normalized so as to generate the same impact increase in output as in Figure 2 and Figure 3.

QE shock results in a flattening of the yield curve. QE works by freeing up space on the FI’s

balance sheet to purchase long bonds, thereby pushing the price of these bonds higher and

the yield lower. There is no direct effect on the short term rate except through the policy

rule. As calibrated, the short rate actually rises modestly (due to the slightly inflationary

nature of a QE shock under the current calibration). Impulse responses of the long-short

spread to both a conventional policy shock and a QE shock are depicted in Figure 4.

3 Optimal Monetary Policy

In this section, we explore the design of optimal monetary policy in the context of our four

equation NK model. Leverage shocks generate an endogenous cost-push term in the Phillips

Curve, so they lead to a non-trivial tradeoff for a central bank wishing to solely implement

policy via adjustment of the short term interest rate. As such, heretofore unconventional
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policies like quantitative easing ought to be used even when the short rate is unconstrained

by the ZLB. Further, quantitative easing policies can be a useful (albeit imperfect) substitute

for conventional policy when the short term rate is constrained by the ZLB.

Given policymakers’ emphasis on the so-called dual mandate, we focus on a policy-

relevant quadratic loss function in inflation and the output gap, which is also what much of

the literature has used:

L = µx2
t + π2

t . (3.1)

µ ≥ 0 is the relative weight attached to fluctuations in the output gap. An expression

like (3.1) can be motivated as the micro-founded welfare criterion for a central bank in the

standard three equation NK model under certain assumptions.5,6

In what follows, we first consider optimal policy when there are no constraints, and then

study optimal policy when only one policy tool is available.

3.1 Unconstrained Optimal Policy

We begin by studying optimal monetary policy when both policy instruments are available.

Because the credit shock appears in both the IS and Phillips curves, the so-called “Divine

Coincidence” (Blanchard and Gaĺı 2007) does not hold. This gives rise to Theorem 1:

Theorem 1 It is not possible to completely stabilize both inflation and the output gap with

the adjustment of a single policy instrument when both credit and natural rate shocks are

present.

Proof : See Appendix D.

5In particular, in the benchmark model (3.1) would be the micro-founded loss function when a Pigouvian
tax is in place to undo the steady state distortion associated with monopolistic competition; see, e.g.,
Woodford (2003). The optimal weight on the output gap would satisfy µ = γζ

ε , where γζ is the slope of
the Phillips Curve and ε is the elasticity of substitution across varieties of retail goods. For conventional
calibrations, this weight would be quite low.

6 In our four equation model, a micro-founded loss function would be more complicated due to the two
types of households, and would depend on arbitrary welfare weights on each. Rather than deriving such a
loss function, we choose to focus on a policy-relevant loss function like (3.1) and consider a variety of different
values of µ.
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Although the formal proof of Theorem 1 is more involved, the intuition is straightforward.

In the benchmark three equation model with no credit shocks, setting rst = rft would be

consistent with xt = Et xt+1 = Et πt+1 = 0 in the IS curve, (2.1), which would also be

consistent with πt = xt = Et πt+1 = 0 in the Phillips Curve, (2.2). In other words, the global

minimum of the loss function can be achieved by setting the short term interest rate equal to

the natural rate, which would also be equivalent to implementing a strict inflation target of

πt = 0.7 With credit shocks and z 6= 0, in contrast, setting rst = rft would entail fluctuations

in both πt and xt. This result obtains because credit shocks appear in the Phillips curve as

well as the IS curve. Via similar logic, were the short term rate exogenously fixed, it would

not be possible to endogenously adjust qet so as to implement πt = xt = 0 either.

Given the impossibility result of Theorem 1, the central bank should use both the short

term rate and its long bond portfolio as policy instruments. Doing so, it is in principle

possible to achieve the global minimum of the loss function with zero inflation and a zero

output gap. The optimal policy is described in Proposition 1.

Proposition 1 With both instruments available, optimal policy for any µ entails setting

rst = rft and qet = − b̄FI

b̄cb
θt. This policy results in πt = xt = 0.

The proof of Proposition 1 is simple. Setting qet = − b̄FI

b̄cb
θt causes the θt and qet terms

to drop out from both the IS and Phillips curves. Then the model is isomorphic to the

standard three equation model, and consequently setting rst = rft stabilizes both inflation

and the output gap in response to shocks to the natural rate of interest. The implication of

Proposition 1 is that QE-type policies in principle ought to be used to offset credit market

shocks all the time, not only when conventional policy is constrained by the ZLB. While

somewhat counter to conventional wisdom, this implication is rather intuitive in our model

7Note that we do not concern ourselves with issues of equilibrium determinacy. It is well-known that
interest rate pegs are inconsistent with a determinate rational expectations equilibrium (e.g. Sargent and
Wallace 1975). An interest rate rule with a sufficiently strong reaction to an endogenous variable, e.g.

rst = rft +φππt with φπ > 1, would be consistent with rst = rft and πt = xt = 0 being the unique equilibrium
outcome.
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– QE-type policies work similarly to exogenous credit market disturbances, and hence can

be deployed to offset them, leaving room for the short term policy rate to counter the sticky

price distortion as in the standard three equation model.

3.2 Optimal QE at the ZLB

Although QE type policies should always be used to offset credit market disturbances in

our model, they only became popular when short term interest rates were pushed to the

ZLB in the wake of the Financial Crisis and ensuing Great Recession at the end of the first

decade of the 2000s. In this section, we study how QE policies might be used to mitigate

the consequences of a binding ZLB.

We approximate the effects of a binding ZLB in our linearized model following Eggertsson

and Woodford (2003) and Christiano, Eichenbaum and Rebelo (2011). Suppose that a central

bank has been following the jointly optimal policy described in Proposition 1. But then in

period t, suppose the natural rate of interest falls below zero, so that rst = 0. Suppose that it

will stay there in each subsequent period with probability α ∈ [0, 1), where this probability

is invariant over time. The expected duration of the ZLB is therefore 1/(1−α). This means

that interest rate policy can be characterized as follows:

rst = 0 (3.2)

Et rst+1 = Et rft+1 with probability 1− α (3.3)

Et rst+1 = 0 with probability α (3.4)

To solve for the equilibrium, we must in addition specify the path of the central bank’s long

bond portfolio.
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3.2.1 QE Only Stabilizing Credit Shocks

As a first step, we suppose that the central bank adjusts its long bond portfolio to offset

credit market disturbances regardless of whether the short term interest rate is stuck at the

ZLB. This means that qet = − b̄FI

b̄cb
θt as in Proposition 1. We later study alternative policy

rules in which the long bond portfolio also reacts to natural rate shocks when the short term

interest rate is stuck at zero in Section 3.2.2.

We solve for the policy functions assuming the short rate is stuck at zero and QE policies

are managed as described above. This gives rise to Lemma 1.

Lemma 1 When the short rate is constrained for 1/(1 − α) periods in expectation and the

central bank’s long bond portfolio obeys qet = − b̄FI

b̄cb
θt, the equilibrium dynamics of inflation

and the output gap are not impacted by credit shocks and xt = ω1r
f
t and πt = ω2r

f
t , where ω1

and ω2 are functions of underlying structural parameters.

Proof : See Appendix D.

An important and novel implication of Lemma 1 is that the ZLB need not pose a problem

for credit shocks – adjusting QE policies exactly as a central bank would absent a ZLB

completely stabilizes the gap and inflation. The same is not true, however, for shocks to the

natural rate of interest.

Focus on the parameter space where8

ω1 > 0, ω2 > 0. (3.5)

Whereas absent a ZLB constraint the optimal policy would completely stabilize both inflation

and the output gap, at the ZLB both inflation and the gap fall in response to a negative

8As noted in Carlstrom, Fuerst and Paustian (2014), a caveat here is that for sufficiently large α, the
signs of ω1 and ω2 can flip from positive to negative (see, e.g., (D.14)-(D.15) in Appendix D). Where this
perverse sign flip occurs depends on the values of other parameters, such as the slope of the Phillips Curve,
γζ. We restrict attention to values of α consistent with ω1 and ω2 being positive. An alternative experiment
would be to make the duration of the ZLB deterministic rather than stochastic. There would be no sign flip
at some sufficiently long duration, but the analytic expressions for ω1 and ω2 would be significantly more
complicated.
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shock to the natural rate. The inability to lower the policy rate leaves policy too tight

relative to what is optimal, resulting in a contraction in aggregate demand. These effects

are more marked the larger is α (i.e. the longer is the expected duration of the ZLB).

3.2.2 QE: an Imperfect Substitute for Conventional Policy

The more interesting and policy-relevant question is whether, and to what extent, QE can

be an effective substitute for conventional monetary policy during periods in which the short

term interest rate is constrained by zero. This was the original motivation for the use of QE

in countries like Japan and the US when policy rates moved to the ZLB.

Lemma 2 When the short rate is constrained for 1/(1 − α) periods in expectation and the

central bank’s long bond portfolio obeys qet = τrft − b̄FI

b̄cb
θt, the equilibrium dynamics of infla-

tion and the output gap are characterized by xt = ω̂1r
f
t and πt = ω̂2r

f
t , where:

ω̂1 = ω1 + d1τ (3.6)

ω̂2 = ω2 + d2τ (3.7)

ω1 and ω2 are identical to the values in Lemma 1.

Proof : See Appendix D.

In Lemma 2, in addition to reacting optimally to credit shocks, the central bank’s long

bond portfolio adjusts to changes in the natural rate of interest via the parameter τ . The

resulting policy functions for the output gap and inflation are given in (3.6)-(3.7).

We focus on values of τ < 0, which means the central bank provides positive stimulus

in the face of a decline in the natural rate of interest. We also focus on the region of the

parameter space where, in addition to ω1 and ω2 being positive, d1 and d2 are positive. Most

standard calibrations of the underlying parameters place the economy in this region of the

parameter space. Hence, larger (in absolute value) values of τ result in smaller declines in
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both the output gap and inflation in response to a natural rate shock (i.e. ω̂1 and ω̂2 are less

positive). For sufficiently large values of τ , the signs of ω̂1 or ω̂2 could flip from positive to

negative.

Next, for a central bank following a QE rule such as the one described in Lemma 2, we

characterize the optimal value of the parameter τ in Proposition 2:

Proposition 2 If the short rate is constrained for 1/(1 − α) periods in expectation, the

central bank’s long bond portfolio obeys qet = τrft − b̄FI

b̄cb
θt, and the central bank’s objective is

to minimize (3.1), then the optimal τ is:

τ ∗ = −
(
µd1ω1 + d2ω2

µd2
1 + d2

2

)
(3.8)

Proof : See Appendix D.

Under our maintained assumptions concerning the parameter space, all relevant parame-

ters in (3.8) are positive, so that the optimal τ ∗ < 0. Figure 5 plots responses of the output

gap and inflation to a natural rate shock when τ is chosen optimally for different values of µ,

the relative weight on fluctuations in the output gap. The solid black line shows responses

when τ = 0 for point of comparison. When the central bank places no weight on the output

gap (i.e. µ = 0), inflation is completely stabilized, the output gap increases quite markedly,

and the central bank increases the size of its long bond portfolio by a sizeable amount. When

virtually all weight is placed on the gap (µ = 100), in contrast, inflation declines, the gap is

completely stabilized, and the increase in the value of the long bond portfolio is much more

modest. The case of equal weight on inflation and the gap (shown in pink) is quite close to

the case of nearly all weight being on the gap in the loss function.

The results described in Figure 5 suggest that quantitative easing can be an effective,

albeit imperfect, substitute for conventional policy in response to natural rate shocks at the

ZLB. For example, in the case of equal relative weights (µ = 1), the output gap essentially

does not react to the natural rate shock and inflation falls by about two-thirds of a percent
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Figure 5: IRFs to Natural Rate Shock at the ZLB, Endogenous QE, Optimal τ ,
Different µ
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Notes: Black solid lines: IRFs to a one hundred basis point shock to the natural rate of interest in the
four equation model when the short term interest rate is constrained by the ZLB for 1/(1 − α) periods in
expectation, where α = 3/4, and τ = 0 so that there is no endogenous QE to the natural rate shock. The
dashed lines plot responses with the optimally chosen τ for different welfare weights on the output gap,
µ. The output gap is expressed in percentage points, while the responses of inflation and is in annualized
percentage points. Blue dashed lines: IRFs to the same-sized natural rate shock in the baseline three equation
NK model.

given optimal QE policy. In comparison, with no endogenous QE at the ZLB, the output

gap would decline by nearly a full percentage point and inflation would fall by about three

times as much. Endogenous QE therefore entails a sizeable welfare improvement over doing

nothing at the ZLB. This will be true regardless of the value of µ.

We close this section by plotting the optimal τ as a function of µ. This is shown in

Figure 6. The optimal τ is always negative, but is increasing in the relative weight on the

output gap. That is, for a central bank concerned solely with stabilizing inflation, it is
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Figure 6: Optimal τ As a Function of µ
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Notes: This figure plots the optimal τ , i.e. (3.8), as a function of µ, the welfare weight on the output gap.

optimal to adjust the long bond portfolio quite strongly in response to natural rate shocks.

For a central bank more concerned with gap stabilization, the optimal QE response remains

sizeable but is nevertheless quite a bit smaller than for values of µ close to zero. The

optimal values of τ are very similar for values of µ ≥ 0.5. To our knowledge, we are the

first to discuss how QE should be implemented differently when central banks place different

weights on their dual mandate.

3.3 Optimal Policy without QE

Next, consider an operating framework similar to the one prevailing in the US prior to the

Great Recession in which the central bank uses the short term interest rate as its sole policy

instrument. This subsection studies the optimal adjustment of the short term rate in this

scenario.
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Lemma 3 Suppose qet = 0 and the central bank obeys the policy rule rst = rft + ηθt for all

t. Then, in equilibrium, the responses of the gap and inflation to credit shocks will be given

by xt = ϕ̂1θt and πt = ϕ̂2θt, where:

ϕ̂1 = ϕ1 + a1η (3.9)

ϕ̂2 = ϕ2 + a2η (3.10)

Proof : See Appendix D.

A policy rule such as the one described in Lemma 3 completely stabilizes the output

gap and inflation in response to natural rate shocks. This is not true conditional on credit

shocks, where in general it is impossible to choose η such that ϕ̂1 = ϕ̂2 = 0. Suppose that

the central bank wishes to choose η so as to minimize the welfare loss. The optimal η is

given in Proposition 3:

Proposition 3 Suppose qet = 0 and the central bank obeys the policy rule rst = rft + ηθt for

all t. If the central bank’s objective is to minimize (3.1), then the optimal η is:

η∗ = −
(
µϕ1a1 + ϕ2a2

µa2
1 + a2

2

)
(3.11)

Proof : See Appendix D.

In general, the optimal value of η could be positive or negative, depending on the welfare

weight on the gap, µ, as well as other parameters of the model. Figure 7 plots the responses

of the output gap and inflation to a credit shock when η is chosen optimally as a function

of different values of µ, taking our baseline calibration of other parameters. The solid black

line shows responses for η = 0 for point of comparison.

When there is no weight placed on the output gap, (shown with the blue dashed lines

corresponding to µ = 0), the central bank raises the short term interest rate in response

to a positive credit shock (i.e. η∗ > 0). This completely stabilizes inflation but results
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Figure 7: IRFs to Credit Shock, Optimal η, Different µ
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Notes: IRFs to a one percentage point credit shock in the four equation model. qet = 0, while rst = rft +ηθt.
The output gap is expressed in percentage points, while the responses of inflation and is in annualized
percentage points. The black solid line corresponds to η = 0. The dashed lines choose η optimally given
different welfare weights, µ.

in a sizeable increase in the output gap. In contrast, if the relative weight on the output

gap is large (µ = 100, shown in the red dashed lines), the central bank optimally cuts the

policy rate in response to the credit shock (i.e. η∗ < 0). This stabilizes the output gap

but results in a significant decline in inflation. For equal weights on the output gap and

inflation (µ = 1, depicted via pink dashed lines), the optimal responses are not so different

from the no response case – the policy rate decreases slightly, but the output gap rises and

the inflation rate falls.

An interesting result from Figure 7 is that the sign of the optimal policy rate response

to a credit shock depends on the relative weight placed on the output gap. A central bank
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Figure 8: Optimal η As a Function of µ
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Notes: This figure plots the optimal η, i.e., as a function of µ, the welfare weight
on the output gap.

mostly concerned with stabilizing output ought to cut the policy rate in the face of a positive

credit shock, whereas it should raise the policy rate if it is mostly concerned with stabilizing

inflation. Figure 8 plots the optimal value of η as a function of µ. Consistent with what is

observed in Figure 7, the optimal η is positive when µ is very small and turns negative as µ

gets bigger, crossing zero at around µ = 0.6. For central banks facing a dual mandate, this

tradeoff between stabilizing inflation or the output gap can be eliminated if they can deploy

QE.
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4 Conclusion

In this paper, we developed a four equation New Keynesian model with credit shocks, fi-

nancial intermediation, short and long term debt, and a channel for central bank long bond

holdings to be economically relevant. The model inherits the tractability and elegance of

the benchmark three equation New Keynesian model. It mainly differs in that credit shocks

appear as wedges in both the IS and Phillips curves. In addition to a rule for the short term

policy rate, the fourth equation in the model is a rule for QE.

The model allows us to address the consequences of credit market disturbances as well as

the effects of large scale asset purchases. We produce several analytical results concerning

monetary policy design. The presence of credit market frictions breaks the Divine Coinci-

dence, meaning it is not possible to completely stabilize inflation and the output gap with

just one policy instrument. Optimal monetary policy entails adjusting the short term inter-

est rate to match fluctuations in the natural rate of interest, but manipulating the central

bank’s long bond portfolio so as to neutralize credit shocks. When it is not possible to ad-

just the short term interest (for example, because of a binding ZLB), credit market shocks

need not result in amplified fluctuations if the central bank adjusts its long bond portfolio

as it would in normal times. In response to natural rate shocks, adjustment of the central

bank’s long bond portfolio can serve as a highly effective, albeit imperfect, substitute for

conventional policy.
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A The Full Non-Linear Model

This appendix describes the full set of non-linear equilibrium conditions of the model.
The optimality condition for retail firms may be re-written in stationary terms by defining

p∗,t = P∗,t/Pt, x1,t = X1,t/P
ε
t , and x2,t = X2,t/P

ε−1
t :

p∗,t =
ε

ε− 1

x1,t

x2,t

(A.1)

x1,t = pm,tYt + φEt Λt,t+1Πε
t+1x1,t+1 (A.2)

x2,t = Yt + φEt Λt,t+1Πε−1
t x2,t+1 (A.3)

The aggregate inflation rate evolves according to:

1 = (1− φ)p1−ε
∗,t + φΠε−1

t (A.4)

Price dispersion evolves according to:

vpt = (1− φ)p−ε∗,t + φΠε
tv
p
t−1 (A.5)

Define lowercase variables as real values of nominal bonds, i.e. bt = Bt/Pt. The balance
sheet condition of the FI may be written:

Qt

(
bFIt − κΠ−1

t bFIt−1

)
+ ret = st +XFI (A.6)

Note that cbFIt = bFIt − κΠ−1
t bFIt−1. The leverage constraint of the FI may be written:

Qtb
FI
t ≥ ΘtX

FI (A.7)

The central bank’s balance sheet can be written:

Qtb
cb
t = ret (A.8)

Similarly, the market-clearing condition for long term bonds in real terms is:

bt = bFIt + bcbt (A.9)

The auxiliary QEt variable is just the real value of the central bank’s long bond portfolio:

QEt = Qtb
cb
t (A.10)

Under our assumption on the transfer from parent to child, the consumption of the child
may be written:

Cb,t = Qtbt (A.11)

At and Θt obey stationary AR(1) processes, where the non-stochastic steady state value
of productivity is normalized to unity and Θ denotes the non-stochastic steady state value
of leverage.
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lnAt = ρA lnAt−1 + sAεA,t (A.12)

ln Θt = (1− ρθ) ln Θ + ρθ ln Θt−1 + sθεθ,t (A.13)

To close the model, it is necessary to specify rules for the policy rate and the central
bank’s bond holdings. For the analysis in Subsection 2.3, we assume that the policy rate is
set according to a Taylor rule and that the central bank’s bond holdings obey an exogenous
AR(1) process:

lnRs
t = (1− ρr) lnRs + (1− ρr)

[
φπ(ln Πt − ln Π) + φx(lnYt − lnY f

t )
]

+ srεr,t (A.14)

lnQEt = (1− ρq) lnQE + ρq lnQEt−1 + sqεq,t (A.15)

In (A.14)-(A.15), Rs and QE denote the non-stochastic steady state values of the policy rate
and the central bank’s balance sheet, respectively.

Y f
t can be found by solving the full system of equations assuming price flexibility (φ = 0)

where the credit shock is constant, i.e. Θt = Θ. Taking Y f
t as given, the output gap is then:

lnXt = lnYt − lnY f
t (A.16)

The optimality conditions for the parent household, (2.5)-(2.7); the definition of the re-
turn on the long bond, (2.12); the optimality conditions for the child, (2.13)-(2.14); the
optimality conditions for the FI, (2.18)-(2.19); the balance sheet condition for the FI and
the leverage constraint re-written in real terms, (A.6)-(A.7); the labor demand condition
for the wholesale firm, (2.26); the optimality condition for optimal price-setting for retail-
ers, re-written in stationary form, (A.1)-(A.3); the market-clearing condition and aggregate
production function, (2.29)-(2.30); the central bank’s policy rule for Rre

t , (A.14); the central
bank’s balance sheet and definition of the QEt variable, (A.8) and (A.10); the central bank’s
QE rule, (A.15); the consumption of the child, (A.11); the bond market-clearing condition,
(A.9); the evolution of inflation and price dispersion, (A.4)-(A.5); the definition of the out-
put gap, (A.16); and the exogenous processes (A.12)-(A.3) constitute twenty-seven variables,{
Lt, Ct, wt,Λt−1,t, R

s
t ,Πt,Λb,t−1,t, R

b
t , Qt, b

FI
t ,Θt, ret, st,Ωt, R

re
t , p∗,t, x1,t, x2,t, pm,t, Yt, At, Cb,t,

vpt , bcb,t, bt, QEt, Xt

}
in twenty-seven equations.

B Details of the Linearized Model

This Appendix provides details of the linearization of the non-linear model, the equilibrium
conditions for which are given in Appendix A. Where possible, lowercase variables denote log
deviations from steady state, e.g. θt = ln Θt − ln Θ. Where the corresponding level variable
is already lowercase, a “hat” is put atop the relevant variable to denote a log deviation from
steady state, e.g. p̂m,t = ln pm,t − ln pm. Variables without a time subscript denote non-
stochastic steady state values. The model is linearized about a steady state with zero trend
inflation (i.e. Π = 1) where the leverage constraint on intermediaries binds. The complete
list of linearized equilibrium conditions are as follows:
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χlt = −σct + ŵt (B.1)

λt−1,t = −σ(ct − ct−1) (B.2)

0 = Et λt,t+1 + rst − Et πt+1 (B.3)

λb,t−1,t = −σ(cb,t − cb,t−1) (B.4)

rbt =
κ

Rb
qt − qt−1 (B.5)

0 = Et λb,t,t+1 + Et rbt+1 − Et πt+1 (B.6)

qt + b̂FIt = θt (B.7)[
QbFI(1− κΠ−1)

]
qt +QbFI b̂FIt − κΠ−1QbFI b̂FIt−1 + κΠ−2QbFIπt + re · r̂et = s · ŝt (B.8)

Et λt,t+1 − Et πt+1 +
Rb

sp
Et rbt+1 −

Rs

sp
rst = ωt (B.9)

rret = rst (B.10)

p̂∗,t = x̂1,t − x̂2,t (B.11)

x̂1,t = (1− φβ)p̂m,t + (1− φβ)yt + φβ Et λt,t+1 + εφβ Et πt+1 + φβ Et x̂1,t+1 (B.12)

x̂2,t = (1− φβ)yt + φβ Et λt,t+1 + (ε− 1)φβ Et πt+1 + φβ Et x̂2,t+1 (B.13)

ŵt = p̂m,t + at (B.14)

(1− z)ct + zcb,t = yt (B.15)

v̂pt + yt = at + lt (B.16)

v̂pt = 0 (B.17)

πt =
1− φ
φ

p̂∗,t (B.18)

qt + b̂cbt = r̂et (B.19)

b̂t =
bFI

b
b̂FIt +

bcb

b
b̂cbt (B.20)

cb,t = qt + bt (B.21)

qet = ρqqet−1 + sqεq,t (B.22)

at = ρAat−1 + sAεA,t (B.23)

θt = ρθθt−1 + sθεθ,t (B.24)

rret = ρrr
re
t−1 + (1− ρr)

[
φππt + φxxt

]
+ srεr,t (B.25)

qet = r̂et (B.26)

xt = yt − yft (B.27)

This is twenty-seven equations in
{
lt, ct, ŵt, λt−1,t, r

s
t , πt, λb,t−1,t, r

b
t , qt, b̂

FI
t , θt, r̂et, ŝt, ωt, r

re
t ,
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p̂∗,t, x̂1,t, x̂2,t, p̂m,t, yt, at, cb,t, v̂
p
t , b̂

cb
t , b̂t, qet, xt

}
in twenty-seven variables.

The model can be reduced to the equations presented in Subsection 2.1 as follows. First,
(B.10) can be used to eliminate rret , so that the policy rule may be written as (2.33) in terms
of rst . Second, (B.11)-(B.13) can be combined with (B.18), which yields the textbook New

Keynesian Phillips Curve expressed as a function of marginal cost, where γ = (1−φ)(1−φβ)
φ

:

πt = γp̂m,t + β Et πt+1 (B.28)

Combining (B.1) with (B.14) and (B.16), making note of the fact that v̂pt = 0 around a
zero inflation steady state, yields:

p̂m,t = χyt − (1 + χ)at + σct (B.29)

Making use of (B.15) allows us to write this as:

p̂m,t =
χ(1− z) + σ

1− z
yt − (1 + χ)at −

σz

1− z
cb,t (B.30)

Combining (B.19)-(B.21) with (B.26) allows us to write:

cb,t =
bFI

b

(
qt + b̂FIt

)
+
bcb

b
qet (B.31)

Defining b̄FI = bFI/b and b̄cb = bcb/b (i.e. the fraction of total bonds held by financial
intermediaries and the central bank, respectively, in steady state), and making use of the
binding leverage constraint, (B.7), leaves:

cb,t = b̄FIθt + b̄FIqet (B.32)

Plugging (B.32) into (B.30) then gives:

p̂m,t =
χ(1− z) + σ

1− z
yt − (1 + χ)at −

σz

1− z
[
b̄FIθt + b̄cbqet

]
(B.33)

Define the hypothetical natural rate of output, yft , as the level of output consistent with
flexible prices and no credit market shocks. That is, yft is the level of output consistent with
p̂m,t = θt = qet = 0, or:

yft =
(1 + χ)(1− z)

χ(1− z) + σ
at (B.34)

But then, using (B.27), we can write marginal cost as:

p̂m,t =
χ(1− z) + σ

1− z
xt +

σz

1− z
[
b̄FIθt + b̄cbqet

]
(B.35)

Plugging (B.35) into (B.28), defining ζ = χ(1−z)+σ
1−z , yields (2.2).

To derive the IS equation, combine (B.2)-(B.4) with (B.6) and (B.16). Doing so yields:

yt = Et yt+1 −
1− z
σ

(rst − Et πt+1)− z

σ

(
Et rbt+1 − Et πt+1

)
(B.36)
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But from the Euler equation for the impatient household, along with the “full bailout”
assumption embodied in (B.21), we can write:

Et rbt+1 − Et πt+1 = σ [Et cb,t+1 − cb,t] = σ
[
b̄FI (Et θt+1 − θt) + b̄cb (Et qet+1 − qet)

]
(B.37)

Combining (B.37) with (B.36) yields:

yt = Et yt+1 −
1− z
σ

(rst − Et πt+1)− z
[
b̄FI (Et θt+1 − θt) + b̄cb (Et qet+1 − qet)

]
(B.38)

Note that an alternative, and arguably more intuitive, way to write the IS expression is
based on a simple algebraic manipulation of (B.36):

yt = Et yt+1 −
1

σ
(rst − Et πt+1)− z

σ

(
Et rbt+1 − rst

)
(B.39)

(B.39) is the familiar IS/Euler equation, written in terms of output rather than the output
gap, appended with a term equal to the long-short interest rate spread, i.e. Et rbt+1 − rst .

The natural rate of interest, rft , is defined as the real rate consistent with the IS equation
holding at the natural rate of output absent credit shocks. This implies that:

rft =
σ

1− z

(
Et yft+1 − y

f
t

)
(B.40)

Adding and subtracting yft and Et yft+1 from both sides of (B.38) and re-arranging yields

(2.1). Making use of (B.23), allows one to write an AR(1) process for rft as in (2.35), where

ρf = ρA and sf = σ(ρA−1)(1+χ)
χ(1−z)+σ .

rft =
σ(ρA − 1)

1− z
ŷft (B.41)

Computing the dynamics of xt, πt, and rst does not require keeping track of yt, y
f
t ,qt,

rbt , ωt, ŝt, b̂
FI
t , b̂t, b̂cb,t or cb,t. Given the solution for xt, πt, and rst , the dynamics of these

variables can be computed using the full system, (B.1)-(B.27).

C Model Calibration

The parameters of the model are calibrated as follows. The unit of time is a quarter. We
assume a zero trend inflation rate, so Π = 1. This implies that steady state price dispersion
is vp = 1 and the steady state relative reset price is p∗ = 1. We set ε = 11, which implies
a steady state price markup of ten percent. The discount factor of the parent is set to
β = 0.995, which together with Π = 1 implies a steady state short term rate of 200 basis
points at an annualized frequency (i.e. Rs = 1.005). We then target a steady state spread of
the return on the long bond over the short term bond of 200 basis points at an annualized
frequency, which implies βb = 0.99 and Rb = 1.01. We set κ = 1− 40−1, implying a ten year
duration of the long bond. Together with Rb, this implies a steady state value of Q.
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The coefficient of relative risk aversion, σ, and the inverse Frisch elasticity, χ, are both
set to 1. We target a steady state share of child consumption, z = Cb/Y , of one-third. We
then pick ψ to normalize steady state labor input to unity. Together, these parameters imply
a value of the steady state transfer from parent to child, Xb. We assume that the Calvo
parameter is φ = 0.75, implying a mean duration between price changes of one year. We
assume that the size of the central bank’s balance sheet is 10 percent of steady state output,
i.e. QE = 0.1 × Y . We pick a steady state target of the risk-weighted leverage ratio of
Θ = 5. This then implies a value of the steady state equity transfer from the parent to the
FI, XFI .

For the exercises in Subsection 2.3, we assume that the Taylor rule parameters are ρr =
0.8, φπ = 1.5, and φx = 0. The autoregressive parameter of the QE process, ρq, is also set to
0.8. The autoregressive parameters for productivity and the leverage shock are also both set
to 0.8. This implies, as shown below in Appendix B, that the AR parameter in the natural
rate process is also 0.8.

Table C.1: Parameter Values of Full Model

Parameter Value Description (Target)
β 0.995 Discount factor, parent
σ 1 Inverse elasticity of substitution
χ 1 Inverse Frisch elasticity
ψ 1.36 Labor disutility scaling parameter (target L = 1)
βb 0.99 Discount factor, child (target spread of 200 b.p. annualized)
Π 1 Steady state trend inflation
ε 11 Elasticity of substitution (target markup ten percent)
κ 1− 40−1 Coupon decay (target duration ten years)
φ 0.75 Calvo price
Θ 5 Steady state risk-weighted leverage
QE 0.1 Steady state central bank bond portfolio
z 0.33 Steady state child share of consumption
Xb 0.33 Steady state parent-child transfer
XFI 0.046 Steady state parent-FI equity transfer
ρr 0.8 Taylor rule smoothing
φπ 1.5 Taylor rule inflation
φx 0 Taylor rule gap
ρA 0.8 AR productivity
ρθ 0.8 AR leverage
ρq 0.8 AR QE

Note: this table lists the values of calibrated parameters for the exercises in Subsection 2.3.
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D Proofs

D.1 Theorem 1

The theorem can be proved by contradiction. Suppose first we can achieve xt = πt = 0 with
qet = 0 for all t. Then the Phillips curve may then be written as:

0 = − zγσ

1− z
b̄FIθt, (D.1)

which does not hold unless θt = 0, which contradicts the assumption. Hence, there is a
contradiction.

Second, suppose we can achieve xt = πt = Et xt+1 = Et πt+1 = 0 with rst = 0 for all t.
Then the Phillips Curve becomes

0 =
zγσ

1− z

[
b̄FIθt + b̄cbqet

]
. (D.2)

This requires

qet = − b̄
FI

b̄cb
θt. (D.3)

Note that (D.3) is identical to the QE rule given in Proposition 1. With this QE rule
and the policy rate fixed, the IS curve becomes

0 =
1− z
σ

rft − z
[
b̄FI (Et θt+1 − θt) + b̄cb (Et qet+1 − qet)

]
. (D.4)

Since Et θt+1 = ρθθt, this may be written:

qet − Et qet+1 =
b̄FI

b̄cb
(ρθ − 1) θt −

1− z
b̄cbzσ

rft . (D.5)

Now guess that QE evolves according to:

qet = α1θt + α2r
f
t , (D.6)

which implies:

Et qet+1 = α1ρθθt + α2ρfr
f
t . (D.7)

Now plug (D.6)-(D.7) into (D.5):

qet =

(
α1ρθ +

b̄FI

b̄cb
(ρθ − 1)

)
θt +

(
α2ρf −

1− z
b̄cbzσ

)
rft . (D.8)
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Now solve for α1 and α2:

α1 = − b̄
FI

b̄cb
(D.9)

α2 = − 1− z
b̄cbzσ(1− ρf )

. (D.10)

Therefore,

qet = − b̄
FI

b̄cb
θt −

1− z
b̄cbzσ(1− ρf )

rft . (D.11)

(D.3) and (D.11) are not the same unless z = 1 (which we have ruled out) or rft = 0 (which
contradicts the assumption). Hence, we have another contradiction. �

D.2 Lemma 1

First, suppose that qet = − b̄FI

b̄cb
θt. This means that the qet and θt terms drop out of both

(2.1) and (2.2). After imposing the ZLB on the short rate:

xt = Et xt+1 +
1− z
σ

(
Et πt+1 + rft

)
(D.12)

πt = γζxt + β Et πt+1 (D.13)

We then guess that xt = ω1r
f
t and πt = ω2r

f
t while the ZLB binds. After the ZLB lifts,

rst = rft and consequently xt = πt = 0. The ZLB lifts with probability 1 − α and remains
in place with probability α. Making use of the guess, along with the fact that xt = πt = 0
once the ZLB lifts and Et rft+1 = ρfr

f
t , results in a system of two equations in two unknowns,

which can be solved for as:

ω1 =
(1− z)(1− αβρf )

σ(1− αβρf )(1− αρf )− (1− z)γζαρf
(D.14)

ω2 =
(1− z)γζ

σ(1− αβρf )(1− αρf )− (1− z)γζαρf
(D.15)

�

D.3 Lemma 2

Instead, suppose that the QE rule is:

qet = τrft −
b̄FI

b̄cb
θt (D.16)

τ = 0 is a special case of the QE rule in Lemma 1, hence ω1 and ω2 are identical to
Lemma 1. With the rule in (D.16) imposing the ZLB, the key equations of the model are:
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xt = Et xt+1 +
1− z
σ

(
Et πt+1 + rft

)
− zb̄cbτ Et rft+1 + zb̄cbτrft (D.17)

πt = γζxt + β Et πt+1 −
γσzb̄cbτ

1− z
rft (D.18)

Guess that the policy functions are xt = ω̂1r
f
t and πt = ω̂2r

f
t . One obtains the result in

the text that these functions may be written as in (3.6)-(3.7). The expressions for d1 and d2

are:

d1 =
σzb̄cb

[
(1− αβρf )(1− αρf )− γαρf

]
σ(1− αβρf )(1− αρf )− (1− z)γζαρf

(D.19)

d2 =
σzγb̄cb

[
ζ(1− z)

[
(1− αβρf )(1− αρf )− γαρf

]
− σ(1− αβρf )(1− αρf ) + (1− z)γζαρf

]
(1− αβρf )(1− z)

[
σ(1− αβρf )(1− αρf )− (1− z)γζαρf

]
(D.20)

�

D.4 Proposition 2

Applying results in Lemma 2, the objective function (3.1) becomes

L = (µω̂2
1 + ω̂2

2)(rft )2. (D.21)

Next,

µω̂2
1 + ω̂2

2 = µ(ω1 + d1τ)2 + (ω2 + d2τ)2

= µω2
1 + ω2

2 + 2(µω1d1 + ω2d2)τ + (µd2
1 + d2

2)τ 2

Take the first order derivative

∂(µω̂2
1 + ω̂2

2)

∂τ
= 2(µω1d1 + ω2d2) + 2(µd2

1 + d2
2)τ = 0 (D.22)

The minimum is achieved at (3.8).�

D.5 Lemma 3

Suppose qet = 0 at all times. The IS and Phillips curves in this scenario may be written as:

xt = Et xt+1 −
1− z
σ

(
rst − Et πt+1 − rft

)
− zb̄FI (Et θt+1 − θt) (D.23)

πt = γζxt −
zγσ

1− z
b̄FIθt + β Et πt+1 (D.24)

Given the linearity in the model, it will be possible and optimal to offset natural rate
shocks via adjusting the short term rate one-for-one with the natural rate of interest. Suppose
that the policy rule implemented by the central bank is therefore:
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rst = rft + ηθt (D.25)

With the policy rate adjusting one-to-one to fluctuations in the natural rate, neither the
output gap nor inflation will react to natural rate shocks. Guess, therefore, that the policy
functions mapping credit shocks into inflation and the output gap are given by: xt = ϕ̂1θt
and πt = ϕ̂2θt. The expressions for ϕ̂1 and ϕ̂2 are as in Lemma 3, where:

ϕ1 =
σzb̄FI

[
(1− βρθ)(1− ρθ)− ρθγ

]
σ(1− βρθ)(1− ρθ)− (1− z)ρθγζ

(D.26)

a1 = − (1− z)(1− βρθ)
σ(1− βρθ)(1− ρθ)− (1− z)ρθγζ

(D.27)

ϕ2 =
σzγζb̄FI

[
(1− βρθ)(1− ρθ)− ρθγ

]
(1− βρθ)

[
σ(1− βρθ)(1− ρθ)− (1− z)ρθγζ

] − σzγb̄FI

(1− z)(1− βρθ)
(D.28)

a2 = − (1− z)γζ

σ(1− βρθ)(1− ρθ)− (1− z)ρθγζ
(D.29)

�

D.6 Proposition 3

Given results in Lemma 3, the objective function (3.1) becomes:

L = (µϕ̂2
1 + ϕ̂2

2)θ2
t . (D.30)

Next:

µϕ̂2
1 + ϕ̂2

2 = µ(ϕ1 + a1η)2 + (ϕ2 + a2η)2

= µϕ2
1 + ϕ2

2 + 2(µϕ1a1 + ϕ2a2)η + (µa2
1 + a2

2)η2

Take the first order derivative

∂(µϕ̂2
1 + ϕ̂2

2)

∂η
= 2(µϕ1a1 + ϕ2a2) + 2(µa2

1 + a2
2)η (D.31)

The minimum is achieved at (3.11).�
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