Virtual Seminar on Climate Economics
Federal Reserve Bank of San Francisco

Organizing Committee:
Glenn Rudebusch (Federal Reserve Bank of San Francisco)
Michael Bauer (University of Hamburg)
Stephie Fried (Arizona State University)
Óscar Jordà (Federal Reserve Bank of San Francisco)
Toan Phan (Federal Reserve Bank of Richmond)
On the dependence of investor’s probability of default on climate transition scenarios

Stefano Battiston (UZH, UNIVE), Irene Monasterolo (WU)

Virtual Seminar on Climate Economics, 28 Jan. 2021
Section 1

Background and motivation
Climate change: a new type of financial risk

- Central banks and financial regulators are increasingly concerned about **climate-related financial risks** (Carney 2015, FSB 2020):
 - **physical** risk: emissions concentration affects hazards and losses
 - **transition** risk: change in climate policy, regulation, technology affect firms’ performance based on energy technology

- Financial supervisors worry about the impact of a **disorderly transition** on **financial stability** (NGFS 2019, FED 2020, etc)
 - Late/sudden introduction of climate policies whose impacts cannot be fully anticipated by investors

- Several central banks and financial regulators joined the Network for Greening the Financial System (NGFS):
 - Guidelines on **climate stress test** scenarios (NGFS 2020)
 - In action: some central banks developed climate stress tests (Dutch Central Bank 2019, Banque de France 2020).
Their concerns are grounded in research results:

- Dietz ea (2016): climate value at risk (VaR) of global financial assets is 1.8 percent along a business-as-usual emissions path (USD2.5 trn), much of risk in the tail.

- Battiston ea (2017)’s Climate stress test: investors are exposed to activities (Climate Policy Relevant Sectors-CPRS) that can face losses and become stranded assets in a disorderly transition:
 - 43-45 percent of equity holdings’ portfolios of pension funds and investment funds; banks most exposed to fossil and utility via loans.
 - Risk can be amplified by reverberation in the network of interconnected financial actors, creating conditions for systemic risk.

Why risk? Investors have large exposures to CPRS

- Classification of financial assets’ transition risk is provided by **Climate Policy Relevant Sectors (CPRS)**, (Battiston ea. 2017): Fossil fuel, Utility, Energy intensive, Housing, Transport, Agriculture

- CPRS overcome key limitations of approaches based only on emissions by considering firms’ energy technology mix and policy sensitivity, to operationalize the notion of **stranded assets**

![Diagram showing equity exposure of various banks]
CPRS is applied by several financial supervisors

- **European Commission** JRC study of EU Taxonomy financial impact (EU equity and bonds market, this figure), 2019
- **EIOPA** Financial Stability Report 2019
- **European Central Bank** (2019)’s Climate change and financial stability (Financial Stability Review 2019)
- **EBA** Risk assessment of the EU banking system, Dec. 2020
- **National Bank of Austria**, Financial Stability Report 2020

Source: Alessi et al. (2019) financial impact assessment of the EU Taxonomy
Large direct/indirect exposures may trigger systemic risk

Value at Risk (5% significance) on equity holdings of 20 most affected EU banks under scenario of green (brown) investment strategy. Dark/light colors: first/second round losses. Source: Battiston *et al.* (2017). A climate stress test of the financial system. *Nature Climate Change*

1st round (top): brown bank incurs more losses.
Adding 2nd round (bottom) polarizes distribution of losses.
Knowledge gaps for supervisory activities

- Better understanding is needed of how climate transition risk affects financial assets and investors’ financial stability.
- In particular, we need to understand how sensitive are investor’s risk metrics (Probability of default (PD) and Expected Shortfall (ES)) to the probability of occurrence of disorderly scenarios (the risky ones).
- This is crucial for climate financial risk supervision and risk management strategies (incl. relevant scenarios for climate stress testing). But it is still missing in the literature.
Section 2

Contribution of the paper
Climate change brings about a new type of financial risk that standard approaches to risk management are not adequate to handle.

With analytical and computational work, we study:

- **Valuation adjustment of bonds** (corp.) based on available knowledge on climate transition scenarios (carbon pricing).
- How PD of bonds depends on the interplay between energy technology profile of firm activities (high/low-carbon), climate transition scenarios, considering deep uncertainty on probabilities.
- Sensitivity of investor PD and ES to climate-adjusted bond PD and to the probability of occurrence of disorderly scenarios (including NGFS ones).

We consider how PD varies across all spaces of portfolio configurations (high/low-carbon assets) that include also equilibrium portfolio.
This paper is about climate transition risk

- Many economic papers consider climate risk only in terms of GHG emissions and/or disasters (i.e. backward-looking data on temperature, emissions, losses)
- However, **climate transition risk** is relevant for finance even before climate physical risk: time horizon (5-10y)
 - Relevant variables: energy technology profile of activity, policy design
- Assessing climate transition risk is more challenging:
 - **Forward-looking**: historical info. is not a good proxy of future risks
 - Many firms issuing green bonds have multiple activities (low/high-carbon)
- Thus, we need to work with transition scenarios (e.g. those produced by Integrated Assessment Models (IAMs))
Economic intuition

- If markets price efficiently climate risk (high carbon firms are more risky) and anticipate policy impact, transition risk not financially relevant. However, no clear signals.

- **Friction:** deep uncertainty on climate transition scenarios, their probability of occurrence and their impact, means that agents are not able/willing to internalise information on transition risk.

- Issuers can vary share of investments in low/high carbon activities, investors can vary portfolio composition across issuers. However, forward-looking risk make full hedging not possible.
Main results

- The PD and ES of a leveraged investor increase non-linearly with the impact of the climate policy shock on revenues of corp. bond issuer (in low/high-carbon activities).
- The PD of a leveraged investor is sensitive to small changes in adjusted bond PD, to the probability of occurrence of disorderly climate transition scenarios.
- Thus, assumptions on the sets of climate transition scenarios and their probability of occurrence play a main role for investors’ risk management.
Take home messages for financial supervisors involved in climate financial risk management (NGFS, ECB’s Climate Change center, NY FED’s Supervision Climate Committee):

1. Investors’ PD can be highly sensitive to choice and probability of occurrence of climate transition scenarios.
2. Thus, in order to limit the underestimation of losses due to climate transition risk, **climate stress test** exercises should allow for wide enough sets of scenarios.
3. Our model provides an **operative framework** to assess the dependence of investors’ PD on the choice of climate scenarios, applicable with several types of climate economic and macroeconomic models.
Section 3

The model
Scenarios

Definitions

1. **Set of Climate Policy Scenarios** P corresponding to GHG emission reduction targets (e.g. 2degC) across regions ($B = \text{Base, no policy}$):

 $$\text{ClimPolScen} = \{B, P_1, ..., P_l, ..., P_{n_{\text{Scen}}}\}$$

2. **Set of economic output trajectories for each sector S, country C, scenario P, estimated with given climate economic model M**:

 $$\text{EconScen} = \{Y_{1,1,1,1}, ..., Y_{C,S,P,M},...\}$$

3. **Set of forward-looking (disorderly) Transition Scenarios**:

 $$\text{TranScen} = \{BP_1, ..., BP, ..., BP_{n_{\text{Scen}}}\}$$

4. **Set of Climate Policy Shocks**: differences on economic output for S, C, from B to P, estimated with model M

 $$\text{PolShock} = \{..., \frac{Y_{C,S,P,M} - Y_{C,S,B,M}}{Y_{C,S,B,M}}, ...\}$$
Example of orderly and disorderly scenarios

Emissions

Representative Scenarios

- **Gt emissions / year**
 - **2020**
 - **2030**
 - **2040**
 - **2050**
 - **2060**
 - **2070**

Mapping of the representative scenarios to the Framework

- **High**
 - **Disorderly**
 - **Too little, too late**
- **Low**
 - **Orderly**
 - **Hot house world**

Source: IIASA NGFS Climate Scenarios Database, using marker models.

I. Monasterolo, WU

Dependence of investor’s risk on climate transition scenarios
Impact of a disorderly transition on firm's revenues

- Decompose net shock on revenues of issuer j (with u_j, s: relative shock on S; w_j, s: share of j’s revenues from S):

$$u_j(BP) = \frac{\text{rev}_j(P) - \text{rev}_j(B)}{\text{rev}_j(B)} = \sum_s \left(\frac{\text{rev}_{j,s}(P) - \text{rev}_{j,s}(B)}{\text{rev}_{j,s}(B)} \cdot \frac{\text{rev}_{j,s}(B)}{\text{rev}_j(B)} \right)$$

$$= \sum_s \left(u_{j,s}(BP) \cdot w_{j,s}(B) \right), \quad (1)$$

- Focus on CPRS: Primary Energy Fossil ($PrFos$), Electricity Fossil ($ElFos$), Renewable ($ElRen$):

$$u_j(BP) = u_{j,PrFos}(BP) \cdot w_{j,PrFos}(B) +$$

$$u_{j,ElFos}(BP) \cdot w_{j,ElFos}(B) + u_{j,ElRen}(BP) \cdot w_{j,ElRen}(B). \quad (2)$$

- Impact of Transition Scenario BP on revenues u_j, result in shock $\xi_j(BP)$ on j’s assets (χ_j^0 denotes elasticity):

$$\xi_j(BP) = \chi_j^0 \cdot u_j(BP) \quad (3)$$
Impact of a disorderly transition on firm’s revenues

Remarks

- Firm is considered as a portfolio of (low/high carbon) activities
- In a disorderly transition, high-carbon (low-carbon) activities will incur losses (gains) from carbon-stranded assets
- Shock on j’s revenues, $u_{j,S}(BP)$, can be approximated as a shock on output of the corresponding economic activities S (e.g. ELFos) in the economy provided by climate economic models (e.g. IAM)
- Which transition scenarios will occur is uncertain and endogenous because it depends on governments’ climate policies and investors’ expectations and reactions (climate sentiments, Dunz et al., 2020)
Securities: corporate bonds

Basic facts for zero-coupon defaultable bonds

- Risky (defaultable) bond of issuer \(j \), issued at \(t=0 \) with maturity \(T \)
- Bond value at \(T \), with \(R \) bond Recovery Rate (i.e. % of notional recovered upon default); LGD Loss-Given-Default (i.e. % loss)

\[
v_j(T) = \begin{cases} R_j = (1 - \text{LGD}_j) & \text{if } j \text{ defaults (with prob. } q_j) \\ 1 & \text{else (with prob. } 1 - q_j) \end{cases}
\]

- Expected value of bond’s payoff is given by:

\[
\mathbb{E}[v_j] = (1 - q_j) + q_j R_j = 1 - q_j (1 - R_j) = 1 - q_j \text{LGD}_j
\]

- Bond price \(v_j^* \): bond discounted expected value, with \(y_f \) risk-free rate. Price defines implicitly bond yield \(y_j \) (risk neutral measure) as:

\[
v_j^* = e^{-y_f T} \mathbb{E}[v_j] = e^{-y_f T} (1 - q_j \text{LGD}_j) = e^{-y_j T}
\]

- Bond spread defined as: \(s_j = y_j - y_f \), with \(e^{-s_j T} = 1 - q_j \text{LGD}_j \)

- Useful fact: for small \(s_j \), spread = expected loss

\[
s_j \approx \frac{1}{T} q_j (1 - R_j) = \frac{1}{T} q_j \text{LGD}_j
\]
Corporate default

Shocks and default condition

- Issuer j balance sheet: $A_j(t_0), A_j(T)$ asset, $t_0 = 0$ issue time, T maturity; $L_j(T)$ liability.

- Default condition: structural model, discrete time (Merton 1974)

 $$A_j(T) = A_j(t_0)(1 + \eta_j(T)) < L_j(T)$$

 - $\eta_j(T) \in \mathbb{R}$: idiosyncratic shock (e.g. firm j productivity),
 - $\phi(\eta_1, ..., \eta_j, \eta_n)$ joint probability distribution of issuers (defaults possibly correlated)

- We add climate policy shock $\xi_j(BP)$ on j’s assets (“jump” up/down)

- New default condition reads:

 $$A_j(T) = A_j(0)(1 + \eta_j(T) + \xi_j(BP)) < L_j(T)$$

 $$\iff \eta_j(T) \leq \theta_j(BP) = L_j(T)/A_j(0) - 1 - \xi_j(T, BP)$$

- $\theta_j(BP)$ default threshold under scenario BP
- $\xi_j(BP)$ positive/negative: $\xi_j(BP) > -1$, correlated across j
Section 4

Results
Definition and Proposition

- Climate Spread Δs_j is change in spread s_j, conditional to transition scenario BP:
 \[
 \Delta s_j = s_j(q_j(P)) - s_j(q_j(B)).
 \]

- Conditional to transition scenario:
 1. Climate spread reads:
 \[
 \Delta s_j(BP) = s_j(BP) - s_j(B) = \frac{1}{T} \left(\log(v_j^*(BP)) - \log(v_j^*(B)) \right) - \left(y_f(BP) - y_f(B) \right)
 \]
 2. $\Delta s_j(BP)$ increases (decreases) with magnitude of policy shock on revenues $|u_j(BP)|$, if $u_j(BP) < 0$ ($u_j(BP) > 0$);
 3. For small shock $u_j(BP) << 1$:
 \[
 \Delta s_j(BP) \approx - \frac{1}{T} \chi_j \left(u_j,PrFos \ w_j,PrFos + u_j,ElFos \ w_j,ElFos + u_j,ElRen \ w_j,ElRen \right)
 \]
Investor and Portfolio Value-at-Risk

- Leveraged investor: \(\Lambda = A/E \)
- Investor \(i \)'s portfolio value \(z_i \) and portfolio rate of return \(\pi_i \) at \(T \), with \(W_{ij} \) amount (numeraire) of \(j \)'s bond purchased by \(i \):
 \[
 z_i(T) = \sum_j W_{ij} v_j(T), \quad \pi_i = \frac{z_i(T) - z_i(t_0)}{z_i(t_0)}
 \]

- **Climate VaR** is the Value-at-Risk of the portfolio of investor \(i \), conditional to Transition Scenario \(BP \) with: \(\pi \) portfolio return, \(\psi_P(\pi) \) distribution of returns conditional to the Climate Policy Shock, and \(\alpha \) is the confidence level:
 \[
 \int_{-1}^{\text{ClimateVaR}_\alpha(BP)} \psi_{BP}(\pi) \, d\pi = \alpha \quad (4)
 \]

- **Climate ES** is the average of the losses above the Climate VaR:
 \[
 \text{ES}(BP) = \frac{-1}{\alpha} \int_0^{\alpha} \text{ClimateVaR}_{\alpha'}(BP) \, d\alpha' \quad (5)
 \]
Adjustment in investor’s ES and PD

Propositions
We prove several propositions on how investor’s ES and PD are adjusted conditional to a transition scenario (Appendix). In short:

- ES(BP) increases with adjustment on bond default probability q(BP)
- Adjustment of PD of a leveraged investor can be derived analytically (numerically) in absence (presence) of correlation among bonds
- Under some assumptions of homogeneity, ES and PD decrease with share of climate-aligned revenues (i.e. renewable energy activities)
How losses on bond portfolio depend on q and ρ

- Probability distribution (y-axis) of losses (x-axis, in %) on example portfolio of 100 bonds, equally weighted.
- Climate ES (vertical bars) move right both with bond default probability q and with default correlation ρ.
Consider a possible discrepancy between estimated \((q, \rho)\) (magenta) and actual (blue, red).

- Large difference in Climate ES; even larger in PD.
Considering adverse scenario mitigate impact of uncertainty on ES and PD

- Adverse scenario occurs with prob. p_A. Effect of discrepancy between estimated (q, p_A)(magenta) and actual (red) is smaller if investor consider multiple scenarios, but still large.
Conclusion

- We develop a model to compute:
 - the valuation adjustment of a corporate bond, depending both on climate transition risk scenarios and on companies’ shares of revenues across low/high-carbon activities, and
 - the corresponding adjustments in an investor’s PD and ES

- Implications for climate financial risk management: **climate stress tests** should allow for a wide enough set of scenarios to limit the underestimation of losses

- The model provides an **operative framework** applicable with several types of climate and macroeconomic models

- Ongoing follow-up work: i) model calibration, ii) application to compound pandemic and **climate physical risk**.
Comments, suggestions, critiques:
irene.monasterolo@wu.ac.at

If you use any portion of this presentation, please cite as:
Battiston, S., Monasterolo, I. (2020). On the dependence of investor’s probability of default on climate transition scenarios. Available at SSRN (abstract n=3743647)
Appendix
A note on transition scenarios

- Climate economic models provide scenarios of emissions concentration to achieve 1.5/2°C world
- NGFS uses process-based IAM with granular representation of energy technologies (fossil, renewables)
- **Challenge**: IAM mitigation scenarios do not account for the role of finance in achieving the same scenarios, nor for financial complexity

This has major implications on the design of **disorderly** scenarios:
- Investments assumed to be available without frictions (no credit constraints)
- Trajectories don’t reflect the impact of mitigation scenarios on financial investment decisions

Thus, considering more adverse scenarios on the IAM’s range is important to avoid underestimate **financial risk associated** (Battiston ea. 2020)
Issuer’s default probability: definition

Definition

- **Default probability** q_j of issuer j under Transition Scenario BP, with $\phi_{BP}(\eta_j)$ probability distribution of idiosyncratic shock η_j, η_{inf} lower bound of distribution support:

$$q_j(BP) = \mathcal{P}(\eta_j < \theta_j(BP)) = \int_{\eta_{\text{inf}}}^{\theta_j(BP)} \phi_{BP}(\eta_j) \, d\eta_j$$

Definition. Default prob. adjustment $\Delta(BP)$

- Intuition. Frequent small productivity shocks across time and firms occur in a similar way with/without climate policy shock. Then, the policy shock shifts the probability distribution of productivity shocks and thus j default probability.
- Idiosyncratic shocks are independent from policy shock
- Result. Default probability adjustment under transition scenario:

$$\Delta q_j(BP) = q_j(P) - q_j(B) = \int_{\theta_j(B)}^{\theta_j(P)} \phi(\eta_j) \, d\eta_j, \text{ with } \theta_j(P) = \theta_j(B) - \xi_j(P)$$
Issuer’s default probability: proposition

Proposition. Default prob. adjustment $\Delta q_j(BP)$

- Assuming
 - idiosyncratic shocks are **independent** from policy shock
 - policy shock on asset proportional to shock on revenues via elasticity $\xi_j = \chi^0_j u_j(BP)$
- Then, the **adjustment** in default probability $\Delta q_j(BP)$
 - increases with shock magnitude $|u_j(BP)|$ if $u_j^{BP} < 0$, and decreases vice versa
 - Under approximation of small policy shock, $\Delta q_j(BP)$ can be linearized to be proportional to shock on CPRS revenues:

$$\Delta q_j(BP) \approx -\chi_j \left(u_j,\PrFos(BP) w_j,\PrFos + u_j,\ElFos(BP) w_j,\ElFos + u_j,\ElRen(BP) w_j,\ElRen \right).$$
Definition and Proposition

The adjustment in the value of the issuer’s bond conditional to the Transition Scenario BP, $\Delta v_j^*(BP)$, is defined as the change in the discounted expected value of the bond, resulting from the Transition Scenario BP on issuer j’s revenues $u_j(BP)$:

$$\Delta v_j^*(BP) = v_j^*(BP) - v_j^*(B)$$ (6)

The following properties hold:

(i) The expression of the adjustment of the value of the bond Δv_j^*, conditional to BP reads:

$$\Delta v_j^*(BP) = v_j^*(q_j(BP)) - v_j^*(q_j(B)) = -e^{-y_f T} \Delta q_j(BP) \text{LGD}_j$$ (7)
Proposition

Consider a leveraged investor with an equally weighted portfolio, of zero-coupon bonds, with issuers having independent defaults occurring with the same probability \(q\) and with the loss-given-default LGD. The following properties hold:

(i) The investor’s PD, \(P(m, \Lambda, q)\) can be expressed in terms of the binomial distribution \(B(m^*, m, q)\):

\[
P(m, \Lambda, q) = P(X \geq m^*) = 1 - B(m^*, m, q)
\]

(ii) The investor’s PD is non decreasing in: a) the investor’s leverage \(\Lambda\); b) the loss-given-default LGD; c) the bond default probability \(q\).
Proposition: Example effect of climate-aligned investment

Consider:

- an equally weighted portfolio of zero-coupon bonds with the same PD, q, and the same loss-given-default LGD
- all issuers j have the same shares of revenues across the three sectors Primary Energy Fossil, Electricity Fossil, Electricity Renewable, $w_j, Pr_{Fos}(B), w_j, El_{Fos}(B), w_j, El_{Ren}(B)$
- transition scenario BP such that $u_j, Pr_{Fos}(BP) < 0$, $u_j, El_{Fos}(BP) < 0$, $u_j, El_{Ren}(BP) > 0$ and the net shock on revenues $u_j(BP) < 0$ for all j

Then,

(i) Then, $ES(BP)$ decreases with the share of revenues $w_j, El_{Ren}(B)$

(ii) Then, $PD(BP)$ decreases with the share of revenues $w_j, El_{Ren}(B)$