Quantifying the Forces Leading to the Collapse of GDP after the Financial Crisis

Robert E. Hall
Hoover Institution and Department of Economics
Stanford University

Structural and Cyclical Elements in Macroeconomics

Federal Reserve Bank of San Francisco
16 March 2012
A key question today

Why does a decline in product demand raise unemployment?
A KEY QUESTION TODAY

Why does a decline in product demand raise unemployment?

Moot in normal times because under a wide class of objective functions, the central bank will fully offset shifts in product demand, leaving unemployment constant.
Why does a decline in product demand raise unemployment?

Moot in normal times because under a wide class of objective functions, the central bank will fully offset shifts in product demand, leaving unemployment constant.

The exception occurs when the interest rate is pinned at the zero lower bound.
A KEY QUESTION TODAY

Why does a decline in product demand raise unemployment?

Moot in normal times because under a wide class of objective functions, the central bank will fully offset shifts in product demand, leaving unemployment constant.

The exception occurs when the interest rate is pinned at the zero lower bound.

In this setting, the real interest rate is minus the rate of inflation.
RESPONSE TO SHOCK WITH STANDARD DMP LABOR MARKET
Extended DMP model

Unemployment depends negatively on the rate of inflation.
Unemployment depends negatively on the rate of inflation. Higher inflation raises employers’ incentives to recruit new workers.
Extended DMP model

Unemployment depends negatively on the rate of inflation. Higher inflation raises employers’ incentives to recruit new workers.

The rest of the talk is about the mechanism underlying the negative dependence.
Equilibration with a Negative Dependence of DMP Unemployment on Inflation
Basic conclusion

If the DMP curve is steeper than the product-market curve, a drop in product demand raises inflation.
Basic conclusion

If the DMP curve is steeper than the product-market curve, a drop in product demand raises inflation.

Evidence is reasonably conclusive that a drop in product demand lowers inflation.
Basic conclusion

If the DMP curve is steeper than the product-market curve, a drop in product demand raises inflation.

Evidence is reasonably conclusive that a drop in product demand lowers inflation.

Thus, to explain the observation that inflation falls when unemployment rises by introducing a dependence of DMP unemployment on the inflation rate, the DMP labor-market curve must be flatter than the product-market curve.
Getting inflation into the wage-determination function

Walsh (2003): Sticky prices result in variations in market power, which enters the DMP model because higher market power lowers the revenue contribution of a worker.
Walsh (2003): Sticky prices result in variations in market power, which enters the DMP model because higher market power lowers the revenue contribution of a worker.

This mechanism seems be falling out of favor in New Keynesian thinking.
Walsh (2003): Sticky prices result in variations in market
power, which enters the DMP model because higher market
power lowers the revenue contribution of a worker.

This mechanism seems be falling out of favor in New
Keynesian thinking.

V. Ramey (2010) questions empirical evidence of
countercyclical variations in markups.

Newly-hired workers inherit a nominal wage from most recent nominal bargain.

Newly-hired workers inherit a nominal wage from most recent nominal bargain.

Inflation erodes the real wage and raises J, lowering unemployment.

Newly-hired workers inherit a nominal wage from most recent nominal bargain.

Inflation erodes the real wage and raises J, lowering unemployment.

Equilibrium sticky wage as in Hall (2005): J needs to remain in bargaining set between bargains, but this is not a hard condition to satisfy.

Newly-hired workers inherit a nominal wage from most recent nominal bargain.

Inflation erodes the real wage and raises J, lowering unemployment.

Equilibrium sticky wage as in Hall (2005): J needs to remain in bargaining set between bargains, but this is not a hard condition to satisfy.

No departure from strict rationality.
The U.S. economy in October 2008 and October 2009, while at the zero lower bound.

- **October 2008:**
 - Inflation: 1.9%
 - Unemployment: 6.6%

- **October 2009:**
 - Inflation: 1.5%
 - Unemployment: 10.1%

There is a 3.5 percentage point shift in the unemployment rate.
Inflation and Unemployment after the Crisis

Inflation rate, percent per year

Unemployment rate, percent

2008:4 through 2011:4

2007:1 through 2008:3

4.2 percentage point increase

0.63 percentage point decrease

0.0
0.5
1.0
1.5
2.0
2.5
3.0

0 2 4 6 8 10 12

Unemployment rate, percent

Inflation rate, percent per year
THE U.S. ECONOMY IN DECEMBER 2007 AND DECEMBER 2009

Inflation rate
Product market
October 2008: Inflation 1.9%, Unemployment 6.6%

Unemployment rate
Labor market
October 2009: Inflation 1.5%, Unemployment 10.1%
TWO TYPES OF HOUSEHOLDS

$$\beta_P \left(\frac{c_{P,t+1}}{c_{P,t}} \right)^{-1/\sigma} (1 + r_t) = 1$$
TWO TYPES OF HOUSEHOLDS

\[
\beta_P \left(\frac{c_{P,t+1}}{c_{P,t}} \right)^{-1/\sigma} (1 + r_t) = 1
\]

\[
\beta_I \left(\frac{c_{I,t+1}}{c_{I,t}} \right)^{-1/\sigma} (1 + r_{I,t}) = 1
\]
Two types of households

\[\beta_P \left(\frac{c_{P,t+1}}{c_{P,t}} \right)^{-1/\sigma} (1 + r_t) = 1 \]

\[\beta_I \left(\frac{c_{I,t+1}}{c_{I,t}} \right)^{-1/\sigma} (1 + r_{I,t}) = 1 \]

\[r_{I,t} = r_t + \rho [v_t - b_t]^+ \]
Two types of households

\[\beta_P \left(\frac{c_{P,t+1}}{c_{P,t}} \right)^{-1/\sigma} (1 + r_t) = 1 \]

\[\beta_I \left(\frac{c_{I,t+1}}{c_{I,t}} \right)^{-1/\sigma} (1 + r_{I,t}) = 1 \]

\[r_{I,t} = r_t + \rho [v_t - b_t]^+ \]

\[c_{I,t} = w_{t-1} n_{t-1} - (1 + r_{t-1}) v_{t-1} - \frac{\rho}{2} ([v_{t-1} - b_{t-1}]^+)^2 + v_t. \]
Financial friction

\[f_t = \frac{1}{q_t} \left[\alpha \frac{y_t}{k_t} + (1 - \delta)q_{t+1} \right] - 1 - r_t. \]
Borrowing by impatien
t household

\[v_t = (1 + r_{t-1})v_{t-1} + \frac{\rho}{2} ([v_t - b_t]^+)^2 - w_{t-1}n_{t-1} + c_{I,t}. \]
Borrowing by impatient households

\[v_t = (1 + r_{t-1})v_{t-1} + \frac{\rho}{2} ([v_t - b_t]^+)^2 - w_{t-1}n_{t-1} + c_{I,t}. \]

\[b_t = v_t - x_t \]

.
Taylor rule

\[r_{N,t} = [\tau_0 + \tau_\pi \pi_t - \tau_u u_t]^+ \]
Investment/GDP Ratio and Comprehensive Unemployment Rate, 2005 to 2022

Investment/GDP, left scale

Comprehensive unemployment rate, right scale
The Implied Values of the Financial Friction
Implied Values of the Tightening of the Borrowing Constraint as a Percent of Total Consumption
Model Solution with Financial Friction Only

Comprehensive unemployment rate

Actual and projected vs. Model solution with financial friction only
BURDEN OF DELEVERAGING AS A PERCENT OF CONSUMPTION