# Decade Averages of the Real Interest Rate on 1-Year Treasury Notes



NOTE: Slides are preliminary. Please visit Stanford.edu/~rehall for updated versions.

Product i = 1 is immediate delivery of the good with certainty, numeraire,  $p_1 = 1$ 

Product i = 1 is immediate delivery of the good with certainty, numeraire,  $p_1 = 1$ 

Risk-tolerant investors consume  $c_i$  of product i and the risk-averse  $c_i^\ast$ 

Product i = 1 is immediate delivery of the good with certainty, numeraire,  $p_1 = 1$ 

Risk-tolerant investors consume  $c_i$  of product i and the risk-averse  $c_i^\ast$ 

Risk-tolerant solve the problem

$$\max U(c_1, \dots, c_N) \text{ subject to } \sum_i p_i(c_i - \alpha y_i) = 0$$

Product i = 1 is immediate delivery of the good with certainty, numeraire,  $p_1 = 1$ 

Risk-tolerant investors consume  $c_i$  of product i and the risk-averse  $c_i^\ast$ 

Risk-tolerant solve the problem

$$\max U(c_1, \dots, c_N) \text{ subject to } \sum_i p_i(c_i - \alpha y_i) = 0$$

٠

Risk-averse similar with  $U^*$  and  $c_i^*$ 

#### HETEROGENEOUS PREFERENCES

Different curvature

#### HETEROGENEOUS PREFERENCES

Different curvature

Different beliefs about probabilities

#### HETEROGENEOUS PREFERENCES

Different curvature

Different beliefs about probabilities

Assume additively separable in states and times:

$$U(c_1,\ldots,c_N) = \sum_{i=1}^N \beta^{\tau(i)} \phi_i \frac{c_i^{1-\gamma}}{1-\gamma}$$

and

$$U^{*}(c_{1},\ldots,c_{N}) = \sum_{i=1}^{N} \beta^{\tau(i)} \phi_{i}^{*} \frac{(c_{i}^{*})^{1-\gamma^{*}}}{1-\gamma^{*}}$$

.

#### Physical environment



#### WITH RISK-TOLERANT BELIEFS



#### WITH RISK-AVERSE BELIEFS



#### RESTRICTIONS ON BELIEFS

Both types believe in zero growth of the endowment, to avoid growth effects:

$$\pi_-\Delta_- = \pi_+\Delta_+$$

and similarly for risk-averse

#### **RESTRICTIONS ON BELIEFS**

Both types believe in zero growth of the endowment, to avoid growth effects:

$$\pi_{-}\Delta_{-} = \pi_{+}\Delta_{+}$$

and similarly for risk-averse

With non-negativity included, the space of beliefs has one dimension:

$$0 \le \pi_{-} \le \frac{\Delta_{+}}{\Delta_{+} + \Delta_{-}}$$

and

$$\pi_+ = \frac{\Delta_-}{\Delta_+} \pi_-$$

٠

and similarly for  $\pi^*$ 

## Equilibrium

 $p_2, \ldots, p_N$  and  $x_1, \ldots, x_N$  such that

$$\beta^{\tau(i)}\phi_{i}c_{i}^{-\gamma} = p_{i}c_{1}^{-\gamma},$$

$$c_{i} = \alpha y_{i} - x_{i},$$

$$\beta^{\tau(i)}\phi_{i}^{*}(c_{i}^{*})^{-\gamma^{*}} = p_{i}(c_{1}^{*})^{-\gamma^{*}},$$

$$c_{i}^{*} = (1 - \alpha)y_{i} + x_{i},$$

and

$$\sum_{i} p_i x_i = 0$$

•

## **ONE-PERIOD DEBT**

$$P = p_2 + p_3 + p_4$$

### **ONE-PERIOD DEBT**

$$P = p_2 + p_3 + p_4$$

Interest rate:

$$r = P^{-1} - 1$$

•

# PARAMETER VALUES OF THE PHYSICAL ENVIRONMENT

|              |                                                     | Base value | Alternative<br>value |
|--------------|-----------------------------------------------------|------------|----------------------|
| $\Delta_+$   | Increment to endowment                              | 0.04       |                      |
| $\Delta_{-}$ | Decrement to endowment                              | 0.60       |                      |
| ω            | Share of endowment owned by risk-tolerant consumers | 0.75       | 0.25                 |

# PARAMETER VALUES OF PREFERENCES INCLUDING BELIEFS ABOUT PROBABILITIES

| Parameter |                                                              | Risk to    | lerant               | Risk d     | Risk averse          |  |
|-----------|--------------------------------------------------------------|------------|----------------------|------------|----------------------|--|
|           |                                                              | Base value | Alternative<br>value | Base value | Alternative<br>value |  |
| γ         | Coefficient of relative risk aversion                        | 2.00       | 1.74                 | 2.00       | 2.30                 |  |
| π_        | Belief about probability of<br>bad decrement to<br>endowment | 0.0100     | 0.0071               | 0.0100     | 0.0140               |  |
| $\pi_+$   | Belief about probability of good increment to endowment      | 0.150      | 0.107                | 0.150      | 0.210                |  |

# LATENT PRICES WITH NO HETEROGENEITY AMONG INVESTORS

|                             | Endow-  | <b>T</b> 1 | Consun<br>endow   | nption/<br>vment | A-D      | Proba-    | SDF, p/π |
|-----------------------------|---------|------------|-------------------|------------------|----------|-----------|----------|
|                             | ment, y | Trade, x   | Risk-<br>tolerant | Risk-<br>averse  | price, p | bility, π |          |
| Initial                     | 1       | 0.0000     | 1.000             | 1.000            | 1        | 1         | 1        |
|                             | 0.4     | 0.000      | 1.000             | 1.000            | 0.058    | 0.010     | 5.81     |
| After one vear              | 1       | 0.000      | 1.000             | 1.000            | 0.781    | 0.840     | 0.93     |
|                             | 1.04    | 0.000      | 1.000             | 1.000            | 0.129    | 0.150     | 0.86     |
| Utility discount factor, β  |         | 0.930      |                   |                  |          |           |          |
| Expected consumption growth |         | 0.0000     | 0.0000            |                  |          |           |          |
| Price with certainty        |         | 0.968      |                   |                  |          |           |          |
| Annual interest             |         | 3.27       |                   |                  |          |           |          |
| Gross trade                 |         | 0.0000     |                   |                  |          |           |          |

## HETEROGENEITY IN RISK AVERSION

|                             | Endow-<br>ment, y |         | Consur<br>endov | nption/<br>vment  | A-D             | Proba-   | CDE (     |
|-----------------------------|-------------------|---------|-----------------|-------------------|-----------------|----------|-----------|
|                             |                   | ment, y | Trade, x        | Risk-<br>tolerant | Risk-<br>averse | price, p | bility, π |
| Initial                     | 1                 | -0.0004 | 1.000           | 0.999             | 1               | 1        | 1         |
| After one                   | 0.4               | 0.019   | 0.937           | 1.188             | 0.052           | 0.010    | 5.15      |
|                             | 1                 | 0.000   | 1.000           | 0.999             | 0.785           | 0.840    | 0.94      |
|                             | 1.04              | -0.002  | 1.003           | 0.991             | 0.130           | 0.150    | 0.87      |
| Utility discount factor, β  |                   | 0.935   |                 |                   |                 |          |           |
| Expected consumption growth |                   | 0.0001  | -0.0004         |                   |                 |          |           |
| Price with certainty        |                   | 0.967   |                 |                   |                 |          |           |
| Annual interest             |                   | 3.37    |                 |                   |                 |          |           |
| Gross trade                 |                   | 0.0042  |                 |                   |                 |          |           |

# Heterogeneity in Beliefs about Probabilities

|                             | Endow-  | <i>T</i> 1 | Consun<br>endow   | nption/<br>vment | A-D      | Proba-        | SDF, p/π |
|-----------------------------|---------|------------|-------------------|------------------|----------|---------------|----------|
|                             | ment, y | Trade, x   | Risk-<br>tolerant | Risk-<br>averse  | price, p | bility, $\pi$ |          |
| Initial                     | 1       | 0.0002     | 1.000             | 1.001            | 1        | 1             | 1        |
|                             | 0.4     | 0.027      | 0.909             | 1.274            | 0.051    | 0.007         | 7.12     |
| After one vear              | 1       | -0.012     | 1.016             | 0.952            | 0.807    | 0.886         | 0.91     |
| your                        | 1.04    | 0.071      | 0.909             | 1.274            | 0.113    | 0.107         | 1.05     |
| Utility discount factor, β  |         | 0.941      |                   |                  |          |               |          |
| Expected consumption growth |         | 0.0040     | 0.0232            |                  |          |               |          |
| Price with certainty        |         | 0.971      |                   |                  |          |               |          |
| Annual interest             |         | 3.03       |                   |                  |          |               |          |
| Gross trade                 |         | 0.0260     |                   |                  |          |               |          |

THE INTEREST RATE AS A FUNCTION OF THE ENDOWMENT SHARE OF RISK-TOLERANT INVESTORS, BOTH TYPES OF HETEROGENEITY



GROSS TRADE AS A FUNCTION OF THE ENDOWMENT SHARE OF RISK-TOLERANT INVESTORS, BOTH TYPES OF HETEROGENEITY



## IMPORTANCE OF IMPROBABLE HIGHLY ADVERSE OUTCOMES

All results based on  $\Delta_{-} = 0.6$ , which implies that investors believe that every 100 or 50 years, the endowment drops by 60 percent

## Importance of improbable highly adverse outcomes

All results based on  $\Delta_{-} = 0.6$ , which implies that investors believe that every 100 or 50 years, the endowment drops by 60 percent

Volatility of this character is essential to the large effects on interest rates found here

## Importance of improbable highly adverse outcomes

All results based on  $\Delta_{-} = 0.6$ , which implies that investors believe that every 100 or 50 years, the endowment drops by 60 percent

Volatility of this character is essential to the large effects on interest rates found here

An extensive literature emphasizes the importance of large unfavorable events with low probabilities in explaining the equity premium

## Importance of improbable highly adverse outcomes

All results based on  $\Delta_{-} = 0.6$ , which implies that investors believe that every 100 or 50 years, the endowment drops by 60 percent

Volatility of this character is essential to the large effects on interest rates found here

An extensive literature emphasizes the importance of large unfavorable events with low probabilities in explaining the equity premium

Barro-Mollerus survey that literature and discuss the issue in connection with the demand of risk-averse investors for safe debt-type investments.

.

# Debt of U.S. Investors in 2015, in Trillions of Dollars and as Ratios to GDP

|                                                           | \$ trillions | Ratio to GDP |
|-----------------------------------------------------------|--------------|--------------|
| Federal government debt                                   | 15.2         | 0.85         |
| Federally guaranteed GSE debt<br>and guaranteed mortgages | 8.1          | 0.45         |
| State and local government debt                           | 3.0          | 0.17         |
| Non-financial business, bonds and loans                   | 12.8         | 0.71         |
| Non-guaranteed household mortgages                        | 1.4          | 0.08         |
| Other debt of households                                  | 4.7          | 0.26         |
| Total                                                     | 45.1         | 2.52         |

# EXAMPLES OF THE SCALE OF RISK-SPLITTING INSTITUTIONS

| Government |                                        |          |                             |                            |                      | Private                                |       |                                       |
|------------|----------------------------------------|----------|-----------------------------|----------------------------|----------------------|----------------------------------------|-------|---------------------------------------|
| Decade     | Consoli-<br>dated govern-<br>ment debt | GSE debt | GSE<br>guaran-<br>teed debt | Private<br>equity<br>funds | Securitiz-<br>ations | Non-<br>financial<br>corporate<br>debt | Repos | Non-<br>mortgage<br>household<br>debt |
| 1980s      | 0.469                                  | 0.061    | 0.091                       |                            | 0.012                | 0.163                                  | 0.103 | 0.186                                 |
| 1990s      | 0.611                                  | 0.101    | 0.204                       |                            | 0.086                | 0.211                                  | 0.166 | 0.204                                 |
| 2000s      | 0.574                                  | 0.203    | 0.293                       | 0.058                      | 0.233                | 0.238                                  | 0.237 | 0.239                                 |
| 2010s      | 0.936                                  | 0.126    | 0.347                       | 0.140                      | 0.109                | 0.275                                  | 0.221 | 0.251                                 |

# Scale of Risk-Splitting Institutions Relative to GDP



Countries that Absorb Risk by Holding Positive Amounts of Net Foreign Equity or by Borrowing from Foreign Lenders



# Countries that Shed Risk by Holding Negative Amounts of Net Foreign Equity or by Lending Positive Amounts to Foreign Borrowers



# RISK Absorption by the United States, 1970-2011



# RISK SHEDDING BY CHINA, 1981-2011



FRACTIONS OF WORLD GDP, 1970-2011, FOR COUNTRIES WITH POSITIVE, NEAR ZERO, OR NEGATIVE NET FOREIGN EQUITY AND DEBT AS FRACTIONS OF THEIR GDP



# SHARE OF GLOBALLY INTEGRATED GDP ARISING FROM RISK-ABSORBING COUNTRIES

