Discussion of "A Model of Secular Stagnation: Theory and Quantitative Evaluation"

by Gauti Eggertsson, Neil Mehrotra and Jacob Robbins

Andrea Ferrero

University of Oxford

Federal Reserve Bank of San Francisco Conference on **"Do Changes in the Economic Landscape Require a New Policy Framework?"**

San Francisco, 21 April 2017

• Central tenet of Secular Stagnation hypothesis (Summers, 2014):

Low (possibly negative) equilibrium real interest rate

• Central tenet of Secular Stagnation hypothesis (Summers, 2014):

Low (possibly negative) equilibrium real interest rate

• Data: Negative measured real interest rates

Source: Carvalho, Ferrero, Nechio (2016)

• Central tenet of Secular Stagnation hypothesis (Summers, 2014):

Low (possibly negative) equilibrium real interest rate

- Data: Negative measured real interest rates
 - Here to stay

Source: Summers (2015)

 $\bullet\,$ Central tenet of Secular Stagnation hypothesis (Summers, 2014):

Low (possibly negative) equilibrium real interest rate

- Data: Negative measured real interest rates
 - Here to stay
- Need a model to construct equilibrium real interest rate
 - And think about "real interest rate gap"
- EMR provide a model of Secular Stagnation

• Central tenet of Secular Stagnation hypothesis (Summers, 2014):

Low (possibly negative) equilibrium real interest rate

- Data: Negative measured real interest rates
 - Here to stay
- Need a model to construct equilibrium real interest rate
 - And think about "real interest rate gap"
- EMR provide a model of Secular Stagnation
- A new framework for policy analysis

Outline of Discussion

O Brief summary and key findings

② Decline of natural rate

Olicy implications

luction

Summary

• First part: Three-period OLG model with borrowing constraint

$$\max_{C_{t}^{y}, C_{t+1}^{m}, C_{t+2}^{o}} \mathbb{E}_{t}(\ln C_{t}^{y} + \beta \ln C_{t+1}^{m} + \beta^{2} \ln C_{t+2}^{o})$$

subject to

$$C_{t}^{y} = B_{t}^{y} = D_{t}/(1+r_{t})$$

$$C_{t+1}^{m} = Y_{t+1}^{m} - (1+r_{t})B_{t}^{y} + B_{t+1}^{m}$$

$$C_{t+2}^{o} = Y_{t+2}^{o} - (1+r_{t+1})B_{t+1}^{m}$$

	luction
Introdu	

• First part: Three-period OLG model with borrowing constraint

$$\max_{C_{t}^{y}, C_{t+1}^{m}, C_{t+2}^{o}} \mathbb{E}_{t}(\ln C_{t}^{y} + \beta \ln C_{t+1}^{m} + \beta^{2} \ln C_{t+2}^{o})$$

subject to

$$C_t^y = B_t^y = D_t / (1 + r_t)$$

$$C_{t+1}^m = Y_{t+1}^m - (1 + r_t)B_t^y + B_{t+1}^m$$

$$C_{t+2}^o = Y_{t+2}^o - (1 + r_{t+1})B_{t+1}^m$$

• Population growth: $N_t = (1 + g_t)N_{t-1} \Rightarrow (1 + g_t)B_t^{\gamma} = -B_t^m$

	~			

• First part: Three-period OLG model with borrowing constraint

$$\max_{C_{t}^{y}, C_{t+1}^{m}, C_{t+2}^{o}} \mathbb{E}_{t}(\ln C_{t}^{y} + \beta \ln C_{t+1}^{m} + \beta^{2} \ln C_{t+2}^{o})$$

subject to

$$C_t^y = B_t^y = D_t / (1 + r_t)$$

$$C_{t+1}^m = Y_{t+1}^m - (1 + r_t)B_t^y + B_{t+1}^m$$

$$C_{t+2}^o = Y_{t+2}^o - (1 + r_{t+1})B_{t+1}^m$$

• Population growth: $N_t = (1 + g_t)N_{t-1} \Rightarrow (1 + g_t)B_t^y = -B_t^m$

• Productivity growth: $Y_t = A_t \bar{Y} \Rightarrow D_t = A_{t+1} \bar{D}$

Summary	Level & Decomposition	

- First part: Three-period OLG model with borrowing constraint
- Get expression for equilibrium real interest rate

$$r_{t} = \frac{(1+\beta)(1+g_{t})(1+x_{t})\tilde{D}_{t} + (1+x_{t+1})\tilde{Y}_{t+1}^{o}}{\beta(\tilde{Y}_{t}^{m} - \tilde{D}_{t-1})} - 1$$

where $x_t \equiv A_t / A_{t-1} - 1$

- Three factors that can push down real interest rate
 - **1** g_t : Demographics (Carvalho, Ferrero and Nechio, 2016)
 - 2 x_t: Productivity (Gordon, 2015)
 - If \tilde{D}_t : Deleveraging (Eggertsson and Krugman, 2012)

ntroduction Sun	nmary
-----------------	-------

• First part: Three-period OLG model with borrowing constraint

Figure 1: Equilibrium in the asset market

• Temporary deleveraging shock \Rightarrow Permanently low real rate

• First part: Three-period OLG model with borrowing constraint

Figure 1: Equilibrium in the asset market

• Nice narrative:

- ▶ Real rate already on decline due to trends in demographics and productivity
- Becomes permanently negative because of crisis (deleveraging)

- Second part: Quantitative life-cycle model with
 - Age-specific income profile
 - Mortality risk
 - Bequest motive
 - Capital and CES production
 - Exogenous process for relative price of capital
 - Distortionary labor taxes
- Calibrated to US data in 2015: Two options
 - ▶ No output gap (Stock and Watson, 2012)
 - Large output gap (Hall, 2016)

- Second part: Quantitative life-cycle model
- Legitimate to consider 2015 observed real rate as natural real rate but
 - ▶ No output gap \implies Observed real interest rate = Natural rate
 - Need additional assumption economy is in steady state

- Second part: Quantitative life-cycle model
- Legitimate to consider 2015 observed real rate as natural real rate but
 - ▶ No output gap \implies Observed real interest rate = Natural rate
 - Need additional assumption economy is in steady state
- Results robust to alternative measures of output gap $\in (-15\%, 0)$?
 - Interesting that no deflation arises with large output gap

- Second part: Quantitative life-cycle model
- Legitimate to consider 2015 observed real rate as natural real rate but
 - ▶ No output gap \implies Observed real interest rate = Natural rate
 - Need additional assumption economy is in steady state
- Results robust to alternative measures of output gap $\in (-15\%, 0)$?
 - Interesting that no deflation arises with large output gap
- Paradox of wage flexibility (Galí and Monacelli, 2016)
 - ► Need more flexibility to generate more deflation and larger output gap

- Outline of Discussion
 - Brief summary and key findings

Occline of natural rate

Olicy implications

Level

- Very low level of r^* throughout sample (1970-2016)
 - ▶ Compare with estimates from Holston, Laubach and Williams (2016)

Level

- Very low level of r^* throughout sample (1970-2016)
 - Large real interest rate gap since early 1980s?

Source: Justiniano and Primiceri (2010)

What Explains a Falling r^* ?

Table 6: Decomposition of decline in natural rate of interest: 1970-2015

Forcing variable	Δ in r	% of total Δ
Total interest rate change	-4.02%	100%
Mortality rate	-1.82	43%
Total fertility rate	-1.84	43%
Productivity growth	-1.90	44%
Government debt (% of GDP)	+2.11	-49%
Labor share	52	12%
Relative price of investment goods	-0.44	10%
Change in debt limit	+.13	-3%

- Major role of demographics and productivity growth
- Government debt only factor that avoided much lower level

What Explains a Falling r^* ?

Table 6: Decomposition of decline in natural rate of interest: 1970-2015

Forcing variable	Δ in r	% of total Δ
Total interest rate change	-4.02%	100%
Mortality rate	-1.82	43%
Total fertility rate	-1.84	43%
Productivity growth	-1.90	44%
Government debt (% of GDP)	+2.11	-49%
Labor share	52	12%
Relative price of investment goods	-0.44	10%
Change in debt limit	+.13	-3%

• Some factors "disappear" from discussion

- How would have r* looked like without crisis?
- Role of increased inequality?
- ► Would be interesting to see counterfactuals with major driving forces

Demographics and the Natural Real Rate

- Carvalho, Ferrero and Nechio (2016) find similar role for demographics
 - Larger relative contribution of increase in life expectancy

Demographics and the Natural Real Rate

- Carvalho, Ferrero and Nechio (2016) find similar role for demographics
 - Larger relative contribution of increase in life expectancy
- Main difference: In EMR, fixed lifetime horizon but decrease in mortality risk
 - Cannot live more than 81 years
- Life expectancy currently at about 80 in most OECD countries
 - Increased over time and projected to keep increasing
 - Makes natural rate likely to keep falling

Demographics and the Natural Real Rate

- Carvalho, Ferrero and Nechio (2016) find similar role for demographics
 - Larger relative contribution of increase in life expectancy
- Main difference: In EMR, fixed lifetime horizon but decrease in mortality risk
 - Cannot live more than 81 years
- Life expectancy currently at about 80 in most OECD countries
 - Increased over time and projected to keep increasing
 - Makes natural rate likely to keep falling
- Also, empirical consumption profile much less hump-shaped than in EFR

- Outline of Discussion
 - Brief summary and key findings

② Decline of natural rate

Olicy implications

- Why is negative r^* a problem?
 - Zero lower bound
 - Bubbles and financial stability

- Why is negative r^* a problem?
 - Zero lower bound: Level of r^* puts lower bound on π^*
 - Bubbles and financial stability

- Why is negative r^* a problem?
 - Zero lower bound: Level of r^* puts lower bound on π^*
 - Bubbles and financial stability: Better raise r^* than increase π^*

- Why is negative r* a problem?
 - Zero lower bound: Level of r^* puts lower bound on π^*
 - Bubbles and financial stability: Better raise r^* than increase π^*
- Also, in this model, limited effects of forward guidance
 - What about quantitative easing?

- Why is negative r* a problem?
 - Zero lower bound: Level of r^* puts lower bound on π^*
 - Bubbles and financial stability: Better raise r^* than increase π^*
- Also, in this model, limited effects of forward guidance
 - What about quantitative easing?
- Implication: Expansionary fiscal policy
 - Debt/GDP from 118% to 215% raises r^* from -1.47% to +1%
 - But risk premia likely to rise

- Why is negative r* a problem?
 - Zero lower bound: Level of r^* puts lower bound on π^*
 - Bubbles and financial stability: Better raise r^* than increase π^*
- Also, in this model, limited effects of forward guidance
 - What about quantitative easing?
- Implication: Expansionary fiscal policy
 - Debt/GDP from 118% to 215% raises r^* from -1.47% to +1%
 - But risk premia likely to rise
- Other policies options are challenging
 - Hard to increase fertility rates and productivity growth
 - Probably don't want to increase mortality...

- Why is negative r* a problem?
 - Zero lower bound: Level of r^* puts lower bound on π^*
 - Bubbles and financial stability: Better raise r^* than increase π^*
- Also, in this model, limited effects of forward guidance
 - What about quantitative easing?
- Implication: Expansionary fiscal policy
 - Debt/GDP from 118% to 215% raises r^* from -1.47% to +1%
 - But risk premia likely to rise
- Similar conclusions in Carvalho, Ferrero and Nechio (2016)
 - Additional option: Raise retirement age
 - ▶ But need increase well beyond currently contemplated reforms (OECD, 2010)

Conclusions

- Very nice paper, definitely useful to think about current policy challenges
- Decline in natural real interest rate product of
 - Financial crisis
 - Interacting with long-term trends
- May still require some fine tuning on quantitative part
- If Secular Stagnation is relevant scenario
 - Limited options for monetary policy?
 - Shift to more activist fiscal policy?