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Abstract

We examine the hypothesis that the slowdown in productivity following the Great

Recession was in significant part an endogenous response to the contraction in demand

that induced the downturn. We first present some descriptive evidence in support of

our approach. We then augment a workhorse New Keynesian DSGE model with an

endogenous TFP mechanism that allows for both costly development and adoption

of new technologies. We estimate the model and use it to assess the sources of the

productivity slowdown. We find that a significant fraction of the post-Great Recession

fall in productivity was an endogenous phenomenon. The endogenous productivity

mechanism also helps account for the slowdown in productivity prior to the Great

Recession, though for this period shocks to the effectiveness of R&D expenditures are

critical. Overall, the results are consistent with the view that demand factors have

played a role in the slowdown of capacity growth since the onset of the recent crisis.

More generally, they provide insight into why recoveries from financial crises may be so

slow.
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1 Introduction

One of the great challenges for macroeconomists is explaining the slow recovery from major

financial crises (see, e.g. Reinhart and Rogoff (2009)). This phenomenon is only partly

accounted for by existing theories. A large literature has suggested that demand shortfalls

can account for slow growth following the financial crisis and Great Recession.1 The evidence

for this channel is certainly compelling: the deleveraging process was likely an important

cause of persistent reduced spending by borrowers as they saved to lower debt. Constraints

on macroeconomic policy likely also contributed to sluggish demand: the zero lower bound

on the nominal interest rate limited the ability of monetary policy to stimulate the economy

and the political fight over the national debt ceiling effectively removed fiscal policy as a

source of stimulus.

While these demand side factors have undoubtedly played a central role, it is unlikely

that they alone can account for the extraordinarily sluggish movement of the economy back

to the pre-crisis trend. This has led a number of authors to explore the contribution of

supply-side factors. Both Hall (2014) and Reifschneider et al. (2015) have argued that

the huge contraction in economic activity induced by the financial crisis in turn led to

an endogenous decline in capacity growth. Hall (2014) emphasizes how the collapse in

business investment during the recession brought about a non-trivial drop in the capital

stock. Reifschneider et al. (2015) emphasize not only this factor but also the sustained drop

in productivity. They make the case that the drop in productivity may be the result of

a decline in productivity-enhancing investments, and thus an endogenous response to the

recession.

Indeed, sustained drops in productivity appear to be a feature of major financial crises.

This has been the case for the U.S. and Europe in the wake of the Great Recession. The

same phenomenon holds broadly for financial crises in emerging markets: in a sample of

East Asian countries that experienced a financial crisis during the 1990s, Queralto (2015)

finds a sustained drop in labor productivity in each case to go along with the sustained

decline in output.

What accounts for reduced productivity growth following financial crises? There are two

candidate hypotheses: bad luck versus an endogenous response. Fernald (2014) makes a

compelling case for the bad luck hypothesis. As he emphasizes, the productivity slowdown

began prior to the Great Recession, raising questions on whether the crisis itself can be a

causal factor. Figure 1 illustrates the argument. The figure plots detrended total factor

1See, for example Christiano et al. (2015) for a taxonomy of possible explanations for the slow recovery.
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Figure 1: Detrended Capacity Adjusted TFP and Labor Productivity
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All series are log-linearly detrended. Labor productivity is GDP divided by hours worked (see Ap-

pendix A.1 for data sources). TFP is Utilization-Adjusted Total Factor Productivity (available at

http://www.frbsf.org/economic-research/total-factor-productivity-tfp/; see Fernald (2012) for details).

productivity, specifically Fernald’s utilization corrected measure, along with labor produc-

tivity. Both measures show a sustained decline relative to trend in the years after the Great

Recession, but the decline appears to begin around 2004-05.

There are several different theories of how the productivity slowdown could reflect an

endogenous response to the crisis. The one on which we focus involves endogenous growth

considerations.2 Specifically, to the extent that the crisis induced a large drop in expendi-

tures on research and development as well as technology adoption, the subsequent decline

in productivity could be an endogenous outcome. We provide evidence of a fall in R&D

and adoption expenditure during the Great Recession in Section 2. There was also a sharp

2An alternate approach stresses misallocation of productive inputs following a financial crisis. See for
example Garcia-Macia (2015) who emphasizes misallocation between tangible and intangible capital.
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decline in these expenditures during and after the 2001-2002 recession, which raises the

possibility that the productivity slowdown prior to the Great Recession was also in part a

response to cyclical factors. Overall, this evidence, together with descriptive evidence on

the cyclical behavior of technology diffusion that we present is consistent with endogenous

growth factors contributing to the productivity slowdown.

Motivated by the evidence in Section 2, we develop and estimate a macroeconomic model

modified to allow for endogenous technology via R&D and adoption. We then use the model

to address the following three issues: (i) how much of the recent productivity decline reflects

an endogenous response to the Great Recession; (ii) whether the mechanism can also account

for the productivity slowdown prior to the Great Recession; and (iii) more generally the

extent to which endogenous productivity can help account for business cycle persistence.

The endogenous productivity mechanism we develop is based on Comin and Gertler

(2006), which uses the approach to connect business cycles to growth. The Comin/Gertler

framework, in turn, is a variant of Romer (1990)’s expanding variety model of technolog-

ical change, modified to include an endogenous pace of technology adoption. We include

adoption to allow for a realistic period of diffusion of new technologies, and we allow for

endogenous adoption intensity to capture cyclical movements in productivity that may be

the product of cyclical adoption rates. To justify our formulation, in Section 2 we present

panel data evidence showing that the speed of technology diffusion strongly varies over the

cycle.

In addition to the literature cited above, there are several other papers related to our

analysis. Queralto (2015), Guerron-Quintana and Jinnai (2014) and Garcia-Macia (2013)

have appealed to endogenous growth considerations to explain the persistence of financial

crises. The paper most closely related to ours is Bianchi and Kung (2014), who first esti-

mated a macroeconomic model with endogenous growth using R&D data. In addition to

focusing on somewhat different issues, our analysis differs in the following ways: first, we

develop an explicit model of R&D and adoption with realistic lags which aids in both the

empirical identification and the interpretation of the mechanism; second, we use data on

business R&D expenditures produced by the NSF as opposed to the NIPA measure. The

former measure corresponds more closely to the model counterpart of R&D since unlike

the latter it excludes public expenditures on R&D and includes expenditures on software

development. As a consequence, it exhibits cyclical properties more in keeping with the

predictions of the theory. Third, we investigate quantitatively the ability of the model to

explain not only the post- but also the pre-crisis slowdown in U.S. productivity. Finally,

our solution method allows us to take account of a binding zero lower bound on monetary
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policy, which turns out to be an important factor propagating the endogenous decline in

productivity in the wake of the Great Recession.

The rest of the paper is organized as follows. Section 2 presents some evidence on the

cyclical behavior R&D and technology adoption. In addition, we present some new panel

data evidence on the speed of technology diffusion that suggests strong cyclical effects,

consistent with the approach we take in our model. Section 3 presents the model. Section

4 describes the econometric implementation and present the estimates. Section 5 analyzes

the extent to which the endogenous growth mechanism can account for the evolution of

productivity both before and after the Great Recession.

2 Evidence on R&D and the speed of technology diffusion

In this section, we present evidence on the cyclical behavior of R&D and various measures

of technology adoption. We are interested in exploring not only general cyclical patterns,

but also behavior during the last fifteen years, which is the main focus of our study. While

reasonably broad measures are available for R&D, the same is not true for adoption. Ac-

cordingly, for the latter we consider several different specific measures.

We begin with Figure 2 which plots expenses on R&D conducted by US corporations.

During the Great Recession, there was a sharp decline in R&D potentially consistent with

endogenous growth factors contributing to the productivity slowdown.3 There was also

a large decline in R&D expenditures following the 2001-2002 recession, which raises the

possibility that the productivity slowdown prior to the Great Recession was also in part a

response to cyclical factors.

The evidence on R&D is consistent with the general procylical behavior found in other

studies (see e.g. Comin and Gertler (2006)). Less however is known about the behavior

of adoption. We therefore resort to datasets that contain traditional measures of diffusion

from the productivity literature to explore the cyclicality of the speed of diffusion of new

technologies.4 The data we have available is a sample of 26 production technologies that

diffused at various times over the period 1947-2003 in the US (5) and the UK (21).5 We

3There is a long literature documenting the cyclicality of R&D expenditures (see Barlevy (2007), for a
summary). Barlevy (2007) presents evidence based on firm-level data on the importance of both sectoral
demand as well as firms’ financial conditions for the pro-cyclicality of R&D expenditures.

4See for example, Griliches (1957) and Mansfield (1961).
5The data on UK technologies comes from Davies (1979) and covers special presses, foils, wet suction

boxes, gibberellic acid, automatic size boxes, accelerated drying hoods, basic oxygen process, vacuum de-
gassing, vacuum melting, continuous casting, tunnel kilns, process control by computer, tufted carpets,
computer typesetting, photo-electrically controlled cutting, shuttleless looms, numerical control printing
presses, numerical control turning machines and numerical control turbines. The data for the five tech-
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Figure 2: R&D Expenditures by US Corporations, 1983-2013
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Log-linearly detrended data. Source: R&D Expenditure by US corporations (National Science Foundation).

Data are deflated by the GDP deflator and divided by the civilian population older than 16 (see Appendix

A.1 for data sources).
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use the data to estimate the effect of the business cycle on the speed of diffusion, after

controlling for the normal diffusion process.

Specifically, we denote by mit the fraction of potential adopters that have adopted a

specific technology i in t. The ratio of adopters to non-adopters rit is

rit = mit/(1−mit). (1)

The speed of diffusion is then the percentage change in rit :

Speedit = 4 ln(rit) (2)

As shown by Mansfield (1961), if the diffusion process follows a logistic curve, the speed

of diffusion (2) is equal to a constant αi. In reality, however, the speed of diffusion is not

constant, it tends to be faster in the early stages. Therefore, rit declines with the age of

the technology. Additionally, we want to explore whether the speed of technology diffusion

varies over the cycle. To this end, we consider the following specification

Speedit = αi +G(lagit) + β ∗ ŷt + εit, (3)

where G(.) is a polynomial in the years since the technology was first introduced, and ŷt

is a cyclical indicator, specifically detrended GDP per person over 16 years old.

Table 1 presents the estimates of equation (3). The main finding is that the estimates

of the elasticity of the speed of diffusion with respect to the cycle, β, are robustly positive

and significant. In particular, the point estimate is between 3.6 and 4.1 depending on the

specification. The effect of years since the technology started diffusing is negative and

convex (i.e. it vanishes over time). The results are robust to specifying the function G

as a second order polynomial or in logarithms. Finally, we do not observe any significant

differential effect of the cycle on US versus UK technologies.

To further illustrate the cyclicality of the speed of technology diffusion, Figure 3 plots

the speed of diffusion for the balanced panel of four US technologies for which we have

data from 1981 to 2003. Specifically, for each of the technologies we remove the acyclical

component of the diffusion rate (αi +G(lagit)). We then average the residual (β ∗ ŷt + εit)

over the four technologies. The dashed line is a plot of this average, while the solid line is a

three year centered moving average. The Figure reveals a positive correlation between the

nologies in the US comes from Trajtenberg (1990), and Bartel et al. (2009) and covers the diffusion of
CT scanners, Computerized numerical controlled machines, automated inspection sensors, 3-D CAD, and
flexible manufacturing systems.
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Table 1: Cyclicality of the Speed of Technology Diffusion

I II III IV

ŷt 3.73 3.7 3.64 4.12
(3.59) (2.81) (3.94) (3.17)

ŷt * US 0.07 -0.74
(0.04) (0.53)

lagit -0.057 -0.057
(5.22) (4.76)

lag2it 0.001 0.001
(2.52) (2.12)

ln(lagit) -0.29 -0.29
(6.68) (6.65)

R2 (within) 0.11 0.11 0.13 0.13
N technologies 26 26 26 26
N observations 327 327 327 327

Notes: (1) dependent variable is the speed of diffusion of 26 technologies, (2) all regressions include technology

specific fixed effects. (3) t-statistics in parenthesis, (4) ŷt denotes the cycle of GDP per capita in the country

and represents the high and medium term components of output fluctuations, (5)ŷt*US is the medium term

cycle of GDP per capita times a US dummy, (6) lag represents the years since the technology first started

to diffuse.

speed of diffusion and the cycle. Diffusion speed was lowest in the deep 1981-82 recession;

it recovered during the 80s and declined again after the 1990 recession. It increased notably

during the expansion in the second half of the 90s and declined again with the 2001 recession.

Next, we turn our attention to study the evolution of the speed of technology diffu-

sion during the Great Recession. Due to its recent nature, the evidence we have is more

anecdotal. Eurostat provides information on the diffusion of three relevant internet-related

technologies in the UK.6 Figure 4 plots their average diffusion from 2004 until 2013 with

the business cycle downturns in the UK. The figure confirms the pro-cyclicality of the speed

of diffusion of these technologies. In particular, during the downturn corresponding to the

Great Recession (2008-2009), the average speed of diffusion of our three technologies sharply

declined by 75%. After the Great Recession, the speed of diffusion recovered and converged

6 The measures we consider are the fraction of firms that (i) have access to broadband internet, that
(ii) actively purchase online products and services and that (iii) actively sell online products and services
(actively is defined as constituting at least 1% of sales/purchases). For each of these three measures we
construct the speed of technology diffusion using expression (2), and then filter the effect of the lag since
the introduction of the technology using expression (3) and the estimates from column 3 of Table 1. The
resulting series are demeaned so that they can be interpreted as percent deviations from the average speed
of technology diffusion.
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Figure 3: Speed of Diffusion
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to approximately 8% below average. Beyond its cyclicality, the second observation we want

to stress from the Figure is that fluctuations in the speed of diffusion are very wide, ranging

from 86% above average in 2004 to 74% below the average diffusion speed in 2009.

Finally, Andrews et al. (2015) have recently provided complementary evidence that tech-

nology diffusion in OECD countries may have slowed during the Great Recession. In their

study, they show that the gap in productivity between the most productive firms in a sector

(leaders) and the rest (followers) has increased significantly during the Great Recession.7

Andrews et al. (2015) show that the most productive firms have much greater stocks of

patents which suggests that they engage in more R&D activity. They interpret the increase

in the productivity gap as evidence that followers have slowed down the rate at which they

incorporate frontier technologies developed by the leaders.

These co-movement patterns between the business cycle and measures of investments in

technology development as well as measures of the rate of technology adoption is, in our

view, sufficiently suggestive evidence to motivate the quantitative exploration we conduct

through the lens of our model.

7In manufacturing the productivity gap increased by 12% from 2007 and 2009, and in services by ap-
proximately 20%.
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Figure 4: Diffusion Speed for 3 Internet Technologies in the UK, 2004-2013
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Source: Eurostat; see footnote 6 for details of calculations. Shaded areas are UK recession dates as dated by

UK ONS.
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3 Model

Our starting point is a New Keynesian DSGE model similar to Christiano et al. (2005)

and Smets and Wouters (2007). We include the standard features useful for capturing the

data, including: habit formation in consumption, flow investment adjustment costs, variable

capital utilization and “Calvo” price and wage rigidities. In addition, monetary policy obeys

a Taylor rule with a binding zero lower bound constraint.

The key non-standard feature is that total factor productivity depends on two endoge-

nous variables: the creation of new technologies via R&D and the speed of adoption of these

new technologies. Skilled labor is used as an input for the R&D and adoption processes.

We do not model financial frictions explicitly; however, we allow for a shock that transmits

through the economy like a financial shock, as we discuss below.

We begin with the non-standard features of the model before briefly describing the

standard ones:

3.1 Production Sector and Endogenous TFP: Preliminaries

In this section we describe the production sector and sketch how endogenous productivity

enters the model. In a subsequent section we present the firm optimization problems.

There are two types of firms: (i) final goods producers and (ii) intermediate goods

producers. There are a continuum, measure unity, of monopolistically competitive final

goods producers. Each final goods firm i produces a differentiated output Y i
t . A final good

composite is then the following CES aggregate of the differentiated final goods:

Yt =

(ˆ 1

0
(Y i
t )

1
µt di

)µt
(4)

where µt > 1 is given exogenously.

Each final good firm i uses Y i
mt units of intermediate goods composite as input to produce

output, according to the following simple linear technology

Y i
t = Y i

mt (5)

We assume each firm sets its nominal price P it on a staggered basis, as we describe later.

There exists a continuum of measure At of monopolistically competitive intermediate

goods firms that each make a differentiated product. The endogenous predetermined vari-

able At is the stock of types of intermediate goods adopted in production, i.e., the stock

of adopted technologies. Intermediate goods firm j produces output Y j
mt. The intermediate
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goods composite is the following CES aggregate of individual intermediate goods:

Ymt =

(ˆ At

0
(Y j
mt)

1
ϑdj

)ϑ
(6)

with ϑ > 1.

LetKj
t be the stock of capital firm j employs, U jt be how intensely this capital is used, and

Ljt the stock of labor employed. Then firm j uses capital services U jtK
j
t and unskilled labor

Ljt as inputs to produce output Y j
mt according to the following Cobb-Douglas technology:

Y j
mt = θt

(
U jtK

j
t

)α
(Ljt )

1−α (7)

where θt is an exogenous random disturbance. As we will make clear shortly, θt is the

exogenous component of total factor productivity. Finally, we suppose that intermediate

goods firms set prices each period. That is, intermediate goods prices are perfectly flexible,

in contrast to final good prices.

Let Y t be average output across final goods producers. Then the production function

(4) implies the following expression for the final good composite Yt

Yt = Ωt · Y t (8)

where Ωt is the following measure of output dispersion

Ωt =

(ˆ 1

0
(Y i
t /Y t)

1
µt di

)µt
(9)

= 1 to a 1st order

In a first order approximation, Ωt equals unity, implying that we can express Yt simply as

Y t.

Next, given the total number of final goods firms is unity, given the production function

for each final goods producer (5), and given that Yt equals Y t, it follows that to a first order

Yt = Ymt (10)

Finally, given a symmetric equilibrium for intermediate goods (recall prices are flexible

in this sector) it follows from equation (6) that we can express the aggregate production
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function for the finally good composite Yt as

Yt =
[
Aϑ−1t θt

]
· (UtKt)

α(Lt)
1−α (11)

where the term in brackets is total factor productivity, which is the product of a term that

reflects endogenous variation, Aϑ−1t , and one that reflects exogenous variation θt. Note that

equation (11) holds to a first order since we impose Ωt equals unity.

In sum, endogenous productivity effects enter through the expansion in the variety of

adopted intermediate goods, measured by At. We next describe the mechanisms through

which new intermediate goods are created and adopted.

3.2 R&D and Adoption

The processes for creating and adopting new technologies are based on Comin and Gertler

(2006). Let Zt denote the stock of technologies, while as before At is the stock of adopted

technologies (intermediate goods). In turn, the difference Zt−At is the stock of unadopted

technologies. R&D expenditures increase Zt while adoption expenditure increase At. We

distinguish between creation and adoption because we wish to allow for realistic lags in

the adoption of new technologies. We first characterize the R&D process and then turn to

adoption.

3.2.1 R&D: Creation of Zt

There are a continuum of measure unity of innovators that use skilled labor to create new

intermediate goods. Let Lpsrt be skilled labor employed in R&D by innovator p and let ϕt

be the number of new technologies at time t + 1 that each unit of skilled labor at t can

create. We assume ϕt is given by

ϕt = χtZtL
ρz−1
srt (12)

where χt is an exogenous disturbance to the R&D technology and Lsrt is the aggregate

amount of skilled labor working on R&D, which an individual innovator takes as given.

Following Romer (1990), the presence of Zt, which the innovator also takes as given, re-

flects public learning-by-doing in the R&D process. We assume ρz < 1 which implies that

increased R&D in the aggregate reduces the efficiency of R&D at the individual level. We

introduce this congestion externality so that we can have constant returns to scale in the

creation of new technologies at the individual innovator level, which simplifies aggregation,
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but diminishing returns at the aggregate level. Our assumption of diminishing returns is

consistent with the empirical evidence (see Griliches (1990)); further, with our specification

the elasticity of creation of new technologies with respect to R&D becomes a parameter we

can estimate, as we make clear shortly.8

Let Jt be the value of an unadopted technology, Λt,t+1 the representative household’s

stochastic discount factor and wst the real wage for a unit of skilled labor. We can then

express innovator p’s decision problem as choosing Lpsrt to solve

max
Lpsrt

Et{Λt,t+1Jt+1ϕtL
p
srt} − wstL

p
srt (13)

The optimality condition for R&D is then given by

Et{Λt,t+1Jt+1ϕt} − wst = 0

which implies

Et{Λt,t+1Jt+1χtZtL
ρz−1
srt } = wst (14)

The left side of equation (14) is the discounted marginal benefit from an additional unit of

skilled labor, while the right side is the marginal cost.

Given that profits from intermediate goods are pro-cyclical, the value of an unadopted

technology, which depends on expected future profits, will be also be pro-cyclical. This

consideration, in conjunction with some stickiness in the wages of skilled labor which we

introduce later, will give rise to pro-cyclical movements in Lsrt.
9

Finally, we allow for obsolescence of technologies.10 Let φ be the survival rate for any

given technology. Then, we can express the evolution of technologies as:

Zt+1 = ϕtLsrt + φZt (15)

where the term ϕtLsrt reflects the creation of new technologies. Combining equations (15)

8An added benefit from having diminishing returns to R&D spending is that, given our parameter es-
timates, steady state growth is relatively insensitive to tax policies that might affect incentives for R&D.
Given the weak link between tax rates and long run growth, this feature is desirable.

9Other approaches to motivating procyclical R&D, include introducing financial frictions Aghion et al.
(2010), short term biases of innovators Barlevy (2007), or capital services in the R&D technology function
Comin and Gertler (2006).

10We introduce obsolescence to permit the steady state share of spending on R&D to match the data.
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and (12) yields the following expression for the growth of new technologies:

Zt+1

Zt
= χtL

ρz
srt + φ (16)

where ρz is the elasticity of the growth rate of technologies with respect to R&D, a parameter

that we estimate.

3.2.2 Adoption: From Zt to At

We next describe how newly created intermediate goods are adopted, i.e. the process of

converting Zt to At. Here we capture the fact that technology adoption takes time on

average, but the adoption rate can vary pro-cyclically, consistent with evidence in Comin

(2009). In addition, we would like to characterize the diffusion process in a way that

minimizes the complications from aggregation. In particular, we would like to avoid having

to keep track, for every available technology, of the fraction of firms that have and have not

adopted it.

Accordingly, we proceed as follows. We suppose there are a competitive group of

“adopters” who convert unadopted technologies into ones that can be used in produc-

tion. They buy the rights to the technology from the innovator, at the competitive price

Jt, which is the value of an adopted technology. They then convert the technology into use

by employing skilled labor as input. This process takes time on average, and the conversion

rate may vary endogenously.

In particular, the pace of adoption depends positively on the level of adoption expendi-

tures in the following simple way: an adopter succeeds in making a product usable in any

given period with probability λt, which is an increasing and concave function of the amount

of skilled labor employed, Lsat:

λt = λ(ZtLsat) (17)

with λ′ > 0, λ′′ < 0.11 We augment Lsat by a spillover effect from the total stock of tech-

nologies Zt - think of the adoption process as becoming more efficient as the technological

state of the economy improves. The practical need for this spillover is that it ensures a

balanced growth path: as technologies grow, the number of new goods requiring adoption

increases, but the supply of labor remains unchanged. Hence, the adoption process must

become more efficient as the number of technologies expands.

11In the estimation, we assume that
λ(•) = λ̄ ∗ (•)ρλ .
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Our adoption process implies that technology diffusion takes time on average, consistent

with the evidence. If λ is the steady state value of λt, then the average time it takes for a

new technology be adopted is 1/λ. Away from the steady state, the pace of adoption will

vary with skilled input Lsat. We turn next to how Lsat is determined.

Once in usable form, the adopter sells the rights to the technology to a monopolistically

competitive intermediate goods producer that makes the new product using the production

function described by equation (11). Let Πmt be the profits that the intermediate goods firm

makes from producing the good, which arise from monopolistically competitive pricing. The

adopter sells the new technology at the competitive price Vt, which is the present discounted

value of profits from producing the good, given by

Vt = Πmt + φEt{Λt,t+1Vt+1} (18)

Then we may express the adopter’s maximization problem as choosing Lsat to maximize

the value Jt of an unadopted technology, given by

Jt = max
Lsat

Et{−wstLsat + φΛt,t+1[λtVt+1 + (1− λt)Jt+1} (19)

subject to equation (17).The first term in the Bellman equation reflects total adoption

expenditures, while the second is the discounted benefit: the probability weighted sum of

the values of adopted and unadopted technologies.

The first order condition for Lsat is

Ztλ
′ · φEt{Λt,t+1[Vt+1 − Jt+1]} = wst (20)

The term on the left is the marginal gain from adoption expenditures: the increase in

the adoption probability λt times the discounted difference between an adopted versus

unadopted technology. The right side is the marginal cost.

The term Vt − Jt is pro-cyclical, given the greater influence of near term profits on the

value of adopted technologies relative to unadopted ones. Given this consideration and the

stickiness in wst which we alluded to earlier, Lsat varies pro-cyclically. The net implication

is that the pace of adoption, given by λt, will also vary pro-cyclically.

Given that λt does not depend on adopter-specific characteristics, we can sum across

adopters to obtain the following relation for the evolution of adopted technologies

At+1 = λtφ[Zt −At] + φAt (21)
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where Zt −At is the stock of unadopted technologies.

3.3 Households

The representative household consumes and saves in the form of capital and riskless bonds

which are in zero net supply. It rents capital to intermediate goods firms. As in the standard

DSGE model, there is habit formation in consumption. Also as is standard in DSGE models

with wage rigidity, the household is a monopolistically competitive supplier of differentiated

types of labor.

The household’s problem differs from the standard setup in two ways. First it supplies

two types of labor: unskilled labor Lht which is used in the production of intermediate goods

and skilled labor which is used either for R&D or adoption, Lhst.

Second, we suppose that the household has a preference for the safe asset, which we

motivate loosely as a preference for liquidity and capture by incorporating bonds in the

utility function, following Krishnamurthy and Vissing-Jorgensen (2012). Further, following

Fisher (2015), we introduce a shock to liquidity demand %t > 0. As we show, the liquidity

demand shock transmits through the economy like a financial shock. It is mainly for this

reason that we make use of it, as opposed to a shock to the discount factor.12

Let Ct be consumption, Bt holdings of the riskless bond, Πt profits from ownership of

monopolistically competitive firms, Kt capital, Qt the price of capital, Rkt the rate of return,

and Dt the rental rate of capital. Then the households’ decision problem is given by

max
Ct,Bt+1,Lht ,L

h
st,Kt+1

Et

∞∑
τ=0

βτ
{

log(Ct+τ − bCt+τ−1) + %tBt+1 −
[
υ(Lht )1+ϕ + υs(L

h
st)

1+ϕ

1 + ϕ

]}
(22)

subject to

Ct = wht L
h
t + whstL

h
st + Πt +RktQt−1Kt −QtKt+1 +RtBt −Bt+1 (23)

with

Rkt =
Dt +Qt
Qt−1

(24)

Λt,t+1, the household’s stochastic discount factor, is given by

Λt,t+1 ≡ βu′(Ct+1)/u
′(Ct) (25)

12Another consideration is that the liquidity demand shock induces positive co-movement between con-
sumption and investment, while that is not always the case for a discount factor shock.
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where u′(Ct) = 1/(Ct−bCt−1)−b/(Ct+1−bCt). In addition, let ζt be the liquidity preference

shock in units of the consumption good:

ζt = %t/u
′(Ct) (26)

Then we can express the first order necessary conditions for capital and the riskless bond

as, respectively:

1 = Et{Λt,t+1Rkt+1} (27)

1 = Et{Λt,t+1Rt+1}+ ζt (28)

As equation (28) indicates, the liquidity demand shock distorts the first order condition

for the riskless bond. A rise in ζt acts like an increase in risk: given the riskless rate

Rt+1 the increase in ζt induces a precautionary saving effect, as households reduce current

consumption in order to satisfy the first order condition (which requires a drop in Λt,t+1).

It also leads to a drop in investment demand, as the decline in Λt,t+1 raises the required

return on capital, as equation (27) implies. The decline in the discount factor also induces

a drop in R&D and investment.

Overall, the shock to ζt generates positive co-movement between consumption and in-

vestment similar to that arising from a monetary shock. To see, combine equations (27)

and (28) to obtain

Et{Λt,t+1(Rkt+1 −Rt+1)} = ζt (29)

To a first order an increase in ζt has an effect on both Rkt+1 and Λt,t+1 that is qualitatively

similar to that arising from an increase in Rt+1. In addition, note that an increase in ζt

raises the spread Rkt+1 − Rt+1. In this respect it transmits through the economy like a

financial shock. Indeed, we show later that our identified liquidity demand shock is highly

correlated with credit spreads.

Since it is fairly conventional, we defer until later a description of the household’s wage-

setting and labor supply behavior.

3.4 Firms

3.4.1 Intermediate goods firms: factor demands

Given the CES function for the intermediate good composite (6), in the symmetric equilib-

rium each of the monopolistically competitive intermediate goods firms charges the markup
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ϑ. Let pmt be the relative price of the intermediate goods composite. Then from (6) and

the production function (7), cost minimization by each intermediate goods producer yields

the following standard first order conditions for capital, capital utilization, and unskilled

labor:

α
pmtYmt
Kt

= ϑ[Dt + δ(Ut)Qt] (30)

α
pmtYmt
Ut

= ϑδ′(U)QtKt (31)

(1− α)
pmtYmt
Lt

= ϑwt (32)

3.4.2 Final goods producers: price setting

Let P it be the nominal price of final good i and Pt the nominal price level. Given the CES

relation for the final good composite, equation (4), the demand curve facing each final good

producer is:

Y i
t =

(
P it
Pt

)−µt/(µt−1)
Yt (33)

where the price index is given by:

Pt =

(ˆ 1

0
(P it )

−1/(µt−1)di

)−(µt−1)
, (34)

Following Smets and Wouters (2007), we assume Calvo pricing with flexible indexing. Let

1−ξp be the i.i.d probability that a firm is able to re-optimize its price and let πt = Pt/Pt−1

be the inflation rate. Firms that are unable to re-optimize during the period adjust their

price according to the following indexing rule:

P it = P it−1π
ιp
t−1π

1−ιp (35)

where π is the steady state inflation rate and ιp reflects the degree of indexing to lagged

inflation.

For firms able to re-optimize, the optimization problem is to choose a new reset price P ∗t

to maximize expected discounted profits until the next re-optimization, given by

Et

∞∑
τ=0

ξτpΛt,t+τ

(
P ∗t Γt,t+τ
Pt+τ

− pmt+τ
)
Y i
t+τ (36)
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subject to the demand function (33) and where

Γt,t+τ ≡
τ∏
k=1

π
ιp
t+k−1π

1−ιp (37)

The first order condition for P ∗t and the price index that relates Pt to P ∗t , Pt−1 and πt−1

are then respectively:

0 = Et

∞∑
τ=0

ξτpΛt,t+τ

[
P ∗t Γt,t+τ
Pt+τ

− µt+τpmt+τ
]
Y i
t+τ (38)

Pt =
[
(1− ξp) (P ∗t )−1/(µt−1) + ξp

(
π
ιp
t−1π

1−ιpPt−1
)−1/(µt−1)]−(µt−1)

(39)

Equations (38) and (39) jointly determine inflation. In the loglinear equilibrium, current

inflation is a function of current real marginal cost pmt, expected future inflation, and lagged

inflation.

3.4.3 Capital producers: investment

Competitive capital producers use final output to make new capital goods, which they sell

to households, who in turn rent the capital to firms. Let It be new capital produced and

pkt the relative price of converting a unit of investment expenditures into new capital (the

replacement price of capital), and γy the steady state growth in It. In addition, follow-

ing Christiano et al. (2005), we assume flow adjustment costs of investment. The capital

producers’ decision problem is to choose It to solve

max
It

Et

∞∑
τ=0

Λt,t+τ

{
Qt+τIt+τ − pkt+τ

[
1 + f

(
It+τ

(1 + γy)It+τ−1

)]
It+τ

}
(40)

where the adjustment cost function is increasing and concave, with f(1) = f ′(1) = 0 and

f ′′(1) > 0. We assume that pkt follows an exogenous stochastic process.

The first order condition for It the relates the ratio of the market value of capital to the

replacement price (i.e. “Tobin’s Q”) to investment, as follows:

Qt
pkt

= 1+f

(
It

(1 + γy)It−1

)
+

It
(1 + γy)It−1

f ′
(

It
(1 + γy)It−1

)
−EtΛt,t+1

(
It+1

(1 + γy)It

)2

f ′
(

It+1

(1 + γy)It

)
(41)
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3.4.4 Employment agencies and wage adjustment

As we noted earlier, the household is a monopolistically competitive supplier of labor. Think

of the household as supplying its labor to form a labor composite. Firms then hire the labor

composite. The only difference from the standard DSGE model with wage rigidity, is that

households now supply two types of labor, skilled and unskilled. It also sets wages for each

type.

Let Xt = {Lt, Lst} denote a labor composite. As is standard, we assume that Xt is the

following CES aggregate of the differentiated types of labor that households provide:

Xt =

[ˆ 1

0
Xh
t

1
µwt dh

]µwt
. (42)

where µwt > 1 obeys an exogenous stochastic process13.

Let Wxt denote the wage of the labor composite and let W h
xt be the nominal wage for labor

supplied of type x by household h. Then profit maximization by competitive employment

agencies yields the following demand for type x labor:

Xh
t =

(
W h
xt

Wxt

)−µwt/(µwt−1)
Xt, (43)

with

Wxt =

[ˆ 1

0
W h
xt
− 1
µwt−1dh

]−(µwt−1)
. (44)

As with price setting by final goods firms, we assume that households engage in Calvo

wage setting with indexation. Each period a fraction 1− ξw of households re-optimize their

wage for each type. Households who are not able to re-optimize adjust the wage for each

labor type according to the following indexing rule:

W h
xt = W h

xt−1π
ιw
t−1π

1−ιwγ. (45)

where γ is the steady state growth rate of labor productivity.

The remaining fraction of households choose an optimal reset wage W ∗xt by maximizing

Et

{ ∞∑
τ=0

ξτwβ
τ

[
−υ

Xh
t+τ

1+ϕ

1 + ϕ
+ u′(Ct+τ )

W ∗xtΓwt,t+τ
Pt+τ

Xh
t+τ

]}
(46)

13In estimating the model we introduce wage markup shocks to the wage setting problem of unskilled
labor only, so the markup for skilled labor is constant at its steady state level.
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subject to the demand for type h labor and where the indexing factor Γxt,t+τ is given by

Γwt,t+τ ≡
τ∏
k=1

πιwt+k−1π
1−ιwγ (47)

The first order condition for the re-set wage and the equation for the composite wage

index as a function of the reset wage, inflation and the lagged wage are given, respectively,

by

Et

{ ∞∑
τ=0

ξτwΛt,τ

[
W ∗xtΓwt,t+τ

Pt
− µwtυ

Xh
t+τ

ϕ

u′(Ct+τ )

]
Xh
t+τ

}
= 0 (48)

Wxt =
[
(1− ξw) (W ∗xt)

−1/(µwt−1)

+ ξp
(
γπιwt−1π

1−ιwWxt−1
)−1/(µwt−1)]−(µwt−1)

(49)

3.4.5 Fiscal and monetary policy

We assume that government consumption Gt is financed by lump sum taxes Tt.

Gt = Tt (50)

Further, the (log) deviation of Gt from the deterministic trend of the economy follows an

AR(1) process. Formally,

log(Gt/(1 + γy)
t) = (1− ρg)ḡ + ρg log(Gt−1/(1 + γy)

t−1) + εgt , (51)

Next, we suppose that monetary policy obeys a Taylor rule. Let Rnt+1 denote the gross

nominal interest rate, Rn the steady state nominal rate, π0 the target rate of inflation,

Lt total employment and Lss steady state employment. The (nonlinear) Taylor rule for

monetary policy that we consider is given by

Rnt+1 =

[( πt
π0

)φπ ( Lt
Lss

)φy
Rn

]1−ρ
·Rρnt (52)

where the relation between the nominal and real rate is given by the Fisher relation:

Rnt+1 = Rt+1 · πt+1 (53)

and where φπ and φy are the feedback coefficients on the inflation gap and capacity uti-
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lization gap respectively. We use the employment gap to measure capacity utilization as

opposed to an output gap for two reasons. First, Berger et al. (2015) show that measures

of employment are the strongest predictors of changes in the Fed Funds rate. Second, along

these lines, the estimates of the Taylor rule with the employment gap appear to deliver a

more reasonable response of the nominal rate to real activity within this model than does

one with an output gap.14

In addition, we impose the zero lower bound constraint on the net nominal interest rate,

which implies that the gross nominal rate cannot fall below unity.

Rnt+1 ≥ 1 (54)

3.5 Resource constraints and equilibrium

The resource constraint is given by

Yt = Ct + pkt

[
1 + f

(
It+τ

(1 + γy)It+τ−1

)]
It +Gt (55)

Capital evolves according to

Kt+1 = It + (1− δ(Ut))Kt (56)

The market for skilled labor must clear:

Lst = Lsat + Lsrt (57)

Finally, the market for risk-free bonds must clear, which implies that in equilibrium, risk-free

bonds are in zero net supply

Bt = 0

This completes the description of the model.

4 Estimation

We estimate our model using Bayesian methods (see for example An and Schorfheide

(2007)). As is common practice in the literature (for example Smets and Wouters (2007)

14Part of the problem may be that the behavior of the flexible price equilibrium output is quite complex
in the model, particularly given the endogenous growth sector. As a robustness check on our specification of
the Taylor rule, we estimate a version of the model in which we adjust the employment gap for demographic
effects on the size of the labor force; our estimation results are robust to this change.
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and Justiniano et al. (2010)), we calibrate a subset of the parameters of the model and

estimate the remainder.

We estimate using quarterly data from 1984:I to 2008:III on eight US series: real output,

consumption, investment, hours worked, real wages, inflation (as measured by the GDP

deflator), the nominal risk-free interest rate and expenditures on R&D by US corporations.

Unlike the other series, R&D expenditures are annual. We deal with the mixed frequency

of the data in estimation using a version of the Kalman filter adapted for this purpose.

Appendix A.1 describes the data in detail.

We do not use data beyond 2008:III in the estimation of the structural parameters be-

cause the zero lower bound (ZLB) on the nominal interest was binding after that period,

rendering estimation using a log-linear approximation our baseline model problematic. How-

ever we do use the data from 2008:III to 2013:IV to identify shocks and other latent variables

of our model, including the endogenous component of TFP. We do so by modifying the

standard log-linear approximation of the model with the technique introduced by Guerrieri

and Iacoviello (2015) to deal with occasionally binding constraints, as described in Appendix

A.2.

We next discuss the calibrated parameters and then proceed to describe the prior and

posterior estimates of the remaining parameters.

4.1 Calibrated parameters

We calibrate standard real business cycle model parameters (i.e., the rates of time preference

and capital depreciation, and the capital share); the steady state share of government

spending in output; the trend growth rate; steady state markups for intermediate and

final goods and for wages (ϑ, µ and µw respectively); and three of the four endogenous

technological change parameters.

Of the four endogenous technological change parameters, we calibrate the expenditure

elasticity of the adoption probability, ρλ, the obsolescence rate (1−φ) and the steady state

adoption lag λ̄. The elasticity of λ with respect to adoption expenditures, ρλ is set to 0.95

to induce a ratio of private R&D to GDP consistent with the U.S. post-1970 experience (of

approximately 2% of GDP). λ̄ is set to produce an average adoption lag of 7 years which

is consistent with the estimates in Comin and Hobijn (2010) and Cox and Alm (1996).

Finally, the obsolescence rate (1 − φ) is set to 8% which falls in the middle of the broad

range of estimates for the obsolescence rate in the literature (see Caballero and Jaffe (1993)

and Pakes and Schankerman (1984) for the two extremes).

Table 2 presents the calibrated parameters and their values.
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4.2 Parameter estimates

Tables 3 and 4 below present the prior and posterior distributions for the parameters that

we estimate. For the conventional parameters we use similar priors to the literature (e.g.

Justiniano et al. (2010)). For the new parameter we estimate, the elasticity of R&D pa-

rameter (ρz) we use a fairly loose beta prior centered around a mean of 0.6, which is at the

lower end of estimates provided in Griliches (1990).

Most of our estimates are similar to those in the literature. The price and wage rigidity

parameters, though, are on the high side, likely reflecting that inflation was low and stable

over our sample. Our estimate of the elasticity of new technologies with respect to R&D, ρz,

is 0.34, which is somewhat below the Griliches (1990) estimates. This discrepancy, however,

may reflect the fact that (effectively) we use quarterly data while the literature uses annual

data: one would expect greater diminishing returns to R&D at higher frequencies due to

frictions in adjusting skilled labor input.

Finally, with respect to the shocks, we find lower estimates of the persistence of exogenous

TFP than in the literature. This reflects the fact that our model produces significant

endogenous persistence in TFP.

4.3 Shocks and Volatilities

In this section we establish the key sources of cyclical variation not only in output and hours

but also in endogenous productivity. First, as a check of the fit of the estimated model,

Table 5 presents the theoretical standard deviations of the observable variables generated

by the model and compares them with the data in our sample. Roughly speaking the model

is in line with the actual volatilities of the key variables.

We next ascertain the relative importance of each shock by calculating a set of variance

decompositions. To do so we simulate the model a large number of periods taking into

account the ZLB as described in Appendix A.2. Table 6 presents the results. There are

several important takeaways. First, “demand” shocks are important for both output and

employment volatility and for the cyclicality of endogenous productivity. The liquidity

demand shock explains 29 percent of output growth, 40 percent of hours and 17 percent of

endogenous productivity. The liquidity demand and money shocks combined account for

more than half the volatility of output and hours and nearly 30 percent of the endogenous

production variation. The other important shock is the exogenous component of total

factor productivity, which accounts for 33 percent of output variation, 16 percent of hours

variation, and 40 percent of the variation in endogenous TFP.
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The second important takeaway is that the main way the key cyclical shocks affect

endogenous productivity is through variation in technology adoption, as opposed to creation

of new technologies. The liquidity demand shock, for example, explains 29 percent of the

variation in the speed of technology diffusion, the money shock 14 percent, and the TFP

shock 37 percent shock. By contrast, variation in new technologies is driven almost entirely

by the shock to R&D productivity.

While the liquidity demand shock is one of the three major disturbances influencing

unconditional cyclical volatility, it is by far the most important shock driving recessions.

Figure 5 plots the historical evolution of per capita output growth as well as the compo-

nents that are accounted for by the liquidity demand and the exogenous TFP shock, the

disturbance that is second most important in driving recessions15. In each of the three

recessions, the liquidity demand shock accounts for most of the decline in output. The TFP

shock accounts for a comparable decline only in the 1990-91 recession.

Finally, we present evidence supporting our interpretation of the liquidity demand shock

as a financial shock (as noted in section 3.3, a negative liquidity demand shock causes the

spread between the return on capital and the riskless rate to widen). Figure 6 compares

the spreads implied by our estimated liquidity shocks with the measure of the credit spread

calculated by Gilchrist and Zakrajsek (2012).16 The figure shows that the two series are

highly correlated (0.69). In particular, both series show increases in spreads around reces-

sions with an absolute peak in the sample around early 2009. Our model series does show

greater persistence in the spread after the Great Recession. This difference may reflect the

fact that the GZ spread pertains only to publicly traded companies, while non-traded com-

panies continued to face borrowing frictions. Overall, we consider the similarity between our

estimated liquidity shocks and the GZ series as suggestive support for our interpretation.

15The decomposition takes into account the ZLB (as described in Appendix A.2), which makes the model
nonlinear for the period 2008:I-2013:IV. Because of this nonlinearity, the sum of the contribution of each
shock does not equal the value of the smoothed variable being decomposed (output growth in this case) for
the mentioned period. This “nonlinear residual” emerges because the interaction between shocks is relevant
in nonlinear models. However, our results indicate that the only shock that moves the economy to the ZLB
is the liquidity demand shock. We therefore assign the nonlinear residual to this shock. This comment also
applies to Figures 6-12.

16Gilchrist and Zakrajsek (2012) use Compustat to measure the excess interest rate paid on long-term
corporate bonds over the 10 year government bonds. Therefore, their measure reflects the premia faced by
publicly-traded companies.
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5 Analysis

We begin by analyzing the mechanisms through which the various cyclical shocks in our

model affect endogenous productivity. We subsequently use our estimated model to provide

a decomposition of the forces driving TFP before, during and after the Great Recession.

5.1 Endogenous Productivity Mechanism

Figure 7 presents the responses of some key variables to a one standard deviation shocks

to the three main driving shocks: liquidity demand, money, and exogenous TFP. To isolate

the effects of our endogenous productivity mechanism, in each case we plot the responses

of our model and a version where technology is purely exogenous.

The first column of the figure shows the effect of a liquidity demand shock. An increase

in the demand for the liquid asset, everything else equal induces households to reduce their

consumption demand and their saving in risky assets (See equations 27-29). As a result

there is upward pressure on the required return to capital, Rkt+1, and downward pressure

on the safe real rate Rt+1. The former leads to a fall in both physical investment demand

as well as in the demand for productivity enhancing investments, including both R&D

and adoption expenditures. The latter lessens the drop in consumption. Given nominal

rigidities, the overall drop in both investment and consumption demand leads to a decline

in output. The drop in productivity enhancing investments, further, induce a decline in

productivity, magnifying both the overall size and persistence of the output decline.

One additional interesting result is that the endogenous productivity mechanism mutes

the decline in inflation following the contractionary demand shock. As in conventional New

Keynesian models, inflation declines when aggregate demand falls. However, the endogenous

decline in productivity growth lessens the decline in marginal costs, which in turn dampens

the decline in inflation, making it almost negligible. This feature, accordingly, can offer

at least part of the explanation for the surprising failure of inflation to decline by any

significant amount during the Great Recession.

Columns 2 and 3 of Figure 7 depict the impulse responses to money and TFP shocks

in our model. The money shock produces responses of the real economy and inflation that

are qualitatively similar to the effect of the liquidity demand shock. Both shocks raise the

cost of capital. The main difference is that the money shock does so by raising the risk

free rate, while the liquidity demand shock does so by increasing the spread between the

cost of capital and the risk free rate. The model responses to both the money and TFP

shocks are qualitatively similar to the exogenous technology model. The main differences
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are that the endogenous technology mechanisms increase the model’s amplification of the

shocks and produce greater persistence.

Finally, the main part of our analysis involves analyzing productivity over a period where

the ZLB is binding. Our historical decomposition, further, suggests that it is the liquidity

demand shock that moves the economy into the ZLB. Accordingly it is useful to understand

the implications of the ZLB for how a contractionary liquidity demand shocks influence

endogenous movements in productivity. Figure 8 plots the impulse response functions with

and without a binding ZLB.17 When the ZLB is binding, monetary policy cannot accom-

modate a recessionary shock. This results in higher interest rates than when the ZLB is

not binding. The higher real rates amplify the drops in investment, R&D and adoption

intensity. In the short term, this leads to lower aggregate demand and a larger output drop.

It also leads to larger declines in the growth rate of the number of adopted technologies and

to lower levels of TFP in the medium and long term.

5.2 Productivity dynamics

We now explore the model’s implications for the evolution of productivity, with particular

emphasis on the periods before, during and after the Great Recession. We focus on TFP but

also consider labor productivity. The latter allows us to consider the impact of the demand

shortfall during the Great Recession on the supply side that operates via the conventional

capital accumulation channel (as emphasized by Hall (2014) and others), as well as our

endogenous productivity channel.

To begin, we use equation (11) to derive the following expression that links labor pro-

ductivity with TFP and capital intensity:18,19

Yt
Lt

= θt · (At)ϑ−1︸ ︷︷ ︸
TFP

· (UtKt/Lt)
α . (58)

The first two terms capture total TFP, which is the product of an exogenous component

(θt) and an endogenous one ((At)
ϑ−1). The third term measures capital intensity which

includes both capital per hours worked and the capital utilization rate.

Figure 9 plots the evolution of (detrended) labor productivity together with TFP and

17The binding ZLB is achieved with a seven-standard deviation positive shock to the liquidity preference.
18This expression holds to a first order approximation.
19We focus on labor productivity for two reasons. First, our measure of capital includes residential

investment. Therefore, there is a discrepancy between our measure of TFP and that from standard sources
(e.g., BLS). Second, labor productivity also captures the effect of variation in capital per hour. This is
another channel by which fluctuations in demand can affect the potential supply in the economy.
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the endogenous component of TFP. Labor productivity corresponds exactly to the data.

The other two series are identified from the model. It is worth noting, though, that the

evolution of TFP and labor productivity are qualitatively similar both in the model and in

the data.20

Except for the middle to late 1990s, the endogenous component of TFP accounts for

much of the cyclical variation in TFP. The model attributes the rise in TFP during the

late 90s mainly to its exogenous component; the labor productivity surge in this period is

explained by both exogenous innovations to TFP and capital deepening.

After 2000, however, the endogenous component drives the overall behavior of TFP.

Importantly, the endogenous component explains virtually all of the decline in TFP imme-

diately before the Great Recession, as well as the decline during and after that episode. In

particular, between the starting point of the recent productivity slowdown, 2005, and the

end of our sample, 2013, total TFP declined by approximately 5 percentage points (relative

to trend). The endogenous component accounts for 4.75 percentage points of decline. This

factor also accounts for most of the drop in labor productivity, which declined 7 percentage

points over the same period. A drop in capital intensity after 2009 mainly accounts extra

the drop in labor productivity relative to TFP (consistent with Hall (2014)).

While endogenous TFP declines steadily after 2005, the main sources of the drop vary

over time. Figure 10 presents a historical decomposition of endogenous productivity that

isolates the effects of the two shocks that were the main causes of the decline: (i) shocks

to the productivity of R&D and (ii) the liquidity demand shock. We note first that the

liquidity demand shock accounts for nearly all of the decline in endogenous TFP after the

start of the recession at the end of 2007. This result is consistent with our earlier findings

that: (i) the liquidity demand shock was the main disturbance driving the recession (see

Figure 5); and (ii) the liquidity demand shock has a significant impact on endogenous TFP,

especially at the ZLB (see Figure 8).

In the period just prior to the Great Recession, 2005-2007, however, the liquidity demand

shock is unimportant. Instead the decline in endogenous TFP is mainly the result of negative

shocks to the productivity of R&D.21 The downward trend in R&D productivity actually

begins in the mid 1990s, which is consistent with Gordon (2012)’s hypothesis of a secular

decline in the contribution of technological innovations to productivity. After a brief upturn

following the 2000-01 recession, shocks to R&D productivity induce a sharp downturn in

20One can obtain the capital intensity component of labor productivity from the figure by taking the
difference between labor productivity and TFP.

21Shocks to the productivity of R&D are identified by comparing the model implications for the cyclicality
of R&D with the data. See equation (14) and Figure 2.
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TFP from 2005 until the height of the crisis.

Intuitively, the exogenous decline in R&D productivity generated fewer technologies for a

given level of R&D spending, which ultimately slowed the pace of new technology adoption.

Our finding that shocks to R&D productivity mainly account for the pre-recession slowdown

in TFP is consistent with Fernald (2014)’s hypothesis that exogenous medium-term factors,

as opposed to cyclical factors were at work. At the same time, our endogenous productivity

mechanism allows cyclical shocks as well shocks to R&D productivity to drive TFP. In this

regard, our accounting suggests that once the recession began, it was cyclical shocks in the

form of liquidity demand shocks that largely drove the subsequent decline in endogenous

TFP.

We next explore the relative importance of the specific mechanisms that drive endogenous

TFP. From equation (21), fluctuations in the stock of adopted technologies, At, (and hence

endogenous TFP), are driven by the product of two factors: the adoption rate λt and the

total stock of unadopted technologies, Zt −At, where the total stock of technologies, Zt, is

entirely driven by R&D labor and its productivity, χt. To analyze the relevance of these two

channels, Figure 11 plots (relative to trend) the evolution of Zt, At and λt – measured on the

right axis. Note that the evolution of At mirrors the evolution of endogenous productivity

(At
ϑ−1).

We find that cyclicality in λt is the main driver of cyclical fluctuations in endogenous

productivity: λt co-moves closely with At while Zt does not. During each of the recessions,

λt declines along with At, implying that the slowdown in adoption drives the cyclical con-

traction in endogenous TFP. This finding is consistent with our earlier observation that

liquidity demand shocks are important sources of recessions (see Figure 5), as these shocks

induce contractions in adoption rates and endogenous productivity (see Figure 8).

Further, the magnitude of fluctuations in λt implied by our model is consistent with the

evidence presented in Section 2. We find that the relative volatility of λt (vs. output) over

our sample period is 4.45, which is a similar magnitude to our estimate of the elasticity

of the speed of diffusion with respect to output (of around 4, see Table 1). Additionally,

the fall in λt during the Great Recession implied by the model is plausible in light of the

observed fall in adoption speeds for the sample of UK technologies (Figure 4).

Fluctuations in Zt do play a role in the evolution of endogenous productivity. Following

the 2000-01 recession there is a steady decline in Zt, consistent with the negative shocks

to R&D productivity over this period that Figure 10 illustrates.22 This drop in Zt, in

22The decline in endogenous productivity induced by the negative shocks to R&D productivity lags the
decline in Zt (compare figures 10 and 11) due to the lags in the adoption process.
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turn, helps account for the pre-Great Recession drop in productivity that Fernald (2014)

emphasizes, complementing the analysis of Figure 10. After the start of the Great Recession

however the fall in the adoption rate becomes the main driver of the productivity decline.

The failure of the adoption rate to return to normal levels, after a brief recovery in 2010, is

the reason endogenous TFP continues to decline.

Interestingly, while λt remains low following the Great Recession, the stock of unadopted

technologies, Zt − At, reaches a peak over the sample. The latter occurs mostly because

the stock of adopted technologies, At, declines, but also because there is a modest increase

in Zt. This finding is consistent with the evidence presented by Andrews et al. (2015)

that suggests that innovation by leading edge firms continued after the Great Recession

but adoption by followers slowed. An important implication is that the economy may not

be doomed to low productivity growth for the foreseeable future. Given the high stock

of unadopted technologies, to the extent that increasing aggregate demand pushes up the

adoption rate, productivity growth should increase. Conversely, if the economy continues

to stagnate, adoption rates will remain low, keeping productivity growth low.

We conclude our analysis by exploring the effect that demand shocks have on the supply

side. To this end, Figure 12 plots the contribution of our two main demand side shocks

(i.e., the liquidity and money shocks) to the evolution of labor productivity. In particular,

the key demand shocks were important drivers of the acceleration in labor productivity

between 1995 and 2001 through their effect on capital deepening. They also contributed to

the slowdown in productivity between 2001 and 2007 through both endogenous TFP and

capital deepening channels. During the Great Recession, the key demand shocks contributed

to the decline in productivity only through endogenous TFP. After the Great Recession, the

main demand shocks more than fully account for the decline in labor productivity. Both

capital deepening and endogenous technology are significant channels. In sum, we find very

strong evidence on the impact that demand shocks has had on the dynamics of productivity

over our sample period and very especially over the last fifteen years.

6 Conclusions

We have estimated a monetary DSGE model with endogenous productivity via R&D and

adoption. We then used the model to assess the behavior of productivity, with particular

emphasis on the slowdown following the onset of the Great Recession. Our key result

is that this slowdown mainly reflected an endogenous decline in the speed at which new

technologies are incorporated in production. The endogenous decline in adoption, further,
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was a product of the recession. We also find that our endogenous productivity mechanism

can help account for the productivity slowdown that preceded the Great Recession. Though

here, shocks to the productivity of the R&D process play an important role, consistent with

Fernald (2014)’s view that acyclical factors were important over this period. Finally, we find

a very limited role for an exogenous decline in TFP in the slowdown of productivity. Overall,

the results suggest that the productivity slowdown following the start of the Great Recession

was not simply bad luck, but rather another unfortunate by-product of the downturn.

Our analysis sheds light on two open debates. First, it provides a time series for the

productivity of R&D activities that can be used to explore the hypothesis advanced by

Gordon (2012) that the U.S. economy is experiencing a secular deterioration in its innovation

capacity. Consistent with Gordon’s hypothesis we find low levels of productivity of R&D

activities between 2002 and 2007 that contributed to the decline in TFP between 2005 and

2009. However, this episode is short-lived and the estimates suggest that the slowdown in

productivity reflects medium term cyclical factors rather than secular ones. The second

relevant debate concerns the stability of inflation during the Great Recession in spite of the

very significant decline in economic activity. Our model and estimates suggests that the

endogenous decline in TFP has increased production costs (relative to trend) counteracting

the traditional Phillips- curve effect of economic contractions on inflation.

Overall, our results emphasize the importance of the effects that demand shocks have on

the supply side over the medium term. This is an important take away that can be used to

explain productivity dynamics more generally.
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A Appendix

A.1 Data

The data used for estimation are available from the FRED (https://research.stlouisfed.org/fred2/)

and NSF (http://www.nsf.gov/statistics/) websites. Descriptions of the data and their cor-

respondence to model observables follow (the standard macro series used are as in Del Negro

et al. (2015))23. To estimate the model we use data from 1984:I to 2008:III.

Real GDP (GDPC), the GDP deflator (GDPDEF), nominal personal consumption ex-

penditures (PCEC), and nominal fixed private investment (FPI) data are produced by

the BEA at quarterly frequency. Average weekly hours of production and nonsupervisory

employees for total private industries (AWHNONAG), civilian employment 16 and over

(CE16OV) and civilian noninstitutional population 16 and over (CNP16OVA) are released

at monthly frequency by the Bureau of Labor Statistics (BLS) (we take quarterly averages

of monthly data). Nonfarm business sector compensation (COMPNFB) is produced by the

BLS every quarter. For the effective federal funds rate (DFF) we take quarterly averages

of the annualized daily data (and divide by four to make the rates quarterly).

Letting ∆ denote the temporal difference operator, the correspondence between the

standard macro data described above and our model observables is as follows:

• Output growth = 100 ×∆LN((GDPC)/LNSINDEX)

• Consumption growth = 100 ×∆LN((PCEC/GDPDEF)/LNSINDEX)

• Investment growth = 100 ×∆LN((FPI/GDPDEF)/LNSINDEX)

• Real Wage growth = 100 ×∆LN(COMPNFB/GDPDEF)

• Hours worked = 100 × LN((AWHNONAG × CE16OV/100)/LNSINDEX)

• Inflation = 100 ×∆LN(GDPDEF)

• FFR = (1/4) × FEDERAL FUNDS RATE

The R&D data used in estimating the model is produced by the NSF and measures

R&D expenditure by US corporations. The data is annual, so in estimating the model

and extracting model-implied latent variables (see Appendix A.2) we use a version of the

Kalman filter adapted for use with mixed frequency data.

23Del Negro et al. (2015) include consumer durables in consumption as opposed to investment. Our results
are robust to including them in investment. Neither approach, of course, is ideal.
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A.2 Extracting Model-Implied Latent Variables during ZLB period

The piece-wise linear solution from the OccBin method developed by Guerrieri and Iacoviello

(2015) can be represented in state space form as

St = C(Nt, θ) +A(Nt, θ)St−1 +B(Nt, θ)εt

Yt = H(Nt, θ)St

Where θ is a vector of structural parameters, St denotes the endogenous variables at

time t, Yt are observables, and εt are normally and independently distributed shocks. Nt

is a vector that identifies whether the occasionally binding constraint binds at time t and

whether it is expected to do so in the future. In particular, Nt is a vector of zeros and

ones indicating when the constraint is or will be binding. For example, the vector Nt =

(0, 1, 1, 1, 0, 0, 0...) is a situation in which the constraint does not bind at time t (denoted by

the first zero in the vector), but is expected to bind in t+ 1, t+ 2 and t+ 3. Note that the

matrices A, B and C, which in a standard linear approximation depend only on parameters

are here also functions of Nt.
24

OccBin provides a way of computing the sequence of endogenous variables {St}Tt=1 and

regimes {Nt}Tt=1 for a given initial condition S0 and sequence of shocks {εt}Tt=1. The vector

Nt is computed by a shooting algorithm and its resulting value will depend on the initial

state and shocks at time t. We refer the reader to Guerrieri and Iacoviello (2015) for a

detailed description of the method.

We construct the Kalman filter and smoother from the nonlinear state space represen-

tation presented above by taking advantage of the fact that a given sequence of regimes,

say {N̂t}Tt=1, uniquely defines a sequence of matrices {Ĉt, Ât, B̂t, Ĥt}Tt=1. It follows that for

that specific set of regimes the state space representation becomes linear:

St = Ĉt + ÂtSt−1 + B̂tεt

Yt = ĤtSt

For this linear state space representation it is straightforward to compute the Kalman

filter and smoother. We use this fact in our algorithm by running two blocks: (i) one in

24The matrix H might also be a function of Nt because some observables might become redundant when
the occasionally binding constraint binds. This is the case for the Taylor rule interest rate when the ZLB
binds.
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which we compute the Kalman filter and smoother for a given set of regimes {Nt}Tt=1; and

(ii) another where we use OccBin to compute the regimes given a sequence of shocks {εt}Tt=1.

The algorithm steps are the following.

1. Guess a sequence of regimes {N (0)
t }Tt=1;

2. Use the guess from the previous step and define the sequence of matrices {Ct, At, Bt, Ht}Tt=1

using OccBin;

3. With the matrices from the previous step, compute the Kalman Filter and Smoother

using the observables {Yt}Tt=1, and get the Smoothed shocks {ε̂t}Tt=1 and initial con-

ditions of endogenous variables;

4. Given the smoothed shocks and initial conditions from the previous step, use OccBin

to compute a new set of regimes {N (1)
t }Tt=1;

5. If {N (0)
t }Tt=1 and {N (1)

t }Tt=1 are the same, stop. If not, update {N (0)
t }Tt=1 and go to

step 2.

Once it converges, this algorithm yields a sequence of smoothed variables and shocks,

consistent with the observables, and taking into account the occasionally binding constraint.
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Table 2: Calibrated Parameters

Parameter Description Value

α Capital share 1/3
δ Capital depreciation 0.02
β Discount factor 0.995
G
Y SS government consumption/output 0.2
γy SS output growth 1.87%
µ SS final goods mark up 1.1
µw SS wage mark up 1
ϑ Intermediate goods mark up 1.35

1− φ Obsolescence rate 0.08/4
λ̄ SS adoption lag 0.15/4
ρλ Adoption elasticity 0.95

Table 3: Prior and Posterior Distributions of Estimated Parameters

Parameter Description Prior Posterior
Distr Mean St. Dev. Mode Mean St. Dev.

ρ Taylor rule smoothing Beta 0.7 0.15 0.693 0.805 0.044
φπ Taylor rule inflation Gamma 1.5 0.25 0.921 1.571 0.459
φy Taylor rule labor Gamma 0.3 0.1 0.646 0.470 0.169
ϕ Inverse Frisch elast Gamma 2 0.75 2.609 3.381 0.976
f ′′ Investment adj cost Gamma 4 1 0.916 1.286 0.249
δ′(U)
δ Capital util elast Gamma 4 1 3.946 3.868 0.939

ξp Calvo prices Beta 0.5 0.1 0.943 0.927 0.017
ξw Calvo wages Beta 0.75 0.1 0.946 0.870 0.087
ιp Price indexation Beta 0.5 0.15 0.157 0.276 0.112
ιw Wage indexation Beta 0.5 0.15 0.242 0.338 0.130
b Consumption habit Beta 0.7 0.1 0.340 0.389 0.044
ρz R&D elasticity Beta 0.6 0.2 0.342 0.390 0.147
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Table 4: Prior and Posterior Distributions of Shock Processes

Parameter Description Prior Posterior
Distr Mean St. Dev. Mode Mean St. Dev.

ρθ TFP Beta 0.50 0.20 0.90 0.91 0.03
ρpk Investment Beta 0.50 0.20 0.88 0.87 0.03
ρ% Liq Demand Beta 0.50 0.20 0.90 0.91 0.03
ρmp Monetary Beta 0.50 0.20 0.90 0.57 0.20
ρµ Mark up Beta 0.50 0.20 0.37 0.38 0.13
ρg Govt Exp Beta 0.50 0.20 0.99 0.99 0.01
ρµw Wage mark up Beta 0.50 0.20 0.16 0.26 0.14
ρχ R&D Beta 0.50 0.20 0.84 0.84 0.06
σθ TFP Inv. Gamma 0.10 2.00 0.53 0.51 0.04
σpk Investment Inv. Gamma 0.10 2.00 0.58 0.74 0.09
σ% Liq Demand Inv. Gamma 0.10 2.00 0.25 0.23 0.04
σmp Monetary Inv. Gamma 0.10 2.00 0.13 0.10 0.01
σµ Mark up Inv. Gamma 0.10 2.00 0.11 0.10 0.01
σg Govt Exp Inv. Gamma 0.10 2.00 2.73 2.87 0.24
σµw Wage mark up Inv. Gamma 0.10 2.00 0.30 0.30 0.04
σχ R&D Inv. Gamma 0.10 2.00 1.90 2.13 0.56

Table 5: Comparison of Standard Deviations

Variable Data Model

Consumption Growth 0.54 0.68
Output Growth 0.53 0.60
Hours Growth 0.47 0.74

Investment Growth 1.51 1.77
Nominal R 0.30 0.27
Inflation 0.18 0.21
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Table 6: Variance Decomposition (%)

Variables Liquidity Money Govt Price of TFP R&D Mark up Wage
Demand Exp Capital mark up

Output Growth 28.7 24.1 7.2 5.7 32.8 0.3 0.7 0.6
Consumption Growth 19.2 14.7 37.3 2.2 26.0 0.0 0.3 0.3
Investment Growth 17.8 17.1 2.6 39.4 16.1 1.1 2.6 3.3
Inflation 0.0 0.0 0.2 0.0 2.5 0.0 87.3 9.8
Nominal R 66.0 5.3 1.7 4.9 9.7 0.1 7.9 4.3
Hours 40.2 30.3 6.1 6.8 15.9 0.1 0.6 0.0
R&D Growth 7.4 8.4 3.3 4.0 21.4 51.9 3.0 0.5
Endogenous TFP 17.1 11.7 2.7 5.1 40.2 16.3 4.8 2.3
Int. Goods Varieties 0.4 0.7 0.3 0.9 1.9 94.3 1.2 0.3
Speed of Diffusion 28.7 13.7 3.5 2.7 37.1 11.3 2.1 1.0

Variance decomposition with ZLB (10,000 simulations, HP filtered series, λ = 1600).
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Figure 5: Output Growth Decomposition
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Data sources are described in Appendix A.1. Smoothed shocks from model estimated using data as described

in Section 4.2 and Appendix A.1.
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Figure 6: GZ Spread and Model Spread - correlation: 0.69
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See Gilchrist and Zakrajsek (2012) for details on the construction of the G-Z spread (data are available at

http://people.bu.edu/sgilchri/Data/data.htm). Smoothed shocks from model estimated using data as described

in Section 4.2 and Appendix A.1.
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Figure 7: Impulse Response to 1 std. dev. Shock
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Figure 8: Liquidity Demand Shock and the ZLB
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Figure 9: Endogenous TFP, TFP and Labor Productivity
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Labor productivity is GDP divided by hours worked (see Appendix A.1 for data sources). Smoothed shocks

from model estimated using data as described in Section 4.2 and Appendix A.1.
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Figure 10: Endogenous TFP Decomposition
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Figure 11: Sources of Endogenous Technology
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Figure 12: Productivity and Liquidity Demand + Money Shocks
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from model estimated using data as described in Section 4.2 and Appendix A.1.
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