Expecting the Fed

Anna Cieślak and Pavol Povala
Northwestern Kellogg and University of Lugano

March 1, 2013
Motivation

Fact. There is information in the time series of interest rates and in macro variables that is not in today’s yield curve, but predicts bond returns/yields.

H1. [FIRE] A variable has an offsetting effect on the risk premium vs the expected short rate, maturity by maturity:

\[
y_t^{(2)} = \frac{1}{2} F_t (i_t + i_{t+1}) + \frac{1}{2} F_t \left(rx_{t+1}^{(2)} \right) \text{ (ex-ante)} \quad (1)
\]

H2. [≠FIRE] Forecast errors about the short rate are ex-post predictable:

\[
y_t^{(2)} = \frac{1}{2} (i_t + i_{t+1}) + \frac{1}{2} rx_{t+1}^{(2)} \text{ (ex-post)} \quad (2)
\]

\[
i_{t+1} - F_t(i_{t+1}) = - \left[rx_{t+1}^{(2)} - F_t(rx_{t+1}^{(2)}) \right] \quad (3)
\]

Focus. How does the private sector form and update expectations about \(i_t\) and thus future path of monetary policy?
Term structure of short rate expectations

Professional forecasts from the Blue Chip survey (BCFF), available 1983-2010

Similar pattern for Greenbook forecasts of FFR as well as for SPF and BCFF forecasts of 3-month T-bill

Forecasters predict about 18% of variation in FFR one year ahead; more than 80% remains unexplained
Term structure of forecast errors

Forecast error defined as: $FE_{t-h,t}^{FFR} = FFR_t - E_{t-h}^s(FFR_t)$, where h ranges from one through four quarters, $E^s(\cdot)$ denotes survey-based expectations.

Largest and most volatile errors occur in easing episodes; avg. forecast error $= -1.43\%$ in easings and 0.60% in tightenings, at $h = 4Q$.
Term structure of forecast errors

The table reports out-of-sample (sequential) RMSEs (in % p.a.) for forecasting FFR at horizons 1–4Q ahead, OOS period 1983-2010.

<table>
<thead>
<tr>
<th>Model</th>
<th>h=Q1</th>
<th>h=Q2</th>
<th>h=Q3</th>
<th>h=Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) FFR survey</td>
<td>0.33</td>
<td>0.75</td>
<td>1.12</td>
<td>1.47</td>
</tr>
<tr>
<td>(2) Random walk</td>
<td>0.54</td>
<td>0.95</td>
<td>1.31</td>
<td>1.63</td>
</tr>
<tr>
<td>(3) AR(2)</td>
<td>0.52</td>
<td>0.95</td>
<td>1.29</td>
<td>1.60</td>
</tr>
<tr>
<td>(4) AR(p) dynamic</td>
<td>0.55</td>
<td>0.97</td>
<td>1.30</td>
<td>1.61</td>
</tr>
<tr>
<td>(5) VAR(2) OLS</td>
<td>0.55</td>
<td>0.93</td>
<td>1.30</td>
<td>1.64</td>
</tr>
<tr>
<td>(6) TVP VAR(2)</td>
<td>0.56</td>
<td>1.02</td>
<td>1.42</td>
<td>1.79</td>
</tr>
</tbody>
</table>
i. Ex-post, the short rate appears more predictable than it has been ex-ante
 — Distant lags of short rate predict its changes after conditioning on information in the yield curve
 — Slow mean-reversion at business cycle frequency

ii. A wedge between information in the time series and cross section of yields
 — Effect located at the short maturity range
 — Lagged information explains up to 25% of ex-post FFR forecast errors
 — Traces low-frequency variation in monetary policy surprises

iii. Two factor structure in realized/predictable bond excess returns
 — At short maturities, ex-ante unexpected short rate component
 — At long maturities, “usual” risk premium

iv. More general feature of expectations formation?
 — Lagged information survives in tests for information frictions (noisy, sticky)
 — Explains portion of ex-post errors of unemployment controlling for other information rigidities
 — Visible in money market fund flows; evidence of extrapolation

Monetary policy and information frictions: Woodford (2001), Mankiw and Reis (2002), Orphanides and Williams (2005), Sims (2003), Angeletos and La’O (2011)

Short rate expectations
A yield curve decomposition

\[
\Delta FFR^c = \Delta FFR \quad \Rightarrow \quad FFR^c = \text{slope}
\]
A yield curve decomposition

Cieslak and Povala (2011):

i. τ_t^{CPI}: Slow-moving inflation endpoint (target) \rightarrow level

$\Delta FFR^C = \Delta FFR \bowtie FFR^C = $slope \bowtie
Cieslak and Povala (2011):

i. τ_t^{CPI}: Slow-moving inflation endpoint (target) \rightarrow level

ii. FFR_t^c: Monetary policy cycle moving the short end \rightarrow slope

$$FFR_t^c = FFR_t - \hat{\beta}_t^{CPI}, \quad \hat{\beta} = 1.26$$
A yield curve decomposition

Cieslak and Povala (2011):

i. τ_t^{CPI}: Slow-moving inflation endpoint (target) \rightarrow level

ii. FFR_t^c: Monetary policy cycle moving the short end \rightarrow slope

\[FFR_t^c = FFR_t - \hat{\beta}_t \tau_t^{CPI}, \quad \hat{\beta} = 1.26 \]

iii. RP_t: A risk premium factor

\[\Delta FFR^c = \Delta FFR \rightarrow FFR^c = \text{slope} \rightarrow \]
Cieslak and Povala (2011):

i. τ_{t}^{CPI}: Slow-moving inflation endpoint (target) \rightarrow level

ii. FFR_{t}^{C}: Monetary policy cycle moving the short end \rightarrow slope

$$FFR_{t}^{C} = FFR_{t} - \hat{\beta}\tau_{t}^{CPI}, \quad \hat{\beta} = 1.26$$

iii. RP_{t}: A risk premium factor

- Inflation target $\tau_{t}^{CPI} \approx$ random walk
- Forecasting $\Delta FFR_{t,t+1}$ amounts to forecasting $\Delta FFR_{t,t+1}^{C}$ [corr. 0.99]
- $FFR_{t}^{C} \approx$ slope w/o risk premium [corr. w/ slope -0.93]
- For robustness, we fix $\hat{\beta} = 1$, and use long-term inflation surveys

$$\Delta FFR_{t}^{C} = \Delta FFR \sim FFR_{t}^{C} = \text{slope} \sim$$
Short rate dynamics and expectations

Statistics, but not surveys, tells us that short rate is quite predictable (survey sample 1983-2010):

\[
\Delta FFR_{t,t+1} = \alpha_0 + \alpha_1 FFR_t^c + \alpha_2 FFR_{t-1}^c + \varepsilon_{t+1}, \quad \bar{R}^2 = 0.46
\]

Long-run mean reversion appears not fully subsumed in FFR forecasts:

\[
\Delta FFR_{t,t+1} = \alpha_3 + \alpha_4 \left[E_t^s (FFR_{t+1}) - FFR_t \right] + \alpha_5 FFR_{t-1}^c + \varepsilon_{t+1}, \quad \bar{R}^2 = 0.46
\]

Lagged slope plays a similar role to \(FFR_{t-1}^c \) (though risk premium):

\[
\Delta FFR_{t,t+1} = \alpha_6 + \alpha_7 \left[E_t^s (FFR_{t+1}) - FFR_t \right] + \alpha_8 S_{t-1} + \varepsilon_{t+1}, \quad \bar{R}^2 = 0.31
\]
Short rate dynamics and expectations

Statistics, but not surveys, tells us that short rate is quite predictable (survey sample 1983-2010):

\[
\Delta FFR_{t,t+1} = \alpha_0 + \alpha_1 FFR_t^c + \alpha_2 FFR_{t-1}^c + \varepsilon_{t+1}, \quad \bar{R}^2 = 0.46
\]

Long-run mean reversion appears not fully subsumed in FFR forecasts:

\[
\Delta FFR_{t,t+1} = \alpha_3 + \alpha_4 \left[E_t^s(FFR_{t+1}) - FFR_t \right] + \alpha_5 FFR_{t-1}^c + \varepsilon_{t+1}, \quad \bar{R}^2 = 0.46
\]

Lagged slope plays a similar role to \(FFR_{t-1}^c \) (though risk premium):

\[
\Delta FFR_{t,t+1} = \alpha_6 + \alpha_7 \left[E_t^s(FFR_{t+1}) - FFR_t \right] + \alpha_8 S_{t-1} + \varepsilon_{t+1}, \quad \bar{R}^2 = 0.31
\]

Thus, ex-post forecast errors are predictable with lagged information:

\[
\text{FE}_{t,t+1}^{FFR} = \delta_0 + \delta_1 FFR_{t-1}^c + \varepsilon_{t+1}, \quad \bar{R}^2 = 0.26
\]

\(S_{t-1} \) explains 15%; \(FFR_{t-1}^c \) constructed with inflation surveys explains 25%.

©2013 Cieślak (NU Kellogg) & Povala (USI)
Persistent monetary policy surprises

Kuttner (2001) surprises available from 1989:12; change in the fed funds futures around FOMC announcement; we sum them up over 8 meetings

Tight policy in the past → more negative surprises going forward as policy eases; suggestive of private sector extrapolating recent experience
A different look at FE predictability

i. Time series: $\Delta FFR_{t-1,t}$

ii. Expectations/“Cross section”: $E^s_t(FFR_{t+1}^c) = E^s_t(FFR_{t+1}) - \tau_t^{CPI}$

No need to estimate proj. coefficient for τ_t^{CPI}; τ_t^{CPI} is real time
A different look at FE predictability

i. Time series: $\Delta FFR_{t-1,t}$

ii. Expectations/"Cross section": $E_t^s(FFR_{t+1}^C) = E_t^s(FFR_{t+1}) - \tau_{t_{CP}}$

No need to estimate proj. coefficient for $\tau_{t_{CP}}$; $\tau_{t_{CP}}$ is real time

To fit the FE, a projection extracts a component orthogonal to t expectations:

$$FE_{t,t+1}^{FFR} = \delta_3 + \delta_4 \left[\Delta FFR_{t-1,t} - E_t^s(FFR_{t+1}^C) \right] + \epsilon_{t+1}, \quad R^2 = 0.33$$

Similar results using inflation surveys instead of τ_{CP}; range of \bar{R}^2: 20%-25%
A different look at FE predictability

i. Time series: $\Delta FFR_{t-1,t}$

ii. Expectations/“Cross section”: $E_t^s(FFR_{t+1}^c) = E_t^s(FFR_{t+1}) - \tau_{t}^{CPI}$

No need to estimate proj. coefficient for τ_{t}^{CPI}; τ_{t}^{CPI} is real time

To fit the FE, a projection extracts a component orthogonal to t expectations:

$$FE_{t,t+1}^{FFR} = \delta_3 + \delta_4 \left[\Delta FFR_{t-1,t} - E_t^s(FFR_{t+1}^c) \right] + \epsilon_{t+1}, \quad \bar{R}^2 = 0.33$$

Similar results using inflation surveys instead of τ_{t}^{CPI}; range of \bar{R}^2: 20%-25%

Define: $MP_t^\perp = \Delta FFR_{t-1,t} - E_t^s(FFR_{t+1}^c)$

- Idea that there is persistent information in short rate dynamics that is not im- pounded into expectations in real time
- MP_t^\perp is essentially orthogonal to time-t yield curve (proj. on 5 PCs gives $\bar{R}^2 = 10\%$)
- If expectations \approx RW, MP_t^\perp collapses to $-FFR_{t-1}^c$ [corr=-0.90]
- An interpretation of an unspanned short rate factor
Expected and ex-ante unexpected returns
Bond excess returns move on **two factors** with opposite loadings across maturities; two factors capture $> 95\%$ of variation.

Long-maturity component explained well with RP_t; short-maturity component—with lagged short rate information.

Similar in spirit to JPS, JLS who combine macro and yield curve info.
Factor structure of excess bonds returns

\[r_{x_{t,t+1}}^{(n)} = \alpha_0 + \alpha_1 R P_t + \alpha_2 F F R^c_{t-1} + \varepsilon_{t+1} \]

<table>
<thead>
<tr>
<th>(r_{x_{t,t+1}}^{(n)})</th>
<th>(r_{x_{t,t+1}}^{(2)})</th>
<th>(r_{x_{t,t+1}}^{(3)})</th>
<th>(r_{x_{t,t+1}}^{(5)})</th>
<th>(r_{x_{t,t+1}}^{(7)})</th>
<th>(r_{x_{t,t+1}}^{(10)})</th>
<th>(r_{x_{t,t+1}}^{(20)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. (r_{x_{t,t+1}}^{(n)} = \alpha_0 + \alpha_1 R P_t + \varepsilon_{t,t+1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R P_t)</td>
<td>0.52</td>
<td>0.56</td>
<td>0.64</td>
<td>0.68</td>
<td>0.72</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>(4.26)</td>
<td>(5.22)</td>
<td>(6.62)</td>
<td>(7.23)</td>
<td>(8.09)</td>
<td>(7.11)</td>
</tr>
<tr>
<td>(\bar{R}^2)</td>
<td>0.26</td>
<td>0.31</td>
<td>0.41</td>
<td>0.47</td>
<td>0.52</td>
<td>0.49</td>
</tr>
<tr>
<td>B. (r_{x_{t,t+1}}^{(n)} = \alpha_0 + \alpha_1 R P_t + \alpha_2 F F R^c_{t-1} + \varepsilon_{t,t+1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R P_t)</td>
<td>0.56</td>
<td>0.60</td>
<td>0.67</td>
<td>0.71</td>
<td>0.74</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>(4.57)</td>
<td>(5.80)</td>
<td>(7.14)</td>
<td>(7.54)</td>
<td>(8.13)</td>
<td>(6.77)</td>
</tr>
<tr>
<td>(F F R^c_{t-1})</td>
<td>0.49</td>
<td>0.45</td>
<td>0.34</td>
<td>0.27</td>
<td>0.21</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>(4.89)</td>
<td>(4.16)</td>
<td>(3.14)</td>
<td>(2.57)</td>
<td>(2.05)</td>
<td>(1.11)</td>
</tr>
<tr>
<td>(\bar{R}^2)</td>
<td>0.50</td>
<td>0.51</td>
<td>0.52</td>
<td>0.54</td>
<td>0.56</td>
<td>0.50</td>
</tr>
</tbody>
</table>

\(R P_t \) is bond risk premium constructed by Cieslak and Povala (2011).

Similarly, lagged slope, \(S_{t-1} \), increases the \(R^2 \) to 45% at the short end.
Decomposing realized return on 2-year bond

- Focus on the short end where effect of lags is the strongest: 2-year bond
- Obtain a direct survey-based measure of ex-ante unexpected returns
- BCFF survey, same panel of forecasters as above, but available over shorter sample 1988–2010
- Decompose the annual return on the 2-year Treasury bond as:

\[
rx_{t,t+1}^{(2)} = \left[f_t^{(2)} - E_t^s(y_{t+1}^{(1)}) \right] - \left[y_{t+1}^{(1)} - E_t^s(y_{t+1}^{(1)}) \right].
\]

- Unexpected return comoves strongly with the FFR forecast error:

\[
corr(U_t(rx_{t,t+1}^{(2)}), F^tE^{FFR}_{t,t+1}) = -0.93
\]
Predicting components of realized return on 2-year bond

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP_t^\perp</td>
<td>FFR_{t-1}^c</td>
<td>S_{t-1}</td>
<td>CFNAI$_t$</td>
<td>ΔUnempl$_t$</td>
<td>RP_t</td>
<td></td>
</tr>
<tr>
<td>A. Predicting ex-ante unexpected return on 2-year bond</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>-0.60</td>
<td>0.57</td>
<td>-0.48</td>
<td>-0.39</td>
<td>0.42</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>(-5.12)</td>
<td>(4.46)</td>
<td>(-3.75)</td>
<td>(-2.43)</td>
<td>(2.63)</td>
<td>(1.22)</td>
</tr>
<tr>
<td>\bar{R}^2</td>
<td>0.35</td>
<td>0.32</td>
<td>0.22</td>
<td>0.15</td>
<td>0.18</td>
<td>0.02</td>
</tr>
<tr>
<td>B. Predicting expected return on 2-year bond</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>-0.05</td>
<td>0.01</td>
<td>-0.14</td>
<td>0.17</td>
<td>-0.05</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>(-0.34)</td>
<td>(0.08)</td>
<td>(-0.77)</td>
<td>(1.49)</td>
<td>(-0.47)</td>
<td>(4.33)</td>
</tr>
<tr>
<td>\bar{R}^2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.02</td>
<td>0.00</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Projections of unexpected and expected return on 2-year bond:

Columns (1)-(3): on lagged term structure information

Columns (4)-(5): on real activity proxies as predictors: CFNAI and growth of unemployment

Column (6): on statistical risk premium proxy, RP_t

Available BCFF sample: 1987:12-2010:12
Predicting components of realized return on 2-year bond

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(MP^\perp_t)</td>
<td>(FF_{t-1}^c)</td>
<td>(S_{t-1})</td>
<td>(CFNAI_t)</td>
<td>(\Delta Unempl_t)</td>
<td>(RP_t)</td>
<td></td>
</tr>
<tr>
<td>A. Predicting ex-ante unexpected return on 2-year bond</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta)</td>
<td>-0.60</td>
<td>0.57</td>
<td>-0.48</td>
<td>-0.39</td>
<td>0.42</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>(-5.12)</td>
<td>(4.46)</td>
<td>(-3.75)</td>
<td>(-2.43)</td>
<td>(2.63)</td>
<td>(1.22)</td>
</tr>
<tr>
<td>(\bar{R}^2)</td>
<td>0.35</td>
<td>0.32</td>
<td>0.22</td>
<td>0.15</td>
<td>0.18</td>
<td>0.02</td>
</tr>
<tr>
<td>B. Predicting expected return on 2-year bond</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta)</td>
<td>-0.05</td>
<td>0.01</td>
<td>-0.14</td>
<td>0.17</td>
<td>-0.05</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>(-0.34)</td>
<td>(0.08)</td>
<td>(-0.77)</td>
<td>(1.49)</td>
<td>(-0.47)</td>
<td>(4.33)</td>
</tr>
<tr>
<td>(\bar{R}^2)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.02</td>
<td>0.00</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Projections of unexpected and expected return on 2-year bond:

Columns (1)-(3): on lagged term structure information

Columns (4)–(5): on real activity proxies as predictors: CFNAI and growth of unemployment

Column (6): on statistical risk premium proxy, \(RP_t \)

Available BCFF sample: 1987:12-2010:12

- **FIRE explanation for excess predictability** (\(H1 \): offsetting risk premia and expectations) requires significant relationship between expected returns and predictors (\(\neq \) panel B, cols (1)-(5))
- At the short end, survey evidence speaks to \(\neq \)FIRE story (\(H2 \)), i.e. ex-post predictable but ex-ante unexpected returns (panel A)
- This does not preclude the first effect (\(H1 \)) to take hold at the long end
Additional evidence

Long samples, frictions, concerns
A. Consider a simple autoregressive **time series** model for the short rate
[e.g. Modigliani and Sutch (1966), Sargent (1972)]

B. Use the **cross-sectional** information (fitted slope \hat{S}_t) to predict changes

<table>
<thead>
<tr>
<th>Sample period</th>
<th>R^2 lag</th>
<th>Wald pval</th>
<th>BIC max.lag</th>
<th>β^e [t-stat]</th>
<th>$R^2_{\hat{S}_t}$</th>
<th>$R^2_{raw \ S_t}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1875:3-1913:4</td>
<td>0.40</td>
<td>0.27</td>
<td>–</td>
<td>1.13 [5.70]</td>
<td>0.39</td>
<td>0.35</td>
</tr>
<tr>
<td>1914:1-1951:2</td>
<td>0.07</td>
<td>0.20</td>
<td>–</td>
<td>0.28 [1.60]</td>
<td>0.07</td>
<td>0.06</td>
</tr>
<tr>
<td>1951:3-1979:2</td>
<td>0.39</td>
<td>0.00</td>
<td>14</td>
<td>0.56 [3.61]</td>
<td>0.17</td>
<td>0.14</td>
</tr>
<tr>
<td>1984:1-2011:4</td>
<td>0.41</td>
<td>0.00</td>
<td>16</td>
<td>0.50 [2.65]</td>
<td>0.12</td>
<td>0.09</td>
</tr>
<tr>
<td>1951:3-2011:4</td>
<td>0.13</td>
<td>0.00</td>
<td>16</td>
<td>0.26 [1.25]</td>
<td>0.02</td>
<td>0.03</td>
</tr>
</tbody>
</table>

\hat{S}_t is a fitted value from a regression of slope on lags of $i_{t-j}: j \in 0, 1, 2, 4$ years

- Distant lags double predictability of short rate changes relative to time t information
- Extra information in the dynamics seems to coincide with an active monetary policy (post-Accord)
- Clear data limitations: slope does not capture the whole time t information *(see next)*
Short rate dynamics post Accord

- Post Fed-Treasury Accord period: condition on the entire available cross section of yields (PCs); select lags optimally (BIC)

\[
\Delta i_{t,t+1} = \beta_0 + \sum_{j=1}^{6} \beta_j PC^j_t + \delta_1 i_{t-L_1} + \delta_2 i_{t-L_2} + \epsilon_{t+1}
\]

<table>
<thead>
<tr>
<th>Sample period</th>
<th>\bar{R}^2 PCs</th>
<th>\bar{R}^2 PCs & lags</th>
<th>Wald pval lags</th>
<th>BIC max.lag (qtrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1952:3–1979:2</td>
<td>0.08</td>
<td>0.36</td>
<td>0.00</td>
<td>13</td>
</tr>
<tr>
<td>1984:1–2011:4</td>
<td>0.37</td>
<td>0.55</td>
<td>0.00</td>
<td>16</td>
</tr>
<tr>
<td>1952:3–2011:4</td>
<td>0.18</td>
<td>0.25</td>
<td>0.01</td>
<td>16</td>
</tr>
</tbody>
</table>

- Significant information in lagged short rates beyond time t cross section
- Evidence that lag structure not constant across monetary policy regimes
Noisy and sticky information models imply that forecast errors are predictable with forecast updates (Coibion and Gorodnichenko (2012)):

\[\text{FE}_{t,t+h}^{FR} = \beta_0 + \beta_1 \left[E_t^s(FFR_{t+h}) - E_{t-1/4}(FFR_{t+h}) \right] + \beta_X X_t + \varepsilon_{t+h} \]

with \(\beta_1 > 1 \) and \(\beta_X = 0 \)

<table>
<thead>
<tr>
<th></th>
<th>(h = 1Q) ahead</th>
<th>(h = 3Q) ahead</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(X_t)</td>
<td>(X_t)</td>
</tr>
<tr>
<td></td>
<td>Baseline (MP_t) (FFR_{t-1}^c) (S_{t-1})</td>
<td>Baseline (MP_t) (FFR_{t-1}^c) (S_{t-1})</td>
</tr>
<tr>
<td>(\beta_1)</td>
<td>0.15 ((6.95))</td>
<td>0.34 ((2.99))</td>
</tr>
<tr>
<td></td>
<td>0.13 ((5.23))</td>
<td>0.26 ((2.57))</td>
</tr>
<tr>
<td></td>
<td>0.11 ((3.22))</td>
<td>0.22 ((1.97))</td>
</tr>
<tr>
<td></td>
<td>0.14 ((5.36))</td>
<td>0.29 ((2.73))</td>
</tr>
<tr>
<td>(\beta_X)</td>
<td>0.12 ((3.18))</td>
<td>0.46 ((4.08))</td>
</tr>
<tr>
<td></td>
<td>-0.12 ((-2.78))</td>
<td>-0.44 ((-3.00))</td>
</tr>
<tr>
<td></td>
<td>0.07 ((1.66))</td>
<td>0.29 ((2.54))</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.09 ((6.95))</td>
<td>0.08 ((2.99))</td>
</tr>
<tr>
<td></td>
<td>0.15 ((5.23))</td>
<td>0.22 ((2.57))</td>
</tr>
<tr>
<td></td>
<td>0.15 ((3.22))</td>
<td>0.20 ((1.97))</td>
</tr>
<tr>
<td></td>
<td>0.10 ((5.36))</td>
<td>0.13 ((2.73))</td>
</tr>
</tbody>
</table>

Importance of forecast updates subsides with horizon \(h \); role of yield curve lags increases

Similarly, lagged yield curve predicts unemployment FE beyond forecast updates
Extensions and concerns

We have not settled on a final story, but have documented additional facts:

- **Greenbook** FFR forecasts have similar properties \(\text{corr} = 88\% \) with BCFF FE at \(h = 4Q \)

- **Other macro variables.** Unemployment FE are strongly related to \(F E^{FFR} \) \(\text{corr} = -70\% \), and also predictable with lagged yield curve info

- **Flows** into money market are high following high \(FFR_t^c \) (flat \(S_t \)) suggesting extrapolation of recent past
 - Some evidence of market segmentation: speculative positions in Eurodollar futures predict the direction of FEs (Piazzesi and Swanson 2008), no such link in fed funds futures

- **Risk premia.** Could it just be risk premium at the short end of the curve?
 - Survey-based expected returns are uncorrelated with fitted ones from predictive regressions using real activity and uncertainty proxies
 - But indeed, FE of one investor type can be risk premium for someone else

- **Survey samples** are short, and the 1983-2010 period is unique in many ways

Survey vs. statistical premia T-bills
Based on survey forecasts, a portion of ex-post predictable short rate variation seems not anticipated ex-ante.

Distinguishing these sources of predictability in bond returns is potentially important: different channels/models.

Going forward:

- Which model of expectations formation? Learning about time-varying policy rule, natural expectations, other...
- Implications within GE models
- Importance for real effects of monetary policy?