Discussion of BCS Paper on SBC

Mark Gertler

NYU

Jan 2013

Overview

- Develop complete model of financial boom/bust cycle
- Requires non-linear computational approach
 - Asymmetries present with financial crises
 - "Shock-elasticities" vary with credit conditions
 - * With linear approx: shock elasticities depend on credit conditions within a local region of the steady state

Overview (con't)

- Burgeoning literature on non-linear comp. of financial crises model:
 - Mendoza, Bianchi, Brunnermeier/Sannikov, He/Krishnamurthy
- Bottom line: Important research agenda
- Key issues involving mapping to real world
 - Main limitation of non-linear methods: restricted state space
 - How well can models capture what really happened

Model Basics

- Two states: tfp z_t and capital k_t
- k_t allocated between firms and storage
- Households lend capital to firms via banks
- Inter-bank market reallocates capital from inefficient to efficient banks
- Crisis: Inter-bank market collapses if return to capital $R_t < \overline{R}$
 - Only efficient banks lend capital to firms
 - Inefficient banks use storage technology \rightarrow output collapse

Inter-bank Market

 $\rho \equiv$ inter-bank rate; $\phi \equiv$ leverage; $p \in [0, 1] \equiv$ bank efficiency

• bank profits (per unit of assets)

$$\max\{pR_t + (pR_t - \rho_t)\phi_t, \ \rho_t\}$$

- moral hazard:
 - borrowing bank can renege on debt
 - can divert $\mathbf{1}+\theta\phi_t$ to a storage technology earning $\gamma\leq\mathbf{1}$
- private information: p unknown to lender

Inter-bank Market (con't)

- Only way to align incentives:
 - make lending in IB market more attractive than borrowing and re-neging:

$$ho_t \geq \gamma (1 + heta \phi_t)$$

• Key implication: leverage ratio ϕ_t INCREASING in interbank rate

$$\phi_t = \frac{\rho_t - \gamma}{\gamma \theta}$$

- Crucial for why low value of R_t leads to market collapse

• Key to result: Private information about bank's franchise value $pR_t + (pR_t - \rho_t)\phi_t$.

Inter-bank Market (con't)

• Without private information about franchise value:

$$pR_t + (pR_t - \rho_t)\phi_t \ge \gamma(1 + \theta\phi_t)$$

 \Rightarrow Leverage ratio DECREASING in inter-bank rate

$$\phi_t = \frac{pR_t - \gamma}{\theta - (pR_t - \rho_t)}$$

- Empirical question as to which approach is appropriate
 - Inter-bank rates do vary by bank (suggesting franchise value matters).
 - Alfonso/Kovner (2010): No clear link between volume and rate in IB market

Crisis (Inter-bank Market Breakdown)

- drop in $R_t \Rightarrow$ banks at margin shift from borrowing to lending
 - \Rightarrow interbank rate ρ_t declines as relative supply of interbank funds rises
 - \Rightarrow decline in ρ_t reduces leverage (which reduces demand)
- Below threshhold $\overline{\rho}$ the market collapses
 - Loan demand falls with ρ_t due to leverage effect
 - \Rightarrow decline in ρ_t cannot eliminate excees supply
- $\overline{
 ho}$ implies threshold for \overline{R} for R_t

Mechanics of Crisis Probability

• After solving out for n_t and imposing parameter values \Rightarrow no crisis region

$$R_t = \alpha z_t^2 k_t^{-1/3} + 1 - \delta \ge \overline{R}$$

- Crisis probability π_t : effective probability innovation in $z_t \Rightarrow R_t \leq \overline{R}$
 - Key point: π_t is increasing in k_t
- To move into crisis region (starting at SS)
 - $* z_t$ has to drop 6 7 % (holding k constant)
 - * k_t has to increase 35 40 % (holding z constant).

Some Implications

- 1. Endogenous vulnerability (due to high k_t) takes a long time (decades) to build up.
 - (a) One percent in k_t leads to small reduction in R_t (~ 4 to 5 basis points)
 - (b) Big percentage increases in k_t can occur slowly over time.
- 2. Feeding U.S. data into model: Minimal endogenous vulnerability before recent crisis.
 - (a) Pattern of TFP shocks $\Rightarrow k_t$ and z_t near steady state in 2007.
 - (b) Crisis due to large negative TFP shocks.(not utilization adjusted).

Figure 8: Typical path (I)

Figure 19: k-step ahead Probabilities of a Financial Crisis (k=1,2)

 $\underline{\text{Note:}}$ The vertical thin dashed lines correspond to the 1984 Savings & Loans, the 2000 dotcom and 2008 crises.

Private credit/GDP ratio and property prices United States

¹ In per cent. ² Aggregated index including residential and commercial property prices; 1985 = 100.

Source: National data.

Mechanics of Recent Boom/Bust Episode

- Conventional "financial accelerator" mechanism accounts for bust
 - Asset price contractions hit leveraged borrowers in key sectors (banks, households)
 - Weakened balance sheets tighten credit constraints, and so on.
- Other "nonlinear" approaches incorporate financial accelerator mechanism
 - Mendoza, Bianchi, Brunneremeir/Sanikov, He/Krishmmurthy
 - Explain bust but lack good explanation for build-up in vulnerability
- Possible sources of rapid asset price/credit booms
 - Deregulation/ Relaxed Lending Standards (while keeping "Too-Big-Too-Fail")
 - Bubbles/News Shocks (see Bernanke/Gertler 1999 and Christiano et. al 2010 for early attempts.)

Summary

• Interesting contribution to important literature

• More work on mapping from model to data would be useful