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Abstract

We develop a theory linking “misallocation,” i.e., dispersion in static marginal prod-
ucts of capital (MPK), to systematic investment risks. In our setup, firms differ in their
exposure to these risks, which we show leads naturally to heterogeneity in firm-level risk
premia and, more importantly, MPK. The theory predicts that cross-sectional dispersion
in MPK (i) depends on cross-sectional dispersion in risk exposures and (ii) fluctuates with
the price of risk, and thus is countercyclical. We document strong empirical support for
these predictions. We devise a strategy to quantify variation in firm-level risk exposures
using data on the dispersion of expected stock market returns. Our estimates imply that
risk considerations explain almost 40% of observed MPK dispersion among US firms and
in particular, can rationalize a large persistent component in firm-level MPK deviations.
Our framework provides a sharp link between aggregate volatility, cross-sectional asset
pricing and long-run economic performance – MPK dispersion induced by risk premium
effects, although not prima facie inefficient, lowers the average level of aggregate TFP by
as much as 7%, suggesting large “productivity costs” of business cycles.
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1 Introduction

A large and growing body of work has documented the “misallocation” of resources across firms,
i.e., dispersion in the marginal product of inputs into production, and the resulting adverse
effects on aggregate outcomes, such as productivity and output. Recent studies have found
that even after accounting for a host of leading candidates – for example, adjustment costs,
financial frictions or imperfect information – a substantial portion of observed misallocation
seems to stem from other firm-specific factors, specifically, of a type that are orthogonal to firm
fundamentals and are extremely persistent (if not permanent) to the firm.1 Identifying exactly
what – if any – underlying economic forces lead to this type of distortion has proven puzzling.

In this paper, we propose, empirically test and quantitatively evaluate just such a theory,
linking capital misallocation to systematic investment risks. To the best of our knowledge,
we are the first to make the connection between standard notions of the risk-return tradeoff
and the resulting dispersion in the marginal product of capital (MPK) across firms. Indeed,
our framework provides a natural way to translate the findings of the rich literature on cross-
sectional asset pricing into the implications for the allocation of capital across firms. Further,
we are able to quantify the effects of risk considerations – e.g., dispersion in risk premia across
firms and the extent of aggregate volatility (and so aggregate risk) – on long-run macroeconomic
outcomes, such as aggregate total factor productivity (TFP). Through the marginal product
dispersion they induce, risk premium effects – although not prima facie inefficient – depress the
average level of achieved TFP in the economy, leading to a previously unexplored “productivity
cost” of business cycles, in the spirit of Lucas (1987).2

Our point of departure is a standard neoclassical model of firm investment in the face of
both aggregate and idiosyncratic uncertainty. Firms discount future payoffs using a stochastic
discount factor that is also a function of aggregate conditions. Critically, this setup implies that
firms optimally equalize not necessarily MPK, but expected, appropriately discounted, MPK.3

With little more structure than this, the framework gives rise to an asset pricing equation
governing the firm’s expected MPK – firms with higher exposure to the aggregate risk factors
require a higher risk premium on investments, which translates into a higher expected MPK.
In fact, the model implies a beta pricing equation of exactly the same form that is often used
to price the cross-section of stock market returns. The equation simply states that a firm’s
expected MPK should be linked to the exposure of its MPK to systematic risk (i.e., the firm’s

1See, e.g., David and Venkateswaran (2017). We discuss the literature in more detail below.
2Our analysis is also reminiscent of the approach in Alvarez and Jermann (2004), who use data on asset

prices to measure the welfare costs of aggregate fluctuations.
3Importantly, this is a statement only about expected MPK; realized MPK may differ across firms for

additional reasons, i.e., uncertainty over future shocks.
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“beta”), and the “price” of that risk. This firm-specific risk premium appears exactly as what
would otherwise be labeled a persistent distortion or “wedge” in the firm’s investment decision.

The simple logic of the pricing equation contains substantial empirical content. Specifically,
we state and empirically investigate four key predictions – (i) exposure to standard risk factors
priced in asset markets is an important determinant of expected MPK, (ii) movements in fac-
tor risk prices are linked to fluctuations in conditional expected MPK, (iii) MPK dispersion is
positively related to beta dispersion and (iv) movements in factor risk prices are linked to fluc-
tuations in MPK dispersion. We use a combination of firm-level production and stock market
data to provide empirical support for these predictions. For example, (i) high MPK firms tend
to offer high expected stock returns, suggesting that MPK is linked to exposure to systematic
risk, and further, direct measures of these exposures are positively related to levels of MPK,
(ii) common return predictors such as credit spreads and the aggregate price/dividend ratio
predict fluctuations in mean firm-level MPK, (iii) in the cross-section, industries with higher
dispersion in factor exposures, i.e., betas, have higher dispersion in MPK and (iv) both MPK
dispersion and the return on a portfolio of high-minus-low MPK stocks contain predictable,
and in fact countercyclical, components, as indicated by the same return predictors as in (ii).

After establishing these empirical results, we interpret them and gauge their magnitudes
through the lens of a quantitative model. To that end, we enrich our theory by explicitly linking
the sources of uncertainty to idiosyncratic and aggregate productivity risk.4 We add two key
elements to this framework – first, a stochastic discount factor designed to match standard
asset pricing facts, as has become standard in the cross-sectional asset pricing literature (e.g.,
Zhang (2005) and Gomes and Schmid (2010)). Second, we allow for ex-ante cross-sectional
heterogeneity in exposure, i.e., beta, with respect to the systematic productivity risk. In other
words, the productivity of high beta firms is highly sensitive to the realization of aggregate
productivity, low beta firms have low sensitivity, and indeed, the productivity of firms with
negative beta may move countercyclically. The investment side of the model is analytically
tractable and yields sharp characterizations of firm investment decisions and MPK.

This setup is consistent with the key empirical results described above, namely, firm-level
expected MPKs are dependent on exposures to the aggregate productivity shock (the systemic
risk factor in the economy) and due to the countercyclical nature of factor risk prices, are
countercyclical, as is the cross-sectional dispersion in expected MPK. Further, we derive an
expression for aggregate TFP, which is a strictly decreasing function of MPK dispersion. By
inducing MPK dispersion, cross-sectional variation in factor risk exposures and a higher price
of risk (which depends on the degree of aggregate volatility) reduce the average (long-run) level

4These can also be interpreted as shocks to demand. Later, we show that the environment can be extended
to incorporate multiple risk factors and financial shocks.
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of achieved TFP. Thus, the model provides a novel, quantifiable link between financial market
conditions, i.e., the nature of aggregate risk, and longer-run economic performance.

The strength of these connections rely on three key parameters – the degree of heterogeneity
in firm-level risk exposures and the magnitude and time-series variation in the price of risk. We
devise an empirical strategy to identify these parameters using salient moments from firm-level
and aggregate stock market data, specifically, (i) the cross-sectional dispersion in expected stock
returns, (ii) the market equity premium and (iii) the market Sharpe ratio. We use a linearized
version of our model to derive analytical expressions for these moments and show that they are
tightly linked to the structural parameters. The latter two pin down the level and volatility of
the price of risk and the first identifies the cross-sectional dispersion in firm-level risk exposures.
Indeed, in some simple cases of our model, the dispersion in expected MPK coming from risk
premium effects is directly proportional to the dispersion in expected stock returns – intuitively,
both of these moments are determined by cross-sectional variation in betas.

Before quantitatively evaluating this mechanism, we add other investment frictions to the
environment, specifically, capital adjustment costs. Although they do not change the main
insights from our simpler model, we uncover an important interaction between these costs
and risk premia – namely, adjustment costs actually amplify the effects of beta variation on
MPK dispersion. Intuitively, beta dispersion leads to persistent differences in firm-level capital
choices, even if these firms have the same average level of productivity. Adjustment costs further
increase the dispersion in capital, which leads to even larger effects on MPK. On their own,
adjustment costs do not lead to any persistent dispersion in firm-level MPK, but they augment
the effects of other factors that do, such as the variation in risk premia we analyze here.

We apply our methodology to data on US firms from Compustat/CRSP and macro/financial
aggregates, e.g., productivity and stock market returns. Our estimates reveal substantial varia-
tion in firm-level betas and a sizable price of risk – together, these imply a significant amount of
risk-induced MPK dispersion. For example, our results suggest risk premium effects can explain
as much as 38% of total observed MPK dispersion. Importantly, this dispersion is largely per-
sistent – in other words, risk effects lead to persistent MPK deviations at the firm level, exactly
of the type that compose a large portion of observed misallocation. Indeed, they can account
for as much as 47% of this permanent component in the data. The implications of these findings
for the long-run level of aggregate TFP are significant – cross-sectional variation in risk reduces
TFP by as much as 7%. Note that this represents a quantitative estimate of the impact of the
rich findings of the cross-sectional asset pricing literature on macroeconomic performance and
further, a new connection between the nature of business cycle volatility and long-run outcomes
in the spirit of Lucas (1987). Here, higher aggregate volatility leads to greater aggregate risk,
increasing dispersion in required rates of return and MPK and thus reducing TFP. Our results
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suggest these “productivity costs” of business cycles may be substantial.
Our estimates also imply a significant countercyclical element in expected MPK disper-

sion. For example, our parameterized model produces a correlation between the cross-sectional
variance in expected MPK and the state of the business cycle (measured by the aggregate
productivity shock) of -0.31. To put this number in context, the correlation between MPK dis-
persion and aggregate productivity in the data is about -0.27. This result provides a risk-based
explanation for the puzzling observation, made forcefully by Eisfeldt and Rampini (2006), that
capital reallocation is procyclical, despite the apparently countercyclical gains – due to the
countercyclical nature of factor risk prices and high beta of high MPK firms, such reallocation
in downturns would require capital to flow to the riskiest of firms in the riskiest of times.

Before concluding, we perform three important additional exercises. First, we add a flexible
class of firm-specific “distortions” of the type that have been emphasized in the misallocation
literature. These distortions can be correlated or uncorrelated with the idiosyncratic component
of firm-productivity and can be fixed or time-varying. To a first-order approximation, we show
these additional factors do not affect our results or identification approach. In other words,
although observed misallocation may stem from a variety of sources, our empirical strategy
to measuring risk premium effects yields an accurate estimate of the contribution of this one
source alone.5 Second, we demonstrate the crucial role of ex-ante dispersion in risk exposures
in generating a quantitatively realistic dispersion in expected returns. To do so, we examine
a model with no beta dispersion, but adjustment costs and heterogeneity in other firm-level
parameters, for example, curvature of the production function. We find that adjustment costs
alone do not lead to significant expected return dispersion. Further, although heterogeneity
in firm-level production parameters can generate non-negligible expected return dispersion, it
is still only a relatively small fraction of the wide dispersion observed in the data, suggesting
that variation in betas is a key ingredient in matching this moment. Third, we provide further,
direct evidence on the extent of beta dispersion. Rather than relying on stock market data,
we compute firm-level betas using production-side data by estimating time-series regressions
of measures of firm-level productivity on measures of aggregate productivity. The beta is the
coefficient from this regression. This approach yields beta dispersion on par with the dispersion
implied by the cross-section of stock market returns.

Related Literature. Our paper relates to several branches of the literature. First is the
large body of work investigating and quantifying the effects of resource misallocation across
firms, seminal examples of which include Hsieh and Klenow (2009) and Restuccia and Rogerson

5We also analyze distortions that can be correlated with the aggregate shock and show that under plausible
assumptions, our approach yields a conservative estimate of risk premium effects.
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(2008). A number of papers have explored the role of particular economic forces in leading to
misallocation. For example, Asker et al. (2014) study the role of capital adjustment costs,
Midrigan and Xu (2014), Moll (2014) and Buera et al. (2011) financial frictions, Peters (2016)
markup dispersion and David et al. (2016) information frictions.6 Gopinath et al. (2017) and
Kehrig and Vincent (2017) show that the interactions of adjustment costs and financial frictions
are important in determining the recent dynamics of misallocation in Spain and the extent of
misallocation across plants within firms, respectively. David and Venkateswaran (2017) provide
an empirical methodology to disentangle various sources of capital misallocation and establish
a large role for other firm-specific factors, in particular, ones that are essentially permanent
to the firm. We build on this literature by exploring the implications of a different dimension
of financial markets for marginal product dispersion, namely, the risk-return tradeoff faced by
risk-averse investors. Importantly, our theory generates what appears to be a permanent firm-
specific “wedge” exactly of the type found by David and Venkateswaran (2017), but which in our
framework is a function of each firm’s exposure to aggregate risk. The addition of aggregate risk
is a key innovation of our analysis – existing work has typically abstracted from this channel.7

We show that the link between aggregate risk and observed misallocation is quite tight in the
presence of heterogeneous exposures to that risk.

Kehrig (2015) documents in detail the countercyclical nature of productivity dispersion. We
build on this finding by relating fluctuations in MPK dispersion to time-series variation in the
price of risk. A growing literature, starting with Eisfeldt and Rampini (2006), investigates the
reasons underlying the observation that capital reallocation is procyclical. This indeed seems
puzzling since, given higher cross-sectional dispersion in MPK in downturns, one should expect
to see capital flowing to highly productive, high MPK firms in recessions. Our results bear on
that observation by noting that the countercyclical nature of factor risk prices, in conjunction
with heterogeneity in firm-level risk exposures, go some way toward reconciling this puzzle.

Our work exploits the insight, due to Cochrane (1991) and Restoy and Rockinger (1994),
that stock returns and investment returns are closely linked. Indeed, under the assumption of
constant returns to scale, stock and investment returns effectively coincide. Crucially, for our
purposes, investment returns are intimately linked with the marginal product of capital. Balvers
et al. (2015) explore and confirm the relationship under deviations from constant returns to
scale. In this context, our work is closely related to the growing literature that examines the

6Many papers study the role of firm-specific distortions, e.g., Bartelsman et al. (2013). Restuccia and
Rogerson (2017), Hopenhayn (2014) and Eisfeldt and Shi (2018) provide excellent overviews of recent work on
capital misallocation/reallocation.

7Two important exceptions are Gopinath et al. (2017), who analyze the transitional effects of an interest
rate shock on misallocation, and Kehrig (2015), who constructs a model of misallocation over the business cycle
featuring overhead inputs. Neither of these papers examines risk premium effects, either because there is no
aggregate uncertainty or firms are risk-neutral.
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cross-section of stock returns by viewing them from the perspective of investment returns, e.g.,
Zhang (2005), Gomes et al. (2006) and Liu et al. (2009), and forcefully summarized in Zhang
(2017). This literature interprets common risk factors such as the Fama and French (1992)
factors through firms’ investment policies and shows that investment-based factors are priced
in the cross-section of returns. Our objective is quite different and in some sense turns that
logic on its head, in that we examine investment returns and the marginal product of capital as
a manifestation of exposure to systematic risk, most readily measured through stock returns.
Relatedly, Binsbergen and Opp (2017) also investigate the implications of asset market consid-
erations for the real economic decisions of firms. They propose a framework where distortions
in agents’ subjective beliefs lead to “alphas,” i.e., cross-sectional mispricings, and real efficiency
losses, whereas we focus on the marginal product dispersion induced by heterogeneity in aggre-
gate risk exposures. Our empirical work establishes a connection between observed marginal
products and asset market outcomes and our quantitative work uses a workhorse macroeco-
nomic model of firm dynamics augmented to feature risk-sensitive agents and aggregate risk to
evaluate the implications of this insight. One of our key messages shares a common theme with
this line of work – financial market considerations can have sizable effects on real outcomes by
affecting capital allocation decisions.8

2 Motivation

In this section, we lay out a simple version of the standard, frictionless neoclassical theory
of investment to motivate our empirical explorations. Section 4 enriches this environment for
purposes of our quantitative work.

Firms produce output using capital and labor according to a standard Cobb-Douglas pro-
duction function. Labor is chosen period-by-period in a spot market at a competitive wage.
At the end of each period, firms choose investment in new capital, which becomes available
for production in the following period so that Kit+1 = Iit + (1− δ)Kit, where δ is the rate of
depreciation. Let Πit = Πit (Xt, Zit, Kit) denote the operating profits of the firm – revenues net
of labor costs – where Xt and Zit denote aggregate and idiosyncratic shocks to firm profitabil-
ity, respectively, and Kit the firm’s level of capital. The analysis can accommodate a number
of interpretations of the fundamental shocks, for example, as productivity or demand shifters.
Given the Cobb-Douglas technology, the profit function takes a Cobb-Douglas form, is homo-
geneous in K of degree θ ≤ 1 and is proportional to revenues.9 The marginal product of capital

8Relatedly, David et al. (2014) find that risk considerations play an important role in determining the
allocation of capital across countries, i.e., can explain some portion of the “Lucas Paradox.”

9This structure arises, for example, if firms are perfectly competitive and the production function features
decreasing returns to scale or firms are monopolistically competitive and face CES demand curves.
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is equal to MPKit = θ Πit
Kit

. The payout of the firm in period t is equal to Dit = Πit − Iit.
Firms discount future cash flows using a stochastic discount factor (SDF), Mt+1, which may

be correlated with the aggregate component of firm fundamentals, i.e., with Xt. We can write
the firm’s problem in recursive form as

V (Xt, Zit, Kit) = max
Kit+1

Πit (Xt, Zit, Kit)−Kit+1 + (1− δ)Kit +Et [Mt+1V (Xt+1, Zit+1, Kit+1)] ,

(1)
where Et [·] denotes the firm’s expectations conditional on time t information. Standard tech-
niques give the Euler equation

1 = Et [Mt+1 (MPKit+1 + 1− δ)] ∀ i, t . (2)

MPK dispersion. An immediate consequence of expression (2) is that MPK (or even ex-
pected MPK) need not be equated across firms; rather, it is only appropriately discounted
expected MPK that is equalized. To the extent that firms load differently on the SDF, their
expected MPK will differ. Assuming a single source of aggregate risk for the sake of illustration,
Appendix B.1 derives the following factor model for expected MPK:10

Et [MPKit+1] = αt + βitλt . (3)

Here, αt = rft + δ is the “risk-free” MPK (the user cost of capital), where rft is the risk-free
interest rate, βit ≡ − covt(Mt+1,MPKit+1)

vart(Mt+1)
captures the exposure, or loading, of the firm’s MPK on

the SDF, i.e., the riskiness of the firm, and λt ≡ vart(Mt+1)
Et[Mt+1]

is the market price of that risk. In
the language of asset pricing, the Euler equation gives rise to a conditional one-factor model
for expected MPK. Expression (3) highlights that expected MPK is not necessarily common
across firms and is a function of the risk-free rate of return, the firm’s beta on the SDF, which
may vary across firms, and the market price of risk. The cross-sectional variance of date t
conditional expected MPK is then equal to

σ2
Et[MPKit+1] = σ2

βtλ
2
t , (4)

where σ2
βt

is the cross-sectional variance of conditional betas. The extent to which risk con-
siderations lead to dispersion in expected MPK depends on (i) the cross-sectional variation
in firm-level risk exposures, i.e., beta and (ii) the price of risk. Further, given persistence in

10It is straightforward to generalize the results to environments featuring multiple aggregate risk factors, such
as the Fama and French (1992) 3-factor model or the Q-factor model of Hou et al. (2015) and Zhang (2017).
We provide a multi-factor extension of our baseline theory in Section 6.1.
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firm-level betas, the theory can clearly generate persistent differences in firm-level MPK, which
are driven by the dispersion in required rates of return across firms.11

The strength of the mechanism linking dispersion in MPK to exposure to aggregate risk can
be understood by inspection of expression (4) – predicted MPK dispersion is increasing in the
dispersion in betas and also in the price of risk, λ. A key observation underlying our analysis
is that asset pricing data suggest that risk prices are rather high. For example, a lower bound
is given by the Sharpe ratio on the market portfolio, estimated to be around 0.5. However,
even easily implementable trading strategies such as those based on value-growth portfolios, or
momentum, suggest numbers closer to 0.8, while hedge fund strategies report Sharpe ratios in
excess of one. Taken at face value, these numbers suggest the possibility for substantial MPK
dispersion – even in otherwise frictionless environments – after taking risk exposure in account.

Empirical Predictions. Even under the simple structure we have outlined thus far, the the-
ory has a good deal of empirical content. Specifically, the expressions laid out above contain a
number of both cross-sectional and time-series predictions:

1. Exposure to standard risk factors is a determinant of expected MPK. Expression (3) shows
that the same factors that determine the cross-section of asset returns – namely, exposure to
the SDF – determine the cross-section of MPK. Firms with a higher loading on the SDF, i.e.,
higher beta, should have higher conditional expected MPK.

2. Variation in the price of risk, λt, leads to predictable variation in mean expected MPK. In
particular, the mean conditional expected MPK should increase with the price of risk. This is
the time-series implication of expression (3) – holding fixed the distribution of beta, movements
in λt should positively affect the mean expected MPK. Since the price of risk is known to be
countercyclical, this adds a countercyclical element to the mean conditional expected MPK.

3. MPK dispersion is related to beta dispersion. Expression (4) shows that variation in the
cross-section of MPK is proportional to the variation in beta. Segments of the economy, for
example, industries, with higher dispersion in beta should display higher dispersion in MPK.

11To see this more clearly, we can take the unconditional expectation of equation (3) to obtain an approximate
expression for the variance of mean MPK as σ2

E[MPK] ≈ σ2
βλ

2, where σ2
β ≡ σ2

E[βit] denotes the variance of
unconditional betas and λ ≡ E [λt] the unconditional expectation of the price of risk. The approximation is
valid as long as cov (βi, cov (βit, λt)) is small. In line with the results in Lewellen and Nagel (2006), we find the
time-series variation in betas to be quite modest. In the case of constant betas, for example (which we assume
in our quantitative model), or if time variation in beta is orthogonal to variation in λ, the expression is exact.
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4. MPK dispersion is positively correlated with the price of risk. Expression (4) links MPK
dispersion to time-series variation in the price of risk. Given the dispersion in beta, when
required compensation for bearing risk increases, MPK dispersion should increase as well.

Illustrative examples. Section 3 investigates each of these predictions in detail. Before
doing so, however, it is useful to consider a number of more concrete illustrative examples
(derivations for this section are in Appendix B).

Example 1: no aggregate risk (or risk neutrality). In the case of no aggregate risk, we have
βit = 0 ∀ i, t, i.e., all shocks are idiosyncratic to the firm. Expressions (3) and (4) show that
there will be no dispersion in expected MPK and for each firm, Et [MPKit+1] = rf + δ, which
is simply the riskless user cost of capital (which is constant in the absence of aggregate shocks).
This is the standard result from the stationary models widely used in the misallocation liter-
ature where, without additional frictions, expected MPK should be equalized across firms.12

This expression also holds in an environment with aggregate shocks but risk neutral preferences,
which implies Mt+1 is simply a constant (equal to the time discount factor).

Example 2: CAPM. In the CAPM, the SDF is linearly related to the market return, i.e.,
Mt+1 = a− bRmt+1 for some constants a and b. Because the market portfolio is itself an asset
with β = 1, it is straightforward to derive

Et [MPKit+1] = αt +
covt (Rmt+1,MPKit+1)

vart (Rmt+1)︸ ︷︷ ︸
βit

Et [Rmt+1 −Rft]︸ ︷︷ ︸
λt

,

i.e., expected MPK is determined by the covariance of the firm’s MPK with the market return,
which is the the risk factor in this environment. The price of risk is equal to the expected excess
return on the market portfolio, i.e., the equity premium (Rft is the risk-free rate of return from
period t to t+ 1).

Example 3: CCAPM. In the case that the utility function is CRRA with coefficient of rel-
ative risk aversion γ, standard approximation techniques give the pricing equation from the

12With time-to build for capital and uncertainty over upcoming shocks there may still be dispersion in realized
MPK, but not in expected terms, and so these forces do not lead to persistent firm-level MPK deviations.
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consumption capital asset pricing model:

Et [MPKit+1] = αt +
covt (∆ct+1,MPKit+1)

vart (∆ct+1)︸ ︷︷ ︸
βit

γvart (∆ct+1)︸ ︷︷ ︸
λt

,

where ∆ct+1 denotes log consumption growth. Expected MPK is determined by the covariance
of the firm’s MPK with consumption growth. The price of risk is the product of the coefficient
of relative risk aversion and the conditional volatility of consumption growth.

3 Empirical Results

In this section, we investigate the empirical predictions outlined in Section 2.

Data. Our data come primarily from the Center for Research in Security Prices (CRSP) and
Compustat. We use data on nonfinancial firms with common equities listed on the NYSE,
NASDAQ, or AMEX over the period 1965 to 2015. We supplement this panel with time-series
data on market factors and aggregate conditions related to the price of risk. We use data on the
Fama and French (1992) (Fama-French) factors, aggregate dividends and stock market values
from Shiller (2005) and two measures of credit spreads: the Gilchrist and Zakrajsek (2012)
(GZ) credit spread and the excess bond premium.13 We measure firm capital stock, Kit, as the
(net of depreciation) value of property, plant and equipment (Compustat series PPENT) and
firm revenue, Yit, as reported sales (series SALE).14 Ignoring constant terms, which will play no
role in our analysis, we measure the marginal product of capital (in logs, henceforth denoted
with lowercase) as mpkit = yit − kit.15 Appendix A provides further details on how we con-
struct our dataset and the series that we use. We can now revisit the predictions from Section 2.

1. Exposure to standard risk factors is a determinant of expected MPK. We investigate this key
implication of our framework in several ways.

Portfolio sorts. First, we examine the relationship between MPK and stock market returns.
To do so, we form MPK-sorted portfolios of firms. This approach follows widespread practice
in empirical finance, which has generally moved from addressing variation in individual firm

13Data on the Fama-French factors are from Kenneth French’s website, http://mba.tuck.dartmouth.edu/
pages/faculty/ken.french/. We obtain updated data on the price/dividend ratio from Robert J. Shiller’s
website, http://www.econ.yale.edu/~shiller/ and updated measures of the GZ spread and excess bond
premium from Simon Gilchrist’s website, http://people.bu.edu/sgilchri/.

14Using book assets, a broader notion of firm capital, yields similar results.
15In our setup, operating profits are proportional to revenues, making this a valid measure of the mpk.
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returns to returns on portfolios of firms, sorted by factors that are known to predict returns.
In our setting, this procedure proves useful to eliminate firm-specific factors unrelated to MPK
that may affect returns and so allows us to hone in on the predictability of excess returns by
MPK.16 We sort firms into five portfolios based on their year t MPK, where portfolio 1 contains
low MPK firms and portfolio 5 high MPK ones. The portfolios are rebalanced annually. We
then compute the contemporaneous and one-period ahead equal-weighted excess stock return
to each portfolio, denoted ret and ret+1, respectively.17 We also compute the excess return on a
high-minus-low MPK portfolio (MPK-HML), which is an annually rebalanced portfolio that is
long on stocks in the highest MPK portfolio and short on stocks in the lowest.

We report the results in Panel A of Table 1. The table reveals a strong relationship between
MPK and stock returns – high MPK portfolios tend to earn high excess returns. The first row
shows that the difference in contemporaneous returns between high and low MPK firms, i.e.,
the excess return on the MPK-HML portfolio, is over 8% annually. The second row confirms
that this finding does not simply result from the simultaneous response of stock returns and
MPK to the realization of unexpected shocks – one-period ahead excess returns are in fact
predictable by MPK. Indeed, the predictable spread on the MPK-HML portfolio is almost 5%
annually. Both the contemporaneous and future MPK-HML spreads are statistically different
from zero at the 99% level. Thus, high MPK tend to offer high stock returns, both in a realized
and an expected sense, suggesting that MPK differences reflect exposure to risk factors for
which investors demand compensation in the form of a higher rate of return.

The focus in the misallocation literature is generally on within-industry variation in MPK.18

We therefore also perform industry-adjusted portfolio sorts and find that the relationship be-
tween MPK and stock returns is also present within individual industries. To control for indus-
try effects, we demean firm-level mpk by subtracting the mean mpk within each industry-year,
and sort firms based on this de-meaned measure.19 Panel B of Table 1 reports the within-
industry results. The relationship between MPK and stock returns remains strong even when
comparing across firms within a particular industry, both in an economic and statistical sense –
the MPK-HML contemporaneous excess return remains over 8% annually and the future excess
return is over 2.5%. Both are statistically significant at the 99% level.

In Appendix D, we explore a number of variants of Table 1. For example, we expand the
16The portfolio approach can also help reduce the effects of potential measurement error, for example, in

firm-level capital stocks.
17When computing future returns, we follow Fama and French (1992) and associate the MPK for fiscal year

t with returns from July of year t+ 1 to June of year t+ 2.
18There may be heterogeneity across industries on a number of dimensions, for example, in production

function coefficients or industry-level exposure to aggregate shocks.
19This is equivalent to extracting industry-year fixed-effects. We define industries at the 4-digit SIC code

level and examine industry-year pairs with at least 10 observations.
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Table 1: Excess Returns on MPK-Sorted Portfolios

Portfolio Low 2 3 4 High MPK-HML

Panel A: Not Industry-Adjusted
ret 7.00∗∗ 9.08∗∗ 10.67∗∗∗ 12.00∗∗∗ 15.25∗∗∗ 8.25∗∗∗

(2.01) (2.53) (2.93) (3.09) (3.71) (4.54)
ret+1 8.60∗∗ 12.27∗∗∗ 13.48∗∗∗ 13.73∗∗∗ 13.48∗∗∗ 4.87∗∗∗

(2.48) (3.47) (3.80) (3.62) (3.36) (2.81)
Panel B: Industry-Adjusted

ret 6.98 8.91∗∗ 10.59∗∗∗ 12.28∗∗∗ 15.78∗∗∗ 8.80∗∗∗

(1.63) (2.52) (3.05) (3.30) (3.73) (9.54)
ret+1 11.10∗∗∗ 11.55∗∗∗ 12.71∗∗∗ 12.70∗∗∗ 13.69∗∗∗ 2.59∗∗∗

(2.61) (3.35) (3.75) (3.50) (3.36) (2.98)

Notes: This table reports stock market returns for portfolios sorted by mpk. ret denotes equal-weighted
contemporaneous annualized monthly excess stock returns (over the risk-free rate) measured in the year
of the portfolio formation from January to December of year t. ret+1 denotes the analogous future returns,
measured from July of year t+ 1 to June of year t+ 2. Industry adjustment is done by de-meaning mpk
by industry-year and sorting portfolios on de-meaned mpk, where industries are defined at the 4-digit SIC
code level. t-statistics in parentheses, computed using Newey-West standard errors. Significance levels
are denoted by: * p < 0.10, ** p < 0.05, *** p < 0.01.

number of portfolios, examine measures of unlevered returns and consider longer-horizon future
returns. The relationship between MPK and stock returns continues to hold under all these
alternatives. We perform double-sorts on size and book-to-market and verify that the return
spreads based on MPK are not fully explained by the latter two factors (although they are both
correlated with MPK). We also present summary statistics of the portfolios across a number of
characteristics and consider several additional measurement issues (for example, we show that
the results are unlikely to be driven by unmeasured intangible capital).

Measures of risk exposures and expected MPK. The second way we verify prediction 1
is to directly relate firm MPK to measures of risk exposures. To do so, we estimate regressions
of the form

mpkit+1 = ψ0 + ψββit + ζit+1 , (5)

where βit is a measure of firm i exposure to aggregate risk at time t. The specification tests
whether observable measures of firm-level risk exposures are indeed correlated with higher
MPK. We estimate (5) at an annual frequency and lag the right-hand side variable to control
for the simultaneous effect of unexpected shocks on contemporaneous measures of beta and
MPK. We construct four different measures of these exposures. First, we compute standard
CAPM and Fama-French stock market betas (βCAPM and βFF , respectively) by estimating
firm-level regressions of stock returns on the risk factors from each of these models. In the
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CAPM, the single risk factor is the aggregate market return. The three Fama-French factors
are the market return, the return on a portfolio that is long in small firms and short in large
ones (SMB), which captures the size premium and the return on a portfolio that is long in high
book-to-market firms and short in low ones (HML), which captures the value premium. In each
model, the coefficient on the risk factor(s) yields a measure of beta. To obtain a single measure
of risk exposure in the multi-factor Fama-French model, we combine the estimated betas into
a single value using estimated prices of risk from Fama and MacBeth (1973) regressions. We
provide details of these calculations in Appendix A.

With these measures in hand, we are in a position to estimate equation (5). We report the
results in columns (1)-(2) in Table 2. Both measures have significant explanatory power for
subsequent MPK. For example, the estimate in column (1) implies that each unit increase in
the CAPM beta is associated with a 20% increase in expected MPK.

Table 2: Predictive Regressions of MPK on Aggregate Risk Exposures

(1) (2) (3) (4) (5) (6) (7) (8)
βCAPM 0.209∗∗∗ 0.014∗∗∗

(51.53) (3.48)

βFF 0.068∗∗∗ 0.005∗∗∗
(63.14) (4.91)

βCAPM,MPK 0.065∗∗∗ 0.024∗∗∗
(13.77) (4.31)

βFF,MPK 4.005∗∗∗ 1.097∗∗∗
(25.00) (6.16)

Observations 108571 107845 81559 81062 103488 102820 76832 76351
R2 0.024 0.036 0.002 0.008 0.059 0.059 0.065 0.065
Firms 10270 10229 8687 8655 9991 9941 8406 8380
F.E. No No No No Yes Yes Yes Yes
Controls No No No No Yes Yes Yes Yes

Notes: This table reports the results of a panel regression of year-ahead mpk regressed on measures of firm expo-
sure to aggregate risk. Each observation is a firm-year. F.E. denotes the presence of industry-year fixed effects.
When we include fixed-effects, we cluster standard errors by industry-year. t-statistics in parentheses. Significance
levels are denoted by: * p < 0.10, ** p < 0.05, *** p < 0.01.

Both of these measures of firm-level risk exposures are based only on stock market data.
Although our theory implies these should be related to MPK (and they have a rich tradition in
asset pricing), expression (3) suggests that we look directly at the exposure of firm-level MPK to
aggregate risk factors. To do so, we perform the same two exercises just described, but instead
using firm-level MPK – namely, we regress mpk on the market return and Fama-French factors
to obtain two direct measures of MPK exposure to aggregate risk (βCAPM,MPK and βFF,MPK)
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and estimate specification (5) using these measures as the predictive variable. We report the
results in columns (3) and (4) of Table 2. The table shows that, similar to stock market betas,
firm-level “MPK betas” are significant predictors of future firm MPK. In sum, our findings in
Table 2 confirm a key implication of expression (3): firm-level risk exposures – measured using
stock market or MPK exposures – are significant determinants of firm-level expected MPK.

In columns (5)-(8) of Table 2, we estimate analogous regressions with the addition of
industry-year fixed-effects and a set of standard firm-level controls, namely, market capital-
ization, book-to-market ratio, profitability, and market leverage.20 All of the beta coefficients
remain positive and statistically significant.

2. Variation in the price of risk, λt, leads to predictable variation in mean expected MPK.
Expression (3) implies that the price of risk should positively predict the level of expected
MPK. To test this implication, we estimate time-series regressions of the form:

E [mpkit+1] = ψ0 + ψ1λt + ζt+1 , (6)

where E [mpkit+1] denotes the average mpk in period t + 1 and λt denotes three different
proxies of the price of risk: the price/dividend ratio (PD) on the aggregate stock market
and two measures of credit spreads – the Gilchrist and Zakrajsek (2012) (GZ) spread, a high-
information and duration-adjusted measure of the mean credit spread and the excess bond (EB)
premium, which measures the portion of the GZ spread not attributable to default risk.21 These
are standard proxies for risk prices that have been widely used in the literature. We estimate
specification (6) using quarterly data on these measures, where the left-hand side variable is
one year (four-quarter) ahead mpk.22 Table 3 reports the results of these regressions. In line
with the theory, column (1) shows that the PD ratio (likely negatively correlated with the price
of risk) predicts lower future MPK, while columns (2) and (3) show that the GZ spread and
the EB premium (likely positively correlated with the price of risk) predict higher future MPK.
Thus, the table confirms that time-variation in risk premia forecast future levels of MPK.

3. MPK dispersion is related to beta dispersion. Expression (4) implies that across groups of
firms or segments of the economy, dispersion in expected MPK should be positively related to

20We describe these series in Appendix A.
21We extract the cyclical component of the PD ratio and mean mpk using a one-sided Hodrick-Prescott filter.

The credit spread measures do not exhibit significant longer-term trends.
22To control for the changing composition of firms, for each quarter, we include only firms that were present

in the previous quarter and calculate changes in the mean mpk for these firms. We then use those changes to
construct a composition-adjusted series for mean mpk which is unaffected by new additions or deletions from
the dataset. We further detail this procedure in Appendix A.
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Table 3: Predictability of Mean MPK

(1) (2) (3)
PD Ratio -0.341∗∗∗

(-3.24)
GZ Spread 4.457∗∗∗

(3.44)
EB Premium 7.041∗∗∗

(3.20)
Observations 166 166 166
R2 0.120 0.122 0.100

Notes: This table reports time-series regressions of four-quarter ahead average mpk on measures
of the price of risk. t-statistics are in parentheses, which are computed using Newey-West stan-
dard errors. Significance levels are denoted by: * p < 0.10, ** p < 0.05, *** p < 0.01.

dispersion in risk exposures. We investigate this prediction using variation in the dispersion
of firm-level betas and expected stock market returns across industries. Specifically, for each
industry in each year, we compute the standard deviation of MPK, σ (mpk), expected stock re-
turns, σ (E [r]), and beta, σ (β). We then estimate regressions of industry-level MPK dispersion
on the dispersion in expected returns and betas, i.e.,

σ (mpkjt+1) = ψ0 + ψ1σ (xjt) + ζjt+1 xjt = E [rjt] , βjt ,

where j denotes industry. Again, to avoid potential simultaneity biases from the realization of
shocks, we lag the independent variables (dispersion in expected returns and betas).

Table 4 reports the results of these regressions and demonstrates that indeed, industries
with higher dispersion in expected stock returns and beta exhibit greater dispersion in MPK.
Column (1) reveals this fact using expected returns calculated from the Fama-French model.23

Variation in expected return dispersion predicted by the Fama-French model explains over
20% of the variation in MPK dispersion across industry-years. Column (2) regresses MPK
dispersion on dispersion in each of the three individual factors – variation in the beta on
each factor is significantly related to MPK dispersion. Next, we repeat the exercise using
dispersion in MPK betas (described above) as the right-hand side variables. The results in
column (3) show that industries with greater dispersion in MPK betas (on each of the Fama-
French factors) exhibit greater dispersion in MPK. Columns (4)-(6) add year fixed-effects and a
number of controls capturing additional measures of firm heterogeneity within industries – the

23Expected returns are computed using a standard two-stage approach – first, we estimate the betas from
time-series regressions as described under prediction 1. We then measure expected returns as the predicted
values from cross-sectional Fama-Macbeth regressions of returns on these betas. We provide further details in
Appendix A.
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standard deviations of profitability, size, book-to-market, and market leverage. Across these
specifications, measures of within-industry heterogeneity in expected returns and aggregate risk
exposures remain positive and significant predictors of within-industry dispersion in MPK.24

Table 4: Industry-Level Dispersion in MPK, Expected Stock Returns and Beta

(1) (2) (3) (4) (5) (6)
σ(E[r]) 2.71∗∗∗ 1.20∗∗∗

(30.11) (9.82)
σ(βMKT ) 0.11∗∗∗ 0.08∗∗∗

(6.48) (3.31)
σ(βHML) 0.14∗∗∗ 0.10∗∗∗

(11.18) (5.61)
σ(βSMB) 0.14∗∗∗ 0.07∗∗∗

(13.72) (5.77)
σ(βCAPM,MPK) 0.01∗∗∗ 0.09∗∗∗

(8.58) (4.08)
σ(βHML,MPK) 0.06∗∗∗ 0.06∗∗∗

(7.96) (4.80)
σ(βSMB,MPK) 0.06∗∗∗ 0.06∗∗∗

(10.38) (5.70)
Observations 3203 3210 2398 3188 3194 2380
R2 0.221 0.265 0.200 0.261 0.285 0.348
Industries 157 161 142 153 156 138
Year F.E. No No No Yes Yes Yes
Controls No No No Yes Yes Yes

Notes: This table reports a panel regression of the dispersion in mpk within industries on lagged mea-
sures of dispersion in risk exposure within those industries. An observation is an industry-year. E [r]
is the expected return computed from the Fama-French model. β denotes the stock return beta on the
Fama-French factors and βMPK the mpk beta on the same factors. t-statistics are in parentheses. Sig-
nificance levels are denoted by: * p < 0.10, ** p < 0.05, *** p < 0.01.

4. MPK dispersion is positively correlated with the price of risk. Expression (4) implies that the
price of risk is positively related to MPK dispersion. We investigate this prediction in two ways.
First, we show that the indicators of the price of risk considered before (PD ratio, GZ spread,
and EB premium) predict time-series variation in MPK dispersion. Second, we show that the
expected return on the high-minus-low MPK portfolio is also predicted by these measures.

24The results are robust to using different asset pricing models to compute betas and expected returns, such
as the CAPM and Hou et al. (2015) investment-CAPM models. The relationship is robust to a variety of
different controls and industry definitions as well. Finally, the results are qualitatively similar when we use the
inter-quartile range instead of the standard deviation as our measure of within-industry dispersion.
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To perform these tests, we estimate regressions of the form

yt+1 = ψ0 + ψ1λt + ζt+1, yt+1 = σ (mpkt+1) , rHML,t+1 ,

where λt denotes the various proxies for the price of risk. Columns (1)-(3) of table 5 report
regressions of the within-industry standard deviation of MPK, σ (mpkt+1), on the lagged values
of these measures. Each predicts MPK dispersion, and in the direction the theory suggests:
the GZ Spread and excess bond premium predict greater MPK dispersion, while a higher PD
ratio predicts lower dispersion.25 Because our measures of the price of risk are countercyclical,
the results imply that variation in risk premia induce a countercyclical component in MPK
dispersion, in line with (and potentially in part accounting for) the well known evidence of
countercyclicality documented in Eisfeldt and Rampini (2006).26

Table 5: Predictability of MPK Dispersion and MPK-HML Portfolio Return

MPK Dispersion MPK-HML Portfolio Returns

(1) (2) (3) (4) (5) (6)
PD Ratio -0.112∗∗∗ -0.013∗

(-3.52) (-1.84)
GZ Spread 1.226∗∗∗ 0.269∗∗

(3.23) (2.27)
EB Premium 3.415∗∗∗ 0.426∗∗

(4.44) (2.32)
Observations 166 166 166 166 166 166
R2 0.103 0.072 0.185 0.031 0.082 0.068

Notes: This table reports time-series regressions of four-quarter ahead mpk dispersion and MPK-HML
portfolio returns on measures of the price of risk. t-statistics are in parentheses, computed using Newey-
West standard errors. Significance levels are denoted by: * p < 0.10, ** p < 0.05, *** p < 0.01.

Next, columns (4)-(6) of Table 5 report regressions using the cumulative twelve month
return on the MPK-HML portfolio, rHML,t+1 as the dependent variable. The GZ spread and
excess bond premium predict higher future returns on the MPK-HML portfolio, while the PD
ratio predicts lower future returns, implying that a high price of risk predicts a greater return
spread between high and low MPK firms. In sum, our findings confirm that indeed, investors
require greater compensation (in the form of a higher rate of return) to invest in high MPK
firms at times when risk premia are high, leading to a predictable and countercyclical increase

25We again extract the cyclical component of the PD ratio and mpk dispersion using a one-sided Hodrick-
Prescott filter. The results are qualitatively similar when we use a measure of unconditional (not industry-
adjusted) MPK dispersion as the dependent variable.

26We report the correlations of these measures with de-trended GDP and TFP in Table 9 in Appendix A.2.
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in dispersion and widening of the spread between low and high MPK firms.27

4 Quantitative Model

In the next two sections, we use a more detailed version of the investment model laid out
above to quantitatively investigate the contribution of heterogeneous risk premia to observed
MPK dispersion. The model is kept deliberately simple in order to isolate the role of our
basic mechanism, namely dispersion in exposure to systematic risk. The theory consists of
two main building blocks: (i) a stochastic discount factor, which we directly parameterize to
be consistent with salient patterns in financial markets, i.e., high and countercyclical prices of
risk and (ii) a cross-section of heterogeneous firms, which make optimal investment decisions in
the presence of firm-level and aggregate risk, given the stochastic discount factor. Specifying
the stochastic discount factor exogenously allows us to sidetrack challenges with generating
empirically relevant risk prices in general equilibrium, and focus on gauging the quantitative
strength of our mechanism. To hone in on the effects of risk premia, we begin with a simplified
version in which we abstract from additional adjustment frictions. In this case, our framework
yields exact closed form solutions for firm investment decisions. In Section 4.3, we extend the
model to include capital adjustment costs. Our theoretical results there reveal an important
amplification effect of these costs on the impact of risk premia.28

4.1 The Environment

Heterogeneity in risk exposures. The setup is a fleshed-out version of that in Section 2.
We consider a discrete time, infinite-horizon economy. A continuum of firms of fixed measure
one, indexed by i, produce a homogeneous good using capital and labor according to:

Yit = X β̂i
t ẐitK

θ1
it N

θ2
it , θ1 + θ2 < 1 .

Firm productivity (in logs) is equal to β̂ixt + ẑit, where xt denotes an aggregate component
that is common across firms and β̂i captures the exposure of the productivity of firm i to
aggregate conditions.29 We assume that β̂i is distributed as β̂i ∼ N

(
¯̂
β, σ2

β̂

)
across firms.

Heterogeneity in this exposure is a key ingredient of our framework – cross-sectional variation
in β̂i will lead directly to dispersion in expected MPK. The term ẑit denotes a firm-specific,

27De-trended GDP also predicts countercyclical MPK dispersion and return spreads between high and low
MPK firms.

28We also consider the effects of other investment frictions, e.g., “wedges,” or distortions, in Section 5.3.
29As above, we use lower-case to denote natural logs.
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idiosyncratic component of productivity.
The two productivity components follow AR(1) processes (in logs):

xt+1 = ρxxt + εt+1, εt+1 ∼ N
(
0, σ2

ε

)
(7)

ẑit+1 = ρz ẑit + ε̂it+1, ε̂it+1 ∼ N
(
0, σ2

ε̂

)
.

Thus, there are two sources of uncertainty at the firm level – aggregate uncertainty, with
conditional variance σ2

ε , and idiosyncratic uncertainty, with variance σ̂2
ε̃ .

Stochastic discount factor. In line with the large literature on cross-sectional asset pricing
in production economies, we parameterize directly the pricing kernel without explicitly modeling
the consumer’s problem. In particular, we specify the SDF as

logMt+1 ≡ mt+1 = log ρ− γtεt+1 −
1

2
γ2
t σ

2
ε (8)

γt = γ0 + γ1xt ,

where ρ, γ0 > 0 and γ1 ≤ 0 are constant parameters.30 The SDF is determined by shocks to
aggregate productivity. The conditional volatility of the SDF, σm = γtσε, varies through time as
determined by γt. This formulation allows us to capture in a simple manner a high, time-varying
and countercyclical price of risk as observed in the data (since γ1 < 0, γt is higher following
economic contractions, i.e., when xt is negative). Additionally, directly parameterizing γ0 and
γ1 enables the model to be quantitatively consistent with key moments of asset returns, which
are important for our analysis. The risk free rate is constant and equal to − log ρ. Thus, γ0 and
γ1 only affect the properties of equity returns., easing the interpretation of these parameters.
The maximum attainable Sharpe ratio is equal to the conditional standard deviation of the
SDF, i.e., SRt = γtσε, and the price of risk is equal to the square of the Sharpe ratio, γ2

t σ
2
ε .

Input choices. Firms hire labor period-by-period at a competitive wage, Wt. To keep the
labor market simple, we assume that the equilibrium wage is given by

Wt = Xω
t ,

i.e., the wage is a constant elasticity and increasing function of aggregate productivity, where
ω ∈ [0, 1] determines the sensitivity of wages to aggregate conditions.31 Maximizing over the

30This specification builds closely on those in, for example, Zhang (2005) and Jones and Tuzel (2013).
31This setup follows, for example, Belo et al. (2014) and İmrohoroğlu and Tüzel (2014).
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static labor decision gives operating profits – revenues less labor costs – as

Πit = GXβi
t ZitK

θ
it , (9)

where G ≡ (1− θ2) θ
θ2

1−θ2
2 , βi ≡ 1

1−θ2

(
β̂i − ωθ2

)
, Zit ≡ Ẑ

1
1−θ2
it and θ ≡ θ1

1−θ2 . The exposure of
firm profits to aggregate conditions is captured by βi, which is a simple transformation of the
underlying exposure of firm productivity to the aggregate component, β̂i, and the sensitivity
of wages, ω.32 The idiosyncratic component of productivity is similarly scaled, by 1

1−θ2 . The
curvature of the profit function is equal to θ, which depends on the relative elasticities of capital
and labor in production. These scalings reflect the leverage effects of labor liabilities on profits.
From here on, we will primarily work with zit, which has the same persistence as ẑit, i.e., ρz,

and innovations εit+1 = 1
1−θ2 ε̂t+1 with variance σ2

ε̃ =
(

1
1−θ2

)2

σ2
ε̂ . We will also use the fact that

σ2
β =

(
1

1−θ2

)2

σ2
β̂
. Notice that the profit function takes precisely the form assumed in Section

2. Thus, the firm’s dynamic investment problem takes the form in expression (1).

Optimal investment. The simplicity of this setting leads to exact analytical expressions for
the firm’s investment decision. Specifically, we show in Appendix B.2.1 that the firm’s optimal
investment policy is given by:

kit+1 =
1

1− θ
(
α̃ + βiρxxt + ρzzit − βiγtσ2

ε

)
, (10)

where α̃ ≡ log θ + logG − α, α ≡ rf + log (1− (1− δ) ρ).33 The firm’s choice of capital is
increasing in xt and zit due to their direct effect on expected future productivity (i.e., βiρxxt +

ρzzit = Et [βixt+1 + zit+1]), but, ceteris paribus, firms with higher betas choose a lower level of
capital. The magnitude of this effect is larger when γt is large, i.e., in economic downturns.
Clearly, with risk neutrality, i.e., γ0 = γ1 = 0, the last term is zero and investment is purely
determined by expected productivity.

For a slightly different intuition, we substitute for γt and write the expression as

kit+1 =
1

1− θ
(
α̃ + βi

(
ρx − γ1σ

2
ε

)
xt + ρzzit − βiγ0σ

2
ε

)
. (11)

The risk premium affects the capital choice through both the time-varying and constant com-
32The adjustment term for labor supply, ωθ2, has a small effect on the mean of the β distribution, but

otherwise does not affect our analysis.
33More precisely, there are also terms that reflect the variance of shocks. Because these terms are negligible

and play no role in our analysis (they are independent of the risk premium effects we measure), we suppress
them here. The full expressions are given in Appendix B.2.1.
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ponents of the price of risk: first, a more negative γ1 increases the responsiveness of firms to
aggregate conditions. Intuitively, a high (low) realization of xt has two effects – first, since
xt is persistent, it signals that productivity is likely to be high (low) in the future, increasing
(decreasing) investment (this force is captured by the ρx term). Moreover, a high (low) real-
ization of xt implies a low (high) price of risk, which further increases (decreases) investment.
Second, the constant component of the risk premium, γ0, adds a firm-specific constant – i.e., a
fixed-effect – which leads to permanent dispersion in firm-level capital.

MPK dispersion. By definition, the realized mpk is given by mpkit+1 = log θ+πit+1−kit+1.
Substituting for kit+1,

mpkit+1 = α + εit+1 + βiεt+1 + βiγtσ
2
ε , (12)

and taking conditional expectations,

Empkit+1 ≡ Et [mpkit+1] = α + βiγtσ
2
ε , (13)

where α is as defined in equation (10) and reflects the risk-free user cost of capital. Expression
(12) shows that dispersion in the realized mpk can stem from uncertainty over the realization
of shocks, as well as the risk premium term, which is persistent at the firm level and depends
on (i) the firm’s exposure to the aggregate shock, βi (and is increasing in βi), and (ii) the time
t price of risk, which is reflected in the term γtσ

2
ε . Intuitively, firm-level mpk deviations are

composed of both a transitory component due to uncertainty and a persistent component due to
the risk premium. The transitory components are i.i.d. over time and lead to purely temporary
deviations in mpk (even though the underlying productivity processes are autocorrelated); the
risk premium, on the other hand, leads to persistent deviations – firms that are more exposed
to aggregate shocks, and so are riskier, will have persistently high mpk.

Expression (13) hones in on this second force and shows the persistent effects of risk premia
on the conditional expectation of time t+1 mpk, denoted Empk. Indeed, in this simple case, the
ranking of firms’ mpk will be constant in expectation as determined by the risk premium – high
beta firms will have permanently high Empk and low beta firms the opposite. Importantly,
the value of Empk will fluctuate with γt, but the ordering across firms will be preserved.
This is the sense that we call this component persistent/permanent. Expression (12) shows
that this ordering will not be preserved in realized mpk – due to the realization of shocks,
the ranking of firms’ mpk will fluctuate, but the firm-specific risk premium adds a persistent
component.34 Because the uncertainty portion of the realizedmpk is always additively separable

34With additional adjustment frictions, there will be other factors confounding the relationship between beta
and the realized and expected mpk.
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and is independent of our mechanism, from here on we primarily work with Empk.
Expression (14) presents the cross-sectional variance of Empk:

σ2
Empkt ≡ σ2

Et[mpkit+1] = σ2
β

(
γtσ

2
ε

)2
. (14)

Cross-sectional variation in Empk depends on the dispersion in beta and the price of risk. Dis-
persion will be greater when risk prices, reflected by γtσ2

ε , are high and so will be countercyclical.
The average long-run level of Empk dispersion is given by

Eσ2
Empk ≡ E

[
σ2
Empkt

]
= σ2

β

(
γ2

0 + γ2
1σ

2
x

) (
σ2
ε

)2 where σ2
x =

σ2
ε

1− ρ2
x

. (15)

An examination of expressions (13) and (14) confirms that the richer model here is consis-
tent with the four key implications from Section 2, namely – (1) exposure to risk factors is a
determinant of Empk; (2) variation in the price of risk leads to predictable variation in mean
Empk; (3) mpk dispersion is related to beta dispersion; and (4) mpk dispersion is increasing
in the price of risk, and so naturally contains a countercyclical element.

Aggregate outcomes. What are the implications of this dispersion in Empk for the aggre-
gate economy? Appendix B.3 shows that aggregate output can be expressed as

log Yt+1 ≡ yt+1 = at+1 + θ1kt+1 + θ2nt+1 ,

where kt+1 denotes the aggregate capital stock, nt+1 aggregate labor and at+1 the level of
aggregate TFP, given by

at+1 = a∗t+1 −
1

2

θ1 (1− θ2)

1− θ1 − θ2

σ2
mpk,t+1 , (16)

where σ2
mpk,t+1 is realized mpk dispersion in period t + 1. The term a∗t+1 is the first-best level

of TFP in the absence of any frictions (i.e., where marginal products are equalized). Thus,
aggregate TFP monotonically decreases in the extent of capital “misallocation,” captured by
σ2
mpk. The effect of misallocation on aggregate TFP depends on the overall curvature in the

production function, θ1 + θ2 and the relative shares of capital and labor. The higher is θ1 + θ2,
that is, the closer to constant returns to scale, the more severe the losses from mis-allocated
resources. Similarly, fixing the degree of overall returns to scale, for a larger capital share, θ1,
a given degree of misallocation has larger effects on aggregate outcomes.

Using equation (14), the conditional expectation of one-period ahead TFP is given by

Et [at+1] = Et
[
a∗t+1

]
− 1

2

θ1 (1− θ2)

1− θ1 + θ2

σ2
β

(
γtσ

2
ε

)2
. (17)
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The expression shows that risk premium effects unambiguously reduce aggregate TFP and
disproportionately more so in business cycle downturns, since γt is countercyclical. Taking
unconditional expectations gives the effects on the average long-run level of TFP in the economy:

a ≡ E [Et [at+1]] = a∗ − 1

2

θ1 (1− θ2)

1− θ1 + θ2

σ2
β

(
γ2

0 + γ2
1σ

2
x

) (
σ2
ε

)2
. (18)

The expression directly links the extent of cross-sectional dispersion in required rates of return
(which are in turn determined by the prices of risk and volatility of aggregate shocks) to the
long-run level of aggregate productivity and gives a natural way to quantify the implications
of these effects. Further, and perhaps more importantly, it uncovers a new connection between
aggregate volatility and long-run economic outcomes, i.e., a “productivity cost” of business
cycles – ceteris paribus, the higher is aggregate volatility (σ2

ε and σ2
x in the expression), the

more depressed will be the average long-run level of TFP (relative to the frictionless first-best).
In Sections 6.1 and 6.2, we show that our model can be extended to include multiple risk

factors and to allow γt to depend on additional factors beyond the state of technology and so
expressions (17) and (18) provide a more general connection between financial conditions (that
may be less than perfectly correlated with the real economy) and aggregate productivity. Thus,
these expressions provide one way to link the rich findings of the literature on cross-sectional
asset pricing to real allocations and measures of aggregate performance.

4.2 The Cross-Section of Expected Stock Returns and MPK

In this section, we derive a sharp link between a firm’s beta – and so its expected mpk – and
its expected stock market return. This connection suggests an empirical strategy to measure
the dispersion in beta and so quantify the mpk dispersion that arises from risk considerations
using stock market data. Our key finding is that, to a first-order approximation, the firm’s
expected stock return is a linear (and increasing) function of its beta.35 Indeed, in the simple
model outlined thus far, expected mpk is proportional to expected stock returns. This link,
first, justifies our use of data on expected stock returns and stock market betas as a proxy for
expected mpk in Section 3 and second, shows that the dispersion in expected stock returns
puts tight empirical discipline on the dispersion in betas and so expected mpk arising from risk
channels – indeed, under some circumstances, they are proportional to one another. We use
this connection to provide transparent intuition for our numerical approach in Section 5.

We obtain an analytic approximation for expected stock market returns by log-linearizing
around the non-stochastic steady state where Xt = Zt = 1. To a first-order, the (log of the)

35It is well known that a first-order approximation may not be sufficient to capture risk premia. In our
quantitative work in Section 5, we work with numerical higher order approximations.
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expected excess stock return is equal to (derivations in Appendix B.4)

Ereit+1 ≡ logEt
[
Re
it+1

]
= ψβiγtσ

2
ε , (19)

where

ψ =

1
ρ

+ δ − 1
1
ρ

+ δ (1− θ)− 1

1− ρ
1− ρρx + ργ1σ2

ε

.

The expected excess return depends on the firm’s beta (indeed, is linear and increasing in beta)
and is increasing in the price of risk. Because the price of risk is countercyclical, risk premia
increase during downturns for all firms and fall during expansions.36 The time t cross-sectional
dispersion in expected excess returns is given by

σ2
Eret
≡ σ2

logEt[Reit+1]
= ψ2σ2

β

(
γtσ

2
ε

)2
. (20)

Similar to our findings for expected mpk, the expression reveals a tight link between beta
dispersion and expected stock return dispersion. Indeed, if firms had identical betas, dispersion
in expected returns would be zero. Moreover, as with expected mpk dispersion, expected stock
return dispersion is increasing in the price of risk and so is countercyclical.

Comparing equations (13) and (19) shows that expected excess returns, Ereit+1, are propor-
tional to expected mpk, Empkit+1 and equations (14) and (20) show that σ2

Eret
is proportional

to σ2
Empkt

. Thus, the expressions reveal a tight connection between cross-sectional variation
in expected stock returns and expected mpk – both are dependent on the variation in betas.
Although the exact proportionality will not hold in the full non-linear solution, we will use this
intuition to quantify the role of risk considerations in generating dispersion in expected mpk.

Specifically, these results suggest an empirical strategy to estimate the three key structural
parameters – γ0, γ1 and σ2

β – using readily available stock market data. First, it is straightfor-
ward to verify that the market index – i.e., a perfectly diversified portfolio with no idiosyncratic
risk – achieves the maximal Sharpe ratio:37

SRmt = γtσε, ESRm ≡ E [SRmt] = γ0σε . (21)
36Strictly speaking, these results hold in the approximation so long as 1− ρρx + ργ1σ

2
ε > 0. This condition

does not play a role in the numerical solution.
37The Sharpe ratio for an individual firm is SRit =

βiγtσ
2
ε√(

1−ρρx+ργ1σ
2
ε

1−ρρz

)2

σ2
ε̃+β

2
i σ

2
ε

, which shows that, due to the

presence of idiosyncratic risk, individual firms do not attain the maximum Sharpe ratio. However, in this linear
environment, the diversified index faces no risk from σ2

ε̃ , so that the expression collapses to (21). Although in the
full numerical solution the market may not exactly attain this value due to the nonlinear effects of idiosyncratic
shocks, the expression highlights that the market Sharpe ratio is informative about γ0.

25



The expression links the market Sharpe ratio to γ0. Indeed, in this linearized environment, the
mapping is one-to-one (given σ2

ε). Next, deriving equation (19) for the market index gives

Ermt+1 = ψβ̄γtσ
2
ε , Erm ≡ E [Ermt+1] = ψβ̄γ0σ

2
ε , (22)

For given a value of γ0, the equity premium is increasing as γ1 becomes more negative through
its effects on ψ (β̄ denotes the mean beta across firms). Lastly, equation (20) connects dispersion
in beta, σ2

β, to dispersion in expected returns. Together, equations (20), (21) and (22) tightly
link three observable moments of asset market data to the three parameters, γ0, γ1 and σ2

β.

4.3 Adjustment Costs

In this section, we extend our framework to include capital adjustment costs. Although the
main insights from the previous sections go through, we illustrate an important interaction
between these costs and the effects of risk premia, namely, adjustment frictions amplify the
impact of these systematic risk exposures on mpk dispersion.

We assume that capital investment is subject to quadratic adjustment costs, given by

Φ (Iit, Kit) =
ξ

2

(
Iit
Kit

− δ
)2

Kit .

With these costs, exact analytic solutions are no longer available. Appendix B.2.2 sets up the
firm’s problem and derives the log-linearized version of the firm’s optimal investment policy:

kit+1 = φ00 + φ1βixt + φ2zit + φ3kit − φ01βi , (23)

where

0 =
(

(θ − 1)− ξ̂ (1 + ρ)
)
φ3 + ρξ̂φ2

3 + ξ̂

φ1 =
(ρx − γ1σ

2
ε)φ3

ξ̂ (1− ρρxφ3 + ργ1σ2
εφ3)

, φ2 =
ρzφ3

ξ̂ (1− ρρzφ3)

φ01 =
φ3

ξ̂ (1− ρφ3)

γ0σ
2
ε

1− ρρxφ3 + ργ1σ2
εφ3

.

We characterize the constant, φ00, in the Appendix.38 The term ξ̂ is a composite parameter
that captures the severity of adjustment costs, defined by ξ̂ ≡ ξ

1−ρ(1−δ) .
Now, the past level of capital affects the new chosen level. The coefficient φ3 captures the

38As above, we ignore terms reflecting variance adjustments that are close to zero.
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strength of this relationship. It lies between zero and one and is increasing in the adjustment
cost, ξ̂. It is independent of the risk premium. The other coefficients each have a counterpart
in equation (11), but are modified to reflect the influence of adjustment costs. The coefficients
φ1 and φ2 are both decreasing in the adjustment cost – intuitively, adjustment costs reduce
the responsiveness to shocks. As adjustment costs tend to infinity, φ3 approaches one and
the latter two coefficients go to zero. As adjustment costs become large, the firm’s choice of
capital becomes more autocorrelated and eventually unresponsive to shocks. Importantly, φ01

is increasing in these costs, showing that these additional adjustment frictions increase the
importance of the firm’s beta in determining its choice of capital.39

The expression for φ01 reveals an interaction between adjustment costs and time-varying risk
– the denominator contains the product of φ3 and γ1, which implies that a more negative γ1 leads
to higher values of φ01 as long as adjustment costs are non-zero. Clearly this term disappears
if adjustment costs are zero. In a moment, we will relate the value of φ01 to Empk dispersion.
Thus, this interaction effect will increase the impact of risk premia on that dispersion.

In this setting, both risk premium effects and adjustment costs lead to Empk dispersion
(realized mpk dispersion also depends on uncertainty, as above). Closed-form solutions are not
available for period-by-period dispersion. However, to gain intuition, we are able to characterize
the mean of firm-level expected mpk (which is also the mean of realized mpk, since the shocks
are mean-zero) and thus the dispersion in this mean component:

E [Empkit+1] = − 1− θ
1− φ3

(φ00 − φ01βi) ⇒ σ2
E[Empkit+1] =

(
1− θ
1− φ3

)2

φ2
01σ

2
β . (24)

Loosely speaking, the measure is the variance of the mean (i.e., permanent) component of
firm-level mpk deviations. Recall that on their own, heterogeneous risk exposures only lead to
persistent mpk deviations (in terms of the ordering across firms). These are exactly the effects
we are picking up in (24). Further, we are particularly interested in this component, since
the data show an important role for a highly persistent component in firm-level mpk. Notice
also that φ01 is multiplicative in γ0; in the absence of risk effects, there is no persistent Empk
dispersion, even in the presence of adjustment costs.

Expression (24) shows that the extended model continues to give rise tompk deviations that
are persistent at the firm-level. Moreover, the expression reveals a second amplification effect
of adjustment costs through the 1 − φ3 term in the denominator. Recall that φ3 is increasing
in these costs, as is φ01, so that holding fixed the other parameters, higher adjustment costs

39Strictly speaking, this is true so long as 1 − ρρxφ3 + ργ1σ
2
εφ3 > 0. This condition holds for any reason-

able level of adjustment costs, for example, given our estimates of the other parameters, ξ must be less than
approximately 2180.
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unambiguously increase risk effects on dispersion in Empk. An interesting implication of this
result is that, perhaps surprisingly, adjustment frictions do not only affect transitory dispersion
in the mpk. While this is true on their own, in conjunction with a fixed component in the mpk,
which we have here, these frictions can serve to amplify the effects of that component.

Finally, how do adjustment costs change the relationship between expected mpk, beta and
expected stock returns? Appendix B.4 shows that to a first-order, expected returns are not
affected by adjustment costs and so the results from Section 4.2 continue to hold.40 Thus, the
arguments made in that section linking the key parameters of the model to moments of asset
returns go through unchanged.

5 Quantitative Analysis

In this section, we use the analytical insights laid out above to numerically quantify the extent
of mpk dispersion arising from risk premia effects.

5.1 Parameterization

We begin by assigning values to the more standard production parameters of our model. Fol-
lowing Atkeson and Kehoe (2005), we set the overall returns to scale in production θ1 + θ2 to
0.85. We assume standard shares for capital and labor of 0.33 and 0.67, respectively, which
gives θ1 = 0.28 and θ2 = 0.57. These values imply θ = 0.65.41 We assume a period length of one
year and accordingly set the rate of depreciation to δ = 0.08. We estimate the adjustment cost
parameter, ξ, in order to match the autocorrelation of investment, denoted corr (∆kt,∆kt−1),
which is 0.38 in our data. Equation (32) in Appendix B.5 provides a closed-form expression for
this moment, which reveals a tight connection with the severity of adjustment frictions.42

To estimate the parameters governing the aggregate shock process, we build a long sample
of Solow residuals for the US economy using data from the Bureau of Economic Analysis on real
GDP and aggregate labor and capital. The construction of this series is standard (details in
Appendix A.4). With these data, we use a standard autoregression to estimate the parameters
ρx and σ2

ε . This procedure gives values of 0.94 and 0.0247 for the two parameters, respectively.43

40Although this is only exactly true under our first-order approximation, Table 7 verifies numerically that
adjustment costs have relatively modest effects on moments of returns.

41This is close to the values generally used in the literature. For example, Cooper and Haltiwanger (2006)
estimate a value of 0.59 for US manufacturing firms. David and Venkateswaran (2017) use a value of 0.62.

42The expression also reveals that for ρx close to ρz, which we find in the data, described next, the auto-
correlation of within-firm investment is almost invariant to the firm’s beta (indeed, the invariance is exact if
ρx = ρz). Thus, even with dispersion in betas, we may not see large variation in this moment across firms.

43The autoregression does not reject the presence of a unit root at standard confidence levels. We have also
worked with the annual TFP series developed by John Fernald, available at:
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Under our assumptions, firm-level productivity (including the aggregate component) can be
measured directly (up to an additive constant) as yit − θkit. After controlling for the level of
aggregate productivity, a similar autoregression on the residual (firm-specific) component yields
values for ρz and σε̃ of 0.93 and 0.28, respectively.

Turning to the parameters of the SDF, we set ρ = 0.988 to match an average annual risk-free
rate of 1.2%. Following the arguments in Section 4.2, we estimate the values of γ0 and γ1 to
match the post-war (1947-2017) average annual excess return on the market index of 7.7% and
Sharpe ratio of 0.53.44 This strategy is equivalent to matching both the mean and volatility
of market excess returns (the standard deviation is 14.6%). To be comparable to the data,
stock returns in the model need to be adjusted for financial leverage. To do so, we scale the
mean and standard deviation of the model-implied returns by a factor of 1 + D

E
where D

E
is the

debt-to-equity ratio. We follow, e.g., Barro (2006) and assume an average debt-to-equity ratio
of 0.5. Because both the numerator and denominator are scaled by the same constant, the
Sharpe ratio is unaffected. For ease of interpretation, in what follows, we report the properties
of levered returns. To compute the model-implied market return, we must also take a stand
on the mean beta across firms. Assuming that the mean of β̂i (the underlying productivity
beta) is one, and using the value of ω (the sensitivity of wages to aggregate shocks) suggested
by İmrohoroğlu and Tüzel (2014) of 0.20, we can compute the mean beta to be 1.99.45 This
is simply the mean productivity beta adjusted for the leverage effects of labor liabilities. This
procedure yields values of γ0 = 32 and γ1 = −140.

Finally, again following the insights in Section 4.2, we estimate the dispersion in betas to
match the cross-sectional dispersion in expected stock returns. Because expected returns are
not directly observable, we must choose an asset pricing model with which to estimate them. To
be consistent with the broad literature, we use the expected returns predicted from the Fama-
French model as computed in Section 3. We de-lever firm-level expected returns following
the approach in Bharath and Shumway (2008) and Gilchrist and Zakrajsek (2012) (details in
Appendix A.3). This procedure yields an estimated average within-industry standard deviation
of un-levered expected returns of 0.127 (we report details and plot the full histogram of the
expected return distribution in Appendix A.3: for example, the mean is about 9%, and the

https://www.frbsf.org/economic-research/indicators-data/total-factor-productivity-tfp/.
These data are only available for the more recent post-war period, but also show that the series is close to a
random walk (i.e., the autocorrelation of growth rates is essentially zero). To address possible concerns about
aggregation affecting the stochastic properties of these series (i.e., persistence and volatility), we have also
constructed an alternative series directly from the firm-level data by averaging across the firms in each year.
This gives results quite similar to the baseline, ρx = 0.92 and σε = 0.0245. Details are in Appendix A.4.

44We calculate these values using annualized monthly excess returns obtained from Kenneth French’s website,
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

45İmrohoroğlu and Tüzel (2014) estimate this value to match the cyclicality of wages.
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interquartile range is just under 12%; the standard deviation of raw expected returns, i.e., not
de-levered or controlling for industry, is about 0.156).46 Feeding this value into our quantitative
model yields an estimate for σβ of 12, and adjusting for the scaling 1− θ2 gives the dispersion
in underlying productivity betas, σβ̂, equal to 4.80.

To accurately capture the properties of the time-varying risk premium, we solve for returns
numerically using a fourth-order approximation in Dynare++. We describe the details of the
numerical procedure in Appendix C. In brief, for a given set of parameters, we use the model
solution to simulate time series of excess returns and investment for a large panel of firms that
differ in their betas. Averaging returns across these firms in each time period yields a series for
the market return. We can then compute the mean and standard deviation (i.e., Sharpe ratio)
of the market return. For each beta-type in each time period, we compute the expected excess
return directly as the conditional expectation Et

[
Re
it+1

]
and then average over the time periods

to obtain the average expected return for a firm of that beta-type and the dispersion across
types. For this set of parameters, we also compute the autocorrelation of investment. We then
estimate the four parameters γ0, γ1, σ2

β and ξ so that the results of this procedure leads to values
of (i) market excess returns, (ii) market Sharpe ratio, (iii) cross-sectional dispersion in expected
returns and (iv) the autocorrelation of investment that match their empirical counterparts.

Table 6 summarizes our empirical approach/results.

5.2 Risk-Based Dispersion in MPK

Table 7 presents our main quantitative results. We report four variants of our framework. The
first column (“Baseline”) corresponds to our full model with time-varying risk and adjustment
costs. In the second column (“Only Risk”), we report the effects of risk premia without ad-
justment costs (i.e., ignoring the interaction effects demonstrated above). The third column
(“Constant Risk”) examines a version with adjustment costs but a constant price of risk (i.e.,
γ1 = 0). The last column (“Only Constant Risk”) has a constant price of risk and no adjust-
ment costs. Our goal in showing these different permutations is to understand the role that
each element of our model plays in leading to various patterns in mpk dispersion.

Long-run effects. The first row of the table shows the average level of mpk dispersion that
stems from heterogeneous risk exposures.47 The second row shows the percentage of total

46Our estimates are consistent with those in Lewellen (2015), who reports moments of the expected return
distribution from a number of predictive models. For example, using monthly data, he finds an annualized
cross-sectional standard deviation of up to 17.5% (Model 3, Panel A, Table 5 of that paper).

47With adjustment costs, we do not have analytic expressions for period-by-period Empk dispersion. We
compute these values using simulation and then average over them. Without adjustment costs, we can use
expression (15) directly.
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Table 6: Parameterization - Summary

Parameter Description Value
Production
θ1 Capital share 0.28
θ2 Labor share 0.57
δ Depreciation rate 0.08
ξ Adjustment cost 0.04
σβ̂ Std. dev. of risk exposures 4.80
Stochastic Processes
ρx Persistence of agg. shock 0.94
σε Std. dev. of agg. shock 0.0247
ρz Persistence of idiosyncratic shock 0.93
σε̃ Std. dev. of idiosyncratic shock 0.28
ω Wage elasticity 0.20
Stochastic Discount Factor
ρ Time discount rate 0.988
γ0 SDF – constant component 32
γ1 SDF – time-varying component -140

observed misallocation that this value accounts for. In our sample, overall σ2
mpk is 0.45. This

is the denominator in that row. Next, we calculate the dispersion stemming from only the
permanent component of firm-level MPK deviations (given by equation (24)), which we report
in the third row of the table. To compute this value in the data, for each firm, we regress the
time-series of its mpk on a firm-level fixed effect. The fixed-effect is the permanent component
of firm-levelmpk and the residuals transitory components. We then compute the variance of the
permanent component, which yields a value of σ2

mpk
= 0.30, about two-thirds of the total. This

is the denominator in the fourth row of the table, which displays the model-implied permanent
dispersion as a percentage of the observed permanent component in the data. The next row
quantifies the implications of the estimated dispersion for the long-run level of aggregate TFP.
It reports the gains in the average level of TFP from eliminating this source of mpk dispersion,
denoted ∆a.48 This is essentially an application of expression (16).

Column (1) shows that in the full model, risk premium effects lead to mpk dispersion of
0.17. This accounts for about 38% of overall mpk dispersion in the data. Of the model-implied
dispersion, about 0.14 is permanent in nature, which explains about 47% of the permanent
component in the data. The mpk dispersion arising from risk effects leads to a long-run TFP
loss of about 7% (compared to an environment without risk premia, i.e., where γ0 = γ1 = 0).
These results suggest that (i) variation in firm-level risk exposures can generate significant MPK

48Note that this calculation does not mean that policies eliminating this source of mpk dispersion here would
necessarily be desirable. We merely see this as a useful way to quantify the implications of our findings.
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Table 7: Risk Premia and Misallocation

Baseline Only Risk Constant Risk Only Constant Risk
(1) (2) (3) (4)

MPK Implications
Eσ2

Empk 0.17 0.05 0.16 0.05

% of total σ2
mpk 37.9% 11.5% 35.9% 10.4%

σ2
Empk

0.14 0.05 0.13 0.05

% of total σ2
mpk

47.3% 15.7% 41.9% 15.7%
∆a 0.07 0.02 0.07 0.02

corr
(
σ2
Empkt

, xt
)

−0.31 −0.97 0.45 0.00

Moments
Erm 0.08 0.10 0.05 0.06

ESRm 0.53 0.61 0.52 0.65

corr (∆kt,∆kt−1) 0.38 −0.02 0.38 −0.03

dispersion, particularly when compared to the permanent component in the data, and (ii) the
consequences for measures of aggregate performance such as TFP – i.e., the “productivity costs”
of business cycles – can be substantial.

Column (2) shows that on their own (i.e., without adjustment costs), these exposures gen-
erate mpk dispersion of 0.05, which accounts for 11.5% of total σ2

mpk in the data and they can
explain about 16% of the permanent component. In other words, though the impacts of risk
premia remain significant in isolation, they are less than half of those in column (1). These re-
sults highlight the important interactions with other adjustment frictions uncovered in Section
4.3 – in the first column, these effects are taken into account; in the second column, they are
not. The associated TFP losses are also smaller, but remain significant, at approximately 2%.

Columns (3) and (4) show that the majority of these effects stems from the presence of a
high persistent component in the price of risk, i.e., γ0, rather than from the time-variation from
γ1. Setting γ1 = 0 only modestly reduces the size of these effects in the presence of adjustment
costs (compare columns (1) and (3)) and has a negligible effect on the results without them
(columns (2) vs. (4)). The implication is that time-varying prices of risk do not add much to
the long-run level of mpk dispersion.

Countercyclical dispersion. The last row in the top panel examines the second main im-
plication of the theory, namely, the countercyclicality of mpk dispersion, which we measure as
the correlation of σ2

Empkt
with the state of the business cycle, i.e., xt. Column (1) shows that the

full model generates significantly countercyclical dispersion in Empk – the correlation of σ2
Empkt

with the state of the cycle is -0.31. To put this figure in context, Table 9 in Appendix A.2 shows
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that the correlation between σ2
mpk and the cyclical component of aggregate productivity in the

data is -0.27. Thus, our quantitative model predicts countercyclical dispersion on par with this
value. Column (2) shows that as the only factor behind Empk dispersion, the time-varying
nature of risk premia would lead to an almost perfectly negative correlation with the business
cycle. This is a clear implication of equation (14). The presence of adjustment costs in the
first column confounds this relationship and leads to a smaller correlation (in absolute value)
that is more in line with the data. Finally, the last two columns illustrate that time-varying
risk is key to generating countercyclical dispersion. Without this element, Empk dispersion
is significantly positive with adjustment costs and without them, is exactly acyclical. Thus,
our findings suggest that the interaction of a countercyclical price of risk with adjustment fric-
tions is crucial in yielding a negative (though far from negative one) correlation between Empk
dispersion and the state of the business cycle.

To highlight the potential implications of the countercyclical Empk dispersion produced
by our model, consider the connection with the empirical results in Eisfeldt and Rampini
(2006), who show that firm-level dispersion measures tend to be countercyclical, yet most
capital reallocation is procyclical. Our theory can – at least in part – reconcile this observation
due to the countercyclical nature of factor risk prices and the high beta of high MPK firms:
countercyclical reallocation would entail moving capital to the riskiest of firms in the riskiest of
times. Thus, in light of our results, it may not be as surprising that countercyclical dispersion
obtains, even in a completely frictionless environment.

Moments. In the bottom panel of Table 7, we investigate the role of each element in matching
the target moments. Our full model in column (1) is directly parameterized to match the three
moments, i.e., the equity premium, Sharpe ratio and autocorrelation of investment. In column
(2), we show these moments from the version of our model without adjustment costs (i.e.,
setting ξ = 0 and the holding the other parameters at their estimated value). As implied by the
approximation in Section 4.3, adjustment costs have a modest effect on the properties of returns
(eliminating them raises the equity premium somewhat and the Sharpe ratio accordingly).
However, the autocorrelation of investment falls dramatically without any adjustment frictions,
indeed, becoming slightly negative (due to the mean-reverting nature of shocks). Thus, some
degree of adjustment costs is crucial for matching this latter moment. Comparing columns
(1) and (3) shows that without time-varying risk, the model struggles to match the equity
premium, which falls almost by half, from about 8% to 5%. As implied by expressions (22),
(21) and (32), time-varying risk is tightly linked to average excess returns, but has only modest
effects on the average Sharpe ratio and the autocorrelation of investment. A similar pattern
emerges from columns (2) and (4) – in the absence of adjustment costs, removing time-varying
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risk significantly reduces the equity premium but has smaller effects on the other two moments.
In sum, the results in Table 7 show first, ex-ante firm-level variation in risk exposures lead to

quantitatively important dispersion in mpk, with significant adverse effects on aggregate TFP;
moreover, much of this dispersion is persistent and can account for a significant portion of what
seems to be a puzzling pattern in the data, namely, persistent mpk deviations at the firm-level.
Second, these exposures add a notably countercyclical element to mpk dispersion, going some
way towards reconciling the countercyclical nature of firm-level dispersion measures.

5.3 Other Distortions

Recent work has pointed to a number of additional factors (beyond fundamentals and adjust-
ment frictions) that may affect the firms’ investment decisions and lead to mpk dispersion, for
example, financial frictions, variable markups or policy-induced distortions. Moreover, it has
been pointed out that attempts to identify one of these forces – while abstracting from others
– may yield misleading conclusions. This section demonstrates that our strategy of using asset
market data is robust to this critique. In other words, our approach yields accurate estimates
of risk premium effects, even in the presence of other, un-modeled, distortions.

We first follow the broad literature, e.g., Hsieh and Klenow (2009) and Restuccia and
Rogerson (2008), and introduce these distortions as purely idiosyncratic “taxes” or “wedges” on
firm revenues, 1 − eτit+1 (so that the firm keeps a portion eτit+1). We work with the following
specification for the wedge:

τit+1 = −νzit+1 − ηit+1 . (25)

The wedge is composed of two pieces. The first component is correlated with the firm’s idiosyn-
cratic productivity, where the strength of the relationship is captured by ν. If ν > 0, the wedge
discourages (encourages) investment by high (low) productivity firms. If ν < 0, the opposite is
true. The second component is uncorrelated with firm characteristics and can be either time-
varying or fixed. Low (i.e., negative) values of η spur greater investment by firms irrespective
of their underlying characteristics. We assume the firm knows the uncorrelated piece, ηit+1,
when it chooses period t investment, i.e., kit+1. Further, we assume that both components of
the wedge are uncorrelated with the firm’s beta. David and Venkateswaran (2017) show that
this type of formulation can capture, for example, certain forms of financial frictions (due, e.g.,
to liquidity costs) and markups, in addition to policy-related distortions. We loosely refer to
the wedge as a “distortion,” although we do not take a stand on whether it stems from efficient
factors or not, simply that there are other frictions in the allocation process. Appendix B.6
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derives the following expression for realized mpk:

mpkit+1 = α + εit+1 + βiεt+1 + νρzzit + ηit+1 + βiγtσ
2
ε , (26)

The distortion has several effects on realized mpk. After the constant, the first two terms
capture the effects of uncertainty over shocks and are identical to those in the baseline case.
Next, the mpk includes a component that reflects the severity of the correlated distortion, ν,
and depends on the firm’s expectations of its idiosyncratic productivity (ρzzit), leading to mpk
deviations that are correlated with idiosyncratic productivity. Next, the mpk also depends on
the uncorrelated component of distortions, η: firms with a high (positive) realization of ηit+1

will invest less than their fundamentals would dictate, again leading to mpk deviations (that
are uncorrelated with productivity). Finally, the last term reflects the risk premium, which,
importantly, is independent of the distortions.

From expression (26), we can derive Empk and its cross-sectional variance:

Empkit+1 = α + νρzzit + ηit+1 + βiγtσ
2
ε , ⇒ σ2

Empkt = (νρz)
2 σ2

z + σ2
η + σ2

β

(
γtσ

2
ε

)2
. (27)

Dispersion in Empk comes from three sources – first, the correlated component of the dis-
tortion, ν (its contribution to mpk dispersion also depends on the cross-sectional variance of
expected idiosyncratic productivity, which is the term in parentheses); second, the variance of
the uncorrelated component; and third, the variation in the risk premium.

Turning to stock market returns on the other hand, Appendix B.6 proves that equation (19)
still holds. In other words, expected stock returns are independent of idiosyncratic distortions.
This result implies that the mapping from expected returns to beta is, to a first-order, unaffected
by these other distortions, as is the mapping from beta dispersion to its effects on Empk. Thus,
even in the richer environment here, featuring the additional sources of misallocation revealed
in expressions (26) and (27), using stock market data continues to yield accurate estimates of
the effects of heterogeneous risk exposures alone.

Aggregate wedges. In principle, we can allow the wedge to also be correlated with aggregate
productivity, xt. Consider first the following formulation:

τit+1 = −νzzit+1 − νxxt+1 − ηit+1 .

Here, the parameter νx captures the correlation of the distortion with the state of the business
cycle. All firms are distorted by the aggregate component of the wedge, but all equally so.
In this case, we can prove a similar result as with only idiosyncratic wedges – the distortion
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does not affect the cross-sectional dispersion in expected stock returns and so that moment still
accurately pins down the relevant risk exposures (the wedge also does not affect the dispersion
in Empk coming from risk premium effects).49

As a second example, consider the following specification:

τit+1 = −νzzit+1 − νxβixt+1 − ηit+1 .

Here, high beta firms are also disproportionately affected by the aggregate distortion. In this
case, we can prove that expected return dispersion gives a lower bound on risk premium effects
if the wedge worsens in downturns, i.e., if γx < 0, which may be a plausible conjecture. On the
other hand, we could be at risk of overstating these effects if the wedge worsens in expansions,
i.e., γx > 0. However, it turns out that even in this case, our empirical results suggest a
tight upper bound on the extent of the potential bias – specifically, the fact that Empk is
countercyclical from prediction (2). To see this, we derive the following expression for Empk:

Et [mpkit+1] = α + νzρzzit + νxβiρxxt + (1− νx) βiγtσ2
ε + ηit+1

= α + νzρzzit +
(
νxρx + (1− νx) γ1σ

2
ε

)
βixt + (1− νx) βiγ0σ

2
ε + ηit+1 .

The fact that Empk is countercyclical implies that the term in parentheses multiplying xt

should be negative, which puts the following bound on νx:

νx
1− νx

< −γ1σ
2
ε

ρx
.

Intuitively, a positive value of νx adds a procyclical element to Empk. That Empk is actually
countercyclical then puts a sharp bound on how large a positive value νx can take. Using the
parameter estimates from Section 5.1, the maximum value of νx is about 0.08. In Appendix B.6
we derive an equation characterizing the potential bias in our estimate of Empk dispersion from
a positive value of νx – even at this upper bound, the bias would be quantitatively negligible.

5.4 Alternative Sources of Heterogeneity

Variation in betas across firms is an essential ingredient in our theory. Our empirical approach
measures these betas using dispersion in firm-level expected returns. Here, we explore whether
other forms of firm-level heterogeneity can quantitatively generate the significant return dis-
persion observed in the data. In other words, we ask whether our estimates of beta dispersion
are picking up meaningful dispersion from other potential sources.

49The proofs for this section are in Appendix B.6.
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First, we examine whether adjustments costs alone can generate substantial dispersion in
conditional expected returns. To do so, we simulate a large panel of firms of a single beta-type
(we set this to the mean value of beta). Although the firms are all of a single type, heterogeneity
in conditional expected returns can arise from the presence of adjustment costs in combination
with different histories of idiosyncratic shocks. The first column of Table 8 reports the results
using the estimated value of ξ. The top row shows the minimum of the average of firm-level
expected returns (i.e., we simulate a time series of conditional expected returns for each firm,
compute the average for each firm and report the minimum), the second row the mean and the
third row the maximum. Adjustment costs lead to very little dispersion in expected returns,
e.g., the spread between the low and high firms is only about 0.1%.50 To verify the robustness
of this finding, column (2) repeats this analysis with a higher level of adjustment costs, namely,
ξ = 3. The larger level of costs increases the level of expected returns slightly (recall that to
a first-order, these costs should have no effects on the properties of expected returns) but has
virtually no effect on the spread. Thus, it is unlikely that our estimates of beta are reflecting
the effects of adjustment costs.

Table 8: Expected Return Dispersion – Other Forms of Heterogeneity

Adjustment Costs

Estimated Large θ δ ρz σ2
ε̃

(1) (2) (3) (4) (5) (6)

Min. E [rit] 0.053 0.055 0.042 0.045 0.047 0.035

Mean E [rit] 0.054 0.056 0.054 0.054 0.054 0.054

Max. E [rit] 0.054 0.057 0.080 0.061 0.060 0.058

Spread 0.001 0.002 0.038 0.016 0.013 0.023

The remaining columns of Table 8 allow for variation in technological parameters across
firms. Expression (19) provides some guidance as to the effects of some of these parameters on
expected returns – taking derivatives, the expression implies that expected returns should be
increasing in θ and δ. We also allow firms to differ in the properties of the stochastic process
of idiosyncratic shocks, ρz and σ2

ε̃ . Although these do not influence expected returns under a
50This result should not be overly surprising – in the long run, the firms are identical, so mean expected

returns should essentially be the same. We have also examined whether adjustment costs can lead to significant
transitory dispersion in expected returns. To do so, we again simulate a large panel of firms with β = 1.99
and then compute period-by-period dispersion in expected returns. The mean of the cross-sectional standard
deviation is about 0.015 (and the maximum 0.03). This is relatively small compared to the observed standard
deviation of expected returns of 0.127.

37



first-order approximation, there may be effects due to the nonlinearities in the numerical model.
Column (3) examines heterogeneity in θ, the curvature of the profit function. Although

there is little guidance on the extent of this heterogeneity (recall that all our estimations are
within-industry), we compute expected returns for three values of θ, namely 0.85 (our baseline),
0.95 and 0.75.51 In line with the predictions of expression (19), expected returns are increasing
in θ. The first row reports the average expected return for a firm with low θ (0.75), the second
row the baseline and the third row a high θ firm (0.95). The difference in mean expected
returns between the highest and lowest θ firms is about 4%. This is an economically significant
spread, suggesting that large differences in this parameter can result in meaningful differences
in firm-level risk premia. However, even this substantial degree of heterogeneity cannot account
for the even larger differences in expected returns observed in the data – for example, Table 10
in Appendix A.3 shows that interquartile range of expected returns is almost 12%.

The last three columns show similar results for the remaining three parameters – the de-
preciation rate, δ, and persistence and volatility of idiosyncratic shocks, ρz and σ2

ε̃ . Expected
returns are increasing in the first (as suggested by (19)) and decreasing in the other two. We
examine values of ρz ranging from 0.50 to 0.95. For the other two parameters, we report the
average expected return when doubling or halving their baseline values (the second row always
reports the baseline).52 Even for these large differences in parameter values, the predicted
spread in expected returns only ranges from 1.3% to 2.3%. Thus, a consistent message emerges
across these experiments – unobserved heterogeneity in technological parameters seems unlikely
to account for the large spreads in expected returns observed in the data.

5.5 Directly Measuring Productivity Betas

Our baseline approach to measuring firm-level risk exposures used the tight link between beta
and expected stock returns laid out in Section 4.2. Here, we use an alternative strategy to
estimate the dispersion in these exposures using only production-side data. In one sense, this
approach is more direct – there is no need to employ firm-level stock market data to measure
risk exposures. On the other hand, computing betas directly from production-side data has its
drawbacks – the data are of a lower frequency (quarterly at best) and the time dimension of
the panel is shorter. Further, it may be difficult to apply this method to firms in developing
countries (where measured misallocation tends to be larger), since most firm-level datasets there
have relatively short panels and are at the annual frequency. For those reasons, we view our
results here as an informative check on our baseline findings above.

51To put these values in context, they loosely correspond to the range of values found in the literature. For
example, İmrohoroğlu and Tüzel (2014) use a value of 0.95. Clementi and Palazzo (2016) use 0.80.

52For σ2
ε̃ , we double or half the standard deviation, σε̃, so the variance is scaled by a factor of four.
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The approach is as follows. For each firm, we regress measured productivity growth, i.e.,
∆zit + βi∆xt, on aggregate productivity growth ∆xt. It is straightforward to verify that the
coefficient from this regression is exactly equal to βi. Using these estimates, we can compute
the firm’s underlying productivity beta, β̂i, and calculate the cross-sectional dispersion in these
estimates, σ2

β̂
. We have applied this procedure using three different measures of the aggregate

shock: (i) our long sample of Solow residuals, (ii) the series we construct from firm-level data
(both of these are described in Section 5 and Appendix A.4) and (iii) the Fernald annual TFP
series. The results yield values of σβ̂ of 6.4, 4.3 and 5.9, respectively. Recall that our estimate
for this value using stock return data was 4.8, which is in line with – and towards the lower end
of – the range found here.

6 Extensions

The framework we have outlined thus far featured a tight connection between financial market
conditions and the “real” side of the economy – indeed, the state of technology determined both
the common component of firm-level productivities and the price of risk simultaneously. In this
section, we generalize that setup to allow for more flexible formulations of the determinants of
financial conditions. Although empirically disciplining the additional factors added here may
be challenging, we demonstrate that the same insights from our baseline analysis go through.

6.1 Multifactor Model

In principle, it is straightforward to include multiple aggregate risk factors in our setting. Here,
we lay out a simple extension along these lines and show that analogous results hold (details in
Appendix B.7). There are J risk factors. The profits of each firm has a vector of loadings on
these factors, βi, where the j-th element of βi is the loading of firm i on factor j. The exposure
of the SDF to the factors is captured by a vector, γ, where element γj captures the exposure
of the SDF to the j-th factor. For purposes of illustration, we assume γ is constant through
time and there are no adjustment costs (these assumptions are easily relaxed). The covariance
matrix of factor innovations is given by Σf . The realized mpk is equal to

mpkit+1 = α + εit+1 + βiεt+1 + βiΣfγ
′ ,

where εt+1 is the vector of shocks to these factors. Expected mpk and its cross-sectional
dispersion are given by

Et [mpkit+1] = α + βiΣfγ
′, σ2

Et[mpkit+1] = γΣ′fΣβΣfγ
′ ,
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where Σβ is the covariance matrix of factor loadings across firms. This is the natural analog of
expression (14): (i) expected mpk is determined by the firm’s exposure to (all) the aggregate
risk factors in the economy and the risk prices of those factors, and (ii) mpk dispersion is a
function of the dispersion in those exposures across firms as captured by Σβ.

Next, we can derive the following approximations for expected excess stock returns and the
cross-sectional dispersion in expected returns:

logEt
[
Re
it+1

]
= βiψΣfγ

′, σ2
logEt[Reit+1]

= γΣ′fψ
′ΣβψΣfγ

′ ,

where ψ is a diagonal matrix with

ψjj =

1
ρ

+ δ − 1
1
ρ

+ (1− θ) δ − 1

1− ρ
1− ρρj

,

where ρj denotes the persistence of factor j. These are the analogs of expressions (19) and (20)
– expected returns depend on factor exposures and the risk prices of those factors. Expected
return dispersion depends on the dispersion in those exposures, here captured by Σβ.

Thus, the same insights from the single factor model go through – dispersion in Empk and
expected returns are both determined by variation in exposures to the set of aggregate factors
and hence, there is a tight relationship between the two. To quantify the impact of these factors
on mpk dispersion, however, we would need to know all the primitives governing the dynamics
of the factors, e.g., the vector of persistences ρ and the covariance matrix Σf , and exposures,
i.e., the exposures of the SDF, γ, and the vectors of firm loadings, Σβ. This would likely entail
taking a stand on the nature of each factor, computing their properties from the data and
calibrating/estimating the γ vector and the covariance matrix of firm exposures, Σβ.

6.2 Financial Shocks

Our baseline model tightly linked financial conditions, for example, the price of risk, to macroe-
conomic conditions, i.e., the state of aggregate technology. However, financial conditions may
not co-move one-for-one with the “real” business cycle. Here, we extend the setup to include
pure financial shocks. The stochastic discount factor takes the form

mt+1 = log ρ− γtεt+1 −
1

2
γ2
t σ

2
ε (28)

γt = γ0 + γfft ,
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where
ft+1 = ρfft + εf , εf ∼ N

(
0, σ2

εf

)
.

In this formulation, ft denotes the time-varying state of financial conditions, which is now
disconnected from the state of aggregate technology. These financial factors may be correlated
with real conditions, xt, but need not be perfectly so. Thus, there is scope for changes in
financial conditions, independent of those in real conditions, to affect the price of risk and
through this channel, the allocation of capital.53 Note the difference between this setup and
the one in Section 6.1 – here, the financial factor, ft, does not directly enter the profit function
of the firm, it only affects the price of risk. Thus, it is a shock purely to financial market
conditions. In contrast, the factors considered in Section 6.1 directly affected firm profitability.

Keeping the remainder of the environment the same as Section 4, we can derive exactly the
same expressions for expected mpk and its cross-sectional variance, i.e.,

Et [mpkit+1] = α + βiγtσ
2
ε , σ2

Et[mpkit+1] = σ2
β

(
γtσ

2
ε

)2
,

where now γt is a function of financial market conditions. When credit market conditions
tighten (i.e., when ft is small/negative since γf < 0), γt is high and mpk dispersion will rise.
Finally, the average long-run level of Empk dispersion and aggregate productivity are given by

E
[
σ2
Empkt

]
= σ2

β

(
γ2

0 + γ2
fσ

2
f

) (
σ2
εf

)2

, ā = a∗ − 1

2

θ1 (1− θ2)

1− θ1 − θ2

σ2
β

(
γ2

0 + γ2
fσ

2
f

) (
σ2
εf

)2

,

where σ2
f =

σ2
εf

1−ρ2f
. The expressions reveal a tight connection between financial conditions and

long-run performance of the economy – higher financial volatility (σ2
εf
), even independent of

the state of the macroeconomy, induces greater persistent MPK dispersion and depresses the
average level of achieved productivity.

7 Conclusion

In this paper, we have revisited the notion of “misallocation” from the perspective of a risk-
sensitive, or risk-adjusted, version of the stochastic growth model with heterogeneous firms. The
standard optimality condition for investment in this framework suggests that expected firm-
level marginal products should reflect exposure to factor risks, and their pricing. To the extent
that firms are differentially exposed to these risks, as the literature on cross-sectional asset
pricing suggests, the implication is that cross-sectional dispersion in MPK may not only reflect

53Our baseline model is the nested case where γf = γ1 and ft and xt are perfectly correlated.
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true misallocation, but also risk-adjusted capital allocation. We provide empirical support for
this proposition and demonstrate that a suitably parameterized model of firm-level investment
behavior suggests that, indeed, risk-adjusted capital allocation accounts for a significant fraction
of observed MPK dispersion among US firms. Importantly, much of this dispersion is persistent
in nature, which speaks to the large portion of observed MPK dispersion that arises from
seemingly persistent/permanent sources. Further, our setup leads to a novel link between
aggregate volatility, cross-sectional asset pricing and long-run productivity – our results suggest
that there can be substantial “productivity costs” of business cycles.

There are several promising directions for future research. Our framework points to a new
connection between business cycle dynamics and the cross-sectional allocation of inputs. Further
investigation of this link, for example, a deeper exploration of the sources of beta variation across
firms, would lead to a better understanding of the underlying causes of observed marginal
product dispersion. The tractability of our setup allowed us to quantify the effects of financial
market considerations, e.g., cross-sectional variation in required rates of return, on measures of
economic performance, i.e., aggregate TFP. This link should be useful beyond the misallocation
literature and provides a new way to evaluate the implications of the rich set of empirical findings
in cross-sectional asset pricing. For example, pursuing multifactor/financial shock extensions
of our analysis (e.g., along the lines laid out in Sections 6.1 and 6.2) to incorporate the many
risk factors pointed out in that literature would be fruitful to measure the implications of those
factors for allocative efficiency and further assess the role of risk considerations in leading to
misallocation. Of particular interest would be whether those factors are efficient or not, e.g.,
to what extent do capital allocations reflect the “mispricing” of assets.
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Appendix

A Data

In this appendix, we describe the various data sources used throughout our analysis.

A.1 Compustat/CRSP

We obtain firm-level data from COMPUSTAT and CRSP. We include firms coded as industrial
firms from 1965-2015. Our time-series regressions and portfolio sorts use data from 1973-2015,
since data on the GZ spread and EB premium begin in 1973 and because there are relatively few
industries with at least 10 firms in a given year pre-1973.54 We further exclude financial firms by
dropping those with COMPUSTAT SIC codes that correspond to finance, insurance, and real
estate (FIRE, SIC codes 6000-6999). We also exclude firms with missing SIC codes or coded
as non-classifiable, as much of our analysis examines within-industry variables. We measure
firm revenue using sales from Compustat (series SALE), and capital using the depreciated
value of plant, property, and equipment (series PPENT). We measure firm marginal product of
capital in logs (up to an additive constant) as the difference between log revenue and capital,
mpkit = yit − kit. Market capitalization is measured as the price times shares outstanding
from CRSP and profitability as the ratio of earnings before interest, taxes, depreciation, and
amortization (EBITDA) divided by book assets (AT). We measure market leverage as the ratio
of book debt to the sum of market capitalization plus book debt, where book debt is measured
as current liabilities (LCT) + 1/2 long term debt (DLTT), following Gilchrist and Zakrajsek
(2012). We measure book-to-market as the ratio of book equity to the market capitalization
of the firm, where we measure book equity as the sum of shareholder’s equity (SEQ), deferred
taxes and investment credit (TXDITC) and the preferred stock liquidating value (PSTKL).

Computation of betas and expected returns. Here, we describe our procedure to com-
pute stock market betas, MPK betas and expected returns.

We estimate stock market betas by performing time-series regressions of firm-level excess
returns (realized returns from CRSP in excess of the risk-free rate), reit, on aggregate factors,
denoted by the N × 1 vector Ft. For each firm, the specification takes the form

reit = αiτ + βiτFt + εit (29)
54The portfolio sorts are qualitatively similar if we use data from the full 1965-2015 sample.
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We estimate these regressions (and the MPK betas described below) at the quarterly frequency
using backwards-looking five-year rolling windows, i.e., for t ∈ {τ − Nτ + 1, τ − τT + 2, ..., τ},
where βiτ denotes the 1×N vector of factor loadings and Nτ the length of the window.55 Under
the CAPM, the single risk factor is the aggregate market return. Under the Fama-French 3
factor model, the risk factors are the market return (MKT), the return on a portfolio that is
long in small firms and short in large ones (SMB) and the return on a portfolio that is long in
high book-to-market firms and short on low ones (HML).

To obtain a single measure of risk exposure from the multi-factor Fama-French model, we
combine the betas into a single value using estimated prices of risk from Fama and MacBeth
(1973) regressions. Specifically, we estimate the following cross-sectional regression in each
period:

reit = αt + λtβit + εit (30)

where λt denotes the 1 × N vector of period t factor risk prices and βit the N × 1 vector of
exposures, estimated as just described. We then calculate a single index of exposure to these
factors as

βit,FF = λβit =
∑
x

λxβit,x, x ∈MKT,HML, SMB

where λx = 1
T

∑T
t=1 λxt.

We follow an analogous procedure to estimate MPK betas, simply replacing excess stock
market returns on the left-hand side of (29) and (30) with mpkit. The first regression yields
measures of βMPK , i.e., the exposure of each firm’s MPK to the aggregate risk factors. The
second regression combines these exposures into a single value in the multifactor model, using
the coefficients from cross-sectional Fama and MacBeth (1973) regressions, which play the role
of factor risk prices in determining the relationship between risk exposures and the cross-section
of expected MPK.

Finally, we estimate expected stock returns as the predicted values from the cross-sectional
asset pricing equation

reit = αi + λβit + εit

i.e., as αi+λβit, where βit is as estimated from equation (29), λ is calculated using the estimates
from (30) as described above, and αi is calculated as αi = 1

T

∑T
t=1 (αit + εit) also using the

estimates from (30).

55We have also estimated the stock market betas using higher frequency monthly data (and two-year rolling
windows) and obtained similar results.
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Composition-adjusted measures of mean and dispersion. For Predictions 2 and 4, we
compute time-series of the mean and cross-sectional dispersion in MPK. Because Compustat
is an unbalanced panel with significant changes in the composition of firms over time, it is
important to ensure that we measure the variation in these objects due to changes in firm
MPK, rather than additions or deletions from the dataset (especially since many additions and
deletions to the Compustat data may not be true firm entry or exit). We therefore compute
composition-adjusted measures of the mean and cross-sectional standard deviation in MPK
that are only affected by firms who continue on in the dataset. We use the following procedure:

For each set of adjacent periods, e.g., t and t + 1, we compute the statistic of interest in
each time period (i.e., mean or cross-sectional standard deviation) only for those firms that are
present in the data in both periods. Taking the difference yields the change in the statistic
from time t to t + 1 that is due only to changes in the common set of firms. Completing this
procedure yields time-series of changes in the mean and cross-sectional standard deviation of
MPK. We then combine these time-series of changes with the initial values of the statistics of
interest (across all firms in the initial period) to construct a synthetic series for each statistic,
which is not affected by the changing composition of firms in the data.

A.2 Time-Series Correlations

Table 9 reports contemporaneous correlations between (within-industry) MPK dispersion and
indicators of the price of risk and the business cycle.

Table 9: Correlations of MPK Dispersion, the Price of Risk and the Business Cycle

MPK Dispersion PD Ratio GZ Spread EB Premium GDP TFP
MPK Dispersion 1.00
PD Ratio -0.42 1.00
GZ Spread 0.39 -0.51 1.00
EB Premium 0.51 -0.57 0.68 1.00
GDP -0.53 0.46 -0.59 -0.66 1.00
TFP -0.27 0.43 -0.32 -0.44 0.70 1.00

Notes: This table reports time-series correlations of MPK dispersion, measures of the price of risk and the business
cycle. MPK dispersion is measured as the within-industry standard deviation in mpk. The PD ratio is the ag-
gregate stock market price/dividend ratio. The GZ spread and EB (excess bond) premium are measures of credit
spreads. GDP is log GDP and TFP is log TFP. We extract the cyclical components of GDP, TFP and the PD ra-
tio using a one-sided Hodrick-Prescott filter. All series are described in more detail in the main text and Appendix
A. All data are quarterly and are from 1973-2015.
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A.3 Expected Return Distribution

Table 10 reports statistics from the cross-sectional distribution of expected returns (E[re]) and
unlevered expected returns (E[ra]), which is a measure of expected asset returns. We de-lever
expected returns using an adjustment factor computed from Black-Scholes following the ap-
proach in, e.g., Bharath and Shumway (2008) and Gilchrist and Zakrajsek (2012). Specifically,
we implement an iterative procedure using data on realized equity volatility, firm debt, and
firm market capitalization to compute the implied value of assets and asset volatility. The
Black-Scholes equations imply E[ra] ≈ Mkt. cap.

VA
Φ(δ1)E[re], where VA is the total firm asset

value implied by Black-Scholes as a function of the market capitalization of equity, book debt,
and realized backwards-looking equity volatility and Φ (δ1) is the Black-Scholes “delta” of eq-
uity, as defined in, e.g., Gilchrist and Zakrajsek (2012). We compute the adjustment factor
Mkt. cap.

V A
Φ(δ1) for each firm using daily data and a 21 day backwards-looking window for equity

volatility and then calculate a firm-year adjustment factor by averaging this adjustment factor
for each firm-year. Finally, we compute un-levered expected returns for each firm as the product
of its expected equity return multiplied by this factor. To find the cross-sectional distribution
of within-industry expected returns, we de-mean expected returns by industry-year, keeping
industry-years with at least 10 observations. We then add back the means and report the
resulting distribution.56 Figure 1 plots the full cross-sectional distribution of within-industry
expected excess asset and equity returns.

Table 10: The Distribution of Expected Excess Returns

Percentile 10th 25th Mean 75th 90th Std. Dev.
Panel A: Not Industry-Adjusted

E[ra] -3.6% 4.0% 9.8% 17.1% 24.7% 13.2%
E[re] -5.3% 6.6% 12.1% 20.6% 28.6% 15.6%

Panel B: Industry-Adjusted
E[ra] -3.6% 4.7% 9.8% 16.6% 23.6% 12.7%
E[re] -4.6% 6.6% 12.1% 20.3% 28.1% 15.0%

Notes: This table reports the cross-sectional distributions of un-levered expected excess eq-
uity returns, E[ra], and expected excess equity returns, E[re]. Industry adjustment is done
by demeaning each measure of expected returns by industry-year. We then add back the
mean returns to these distributions.

56The results are similar if we compute our cross-sectional statistics within each year or industry-year and
average over the years/industry-years
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Figure 1: Cross-Sectional Distribution of Expected Excess Returns

Notes: This figure displays the cross-sectional distributions of un-levered expected excess equity returns,
E[ra], and expected excess equity returns, E[re]. Industry adjustment is done by demeaning each measure of
expected returns by industry-year. We then add back the mean returns to these distributions. The vertical
bars denote the histograms of these distributions, while the solid lines are the results of kernel smoothing
regressions with a bandwidth of 0.25.

A.4 Aggregate Productivity Series

Solow residuals. To build a series of Solow residuals, we obtain data on real GDP and
aggregate labor and capital from the Bureau of Economic Analysis. Data on real GDP are
from BEA Table 1.1.3 (“Real Gross Domestic Product”), data on labor are from BEA Table
6.4 (“Full-Time and Part-Time Employees”) and data on the capital stock are from BEA Table
1.2 (“Net Stock of Fixed Assets”). The data are available annually from 1929-2016. With these
data we compute xt = yt − θ1kt − θ2nt. We extract a linear time-trend and then estimate the
autoregression in equation (7).

Firm-level series. To construct the alternative series for aggregate productivity from the
firm-level data, we use the following procedure. First, we compute firm-level productivity as
zit + βixt = yit− θkit. We then average these values across all firms in each year. Because zit is
mean-zero and independent across firms, this yields a scaled measure of aggregate productivity,
β̄xt, where β̄ is the mean beta across firms, which under our assumptions, is approximately
two. We extract a linear time-trend from this series and then estimate the autoregression. The
coefficient from this regression gives ρx. The standard deviations of the residuals gives β̄σε and
after dividing by β̄ gives the true volatility of shocks. Applying this procedure to the set of
Compustat firms over the period 1962-2016 yields values of ρx = 0.92 and σε = .0245.
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B Derivations and Proofs

This appendix provides detailed derivations for the expressions in the text.

B.1 Motivation

Derivation of equation (3).

1 = Et [Mt+1 (MPKit+1 + 1− δ)]

= Et [Mt+1]Et [MPKit+1 + 1− δ] + cov (Mt+1,MPKit+1)

Consider the MPK of a ‘risk-free’ firm defined by cov (Mt+1,MPKft+1) = 0. We have

1 = Et [Mt+1] (MPKft+1 + 1− δ)

and combining,

Et [MPKit+1] = MPKft+1 −
cov (Mt+1,MPKit+1)

Et [Mt+1]

= αt + βitλt

where αt, βit and λt are as defined in the text.. By a no-arbitrage condition, it must be the
case that 1

Et[Mt+1]
= MPKft+1 + 1− δ = Rft where Rft is the gross risk-free interest rate.

No aggregate risk. With no aggregate risk,Mt+1 = ρ ∀ t where ρ is the rate of time discount.
The Euler equation gives

1 = ρ (Et [MPKit+1] + 1− δ) ∀ i, t ⇒ Et [MPKit+1] =
1

ρ
− (1− δ) = rf + δ

CAPM. Clearly, −cov (Mt+1,MPKit+1) = bcov (Rmt+1,MPKit+1) and var (Mt+1) = b2var (Rmt+1).
Since the market return is an asset, it must satisfy Et [Rmt+1] = Rft + λt

b
so that λt =

b (Et [Rmt+1]−Rft). Substituting into expression (3) gives the CAPM expression in the text.

CCAPM. A log-linear approximation to the SDF around its unconditional mean givesMt+1 ≈
E [Mt+1] (1 +mt+1 − E [mt+1]) and in the case of CRRA utility, mt+1 = −γ∆ct+1 where ∆ct+1

is log consumption growth. Substituting for Mt+1 into expression (3) gives the CCAPM ex-
pression in the text.
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B.2 Model Solution

B.2.1 Baseline Environment

The static labor choice solves

max eẑit+β̂ixtKθ1
it N

θ2
it −WtNit

with the associated first order condition

Nit =

(
θ2e

ẑit+β̂ixtKθ1
it

Wt

) 1
1−θ2

Substituting for the wage with Wt = Xω
t and rearranging gives operating profits

Πit = Geβixt+zitKθ
it

where G ≡ (1− θ2) θ
θ2

1−θ2
2 , βi = 1

1−θ2

(
β̂i − ωθ2

)
, zit = 1

1−θ2 ẑit and θ = θ1
1−θ2 , which is equation

(9) in the text.
The first order and envelope conditions associated with (1) give the Euler equation:

1 = Et
[
Mt+1

(
θezit+1+βixt+1GKθ−1

it+1 + 1− δ
)]

= (1− δ)Et [Mt+1] + θGKθ−1
it+1Et

[
emt+1+zit+1+βixt+1

]
Substituting for mt+1 and rearranging,

Et
[
emt+1+zit+1+βixt+1

]
= Et

[
elog ρ−γtεt+1− 1

2
γ2t σ

2
ε+zit+1+βixt+1

]
= Et

[
elog ρ+ρzzit+εit+1+βiρxxt+(βi−γt)εt+1− 1

2
γ2t σ

2
ε

]
= elog ρ+ρzzit+βiρxxt+

1
2
σ2
ε̃+ 1

2
β2
i σ

2
ε−βiγtσ2

ε

and
Et [Mt+1] = Et

[
elog ρ−γtεt+1− 1

2
γ2t σ

2
ε

]
= elog ρ+ 1

2
γ2t σ

2
ε− 1

2
γ2t σ

2
ε = ρ

so that
θGKθ−1

it+1 =
1− (1− δ) ρ

elog ρ+ρzzit+βiρxxt+
1
2
σ2
ε̃+ 1

2
β2
i σ

2
ε−βiγtσ2

ε

and rearranging and taking logs,

kit+1 =
1

1− θ

(
α̃ +

1

2
σ2
ε̃ +

1

2
β2
i σ

2
ε + ρzzit + βiρxxt − βiγtσ2

ε

)
52



where

α̃ = log θ + logG− α

α = − log ρ+ log (1− (1− δ) ρ) = rf + log (1− (1− δ) ρ)

Ignoring the variance terms gives equation (10).
The realized mpk is given by

mpkit+1 = log θ + πit+1 − kit+1

= log θ + logG+ zit+1 + βixt+1 − (1− θ) kit+1

= log θ + logG+ zit+1 + βixt+1 − α̃− ρzzit − βiρxxt + βiγtσ
2
ε

= α + εit+1 + βiεt+1 + βiγtσ
2
ε

The time t conditional expected mpk is

Et [mpkit+1] = α + βiγtσ
2
ε

and the time t and mean cross-sectional variances are, respectively,

σ2
Et[mpkit+1] = σ2

β

(
γtσ

2
ε

)2

E
[
σ2
Et[mpkit+1]

]
= E

[
σ2
β (γ0 + γ1xt)

2 (σ2
ε

)2
]

= σ2
β

(
γ2

0 + γ2
1σ

2
x

) (
σ2
ε

)2

B.2.2 Adjustment Costs

With capital adjustment costs, the firm’s investment problem takes the form

V (Xt, Zit, Kit) = max
Kit+1

GXβi
t ZtK

θ
it −Kit+1 + (1− δ)Kit − Φ (Iit, Kit) (31)

+ Et [Mt+1V (Xt+1, Zit+1, Kit+1)]

Policy function. The first order and envelope conditions associated with (31) give the Euler
equation:

1 + ξ

(
Kit+1

Kit

− 1

)
= Et

[
Mt+1

(
Gθezit+1+βixt+1Kθ−1

it+1 + 1− δ − ξ

2

(
Kit+2

Kit+1

− 1

)2

+ ξ

(
Kit+2

Kit+1

− 1

)
Kit+2

Kit+1

)]

= Et

[
Mt+1

(
Gθezit+1+βixt+1Kθ−1

it+1 + 1− δ +
ξ

2

(
Kit+2

Kit+1

)2

− ξ

2

)]
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In the non-stochastic steady state,

MPK = GθKθ−1 =
1

ρ
+ δ − 1 ⇒ K =

[
1

Gθ

(
1

ρ
+ δ − 1

)] 1
θ−1

Π = GKθ ⇒ D = GKθ − δK

P =
ρ

1− ρ
D

R = 1 +
D

P
=

1

ρ
⇒ rf = − log ρ

Define the investment return:

RI
it+1 =

Gθezit+1+βixt+1Kθ−1
it+1 + 1− δ + ξ

2

(
Kit+2

Kit+1

)2

− ξ
2

1 + ξ
(
Kit+1

Kit
− 1
)

and log-linearizing,

rIit+1 = ρGθKθ−1 (zit+1 + βixt+1) +
(
ρGθ (θ − 1)Kθ−1 − ξ (1 + ρ)

)
kit+1 + ρξkit+2 + ξkit

− log ρ− ρGθ (θ − 1)Kθ−1k

where k = logK.
To derive the investment policy function, conjecture it takes the form

kit+1 = φ0i + φ1βixt + φ2zit + φ3kit

Then,

kit+2 = φ0i (1 + φ3) + φ1βi (ρx + φ3)xt + φ2 (ρz + φ3) zit + φ2
3kit + φ1βiεt+1 + φ2εit+1

Substituting into the investment return,

rIit+1 =
(
ρGθ (θ − 1)Kθ−1 − ξ (1− ρφ3)

)
φ0i − log ρ− ρGθ (θ − 1)Kθ−1k

+
(
ρGθKθ−1ρz +

(
ρGθ (θ − 1)Kθ−1 − ξ (1 + ρ)

)
φ2 + ρξ (ρz + φ3)φ2

)
zit

+
(
ρGθKθ−1ρx +

(
ρGθ (θ − 1)Kθ−1 − ξ (1 + ρ)

)
φ1 + ρξ (ρx + φ3)φ1

)
βixt

+
((
ρGθ (θ − 1)Kθ−1 − ξ (1 + ρ)

)
φ3 + ρξφ2

3 + ξ
)
kit

+
(
ρGθKθ−1 + ρξφ2

)
εit+1 +

(
ρGθKθ−1 + ρξφ1

)
βiεt+1
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and

rIit+1 +mit+1 =
(
ρGθ (θ − 1)Kθ−1 − ξ (1− ρφ3)

)
φ0i − ρGθ (θ − 1)Kθ−1k − 1

2
γ2

0σ
2
ε −

1

2
γ2

1σ
2
εx

2
t

+
(
ρGθKθ−1ρz +

(
ρGθ (θ − 1)Kθ−1 − ξ (1 + ρ)

)
φ2 + ρξ (ρz + φ3)φ2

)
zit

+
((
ρGθKθ−1ρx +

(
ρGθ (θ − 1)Kθ−1 − ξ (1 + ρ)

)
φ1 + ρξ (ρx + φ3)φ1

)
βi − γ0γ1σ

2
ε

)
xt

+
((
ρGθ (θ − 1)Kθ−1 − ξ (1 + ρ)

)
φ3 + ρξφ2

3 + ξ
)
kit

+
(
ρGθKθ−1 + ρξφ2

)
εit+1 +

((
ρGθKθ−1 + ρξφ1

)
βi − γ0 − γ1xt

)
εt+1

The Euler equation governing the investment return implies

0 = Et
[
rIit+1 +mt+1

]
+

1

2
var
(
rIit+1 +mit+1

)
=

(
ρGθ (θ − 1)Kθ−1 − ξ (1− ρφ3)

)
φ0i − ρGθ (θ − 1)Kθ−1k

+
(
ρGθKθ−1ρz +

(
ρGθ (θ − 1)Kθ−1 − ξ (1 + ρ)

)
φ2 + ρξ (ρz + φ3)φ2

)
zit

+
(
ρGθKθ−1ρx +

(
ρGθ (θ − 1)Kθ−1 − ξ (1 + ρ)

)
φ1 + ρξ (ρx + φ3)φ1 −

(
ρGθKθ−1 + ρξφ1

)
γ1σ

2
ε

)
βixt

+
((
ρGθ (θ − 1)Kθ−1 − ξ (1 + ρ)

)
φ3 + ρξφ2

3 + ξ
)
kit

+
1

2

(
ρGθKθ−1 + ρξφ2

)2
σ2
ε̃

+
1

2

(
ρGθKθ−1 + ρξφ1

)2
β2
i σ

2
ε −

(
ρGθKθ−1 + ρξφ1

)
βiγ0σ

2
ε

and we can solve for the coefficients from:

0 =
(
ρGθ (θ − 1)Kθ−1 − ξ (1− ρφ3)

)
φ0i − ρGθ (θ − 1)Kθ−1k

+
1

2

(
ρGθKθ−1 + ρξφ2

)2
σ2
ε̃

+
1

2

(
ρGθKθ−1 + ρξφ1

)2
β2
i σ

2
ε −

(
ρGθKθ−1 + ρξφ1

)
βiγ0σ

2
ε

= ρGθKθ−1ρz +
(
ρGθ (θ − 1)Kθ−1 − ξ (1 + ρ)

)
φ2 + ρξ (ρz + φ3)φ2

= ρGθKθ−1ρx +
(
ρGθ (θ − 1)Kθ−1 − ξ (1 + ρ)

)
φ1 + ρξ (ρx + φ3)φ1 −

(
ρGθKθ−1 + ρξφ1

)
γ1σ

2
ε

=
(
ρGθ (θ − 1)Kθ−1 − ξ (1 + ρ)

)
φ3 + ρξφ2

3 + ξ
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Define ξ̂ = ξ
ρGθKθ−1 = ξ

1−ρ(1−δ) . Then,

0 =
(

(θ − 1)− ξ̂ (1 + ρ)
)
φ3 + ρξ̂φ2

3 + ξ̂

φ1 =
(ρx − γ1σ

2
ε)φ3

ξ̂ (1− ρρxφ3 + ργ1σ2
εφ3)

φ2 =
ρzφ3

ξ̂ (1− ρρzφ3)

φ0i = φ00 − φ01βi + φ02β
2
i

where

φ00 =
ρGθ (1− θ)Kθ−1k + 1

2

(
ρGθKθ−1 + ρξφ2

)2
σ2
ε̃

ρGθ (1− θ)Kθ−1 + ξ (1− ρφ3)

φ01 =
φ3

ξ̂ (1− ρφ3)

γ0σ
2
ε

1− ρρxφ3 + ργ1σ2
εφ3

φ02 =
ρGθKθ−1ρξφ1 + 1

2
(ρξφ1)2 + 1

2

(
ρGθKθ−1

)2

ρGθ (1− θ)Kθ−1 + ξ (1− ρφ3)
σ2
ε

Note that φ3
ξ̂
goes to 1

1−θ as ξ̂ goes to zero and zero as ξ̂ goes to infinity. Again ignoring variance
terms, the policy function is

kit+1 = φ00 + φ1βixt + φ2zit + φ3kit − φ01βi

which is equation (23) in the text.

MPK Dispersion. The expected mpk is given by

Et [mpkit+1] = log θ + logG+ βiρxxt + ρzzit − (1− θ) kit+1

and the mean of this is

E [Et [mpkit+1]] = log θ + logG− (1− θ)E [kit+1]

From the policy function,

E [kit+1] =
φ00 − φ01βi

1− φ3

so that
E [Et [mpkit+1]] = log θ + logG− 1− θ

1− φ3

(φ00 − φ01βi)
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and the variance of this permanent component is

σ2
E[Et[mpkit+1]] =

(
1− θ
1− φ3

)2

φ2
01σ

2
β

which is equation (24) in the text.

B.3 Aggregation

The first order condition on labor gives

Nit =

(
θ2e

β̂ixt+ẑitKθ1
it

Wt

) 1
1−θ2

and substituting for the wage,

Nit =
(
θ2e

(β̂i−ω)xt+ẑitKθ1
it

) 1
1−θ2

Labor market clearing gives:

Nt =

∫
Nitdi = θ

1
1−θ2
2 e

− 1
1−θ2

ωxt

∫
e

1
1−θ2

β̂ixt+zitKθ
itdi

so that

θ
θ2

1−θ2
2 e

− θ2
1−θ2

ωxt =

(
Nt∫

e
1

1−θ2
β̂ixt+zitKθ

itdi

)θ2

Then,

Yit = eβ̂ixt+ẑitKθ1
it N

θ2
it = θ

θ2
1−θ2
2 e

− θ2
1−θ2

ωxte
1

1−θ2
β̂ixt+zitKθ

it

=
e

1
1−θ2

β̂ixt+zitKθ
it(∫

e
1

1−θ2
β̂ixt+zitKθ

itdi
)θ2N θ2

t

By definition,

MPKit =
θe

1
1−θ2

β̂ixt+zitKθ−1
it(∫

e
1

1−θ2
β̂ixt+zitKθ

itdi
)θ2N θ2

t
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and rearranging,

Kit =

(
θe

1
1−θ2

β̂ixt+zit

MPKit

) 1
1−θ
(

Nt∫
e

1
1−θ2

β̂ixt+zitKθ
itdi

) θ2
1−θ

Capital market clearing gives

Kt =

∫
Kitdi = θ

1
1−θ

(
Nt∫

e
1

1−θ2
β̂ixt+zitKθ

itdi

) θ2
1−θ ∫

e
1

1−θ2
1

1−θ β̂ixt+
1

1−θ zitMPK
− 1

1−θ
it di

so that

Kθ
it =

 e
1

1−θ2
1

1−θ β̂ixt+
1

1−θ zitMPK
− 1

1−θ
it∫

e
1

1−θ2
1

1−θ β̂ixt+
1

1−θ zitMPK
− 1

1−θ
it di

Kt

θ

and substituting into the expression for Yit,

Yit =

e
1

1−θ2
β̂ixt+zit

(
e

1
1−θ2

1
1−θ β̂ixt+

1
1−θ zitMPK

− 1
1−θ

it∫
e

1
1−θ2

1
1−θ β̂ixt+

1
1−θ zitMPK

− 1
1−θ

it di

Kt

)θ

∫ e 1
1−θ2

β̂ixt+zit

(
e

1
1−θ2

1
1−θ β̂ixt+

1
1−θ zitMPK

− 1
1−θ

it∫
e

1
1−θ2

1
1−θ β̂ixt+

1
1−θ zitMPK

− 1
1−θ

it di

Kt

)θ

di

θ2
N θ2
t

=

e
1

1−θ2
1

1−θ β̂ixt+
1

1−θ zitMPK
− θ

1−θ
it(∫

e
1

1−θ2
1

1−θ β̂ixt+
1

1−θ zitMPK
− 1

1−θ
it di

)θ
 ∫

e
1

1−θ2
1

1−θ β̂ixt+
1

1−θ zitMPK
− θ

1−θ
it di(∫

e
1

1−θ2
1

1−θ β̂ixt+
1

1−θ zitMPK
− 1

1−θ
it di

)θ

θ2
Kθ1
t N

θ2
t

Aggregate output is then

Yt =

∫
Yitdi = AtK

θ1
t N

θ2
t

where

At =


∫
e

1
1−θ2

1
1−θ β̂ixt+

1
1−θ zitMPK

− θ
1−θ

it di(∫
e

1
1−θ2

1
1−θ β̂ixt+

1
1−θ zitMPK

− 1
1−θ

it di

)θ


1−θ2
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Taking logs,

at = (1− θ2)

(
log

∫
e

1
1−θ2

1
1−θ β̂ixt+

1
1−θ zitMPK

− θ
1−θ

it di− θ log

∫
e

1
1−θ2

1
1−θ β̂ixt+

1
1−θ zitMPK

− 1
1−θ

it di

)
The first expression in braces is equal to

1

1− θ
1

1− θ2

¯̂
βxt −

θ

1− θ
m̄pk +

1

2

(
1

1− θ

)2
((

1

1− θ2

)2

x2
tσ

2
β̂

+ σ2
z

)
+

1

2

(
θ

1− θ

)2

σ2
mpk

− θ

(1− θ)2

1

1− θ2

σmpk,β̂ixt+zit

and the second to

θ

1− θ
1

1− θ2

¯̂
βxt −

θ

1− θ
m̄pk +

1

2
θ

(
1

1− θ

)2
((

1

1− θ2

)2

x2
tσ

2
β̂

+ σ2
z

)
+

1

2
θ

(
1

1− θ

)2

σ2
mpk

− θ

(1− θ)2

1

1− θ2

σmpk,β̂ixt+zit

and combining (and using σβ = 1
1−θ2σβ̂) gives

at =
¯̂
βxt + (1− θ2)

(
1

2

1

1− θ
(
x2
tσ

2
β + σ2

z

)
− 1

2

θ

1− θ
σ2
mpk

)
= a∗t −

1

2
(1− θ2)

θ

1− θ
σ2
mpk

= a∗t −
1

2

θ1 (1− θ2)

1− θ1 − θ2

σ2
mpk

B.4 Stock Market Returns

We derive stock market returns in the environment with adjustment costs. This nests the
simpler case without them when ξ = 0.

Dividends are equal to

Dit+1 = ezit+1+βixt+1Kθ
it+1 −Kit+2 + (1− δ)Kit+1 −

ξ

2

(
Kit+2

Kit+1

− 1

)2

Kit+1

and log-linearizing,

dit+1 =
Π

D
(zit+1 + βixt+1) +

(
θ

Π

D
+ (1− δ) K

D

)
kit+1 −

K

D
kit+2 + logD −

(
θ

Π

D
− δK

D

)
k
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where k = logK. Substituting for kit+1 and kit+2 from Appendix B.2.2 and rearranging,

dit+1 = A0i + Ã1zit + A1βixt + Ã2εit+1 + A2βiεt+1 + A3kit

where

A0i = logD −
(
θ

Π

D
− δK

D

)
(k − φ0i)−

K

D
φ0iφ3

A1 =
Π

D
ρx +

(
θ

Π

D
+
K

D
(1− δ − ρx − φ3)

)
φ1

Ã1 =
Π

D
ρz +

(
θ

Π

D
+
K

D
(1− δ − ρz − φ3)

)
φ2

A2 =
Π

D
− K

D
φ1

Ã2 =
Π

D
− K

D
φ2

A3 =

(
θ

Π

D
+
K

D
(1− δ − φ3)

)
φ3

By definition, returns are equal to

Rit+1 =
Dit+1 + Pit+1

Pit

and log-linearizing,

rit+1 = ρpit+1 + (1− ρ) dit+1 − pit − log ρ+ (1− ρ) log
P

D

Conjecture the stock price takes the form

pit = c0i + c1βixt + c2zit + c3kit
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Then,

rit+1 = − log ρ+ (1− ρ)

(
log

P

D
+ A0i − c0i

)
+ ρc3φ0i

+
(

(ρρz − 1) c2 + ρc3φ2 + (1− ρ) Ã1

)
zit

+ ((ρρx − 1) c1 + ρc3φ1 + (1− ρ)A1) βixt

+ ((ρφ3 − 1) c3 + (1− ρ)A3) kit

+
(
ρc2 + (1− ρ) Ã2

)
εit+1 + (ρc1 + (1− ρ)A2) βiεt+1

and the (log) excess return is the (negative of the) conditional covariance with the SDF:

logEt
[
Re
it+1

]
= (ρc1 + (1− ρ)A2) βiγtσ

2
ε

To solve for the coefficients, use the Euler equation. First,

rit+1 +mit+1 = (1− ρ)

(
log

P

D
+ A0i − c0i

)
+ ρc3φ0i −

1

2
γ2

0σ
2
ε

+
(

(ρρz − 1) c2 + ρc3φ2 + (1− ρ) Ã1

)
zit

+
(
((ρρx − 1) c1 + ρc3φ1 + (1− ρ)A1) βi − γ0γ1σ

2
ε

)
xt

+ ((ρφ3 − 1) c3 + (1− ρ)A3) kit

− 1

2
γ2

1σ
2
εx

2
t

+
(
ρc2 + (1− ρ) Ã2

)
εit+1

+ ((ρc1 + (1− ρ)A2) βi − γ0 − γ1xt) εt+1

The Euler equation implies

0 = Et [rit+1 +mit+1] +
1

2
var (rit+1 +mit+1)

= (1− ρ)

(
log

P

D
+ A0i − c0i

)
+ ρc3φ0i +

1

2
(ρc1 + (1− ρ)A2)2 β2

i σ
2
ε − (ρc1 + (1− ρ)A2) βiγ0σ

2
ε

+
1

2

(
ρc2 + (1− ρ) Ã2

)2

σ2
ε̃

+
(

(ρρz − 1) c2 + ρc3φ2 + (1− ρ) Ã1

)
zit

+
(
(ρρx − 1) c1 + ρc3φ1 + (1− ρ)A1 − (ρc1 + (1− ρ)A2) γ1σ

2
ε

)
βixt

+ ((ρφ3 − 1) c3 + (1− ρ)A3) kit
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and so by undetermined coefficients,

0 = (1− ρ)

(
log

P

D
+ A0i − c0i

)
+ ρc3φ0i +

1

2
(ρc1 + (1− ρ)A2)2 β2

i σ
2
ε − (ρc1 + (1− ρ)A2) βiγ0σ

2
ε

+
1

2

(
ρc2 + (1− ρ) Ã2

)2

σ2
ε̃

= (ρρz − 1) c2 + ρc3φ2 + (1− ρ) Ã1

= (ρρx − 1) c1 + ρc3φ1 + (1− ρ)A1 − (ρc1 + (1− ρ)A2) γ1σ
2
ε

= (ρφ3 − 1) c3 + (1− ρ)A3

or

c3 =
(1− ρ)A3

1− ρφ3

c2 =
ρc3φ2 + (1− ρ) Ã1

1− ρρz

c1 =
ρc3φ1 + (1− ρ) (A1 − A2γ1σ

2
ε)

1− ρρx + ργ1σ2
ε

Substituting for c1 we can solve for

logEt
[
Re
it+1

]
=
ρ2c3φ1 + (1− ρ) (ρA1 + (1− ρρx)A2)

1− ρρx + ρσ2
εγ1

βiγtσ
2
ε

Solving for

ρA1 + (1− ρρx)A2 =

1
ρ

+ δ − 1− ρθφ1φ3

1
ρ

+ δ (1− θ)− 1

ρ2c3φ1 = θ
ρ2 (1− ρ)φ1φ3

1− ρφ3

1
ρ
− φ3

1
ρ

+ δ (1− θ)− 1

substituting into the return equation and simplifying, we obtain

logEt
[
Re
it+1

]
= ψβiγtσ

2
ε

where

ψ =

1
ρ

+ δ − 1
1
ρ

+ δ (1− θ)− 1

1− ρ
1− ρρx + ργ1σ2

ε

which is equation (19) in the text.
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The Sharpe ratio is the ratio of expected excess returns to the conditional standard deviation
of the return:

SRit =
ψβiγtσ

2
ε√(

ρc2 + (1− ρ) Ã2

)2

σ2
ε̃ + ψ2β2

i σ
2
ε

We can solve for

ρc2 + (1− ρ) Ã2 =

1
ρ

+ δ − 1
1
ρ

+ δ (1− θ)− 1

1− ρ
1− ρρz

and substituting and rearranging gives the expression in footnote 37.
For a perfectly diversified portfolio (i.e., the integral over individual returns) idiosyncratic

shocks cancel, i.e., σ2
ε̃ = 0 and SRmt = γtσε.

B.5 Autocorrelation of Investment

To derive the autocorrelation of investment, define net investment as ∆kit+1 = kit+1 − kit. We
use the following:

cov (∆zit, zit) = cov ((ρz − 1) zit−1 + εit.ρzzit−1 + εit)

= ρz (ρz − 1)σ2
z + σ2

ε̃

=
1

1 + ρz
σ2
ε̃

cov (∆kit, zit) = cov (∆kit, ρzzit−1 + εit)

= ρzcov (∆kit, zit−1)

= ρzcov (φ1βi∆xt−1 + φ2∆zit−1 + φ3∆kit−1, zit−1)

= ρz (cov (φ2∆zit−1, zit−1) + φ3cov (∆kit−1, zit−1))

= ρzφ2
1

1 + ρz
σ2
ε̃ + ρzφ3cov (∆kit−1, zit−1)

so that
E [cov (∆kit, zit)] =

ρz
1 + ρz

φ2σ
2
ε̃

1− φ3ρz

Next,

cov (∆kit+1,∆zit+1) = cov (φ1βi∆xt + φ2∆zit + φ3∆kit. (ρz − 1) zit + εit+1)

= φ2 (ρz − 1) cov (∆zit, zit) + φ3 (ρz − 1) cov (∆kit, zit)

= φ2 (ρz − 1)
1

1 + ρz
σ2
ε̃ +

ρz
1 + ρz

φ3 (ρz − 1)φ2σ
2
ε̃

1− φ3ρz

=
ρz − 1

1 + ρz

φ2σ
2
ε̃

1− φ3ρz
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Similar steps give

cov (∆kit+1,∆xt+1) =
ρx − 1

1 + ρx

φ1βiσ
2
ε

1− φ3ρx

Combining these gives the variance of investment:

σ2
∆k = φ2

1β
2
i var (∆xt) + φ2

2var (∆zit) + φ2
3σ

2
∆k

+ 2φ1φ3βicov (∆xt,∆kit) + 2φ2φ3cov (∆zit,∆kit)

= φ2
1β

2
i

2

1 + ρx
σ2
ε + φ2

2

2

1 + ρz
σ2
ε̃ + φ2

3σ
2
∆k

+
2φ2

1φ3β
2
i σ

2
ε

1− φ3ρx

ρx − 1

1 + ρx
+

2φ2
2φ3σ

2
ε̃

1− φ3ρz

ρz − 1

1 + ρz

= φ2
3σ

2
∆k + 2φ2

1β
2
i

σ2
ε

1 + ρx

(
1 +

φ3 (ρx − 1)

1− φ3ρx

)
+ 2φ2

2

σ2
ε̃

1 + ρz

(
1 +

φ3 (ρz − 1)

1− φ3ρz

)
=

2

1 + φ3

(
φ2

1β
2
i σ

2
ε

1

1 + ρx

1

1− φ3ρx
+ φ2

2σ
2
ε̃

1

1 + ρz

1

1− φ3ρz

)
Next,

cov (∆kit+1,∆kit) = cov (φ1βi∆xt + φ2∆zit + φ3∆kit,∆kit)

= φ1βicov (∆xt,∆kit) + φ2cov (∆zit,∆kit) + φ3σ
2
∆k

= φ2
1β

2
i σ

2
ε

ρx − 1

1 + ρx

1

1− φ3ρx
+ φ2

2σ
2
ε̃

ρz − 1

1 + ρz

1

1− φ3ρz
+ φ3σ

2
∆k

and the autocorrelation is:

corr (∆kit+1,∆kit) = φ3 +
1 + φ3

2

φ2
1β

2
i σ

2
ε
ρx−1
1+ρx

1
1−φ3ρx + φ2

2σ
2
ε̃
ρz−1
1+ρz

1
1−φ3ρz

φ2
1β

2
i σ

2
ε

1
1+ρx

1
1−φ3ρx + φ2

2σ
2
ε̃

1
1+ρz

1
1−φ3ρz

(32)

Notice that this approaches

corr (∆kit+1,∆kit) = φ3 + (1− φ3)
ρx − 1

2

as ρz and ρx become close. Further, in the case both shocks follow a random walk, the auto-
correlation is simply equal to φ3.

64



B.6 Other Distortions

With other distortions, the derivations are similar to those in Appendix B.2.1. The Euler
equation is given by

1 = Et
[
Mt+1

(
θeτit+1+zit+1+βixt+1GKθ−1

it+1 + 1− δ
)]

= (1− δ)Et [Mt+1] + θGKθ−1
it+1Et

[
emt+1+τit+1+zit+1+βixt+1

]
Idiosyncratic distortions. Substituting for mt+1 and τit+1 and rearranging,

Et
[
emt+1+τit+1+zit+1+βixt+1

]
= Et

[
elog ρ−γtεt+1− 1

2
γ2t σ

2
ε−νzit+1−ηit+1+zit+1+βixt+1

]
= Et

[
elog ρ+(1−ν)ρzzit+(1−ν)εit+1+βiρxxt+(βi−γt)εt+1− 1

2
γ2t σ

2
ε−ηit+1

]
= elog ρ+(1−ν)ρzzit+βiρxxt+

1
2

(1−ν)2σ2
ε̃+ 1

2
β2
i σ

2
ε−βiγtσ2

ε−ηit+1

so that
θGKθ−1

it+1 =
1− (1− δ) ρ

elog ρ+(1−ν)ρzzit+βiρxxt+
1
2

(1−ν)2σ2
ε̃+ 1

2
β2
i σ

2
ε−βiγtσ2

ε−ηit+1

and rearranging and taking logs,

kit+1 =
1

1− θ

(
α̃ +

1

2
(1− ν)2 σ2

ε̃ +
1

2
β2
i σ

2
ε + (1− ν) ρzzit + βiρxxt − βiγtσ2

ε − ηit+1

)
where α̃ and α are as defined in Appendix B.2.1.

The realized mpk is given by (ignoring the variance terms)

mpkit+1 = log θ + πit+1 − kit+1

= log θ + logG+ zit+1 + βixt+1 − (1− θ) kit+1

= log θ + logG+ zit+1 + βixt+1 − α̃− (1− ν) ρzzit − βiρxxt + βiγtσ
2
ε + ηit+1

= α + εit+1 + βiεt+1 + νρzzit + βiγtσ
2
ε + ηit+1

which is equation (26). The conditional expected mpk is

Et [mpkit+1] = α + νρzzit + βiγtσ
2
ε + ηit+1

and the cross-sectional variance is

σ2
Et[mpkit+1] = (νρz)

2 σ2
z + σ2

η +
(
γtσ

2
ε

)2
σ2
β (33)
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Deriving stock returns follows closely the steps in Appendix B.4. Dividends are equal to

Dit+1 = eτit+1+zit+1+βixt+1Kθ
it+1 −Kit+2 + (1− δ)Kit+1 −

ξ

2

(
Kit+2

Kit+1

− 1

)2

Kit+1

and log-linearizing,

dit+1 =
Π

D
(τit+1 + zit+1 + βixt+1)+

(
θ

Π

D
+ (1− δ) K

D

)
kit+1−

K

D
kit+2 +logD−

(
θ

Π

D
− δK

D

)
k

where k = logK.
Substituting for kit+1 and kit+2 from above,

dit+1 = A0 + Ã1zit + A1βixt + Ã2εit+1 + A2βiεt+1 + A3ηit+1 + A4ηit+2

where

A0 = logD −
(
θ

Π

D
− δK

D

)(
k − α̃

1− θ

)
A1 =

1

1− θ

(
Π

D
+ (1− δ − ρx)

K

D

)
ρx −

1

1− θ

(
θ

Π

D
+ (1− δ − ρx)

K

D

)
γ1σ

2
ε

Ã1 =
1− ν
1− θ

(
Π

D
+ (1− δ − ρz)

K

D

)
ρz

A2 =
Π

D
− 1

1− θ
K

D
ρx +

1

1− θ
K

D
γ1σ

2
ε

Ã2 =

(
Π

D
− 1

1− θ
K

D

)
(1− ν) ρz

A3 = − 1

1− θ

(
θ

Π

D
+ (1− δ) K

D

)
A4 =

1

1− θ
K

D

Using the log-linearized return equation,

rit+1 = ρpit+1 + (1− ρ) dit+1 − pit − log ρ+ (1− ρ) log
P

D

and conjecturing the stock price takes the form

pit = c0i + c1βixt + c2zit + c3ηit+1
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gives

rit+1 = − log ρ+ (1− ρ)

(
log

P

D
+ A0 − c0

)
+

(
(ρρz − 1) c2 + (1− ρ) Ã1

)
zit

+ ((ρρx − 1) c1 + (1− ρ)A1) βixt

+
(
ρc2 + (1− ρ) Ã2

)
εit+1 + (ρc1 + (1− ρ)A2) βiεt+1

+ (ρc3 + (1− ρ)A4) ηit+2 + ((1− ρ)A3 − c3) ηit+1

The (log) excess return is the (negative of the) conditional covariance with the SDF:

logEt
[
Re
it+1

]
= (ρc1 + (1− ρ)A2) βiγtσ

2
ε

A2 is independent of ν and η. Following the same steps as in Appendix B.4, it is easily verified
that c1 is independent of these terms as well. Thus, expected returns are independent of
distortions.

Aggregate distortions. Consider the first formulation, i.e.,

τit+1 = −νzzit+1 − νxxt+1 − ηit+1

Similar steps as above give expression (33). Dispersion in expected stock market returns are
similarly unaffected.

Next, consider the second formulation:

τit+1 = −νzzit+1 − νxβixt+1 − ηit+1

In this case, similar steps as above give the conditional expected mpk as

Et [mpkit+1] = α + νzρzzit + νxβiρxxt + (1− νx) βiγtσ2
ε + ηit+1

and expected excess stock market returns as

logEt
[
Re
it+1

]
= (1− νx)ψβiγtσ2

ε

where ψ is as defined in expression (19). In other words, the risk-premium effect on expected
mpk, as well as expected returns, are both scaled by a factor 1− νx.
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The mean level of expected mpk and return dispersion are, respectively,

E
[
σ2
Et[mpkit+1]

]
= σ2

η + (νzρz)
2 σ2

z + (νxρx)
2 σ2

xσ
2
β

+
(
(1− νx)σ2

ε

)2 (
γ2

0 + γ2
1σ

2
x

)
σ2
β + 2νx (1− νx) ρxσ2

xγ1σ
2
εσ

2
β

E
[
σ2

logEt[Reit+1]

]
=

(
(1− νx)ψσ2

ε

)2 (
γ2

0 + γ2
1σ

2
x

)
σ2
β

The last two terms of the first equation capture the mpk effects of risk premia. The last term
there is new and does not have a counterpart in the second equation – in other words, using
dispersion in expected returns would give the second to last term, as usual, but not the last.
If νx < 0, it is straightforward to verify that that term is positive (recall that γ1 is negative).
Then, we may be understating risk premium effects. If νx > 0, the last terms is negative and we
may be overstating them. At the estimated parameter values, the upper bound on νx discussed
in Section 5.3 is about 0.08. Using this value, along with the other parameters, to calculate
the last term in the equation gives the maximum upward bias in our estimates of risk-based
dispersion in Empk, which turns out to be negligible.

B.7 Multifactor Model

There are J aggregate risk factors in the economy. Firms have heterogeneous loadings on these
factors, so that the profit function (in logs) takes the form

πit = βixt + zit + θkit (34)

where βi is a vector of factor loadings of firm i and xt the vector of factor realizations at time
t, i.e.,

βi =


β1i

β2i

...
βJi


′

xt =


x1t

x2t

...
xJt


′

Each factor, indexed by j, follows an AR(1) process

xjt+1 = ρjxjt + εjt+1, εjt+1 ∼ N
(

0, σ2
εj

)
(35)
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where the innovations are potentially correlated across factors. Denote by Σf the covariance
matrix of factor innovations, i.e.,

Σf =


σ2
ε1

σε1,ε2 · · · σε1,εJ
σε2,ε1 σ2

ε2
· · · σε2,εJ

...
...

...
σεJ ,ε1 σεJ ,ε2 · · · σ2

εJ


The idiosyncratic component of firm productivity follows

zit+1 = ρzzit + εit+1, εit+1 ∼ N
(
0, σ2

ε̃

)
(36)

The stochastic discount factor takes the form

mt+1 = log ρ− γεt+1 −
1

2
γΣfγ

′ (37)

where γ is a vector of factor exposures and εt+1 the vector of innovations in each factor, i.e.,

γ =


γ1

γ2

...
γJ


′

εt+1 =


ε1t+1

ε2t+1

...
εJt+1


For simplicity, we have assumed that the factor exposures are constant, although the setup can
be extended to include time-varying exposures as well. Expressions (34), (35), (36) and (37)
are simple extensions of (9), (7) and (8).

Following a similar derivation as B.2.1, we can derive the realized mpk:

mpkit+1 = α + εit+1 + βiεt+1 + βiΣfγ
′

where βi and εt+1 denote vectors of factor loadings and shocks. The expected mpk and its
cross-sectional dispersion are given by

Et [mpkit+1] = α + βiΣfγ
′, σ2

Et[mpk] = γΣ′fΣβΣfγ
′
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where Σβ is the covariance matrix of factor loadings across firms, i.e.,

Σβ =


σ2
β1

σβ1,β2 · · · σβ1,βJ
σβ2,β1 σ2

β2
· · · σβ2,βJ

...
...

...
σβJ ,β1 σβJ ,β2 · · · σ2

βJ


Similar steps as Appendix B.4 gives

Et
[
Re
it+1

]
= βiψΣfγ

′, σ2
Et[R] = γΣ′fψ

′ΣβψΣfγ
′

where ψ is a diagonal matrix with

ψjj =

(
1− ρ

1− ρρj

) 1
ρ

+ δ − 1
1
ρ

+ (1− θ) δ − 1

C Numerical Procedure

Our numerical approach to parameterize the model is as follows. For a given set of the param-
eters γ0, γ1, ξ and σ2

β, we solve the model for a wide grid of beta-types centered around the
mean beta. We use an 11 point grid ranging from -3 to 7 (the results are not overly sensitive to
the width of the grid). We simulate a time series of excess returns for a large number of firms of
each type. We then average the returns across firms in each time period, which yields a series
for the market excess return, and compute the mean and standard deviation of this series.

Next we compute the expected return for each beta-type as the mean of the conditional
expectation of returns, i.e., Et [Rit+1] = Et

[
Dit+1+Pit+1

Pit

]
. We then use these values to calculate

the dispersion in expected returns, σ2
Er, interpolating for values of β that are not on the grid.

We use a simulated investment series to calculate the autocorrelation of investment. Finally,
we find the set of the four parameters, γ0, γ1, σ2

β and ξ that make the simulated moments
consistent with the empirical ones, i.e., expected excess market returns, market Sharpe ratio,
dispersion in expected returns and autocorrelation of investment. As noted in the text, we
implement this procedure for returns using a fourth-order approximation in Dynare++.

D Additional Portfolio Sorts

This appendix reports additional portfolio sorts and summary statistics by portfolio.

70



Portfolio summary statistics. Table 11 displays summary statistics of firm characteristics
across the industry-adjusted MPK-sorted portfolios.57 A few observations are in order: while
size and book-to-market seem to be correlated with firm MPK, the sorting is not monotonic.
There are not large differences in the leverage of high and low MPK firms. One possible concern
is that our measure of capital omits intangible capital, and that firms that seem to have high
MPK (low capital capital utilization) are using intangible capital instead of physical capital.
The table shows that this is unlikely to be the case – firms with low MPK, who use capital
more intensively, also use intangible capital more intensively, as shown by their relatively high
research and development (R&D) expenditures (relative to sales) and also their relatively high
sales, general, and administrative (SG&A) expenses (relative to sales), two commonly used
measures of investment in intangible capital.

Table 11: Firm Characteristics Across MPK-Sorted Portfolios

Portfolio Low 2 3 4 High Pooled
mpk 0.588 1.254 1.572 1.987 2.793 1.639
Market Capitalization 202.8 344.4 355.9 206.2 97.42 241.4
Sales 111.4 333.1 372.2 239.6 104.5 232.2
PPENT 55.31 103.2 87.84 33.25 7.012 57.33
Book Assets 189.6 374.6 385.7 202.3 85.24 247.5
Book to Market Ratio 0.636 0.758 0.765 0.708 0.622 0.698
Profitability 0.069 0.120 0.125 0.123 0.102 0.108
Market Leverage 0.242 0.300 0.307 0.289 0.267 0.281
R&D to Sales Ratio 0.112 0.051 0.044 0.052 0.065 0.064
SGA to Sales Ratio 0.317 0.251 0.239 0.260 0.283 0.270

Notes: This table reports the characteristics of firms sorted into five portfolios based on their industry-
adjusted mpk. Firms are formed into portfolios annually by their (de-meaned by industry-year) mpk, for
those industry-years with at least 10 firms. We compute the median value for each characteristic for each
portfolio in each year, and then average those portfolio medians over time. The stock variables (market
capitalization, sales, ppent, book assets) are in millions of 2009 dollars, deflated by the annual CPI. All
other variables are ratios. R&D is research and development expenses from Compustat, while SGA is
sales, general, and administrative expenses, a measure often associated with intangible capital. Further
details on our computation of these measures can be found in appendix A.

Portfolio sorts - robustness. Table 12 reports two additional measures of excess returns
across portfolios. The first, ret+3 computes three year ahead excess returns (compared to one-
year ahead in Table 1). The second, rat+1 computes one year ahead unlevered returns, which
we calculate using an unlimited liability model: rat+1 = Mktcap

Mktcap+Debt
ret+1. The differences in high

versus low MPK portfolio returns are robust to these alternatives (for example, the return to
57The table displays median firm characteristics, but the means yield qualitatively similar patterns.
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the MPK-HML portfolio continues to be both economically and statistically significant, ranging
from about 2% to 3.5%).

Table 12: Excess Returns on MPK-Sorted Portfolios – Robustness

Portfolio Low 2 3 4 High MPK-HML

Panel A: Not Industry-Adjusted
ret+3 9.63∗∗∗ 12.43∗∗∗ 12.69∗∗∗ 13.90∗∗∗ 12.99∗∗∗ 3.36∗

(2.96) (3.69) (3.71) (3.81) (3.38) (1.96)
rat+1 4.64∗ 7.53∗∗∗ 8.69∗∗∗ 8.66∗∗∗ 8.22∗∗∗ 3.58∗∗∗

(1.88) (3.07) (3.53) (3.26) (3.02) (3.05)
Panel B: Industry-Adjusted

ret+3 11.95∗∗∗ 12.27∗∗∗ 12.04∗∗∗ 12.60∗∗∗ 13.82∗∗∗ 1.87∗∗
(2.99) (3.71) (3.75) (3.60) (3.58) (2.22)

rat+1 6.86∗∗ 7.16∗∗∗ 8.04∗∗∗ 8.17∗∗∗ 8.84∗∗∗ 1.97∗∗∗
(2.13) (2.94) (3.37) (3.15) (3.04) (2.66)

Notes: This table reports stock market returns for portfolios sorted by mpk. ret+3 denotes equal-weighted an-
nualized monthly excess stock returns (over the risk-free rate) measured from July of year t + 3 to June of
year t+4. rat+1 denotes equal-weighted unlevered (“asset”) returns from from July of year t+1 to June of year
t+2, where we use an unlimited liability model to unlever equity returns. Industry adjustment is done by de-
meaning mpk by industry-year and sorting portfolios on de-meaned mpk, where industries are defined at the
4-digit SIC code level. t-statistics in parentheses, computed using Newey-West standard errors. Significance
levels are denoted by: * p < 0.10, ** p < 0.05, *** p < 0.01

Table 13 reports the results of the portfolio sorts across 10, rather than 5, portfolios. We
report contemporaneous returns, ret , one year ahead returns, ret+1, three year ahead returns, ret+3

and one year ahead unlevered returns, rat+1. Across these various alternatives, there are signif-
icant differences between low and high MPK portfolios. The MPK-HML spread ranges from
over 3.5% for unlevered within-industry returns to almost 11% for contemporaneous returns.

Next, Table 14 reports the results of portfolio sorts after controlling for firm size and book-to-
market. To control for size, we allocate in each industry-year (so all sorts are industry-adjusted)
by market capitalization. We then demean each firm’s mpk by the mean of their industry-year-
size group and sort firms into five portfolios based on this measure. We report the results in
the top panel of Table 14. The table shows that even when controlling for size, high MPK firms
tend to offer higher expected returns than low ones. We follow a similar procedure to control
for book-to-market and report the results in the bottom panel of the table. Again, the spreads
in expected returns remain after controlling for this variable.

As a second approach to controlling for these variables, Tables 15 and 16 display the results
from double-sorting on MPK and size and book-to-market, respectively. To ensure that there
are a sufficient number of firms in each portfolio, we use three portfolios along each dimension.
The portfolios are ranked from low to high MPK along the columns and from small to large
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Table 13: Excess Returns on MPK-Sorted Decile Portfolios

Portfolio Low 2 3 4 5 6 7 8 9 High MPK-HML

Panel A: Not Industry-Adjusted
ret 5.71∗ 8.30∗∗ 8.96∗∗ 9.21∗∗∗ 9.86∗∗∗ 11.48∗∗∗ 11.45∗∗∗ 12.56∗∗∗ 14.09∗∗∗ 16.42∗∗∗ 10.72∗∗∗

(1.66) (2.29) (2.44) (2.59) (2.77) (3.07) (3.01) (3.15) (3.45) (3.92) (4.57)
ret+1 6.89∗ 10.34∗∗∗ 11.59∗∗∗ 12.96∗∗∗ 13.17∗∗∗ 13.77∗∗∗ 13.95∗∗∗ 13.52∗∗∗ 13.14∗∗∗ 13.82∗∗∗ 6.95∗∗∗

(1.94) (2.92) (3.21) (3.71) (3.77) (3.80) (3.73) (3.48) (3.25) (3.43) (3.10)
ret+3 8.01∗∗ 11.30∗∗∗ 12.46∗∗∗ 12.37∗∗∗ 12.53∗∗∗ 12.86∗∗∗ 14.05∗∗∗ 13.73∗∗∗ 12.97∗∗∗ 13.01∗∗∗ 5.00∗∗

(2.48) (3.32) (3.61) (3.72) (3.67) (3.72) (3.84) (3.74) (3.35) (3.38) (2.19)
rat+1 3.61 5.66∗∗ 6.89∗∗∗ 8.17∗∗∗ 8.35∗∗∗ 9.02∗∗∗ 8.73∗∗∗ 8.59∗∗∗ 8.19∗∗∗ 8.25∗∗∗ 4.64∗∗∗

(1.40) (2.31) (2.76) (3.34) (3.46) (3.56) (3.35) (3.14) (2.89) (3.11) (3.07)
Panel B: Industry-Adjusted

ret 6.88 7.16∗ 8.71∗∗ 9.12∗∗∗ 9.96∗∗∗ 11.22∗∗∗ 11.83∗∗∗ 12.72∗∗∗ 13.88∗∗∗ 17.71∗∗∗ 10.83∗∗∗
(1.45) (1.83) (2.40) (2.62) (2.83) (3.23) (3.27) (3.30) (3.41) (3.98) (8.04)

ret+1 9.18∗ 13.00∗∗∗ 11.78∗∗∗ 11.31∗∗∗ 12.22∗∗∗ 13.20∗∗∗ 12.14∗∗∗ 13.27∗∗∗ 13.89∗∗∗ 13.48∗∗∗ 4.29∗∗∗
(1.95) (3.33) (3.32) (3.34) (3.65) (3.80) (3.42) (3.54) (3.53) (3.16) (3.24)

ret+3 11.20∗∗ 12.68∗∗∗ 11.84∗∗∗ 12.68∗∗∗ 12.00∗∗∗ 12.08∗∗∗ 12.43∗∗∗ 12.76∗∗∗ 12.93∗∗∗ 14.81∗∗∗ 3.61∗∗∗
(2.50) (3.47) (3.53) (3.85) (3.72) (3.72) (3.62) (3.51) (3.43) (3.68) (2.68)

rat+1 5.12 8.59∗∗∗ 7.21∗∗∗ 7.10∗∗∗ 7.67∗∗∗ 8.41∗∗∗ 7.72∗∗∗ 8.56∗∗∗ 9.00∗∗∗ 8.66∗∗∗ 3.53∗∗∗
(1.39) (3.01) (2.88) (2.97) (3.27) (3.42) (3.05) (3.21) (3.23) (2.82) (2.99)

Notes: This table reports stock market returns for portfolios sorted by mpk. ret denotes equal-weighted contemporaneous annualized monthly ex-
cess stock returns (over the risk-free rate) measured in the year of the portfolio formation from January to December of year t. ret+1 denotes the
analogous future returns, measured from July of year t + 1 to June of year t + 2. ret+3 denotes future returns further in the future, measured as
returns from July of year t+3 to June of year t+4. rat+1 denotes equal-weighted unlevered (“asset”) returns from from July of year t+1 to June of
year t + 2, where we use an unlimited liability model to unlever equity returns. Industry adjustment is done by de-meaning mpk by industry-year
and sorting portfolios on de-meaned mpk, where industries are defined at the 4-digit SIC code level. t-statistics in parentheses, computed using
Newey-West standard errors. Significance levels are denoted by: * p < 0.10, ** p < 0.05, *** p < 0.01

along the rows. We calculate the MPK-HML spread as well as the small-minus-big spread (the
size premium). The left-hand panel reports unconditional expected returns and the right-hand
panel after adjusting for industry. Reading across the rows, the table shows that within each size
bin, high MPK firms tend to offer higher expected returns than low ones (although the spread is
not always statistically significant, which may be a function of (a) either a small number of firms
in some of the portfolios or (b) the fact that size and MPK tend to be correlated, e.g., Table
11). Table 16 reports analogous results using book-to-market, along with the high-minus-low
spread (the value premium). Our findings are similar – high MPK firms offer higher expected
returns than low ones. The MPK-HML spread is positive within each book-to-market bin and
is generally large and statistically significant.
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Table 14: Excess Returns on MPK-Sorted Portfolios Controlling for Size and Book-to-Market

Portfolio Low 2 3 4 High MPK-HML

Panel A: Industry and Market Cap Adjusted
ret+1 12.18∗∗∗ 12.51∗∗∗ 12.95∗∗∗ 13.61∗∗∗ 14.70∗∗∗ 2.52∗∗

(2.60) (3.29) (3.67) (3.56) (3.40) (2.12)
Panel B: Industry and Book-to-Market Adjusted

ret+1 9.55∗∗ 10.44∗∗∗ 11.03∗∗∗ 12.77∗∗∗ 13.24∗∗∗ 3.70∗∗∗
(2.03) (2.83) (3.11) (3.37) (3.04) (2.60)

Notes: This table reports stock market returns for portfolios sorted by mpk. Panel A contains mpk-sorted
future excess returns after de-meaning by firms of similar market capitalization within the same industry. We
split firms in each year-industry into three groups based on their market capitalization and then construct
mpk residuals by subtracting the mean mpk of the industry-year-size group from firm mpk. We then sort
firms into five portfolios based on their residuals. In Panel B we construct the analogue of this procedure
using book-to-market ratios instead of market capitalization. We define an industry at the 4-digit SIC code
level. We compute equal-weighted forward annualized monthly excess stock returns (over the risk-free rate),
measured in the year following the portfolio formation, from July of year t+1 to June of year t+2. t-statistics
in parentheses, computed using Newey-West standard errors. Significance levels are denoted by: * p < 0.10,
** p < 0.05, *** p < 0.01

Table 15: Excess Returns on MPK and Size Portfolios

Mkt Cap MPK, Not Industry-Adjusted MPK, Industry-Adjusted

Low 2 High HML Low 2 High HML
Small 15.41∗∗∗ 17.51∗∗∗ 16.75∗∗∗ 1.34 11.20∗∗ 12.31∗∗∗ 14.10∗∗∗ 2.90∗∗∗

(3.62) (4.32) (3.97) (0.88) (2.55) (3.34) (3.43) (2.73)
2 8.26∗∗ 13.08∗∗∗ 11.76∗∗∗ 3.50∗∗ 13.39∗∗∗ 13.77∗∗∗ 14.13∗∗∗ 0.76

(2.04) (3.38) (2.86) (2.55) (3.18) (3.64) (3.47) (0.71)
Big 8.39∗∗∗ 10.96∗∗∗ 9.74∗∗∗ 1.35 9.82∗∗∗ 11.01∗∗∗ 11.61∗∗∗ 1.79∗∗

(2.79) (3.37) (2.63) (0.89) (2.78) (3.57) (3.20) (2.07)
Small-Big 7.02∗∗ 6.55∗∗∗ 7.01∗∗∗ 1.38 1.30 2.49∗

(2.50) (2.77) (2.90) (0.82) (0.88) (1.65)

Notes: This table reports stock market returns for portfolios, double sorted by mpk and market capitaliza-
tion. We measure equal-weighted forward annualized monthly excess stock returns (over the risk-free rate),
measured in the year following the portfolio formation, from July of year t+1 to June of year t+2. t-statistics
in parentheses, computed using Newey-West standard errors. Significance levels are denoted by: * p < 0.10,
** p < 0.05, *** p < 0.01
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Table 16: Excess Returns on MPK and Book-to-Market Portfolios

B/M MPK, Not Industry-Adjusted MPK, Industry-Adjusted

Low 2 High HML Low 2 High HML
Low 4.60 9.42∗∗ 9.02∗∗ 4.43∗∗∗ 7.22∗ 9.88∗∗∗ 9.74∗∗ 2.52∗∗∗

(1.07) (2.49) (2.09) (2.96) (1.81) (2.91) (2.44) (2.60)
2 9.98∗∗∗ 14.77∗∗∗ 14.64∗∗∗ 4.66∗∗∗ 9.79∗∗ 11.52∗∗∗ 12.82∗∗∗ 3.03∗∗∗

(2.98) (4.24) (3.87) (3.23) (2.47) (3.42) (3.28) (3.14)
High 14.28∗∗∗ 16.66∗∗∗ 17.21∗∗∗ 2.93∗ 16.52∗∗∗ 15.60∗∗∗ 18.03∗∗∗ 1.51

(4.48) (4.57) (4.43) (1.85) (4.14) (4.31) (4.59) (1.59)
HML 9.68∗∗∗ 7.24∗∗∗ 8.19∗∗∗ 9.30∗∗∗ 5.72∗∗∗ 8.29∗∗∗

(4.31) (4.48) (4.78) (7.84) (5.28) (6.87)

Notes: This table reports stock market returns for portfolios, double sorted by mpk and book-to-market ra-
tios. We measure equal-weighted forward annualized monthly excess stock returns (over the risk-free rate),
measured in the year following the portfolio formation, from July of year t + 1 to June of year t + 2. t-
statistics in parentheses, computed using Newey-West standard errors. Significance levels are denoted by:
* p < 0.10, ** p < 0.05, *** p < 0.01
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