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Abstract

Reflexivity is the idea that investor beliefs affect market outcomes, which in turn affect

investor beliefs. We develop a behavioral model of the credit cycle featuring such a two-way

feedback loop. In our model, investors form beliefs about firms’ creditworthiness, in part,

by extrapolating past default rates. Investor beliefs influence firms’ actual creditworthiness

because firms that can refinance maturing debt on attractive terms—even if fundamentals do

not warrant such favorable terms—are less likely to default in the short-run. Our model is able

to match many features of credit booms and busts, including the imperfect synchronization

of credit cycles with the real economy, the negative relationship between past credit growth

and the future return on risky bonds, and “calm before the storm” periods in which firm

fundamentals have deteriorated but the credit market has not yet turned.
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1 Introduction

A central but underappreciated feature of the credit cycle is how disconnected credit growth can

be from real economic growth. Panel A of Figure 1 plots the annual growth rate of U.S. GDP

alongside the annual growth rate of outstanding debt at nonfinancial corporations, both expressed

in real terms. In the upswing proceeding the 2008 financial crisis, GDP growth peaked in March

2005, but credit growth peaked more than two years later. This pattern of credit expansion at the

end of an economic expansion is also apparent in the late 1990s, with credit growth rising only at

the end of the business cycle. During downturns, the economy often recovers well before credit

growth returns to normal rates. In the most recent economic recovery, real credit growth first

reached 3% in 2013, several years after the economy began its recovery. Overall, the correlation

between credit growth and GDP growth is only 43%. At short horizons, credit seems to have

something of a life of its own.

This disconnect poses a challenge for most well-known models of the credit cycle, including

Bernanke and Gertler (1989), Holmström and Tirole (1997), Bernanke, Gertler, Gilchrist (1999),

and Bordalo, Gennaioli, and Shleifer (2018). Specifically, although credit market frictions amplify

business cycle fluctuations, the business cycle and the credit cycle are essentially one and the same

in these models.

While there is only a modest connection between credit growth and current macroeconomic

fundamentals, credit growth is strongly correlated with measures of current credit market con-

ditions, such as the credit spread. Panel B of Figure 1 plots credit growth against the Moody’s

Baa credit spread. The correlation between credit growth and the Baa credit spread is –37%.

Credit growth is also correlated with other measures of credit market sentiment, such as the share

of corporate bond issuance with a high-yield rating or the lending standards reported by bank

loan officers. But what drives investor sentiment and credit supply, if not investors’ perceptions

of macroeconomic fundamentals?

In this paper, we present a new behavioral model of the credit cycle in which credit markets

take on a life of their own in the short run, although they are ultimately tied down by fundamentals

of the economy over the longer run. A key feature of our model is “reflexivity”, which is the idea of

a two-way feedback between investor perceptions and real outcomes. In finance, reflexivity is most

prominently associated with the investor George Soros, who summarized the idea of reflexivity as

follows:

Participants’ view of the world is always partial and distorted. That is the principle of

fallibility. ... These distorted views can influence the situation to which they relate because

false views lead to inappropriate actions. That is the principle of reflexivity.—George Soros,

Financial Times, October 26, 2009.

In credit markets, reflexivity arises because investors who overestimate the creditworthiness of
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a borrower are likely to refinance maturing debt on more favorable terms, thereby making the

borrower less likely to default and more likely to survive, at least in the short run. In our model,

a firm invests in a series of short-term projects. Each project requires an upfront investment

of capital, which the firm finances using short-term debt that it must refinance each period.

Projects generate a random cash flow that varies exogenously according to the state of the economy.

Debt financing is provided by investors whose beliefs are partly rational and forward-looking, but

also partly extrapolative and backward-looking. To the extent that they are backward-looking,

investors extrapolate the firm’s recent repayment history to infer the probability that the firm will

repay its debt in the next period. Following periods of low defaults, investors believe that debt is

safe, and refinance maturing debt on attractive terms. Such investor behavior is consistent with

Hyman Minsky’s writings on the credit cycle:

Current views about financing reflect the opinions bankers ... hold about the uncertainties

they must face. These current views reflect ... the recent past ... A history of success will

tend to diminish the margin of safety ... bankers require ...; a history of failure will do the

opposite.—Hyman Minsky, Stabilizing an Unstable Economy, 1986.

Because investors hold extrapolative beliefs based on defaults and not the fundamental cash flows

directly, this leads to a two-way dynamic feedback loop between investor beliefs and future defaults.

The feedback loop arises because investor beliefs depend on past defaults, but these beliefs also

drive future defaults via the terms on which investors are willing to refinance debt. Figure 2

illustrates the feedback loop. During credit booms, default rates are low, so investors believe that

future default rates will continue to be low. In the near term, these beliefs are self-fulfilling: the

perception of low future defaults leads to elevated bond prices, which in turn, makes it easier for

the firm to refinance their maturing debt. Holding constant the firm’s cash flows, cheaper debt

financing leads to slower debt accumulation and a near-term decline in future defaults, which

further reinforces investor beliefs. If cash flow fundamentals deteriorate, the backward-looking

nature of investors’ beliefs may allow firms to skate by for some amount of time, a phenomenon

that we refer to as the “calm before the storm.” But eventually, the reality of poor cash flows

catches up with the firm, and it defaults. The disconnect between investors’ beliefs and financial

reality is the greatest just before such an unexpected default.

Conversely, suppose that the economy has just been through a wave of defaults. Since investors

over-extrapolate these recent outcomes, investors believe that the likelihood of future defaults is

high. Investor beliefs turn out to be partially self-fulfilling in the short run: bearish credit market

sentiment makes it harder for firms to refinance existing debts, leading to an increase in defaults

in the short run. In some circumstances, this can lead to “default spirals” in which a default leads

to further investor pessimism and an extended spell of further defaults.

In our model, transitions between credit booms and credit busts are ultimately caused by

changes in fundamental cash flows. However, because investors extrapolate past defaults and not
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cash flows, changes in credit markets are not fully synchronized with changes in fundamental cash

flows, and can be highly path-dependent. For example, as noted, our model generates periods

of “calm before the storm” in which the fundamentals of the economy have turned, but credit

markets are still buoyant. Such episodes are consistent with Krishnamurthy and Muir (2017), who

show that credit spreads are typically low in the years preceding financial crises. But, because

investors are also partially forward-looking, credit spreads will jump up on the eve of a crisis just

as Krishnamurthy and Muir (2017) find.

The model is also useful for understanding how credit evolves following an exogenous shock

to investor beliefs. For example, suppose that investors become more optimistic about firms’

creditworthiness, perhaps instigated by a central bank lowering the short-term interest rate. In

this case, firms are able to roll over debt at more attractive rates, which in turn makes default less

likely in the near-term. For an investor looking back at past defaults, the debt now appears to

have been safer, leading investors to become more optimistic, further reducing the credit spread.

Over time, a shock to beliefs can be self-perpetuating. There is a limit to this self-perpetuation,

however, because ultimately the firm will become over-leveraged and will default.

While the credit market investors in our model are not fully rational, their beliefs are often

similar to those of fully rational agents. In part, this is due to reflexivity: when investors believe

than default probabilities are low, these optimistic beliefs cause default probabilities to be low.

Thus, while the investors in our model do make predictable mistakes, those mistakes need not be

large in order to generate rich and realistic credit market dynamics.

The model matches a number of facts that researchers have documented in recent years about

credit cycles. First, rapid credit growth appears to be quite useful for predicting future financial

crises and business cycle downturns (Schularick and Taylor, 2012; Mian, Sufi, and Verner, 2017;

López-Salido, Stein, and Zakraǰsek, 2017), a result that is consistent with our model because

outstanding credit will grow rapidly when sentiment is high but cash flow fundamentals are poor.

Second, economies that have experienced high credit growth are more fragile, in the sense that they

are vulnerable to shocks (Krishnamurthy and Muir, 2017). Third, high credit growth predicts low

future returns on risky bonds (Greenwood and Hanson, 2013; Baron and Xiong, 2017), a result that

obtains in our model because investors do not fully understand when credit is growing rapidly that

they are quickly heading towards default. In the model as in historical U.S. data, credit growth

forecasts defaults much better when credit growth becomes disconnected from GDP growth. In

fact, in our model, when sentiment is high, credit spreads reach their lowest point just before

the economy enters a wave of defaults, consistent with the evidence of Krishnamurthy and Muir

(2017) on credit spreads before financial crises.

Our paper has much in common with Austrian theories of the credit cycle, including Mises

(1924) and Hayek (1925), as well as the accounts of booms, panics, and crashes by Minksy (1986)

and Kindleberger (1978). More recently, the idea that investors may neglect tail risk in credit
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markets was developed theoretically by Gennaioli, Shleifer, and Vishny (2012, 2015) and supported

by numerous accounts of the financial crisis (Coval, Jurek, and Stafford, 2009; Gennaioli and

Shleifer, 2018). We also draw on growing evidence that investors extrapolate cash flows, past

returns, or past crash occurrences (Barberis, Shleifer, and Vishny, 1998; Greenwood and Shleifer,

2014; Barberis, Greenwood, Jin, and Shleifer, 2015; Jin, 2015; Greenwood and Hanson, 2015).

Most related here is Jin (2015), who presents a model in which investors’ perceptions of crash risk

depend on recent experience.

Bordalo, Gennaioli, and Shleifer (2018) also provide a model of credit cycles in which extrap-

olative investor expectations play an important role and in which bond returns are predictable.1

Their model is similar to ours in several respect, but extrapolative expectations in their model are

based on the exogenous underlying fundamental cash flows rather than endogenous credit mar-

ket outcomes as in our model. In their model, bond prices and bond defaults are perfectly tied

to cash flow fundamentals. Extrapolative expectations serve as an amplification mechanism but

not a propagation mechanism, so the credit cycle and the business cycle are fully synchronized

in their model. The fact that investors extrapolate an endogenous outcome in our model leads

to episodes—such as “calm before the storm” and “default spiral” episodes—in which the credit

market can become quite disconnected from the underlying cash flow fundamentals. Thus, credit

cycles acquire a life of their own in our model. Overall, compared to prior work, our central

contribution is to explore how the interplay between extrapolative beliefs and the central role of

refinancing—and the resulting potential for reflexivity—drive credit market dynamics.2

In Section 2, we summarize a number of stylized facts about the credit cycle, drawing on

the papers cited above but also presenting some novel observations about the synchronicity of

the credit cycle and the business cycle. In Section 3, we develop the baseline model featuring a

single representative firm, and demonstrate the central feedback mechanism of the model. We

then discuss how the model can match a number of features of credit cycles that researchers have

documented in recent years, such as the predictability of returns and low credit spreads before

crises. In Section 4, we discuss a model extension that include multiple firms and that generates

more realistic default dynamics. Section 5 concludes.

2 Motivating facts about the credit cycle

We begin by summarizing a set of stylized facts about credit cycles. The first three facts are drawn

from previous work; the fourth is based on some new empirical work of our own.

Observation 1. Credit growth predicts financial crises and business cycle downturns.

1See also Gennaioli, Shleifer, and Vishny (2015) for a precursor to Bordalo, Gennaioli, and Shleifer (2018).
2See also Coval, Pan, and Stafford (2014) who suggest that in derivatives markets, model misspecification only

reveals itself in extreme circumstances, by which time it is too late. Bebchuk and Goldstein (2011) present a model
in which self-fulfilling credit market freezes can arise because of interdependence between firms.
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Schularick and Taylor (2012) show that, in a broad panel of 14 countries dating back to

1870, periods of rapid credit growth predict financial crises in an international panel. More

recently, Mian, Sufi, and Verner (2017) show that rapid credit growth, and especially growth in

household credit, predicts declines in GDP growth at a three year horizon in an international

panel. López-Salido, Stein, and Zakraǰsek (2017) show that frothy credit market conditions—

proxied using declines in borrower quality and low credit spreads—predict low GDP growth in the

U.S. data from 1929 to 2015. Schularick and Taylor (2012) interpret their evidence as suggesting

that financial crises are episodes of credit booms “gone bust.” López-Salido, Stein, and Zakraǰsek

(2017) attribute their findings to predictable reversals in credit market sentiment. Consistent with

this view, using an international panel of 38 countries, Kirti (2018) shows that rapid credit growth

that is accompanied by a deterioration in lending standard—i.e., by declining issuer quality—is

associated with low future GDP growth. By contrast, when rapid credit growth is accompanied

by stable lending standards, there is no such decline in future GDP growth.

Observation 2. Economies that have experienced high credit growth are more fragile.

Krishnamurthy and Muir (2017) argue that the natural way to interpret the findings of Schu-

larick and Taylor (2012) about credit growth and financial crises is that credit growth creates

fragility. When a more fragile system encounters a negative shock, such as a house price decline,

this results in a financial crisis.

Observation 3. Rapid growth is correlated with low credit spreads and predicts low future returns.

In Figure 1, we have shown that there is a high degree of correlation between the pricing of

credit and growth of credit: when credit spreads are low, credit growth is high. This correlation

does not imply causality: it could imply that both credit spreads and credit growth reflect an

abundance of safe investment opportunities. Alternatively, it could reflect credit growing quickly

when investors are willing to supply it on favorable terms. Greenwood and Hanson (2013) and

Baron and Xiong (2017) present evidence that conditional expected excess returns on risky bonds

and bank stocks become reliably negative when credit markets appear to be overheated—i.e.,

when many low quality borrowers are able to obtain credit and when credit growth is particularly

rapid. Furthermore, these same authors find that future risk is high when credit markets appear

to be most overheated. These negative expected returns and the negative relationship between

risk and return are difficult to square with rational risk-based models—even rational models with

credit market frictions—and are powerful motivations for behavioral approach that we adopt in

this paper.

In contrast to integrated-market models, Greenwood and Hanson (2013) and López-Salido,

Stein, and Zakraǰsek (2017) point out that variables that forecast credit returns are not strong

predictors of equity returns and vice versa. This motivates approaches like the one in our paper

and Barberis, Greenwood, Jin, and Shleifer (2015) where investors extrapolate outcomes that
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are specific to their market as opposed to firm cash flows. In other words, we need an approach

that combines over-extrapolation and segmented markets—i.e., a localized version of extrapolative

beliefs. Furthermore, the fact that investors extrapolate an endogenous equilibrium outcome—i.e.,

default—in our model gives rise to reflexive dynamics in which investor beliefs can actually impact

future defaults.

Over the past several years, a number of authors have shown that periods of credit growth and

deterioration in credit quality are associated with low future returns on risky bonds. Greenwood

and Hanson (2013) develop a simple measure of credit market overheating based on the composition

of corporate debt issuance. Their measure—the share of all corporate bond issuance from high-

yield-rated firms—captures the intuition that when credit markets are overheated, low quality firms

increase their borrowing to take advantage. Greenwood and Hanson (2013) show that declines

in issuer quality are associated with concurrent growth in total corporate credit and that both

quantity and quality predict low corporate bond returns. Adopting a similar intuition, Baron and

Xiong (2017) show that bank credit expansion also predicts low bank equity returns in a large

panel of countries.

Table 1 updates the data from Greenwood and Hanson (2013) through 2014 and also considers

a set of additional proxies for credit market sentiment. The table shows regressions of the form:

rxHYt+k = a+ b · Sentt + εt+k, (1)

where rxHYt+k denotes the log excess return on high yield bonds over a k = 2- or 3-year horizon,

and Sentt is a proxy for credit market sentiment, measured using data through the end of year

t. Excess returns are the difference between the return on the high yield bond index and the

return on duration-matched Treasury bonds. All of our data begin in 1983.3 Columns (1) and (5)

show that the log high yield share significantly predicts reductions in subsequent excess high yield

returns. A one standard deviation in the log high yield share is associated with an 8.3 percentage

point reduction in log returns over the next two years, or 9.7 percentage points over the next three

years.

Columns (2) and (6) of Table 1 show that the same forecasting results hold when credit

market sentiment is measured as the growth in aggregate nonfinancial corporate credit. Aggregate

nonfinancial corporate credit is the sum of nonfinancial corporate debt securities and loans from

Table L103 of the Federal Reserve’s Financial Accounts of the U.S. A one standard deviation

increase in credit growth forecasts a 7.4 percentage point reduction in log returns over the next

two years, or 9.3 percentage points over the next three years.

Table 1 supplements these forecasting results with regressions based on two additional measures

of credit market sentiment. The first, Loan Sentiment, is a measure based on the Federal Reserve’s

3For results over different time horizons and with additional controls, see Greenwood and Hanson (2013) who
compute alternate proxies for issuer quality that extend back as far as 1926.
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Senior Loan Officer Survey, and the second is the excess bond premium (EBP ) from Gilchrist

and Zakraǰsek (2012).4 Table 1 shows that both of these additional measures of credit market

sentiment forecast corporate bond returns in the expected direction.

To summarize, Table 1 confirms that periods of high credit market sentiment are associated

with growth in total credit, a loosening of credit standards, and are followed by low subsequent

returns.

Observation 4. The disconnect between the credit cycle and the business cycle.

Figure 3 illustrates the disconnect between the credit cycle and the business cycle in U.S. data.

Here we provide additional perspective on the lack of synchronicity between the credit cycle and

the business cycle. In particular, we show that credit growth tends to increase towards the end

of a business cycle boom. In Panel A of Figure 3, we plot real GDP growth from trough to peak

of the business cycle, by business cycle expansion quarter. As can be seen, GDP growth is low

in the beginning of business cycle expansions, but after quarter five, it stabilizes and if anything,

declines slightly in later quarters. In contrast, Panel B shows credit growth over the same periods.

As the figure makes clear, credit expansion is particularly high in the latter part of the business

cycle.

3 A model of credit market sentiment

In this section, we consider an infinite-horizon model with a representative firm and a set of

identical, risk-neutral bond investors. Our assumption of a representative firm is made purely for

simplicity and to most starkly illustrate the model’s core implications. One should interpret a

default by the representative firm as a “credit market bust” in which there is an economy-wide

spike in corporate defaults. In Section 4, we introduce a continuum of firms which are subject to

heterogeneous cash flow shocks.

We first describe the model setting and collect several preliminary results about investor beliefs.

We then present a series of formal results and numerical simulations that trace out the model’s

key implications for credit market dynamics.

4Every quarter, the Federal Reserve surveys senior loan officers of major domestic banks concerning their lending
standards to households and firms. Officers report whether they are easing or tightening lending standards in the
past quarter. We construct a measure of credit market sentiment, Loan Sentiment, by taking the three-year
average percentage of banks that have reported easing credit standards in any given quarter. The idea behind
this averaging procedure is that sentiment captures the level of beliefs about future creditworthiness, whereas the
quarterly survey measures changes from the previous quarter. The senior loan officer opinion survey begins in the
first quarter of 1990, so this measure of sentiment begins in December 1992. Loan Sentiment is 55% correlated
with the high yield share and 68% correlated with the growth in aggregate corporate credit.

7



3.1 Model setting

Each period t, the representative firm invests in a one-period project that requires an upfront cost

of c > 0. The next period, the project generates a random cash flow, xt+1, that follows an AR(1)

process

xt+1 − x̄ = ρ(xt − x̄) + εt+1, (2)

where x̄ ≥ c and the fundamental cash flow shock εt+1 ∼ N (0, σ2
ε) is i.i.d. over time.

The firm issues one-period bonds in order to finance these one-period projects. Each bond is

a promise to pay back one dollar to investors in one period. At time t, the price of each bond is

denoted pt. The total face amount of debt outstanding at time t is Ft, meaning that the firm is

obligated to repay Ft dollars to investors at time t+ 1.

We now describe the evolution of the firm’s outstanding debt, Ft. At time t, the firm must

repay the face amount of debt issued the prior period Ft−1. The firm also must pay the cost c

to begin a new project and receives the cash flow xt from the prior period’s project. Finally, the

firm can issue new bonds at a price of pt. Assuming the firm does not default and does not pay

dividends to equity holders at time t, the total face amount of bonds outstanding at time t is

Ft = (Ft−1 + c− xt)/pt, (3)

which is obtained by equating sources and uses.5 This law of motion is consistent with the fact

that nonfinancial leverage is typically counter-cyclical (Kekre (2016)), falling in good times when

xt is high and rising in bad times when xt is low.

We assume a simple mechanistic default rule. Specifically, if at any time t, Ft−1 + c − xt

rises above a threshold of F̄ , the firm defaults. The existence of this threshold F̄ can be seen as a

reduced form for informational or agency frictions that grow more severe as the amount of required

external financing rises. Alternately, such a threshold may arise from the optimal exercise of the

firm’s default option by equity holders as in Leland (1994). Formally, letting Dt denote a binary

variable indicating whether or not a default occurs at time t, we have

Dt = 1{Ft−1+c−xt≥F̄}. (4)

The “default boundary” is the line in (Ft−1, xt) space where this default indicator switches on or

off—i.e., the line Ft−1 =
(
F̄ − c

)
+ xt.

In the event of default, the firm continues to operate, but writes off a fraction of its debt much

5We assume that the firm always decides to invest, even when expected cash flows tomorrow do not cover
the current cost—i.e., when c > x̄ + ρ(xt − x̄). There are various interpretations of this assumption. First, we
could assume that the firm is operating a long-run technology that generates the stream {xt}, that c is the cost
of continuation each period, and that continuation is (almost) always efficient. Alternately, we could assume that
managers receive private benefits from running the firm and will always choose continuation even if continuation
is value destroying.
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like under Chapter 11 of the U.S. Bankruptcy Code. Specifically, if the firm defaults, a fraction

1−η of the firm’s debt is written off, generating losses for existing bondholders, and the remaining

fraction η ∈ (0, 1) is refinanced at current market prices. Thus, if the firm defaults at time t, the

amount of debt outstanding becomes

Ft = η(Ft−1 + c− xt)/pt. (5)

Finally, we assume that Ft = F/pt when Ft−1 + c − xt ≤ F where F > 0. In this case, the

firm pays the residual cash flow to equity holders as a dividend. The idea underlying the lower

barrier F for debt outstanding can be motivated via the pecking order theory of capital structure

(Myers and Majluf, 1984). Firms only raise external finance in the form of debt. And when there

is available free cash flow, the firm first uses this cash flow to retire existing debts. However, once

the face value of debt reaches a sufficiently low level, the firm chooses to pay out all available free

cash flow to its equity holders.

Taking Ft as given, it is straightforward to compute the fully-rational, forward-looking prob-

ability of a default at time t + 1, which we label λRt . Given the cash flow process in equa-

tion (2) and the default rule in equation (4), a default will occur at time t + 1 if and only if

Ft+ c−ρxt− (1−ρ)x̄− εt+1 ≥ F̄ . Thus, at time t, the true probability of default on the promised

bond payments at time t+ 1 is

λRt = Φ

(
Ft − F̄ + c− ρxt − (1− ρ)x̄

σε

)
, (6)

where Φ(·) denotes the cumulative normal distribution function.

Investors’ beliefs at time t about the probability of a default at time t + 1 are denoted λCt .

We assume that investors’ beliefs λCt are a mixture of (i) an extrapolative and backward-looking

component λBt and (ii) the fully rational and forward-looking belief λRt . We assume that fraction

θ ∈ [0, 1] of investors’ beliefs are extrapolative and backward-looking and the remaining fraction

1− θ are fully-rational and forward-looking. Thus, we have:

λCt = θλBt + (1− θ)λRt = λRt − θ(λRt − λBt ). (7)

This formulation of beliefs in the spirit of Fuster, Laibson, and Mendel (2010) who argue that many

agents have “natural expectations” which are a combination of fully-rational expectations and ex-

trapolation expectations. Thus, equation (7) embeds the polar cases of fully-rational expectations

(θ = 0) and fully-extrapolative expectations (θ = 1).

Our formulation of beliefs in equation (7) embeds two distinct notions of “credit market sen-

timent.” First, one might say that credit market sentiment is strong when λBt is low—i.e., when

future defaults are perceived as being unlikely according to extrapolative component of beliefs.
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Alternately, one might say that credit market sentiment is strong when
(
λRt − λBt

)
is high—i.e.,

when investors underestimate the true likelihood of future default.

In a moment, we will detail precisely how λBt is specified and how, when θ < 1, λRt is pinned

down in a rational-expectations equilibrium. For now, let us take λBt and λRt as given.

Since investors are risk-neutral in our model, the bond price at time t is simply

pt = p(λBt , λ
R
t ) = (1− λCt ) + λCt η =

[
1− (1− η)λRt

]
+ (1− η)θ(λRt − λBt ). (8)

Thus, relative to the price of 1− (1− η)λRt in a fully-rational economy where θ = 0, bond prices

are elevated when λRt −λBt is high and investors are underestimating the true likelihood of a future

default.

The default rule in equation (4) and the bond pricing equation (8) give rise to the following

law of motion for the amount of debt outstanding:

Ft = f(Ft−1, λ
B
t , λ

R
t , xt) =


F/p(λBt , λ

R
t ) ifFt−1 + c− xt ≤ F

(Ft−1 + c− xt)/p(λBt , λRt ) ifF < Ft−1 + c− xt < F̄

η(Ft−1 + c− xt)/p(λBt , λRt ) ifFt−1 + c− xt ≥ F̄

. (9)

Since p(λBt , λ
R
t ) ≤ 1, it follows that we always have Ft ≥ F . Thus, F is indeed a lower barrier for

the amount of debt outstanding.

The model is fully characterized by equations (2), (8), and (9), together with the specifications

for λBt in equation (10) and the solution for λRt in equation (12) which will be introduced below.

The extrapolative component of investor beliefs λBt . We now introduce our specification

for λBt , the extrapolative, backward-looking component of investors’ time t beliefs about the like-

lihood of a default at time t + 1. We assume that λBt depends solely on past default realizations

and past “sentiment” shocks that are unrelated to cash flow fundamentals. Specifically, we assume

that the law of motion for this backward-looking component of beliefs is

λBt = max
{

0,min
{

1, βλBt−1 + αDt + ωt
}}

, (10)

where 0 < β < 1 is a memory decay parameter, α > 0 measures the incremental impact of a

default event on backward-looking beliefs, and ωt ∼ N (0, σ2
ω) is a random “sentiment” shock that

is independent of the fundamental cash flow shocks εt. The min and max functions in equation

(10) ensure that λBt ∈ [0, 1] for all t. Assuming that λBt−j ∈ (0, 1) for all j ≥ 0, we have

λBt =
∞∑
j=0

βj (αDt−j + ωt−j) . (11)
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Thus, in this case, the extrapolative component of beliefs is just a geometric moving average of

past defaults and past sentiment shocks.

The specification for extrapolative beliefs in equation (10) is similar to specifications in Bar-

beris, Greenwood, Jin, and Shleifer (2015, 2018). Empirically, equation (10) is motivated by the

findings in Greenwood and Hanson (2013) who present evidence that credit market investors tend

to extrapolate recent credit market outcomes. Specifically, Greenwood and Hanson (2013) show

that issuer quality tends to deteriorate following periods when default rates have fallen and the

returns on high-yield bonds have been high. These results hold controlling for recent macroeco-

nomic conditions or stock returns, suggesting that the recent experiences of credit market investors

plays an important a role in shaping their current expectations. In other words, credit market

investors appear to extrapolate recent credit market outcomes, and these may not be perfectly

synchronized with aggregate macroeconomic outcomes. This evidence motivates the idea that

bond investors form expectations about future defaults by extrapolating past defaults Dt (which

are an endogenous outcome in our model) as opposed by extrapolating cash flow fundamentals xt

(which are exogenously given).

The following lemma explains how this extrapolative component of beliefs evolves over time.

Lemma 1 Assume there are no sentiment shocks (i.e., ωt = 0 for all t), so the law of motion of

for the extrapolative component of beliefs is simply λBt = max
{

0,min
{

1, βλBt−1 + αDt

}}
.

• If there is no default at time t, then we always have λBt ≤ λBt−1 and λBt < λBt−1 if λBt−1 > 0—

i.e., extrapolative beliefs always become more optimistic when there is no default.

• If there is a default at time t, there are two cases:

– If α ≥ 1 − β, then λBt ≥ λBt−1 and λBt > λBt−1 if λBt−1 < 1—i.e., extrapolative beliefs

always become more pessimistic following a default. As a result, λBt will converge to 1

following a long sequence of defaults.

– If α < 1 − β, then λBt ≷ λBt−1 as λBt−1 ≶ α/ (1− β). As a result, λBt will converge to

α/ (1− β) < 1 following a long sequence of defaults.

Proof. See the Appendix for all proofs.

Naturally, the dynamics of λBt are governed by the incremental impact of a default on beliefs

α and the rate of memory decay (1− β). As we will see below, the potential for backward-looking

beliefs to drive persistent default cycles is greatest when incremental belief impact α is high and

when memory decay (1− β) is low. In this case, a default at time t will lead to a large, persistent

increase in λBt that makes it more difficult for firms to refinance maturing debt, raising the true

likelihood of future defaults.

11



Solving for rational expectations equilibrium. We now explain how λRt is pinned down in

a rational expectations equilibrium when θ < 1. According to equation (6), λRt depends on Ft.

However, equations (8) and (9) imply that Ft depends on λRt when θ < 1. Thus, when θ < 1, λRt

and Ft must be simultaneously determined in equilibrium.

The simultaneous determination of Ft and λRt introduces the potential for multiple equilibria.

The potential for equilibrium multiplicity reflects a straightforward self-fulfilling prophecy or “re-

flexive” intuition. If the rational component of investor beliefs about future default probabilities is

low (high), then current bond prices are high (low). As a result, the face value of debt firms that

must promise to repay tomorrow is low (high), leading to a true probability of default tomorrow

that is indeed low (high).

Formally, combining equations (6) and (9), we see that the equilibrium value of λRt must solve

the following fixed-point problem when θ < 1:

λRt = g(λRt |Ft−1, λ
B
t , xt) ≡ Φ

(
f(Ft−1, λ

B
t , λ

R
t , xt) + c− F̄ − ρxt − (1− ρ)x̄

σε

)
. (12)

Note from (9) that the bond price p(λBt , λ
R
t ) does not determine whether the firm defaults or pays

dividends at time t; only Ft−1 and xt determine these outcomes. This means that g(λRt |Ft−1, λ
B
t , xt)

is a continuous and increasing function of λRt for given values of
(
Ft−1, λ

B
t , xt

)
. Also note that

g(0|Ft−1, λ
B
t , xt) > 0 and g(1|Ft−1, λ

B
t , xt) < 1. Therefore, g(λRt |Ft−1, λ

B
t , xt) is a continuous func-

tion that maps the unit interval into itself, so a fixed point always exists by Brouwer’s fixed-point

theorem.

Multiple equilibria are more likely to arise—i.e., there may be multiple solutions to equation

(12)—(i) when investor beliefs are more rational and forward-looking (i.e., when θ is low); (ii)

when the configuration of (Ft−1, λ
B
t , xt) means that the firm will be near the default boundary at

time t+ 1; and (iii) when cash flow volatility σε is low. First, rational beliefs have a larger impact

on current bond prices and hence on the likelihood of future defaults when θ is low. Indeed,

there is a single unique equilibrium when θ = 1 and beliefs are completely extrapolative. Second,

multiple equilibria will only arise when the firm will be near the default boundary at time t + 1.

If the firm is very far from the default boundary, then ∂g(λRt |·)/∂λRt is always small—there is no

scope for self-fulfilling rational beliefs—and there is a unique equilibrium. Finally, when future

cash flows are volatile (i.e., when σε is high), the downside risk for the future cash flows is high

which reduces the effect of self-fulfilling rational beliefs on future defaults. In this case, model has

a unique equilibrium. Conversely, when future cash flows are not very volatile, self-fulling rational

beliefs have a bigger impact on future defaults and sometimes lead to multiple equilibria.6

6Formally, g(λRt |Ft−1, λ
B
t , xt) is an S-shaped function of λRt , a property that it inherits from the normal cumu-

lative density function Φ(·). As we increase σε, g(λRt |Ft−1, λ
B
t , xt) becomes closer to a linear function of λRt —i.e.,

∂2g(λRt |·)/∂(λRt )2 approaches zero—so it is harder to have multiple equilibria. As σε → 0, g(λRt |Ft−1, λ
B
t , xt)

converges to a step-function and it is easier to have multiple equilibria.
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Figure 4 illustrates the existence of multiple equilibria in our model. In Figure 4, we assume

that x̄ = 2.4, ρ = 0.8, σε = 0.5, c = 2, F̄ = 5, and η = 0.5. We set Ft−1 = 4 and λBt = 0.33. Thus,

the default boundary at time t is xt ≤ Ft−1 + c− F̄ = 1. The figure shows the g(λRt ) function for

xt ∈ {1.9, 2, 2.1, 2.5} and σε ∈ {0.5, 1.0, 0.01}. When σε = 0.5, beliefs about future defaults have

a modest impact on the likelihood of future defaults. In this case, g(λRt ) is an S-shaped function

of λRt and there can be multiple equilibria. Specifically, there are three possible equilibria when

xt = 2. However, there is only a single equilibrium for other values of xt. By contrast, when

σε = 1, beliefs have a much smaller impact on the likelihood of future defaults. As a result, the

g(λRt ) function is nearly linear and there is always a unique equilibrium. Finally, when σε = 0.01,

beliefs can have a very large impact on the likelihood of future defaults. In this case, g(λRt ) is

close to being a step-function and multiple equilibria routinely arise.

How do we select amongst these equilibria when more than one exists? We focus on the

smallest λR that solves λR = g(λR|·)—i.e., the model’s “best” stable equilibrium.7 An equilibrium

is “stable” if it is robust to a small perturbation in investors’ beliefs regarding the likelihood of a

default tomorrow. In our setting, if ∂g(λR∗|·)/∂λR < 1, then λR∗ is stable; if ∂g(λR∗|·)/∂λR > 1,

then λR∗t is unstable. Since g(0|·) > 0 and g(1|·) < 1, our model always has at least one stable

equilibrium. Following the correspondence principle of Samuelson (1947), stable equilibria have

local comparative statics that accord with common sense. For instance, at a stable equilibrium,

λRt is locally increasing in Ft−1 and decreasing in xt.
8

The following lemma explains how the true probability of default λRt is influenced by movements

in Ft−1, λBt , and xt.

Lemma 2 First, assume that the economy is not near the default boundary Ft−1 =
(
F̄ − c

)
+ xt

at time t, so small changes in Ft−1 and xt do not affect whether or not there is a default at time

t. Then a small increase in Ft−1 raises λRt when F < Ft−1 + c − xt, a small increase in λBt

always raises λRt , and a small increase in xt always reduces λRt . When θ = 1, λRt is everywhere

a continuous function of Ft−1, λBt , and xt. By contrast, when θ < 1, λRt can be discontinuous

in Ft−1, λBt , and xt, jumping discretely in response to small changes in these variables when the

smallest solution to equation (12) jumps—we call these jumps “equilibrium discontinuity points.”

However, λRt is continuous and differentiable in these variables almost everywhere when θ < 1.

Next, assume that the economy is near the default boundary at time t, so small changes in

Ft−1 and xt can affect whether or not there is a default at time t. Near the default boundary, a

small increase in Ft−1 can trigger a default at time t, resulting in a discrete downward jump in

the probability of a default at t + 1, λRt . Similarly, near the default boundary, a small increase in

7We obtain very similar simulation results if we instead focus on the the largest λR that solves λR = g(λR|·).—
i.e., the model’s “worst” stable equilibrium.

8By contrast, unstable equilibria have local comparative statics with the opposite signs, which run contrary to
common sense. For instance, at an unstable equilibrium,.λRt is locally decreasing in Ft−1 and increasing in xt.
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xt can avert a default at time t, resulting in a discrete upward jump in λRt . However, it is still the

case that a small increase in λBt always raises λRt .

Figure 4 illustrates one of the equilibrium discontinuity points mentioned in Lemma 2. Specifi-

cally, when σε = 0.5, we see that the number of solutions to equation (12) jumps from one to three

as xt increases from 1.9 to 2. As a result, the smallest solution to equation (12) jumps discretely

downward as xt increases from 1.9 to 2.

Reflexivity. Our model captures George Soros’ notion of reflexivity which is the idea that

incorrect beliefs can impact reality. And, paradoxically, incorrect beliefs have the potential to

become partially self-fulfilling. Specifically, when investors are partially extrapolative (θ > 0), our

model incorporates an important feedback loop that arises from extrapolative, backward-looking

beliefs. Past defaults affect investors’ beliefs about future defaults via equation (10). These beliefs

then feed back into bond prices via equation (8). Finally, since bond prices influence the ease with

which the firm can refinance its existing debt, they in turn affect the evolution of debt outstanding

via equation (9) and hence the true probability of future defaults in equation (6).

While this feedback loop is always present, there are times when the strength of this feedback

loop—i.e., when the degree of reflexivity—is stronger and other times when this feedback loop is

weaker. Specifically, we say that the economy in a “highly reflexive state” when ∂λRt /∂λ
B
t is large.

While we always have ∂λRt /∂λ
B
t > 0, there are “non-reflexive regions” of our models’ state-space(

xt, Ft−1, λ
B
t

)
where ∂λRt /∂λ

B
t is small. However, there are also “highly reflexive regions” where

∂λRt /∂λ
B
t is large: here a change in the extrapolative component of beliefs λBt —whether due to

a current default or a sentiment shock ωt—will have a large impact on the true probability of

default λRt . As we will see, these highly reflexive regions play an important role in driving credit

market dynamics in our model.

3.2 Model implications

In this section, we provide a set of formal results and simulations to illustrate the key implications

of the model. In particular, we lay out three main implications of the model: the “calm before the

storm” phenomenon, the “default spiral” phenomenon, and the predictability of corporate bond

returns. As we emphasize, these three novel implications reflect the interaction between default

extrapolation and the reflexive nature of credit markets. In other words, these three results arise

because (i) investors hold beliefs that are (partially) backward-looking—i.e., they extrapolate

past defaults when forming beliefs about future defaults—and (ii) beliefs about future defaults are

(partially) self-fulfilling. We also use the model to draw impulse-response functions which show

how shocks to cash flow fundamentals and investor beliefs impact credit markets.
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3.2.1 Model parameters

We use the following set of baseline parameters throughout:

• Cash flow dynamics: x̄ = 2.4, ρ = 0.8, σε = 0.5.

• Investment cost: c = 2.

• Default and dividend barriers: F = 1.5, F̄ = 5.

• Write-off parameter: η = 0.5.

• Belief dynamics: β = 0.8, α = 0.2, σω = 0.05.

• Belief mix: θ = 0.5.

While these parameters are only illustrative, they have a number of desirable properties derived

from long sample simulations:

1. The unconditional default probability is realistic. Here the unconditional probability

of default is 12%. As noted above, one should interpret a default by our representative firm

as a “credit market bust” in which there is an economy-wide spike in corporate defaults.

Thus, these parameters imply that roughly one in ten years corresponds to such a bust.

2. The unconditional means of λBt and λRt are similar. Here the average of λRt is 12%

and λBt is 15%. Thus, the behavioral component of beliefs is reasonable on average. As a

result, means of
(
λRt − λBt

)
and rt+1 are small. Here the mean of

(
λRt − λBt

)
is −3% and the

average return is 0.3%.

3. The time-series correlation between λBt and λRt is meaningful. Thus, while clearly

imperfect, investors’ beliefs are reasonable over time. Specifically, we have Corr
(
λBt , λ

R
t

)
=

0.58. Thus, the backward-looking component of investors beliefs is strongly correlated with

fully-rational beliefs over time. And, investor’s combined beliefs λCt = θλBt + (1 − θ)λRt are

close to the fully-rational ideal: Corr
(
λCt , λ

R
t

)
= 0.93.

4. Relation of α and β. The strength of default spiral mechanism is increasing in both α

and β. Specifically, if α > (1− β) then λBt always rises when Dt = 1 and ωt = 0. However,

if α ≤ 1 − β then λBt can actually fall when Dt = 1 and ωt = 0. Since α = 1 − β is this

calibration, default spirals are possible.

Figure 5 shows a typical sample path of simulated data using these parameters. Notice that

the time-series distribution of λRt is bimodal when θ = 0.5: λRt is typically either close to zero or

1. This bimodal distribution is largely a function of the short-term nature of debt in our model.
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Short-term debt is extremely safe until the moment that it is not; and at that point, short-term

debt often becomes quite risky. However, the partially forward-looking nature of beliefs also

contributes to the bimodal distribution of λRt . Specifically, when θ < 1, the model admits multiple

equilibria and the smallest stable equilibrium will often discretely jump from λRt ≈ 0 to λRt ≈ 1 as

the economy approaches the default boundary. This effect is diminished when we increase θ, so

the distribution of λRt becomes less bimodal as beliefs become more backward-looking.

3.2.2 The “calm before the storm” phenomenon

An elevated level of credit market sentiment—i.e., a lower level of λBt —slows down the accu-

mulation of debt in the face of deteriorating cash flows fundamentals, thereby delaying or even

preventing future defaults. We term this phenomenon the “calm before the storm.” Below we

provide a formal result regarding this phenomenon.

Proposition 1 Calm before the storm. Assume that θ > 0. For any initial level of debt

outstanding Ft−1 and cash flow xt, lowering the initial extrapolative component of investor beliefs

λBt weakly delays the next default path by path—i.e., for any given time series of future cash flow

and sentiment shocks—and strictly delays the next default in expectation.

To illustrate this “calm before the storm” phenomenon, Figure 6 depicts a sample path of

the model using our baseline set of parameters. The cash flow fundamental xt is initially set to

x0 = 1.5 < 2 = c and debt is set to F0 = 3.5. We assume that all of the subsequent shocks

are zero (εt = ωt = 0). Figure 6 plots cash flow xt, debt outstanding Ft, the default indicator

Dt, bond price pt, rational beliefs beliefs λRt , and backward-looking beliefs λBt . We compare

the model dynamics starting from a low initial value λB0 (Low) = 0.15 and a high initial value

λB0 (High) = 0.30 of backward-looking component of beliefs. We separately plot these dynamics

for each value of θ ∈ {0.25, 0.5, 0.75, 1}.
When θ = 0.25 or 0.50, the firm defaults at time 3 when λB0 = λB0 (High) and at time 4 and

λB0 = λB0 (Low). Consistent with Proposition 1, more optimistic initial beliefs have the potential

to delay default in the face of poor fundamental cash flows. This effect becomes stronger as θ

rises and beliefs become more backward-looking. Specifically, when θ = 0.75, the firm defaults at

time 3 when λB0 = λB0 (High) and at time 5 when λB0 = λB0 (Low). Finally, when θ = 1, the firm

defaults at t = 3 when λB0 = λB0 (High). However, when λB0 = λB0 (Low), the firm is just able to

skate by, narrowly averting default. Intuitively, when θ = 1 and λB0 = λB0 (Low), bond prices state

high for long enough that the firm is able to continue refinancing its debt until fundamentals rise

back above c.

This calm before the storm phenomenon is consistent with recent findings on credit cycles.

Specifically, when θ ∈ (0, 1) so beliefs are neither fully forward-looking nor fully-backward looking,

credit spreads will typically be low in the run-up to a default and but will jump up on the eve
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of a default. This behavior is consistent with the evidence in Krishnamurthy and Muir (2017)

who examine the behavior of credit spreads around a large sample of financial crises in developed

countries. The calm before the storm phenomenon helps make sense of what Gennaioli and

Shleifer (2018) have dubbed the “quiet period” of the 2008 global financial crisis—the stretch of

time between the initial disruptions in housing and credit markets in the summer of 2007 and onset

of a full-blown financial crisis in the fall of 2008 with the collapse of Lehman Brothers. Indeed,

as Gennaioli and Shleifer (2018) argue, if investors were fully forward-looking (θ = 0), one might

have have expected a more rapid deterioration of financial conditions in late 2007 rather than the

gradual slide into crisis that was witnessed.

3.2.3 The “default spiral” phenomenon

Once the storm hits the credit market, default extrapolation can generate a “default spiral”:

extrapolative, backward-looking beliefs lead to a form of default persistence that is absent when

beliefs are fully rational and forward-looking. Specifically, investor beliefs typically become more

pessimistic following a default according to equation (10). This pushes down bond prices, raising

debt outstanding, and increasing the likelihood of future defaults. In particular, persistent default

spirals can arise even when fundamental cash flows are strong (xt > c) if (i) θ is sufficiently large,

(ii) the increment α is large relative to the decay rate of extrapolative beliefs (1− β), (iii) the

initial debt level is sufficiently high, and (iv) the initial backward-looking component of beliefs is

sufficiently pessimistic. We formalize this observation in the following proposition.

Proposition 2 Default spirals. Assume that (i) Ft−1 + c − xt ≥ F̄ , so there is a default at

time t (Dt = 1); (ii) α > (1− β) and ωt = 0, so extrapolative beliefs necessarily become more

pessimistic following this default; (iii) that extrapolative beliefs are initially relatively pessimistic

(λBt−1 ≥ λRt−1); and (iv) that xt = xt−1 = x > c. Let pt (θ), Ft (θ), and λRt (θ) denote the time

t price, amount of outstanding debt, and true probability of default when fraction θ of beliefs are

backward looking. Although default leads to a reduction in debt—i.e., Ft (θ) < Ft−1 for any θ,

pt (θ) is decreasing in θ. And Ft (θ) and λRt (θ) are increasing in θ. Thus, a larger extrapolative

component of beliefs lowers prices and slows the process of debt discharge in the event of default,

increasing the likelihood of a future default.

Proposition 2 says that the credit cycle can experience a persistent run of defaults due to a

negative feedback loop induced by default extrapolation. Said differently, the backward-looking

nature of investor beliefs may make the financial recovery from a crises slower and more protracted

than in a world with fully forward-looking investors. This result further highlights the potential

disconnect between the endogenous credit cycle and the exogenous business cycle that is at the

heart of our model.
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Figure 7 illustrates these ideas. We assume use our baseline parameters from above. We

consider a sample path starting from F0 = 6 and x0 = 2.25. We assume that ρ = 1 and set

εt = ωt = 0 for all t > 0, so cash flow fundamentals remain constant at xt = 2.25 > 2 = c. Since

F0 + c − x1 = 5.75 > 5 = F̄ there is a default at t = 1. Indeed, since xt is constant at 2.25 a

default occurs at time t whenever Ft−1 rises above 5.25.

We show the dynamics for different values of θ and λB0 to trace out the roles of backward-

looking beliefs (θ) and initial beliefs (λB0 ) on the resulting dynamics. Specifically, we show the

dynamics for θ ∈ {0.1, 0.5, 0.9, 1} and for λB0 ∈ {0.50, 0.95}.
When investors beliefs are largely forward-looking (i.e., when θ = 0.1), the debt writedown

that occurs upon default at t = 1 leads to an immediate decrease in the rationally-expected default

rate λRt . In this case, bond prices immediately recover following the default at t = 1, the firm

rapidly repays its outstanding debt (since xt = 2.25 > 2 = c for all t here) with debt quickly

reaching the lower bound of F = 1.5, and default never occurs again after t = 2.

By contrast, if investor beliefs are highly backward-looking (θ = 0.9 or θ = 1), then default

extrapolation keeps bond prices low and the debt level high for many periods. As a result,

there is a lengthy sequence of recurring default when investors are initially highly pessimistic

(λB0 = 0.95). And, recurring defaults even arise when investors are only moderately pessimistic at

t = 0 (λB0 = 0.5).

In between these two polar cases, when θ = 0.5, the economy experiences a recurring wave

of defaults when investors are initially very pessimistic, but not when investors are moderately

pessimistic.

This default spiral dynamic suggests that a moderate improvement in cash flows can be in-

sufficient to “rescue” credit markets from a depressed state. Moreover, the likely timing of the

recovery is influenced by the extent of backward-looking extrapolation (θ) and the initial pes-

simism of investor beliefs (λB0 ): one needs a large improvement in cash flows to ensure a recovery

when both θ and λB0 are high. The crucial role that investor beliefs play in driving default spirals

suggests that a favorable sentiment shock (i.e., a large negative draw of ωt) coming from a policy

intervention may also be an effective way to help the credit market recover.

3.2.4 Bond return predictability

In this subsection, we examine the model’s implications for bond return predictability. Naturally,

the returns on bonds in our model are predictable whenever θ > 0—i.e., whenever beliefs are

partially extrapolative and backward-looking. However, what is most interesting is that changes in

investor sentiment—i.e., movements in λBt —have an ambiguous impact on expected bond returns

due to the reflexive nature of credit markets. Specifically, holding fixed expected future debt

repayments, more bearish investor sentiment (higher values of λBt ) lowers bond prices, thereby

raising expected bond returns. However, since investor beliefs about defaults are partially self-
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fulfilling there is a competing effect: more bearish investor sentiment makes it more difficult for

firms to refinance maturing debt, raising the true probability of default. And, in highly reflexive

states where beliefs have a large impact on the true likelihood of default—i.e., where ∂λRt /∂λ
B
t is

large—the latter effect can outweigh the former. As a result, more bearish sentiment can actually

reduce expected returns in highly reflexive states.

To see the model’s implications for bond returns, note that investor who buy bonds for a price

of pt = p(λBt , λ
R
t ) at time t will receive a payment of 1 − (1 − η)Dt+1 at time t + 1. Thus, the

realized return on bonds from time t to t+ 1 is

rt+1 =
1− (1− η)Dt+1

p(λBt , λ
R
t )

− 1. (13)

At any time t, the risk-neutral investors in our model believe that ECt [Dt+1] = λCt and bond

prices are p(λBt , λ
R
t ) = 1−(1−η)ECt [Dt+1]. Thus, by construction, investors always perceive a zero

expected return from time t to t + 1—i.e., we have ECt [rt+1] = 0. However, since ERt [Dt+1] = λRt

from the vantage point of a rational econometrician, the true rationally-expected return is

ERt [rt+1] =
1− (1− η)λRt
p(λBt , λ

R
t )

− 1 =
−(1− η)θ(λRt − λBt )

1− (1− η)λRt + (1− η)θ(λRt − λBt )
, (14)

which is decreasing in λRt − λBt whenever θ > 0. For instance, in a “calm before the storm”

scenario where cash flow fundamentals have deteriorated but our partially-extrapolative investors

remain bullish because they haven’t witnessed a default in a long time, we will have (λRt −λBt ) > 0

and ERt [rt+1] < 0. Conversely, in a “default spiral” scenario it is likely that investors will be

over-estimating the likelihood of future defaults since they have just experienced a default, we will

have (λRt − λBt ) < 0 and ERt [rt+1] > 0.

More generally, using equation (14) and Lemma 1, we can ask how small changes in Ft−1 and

xt impact expected bond returns. When θ > 0, an increase in λRt is associated with a decline in

expected returns holding fixed λBt :

∂ERt [rt+1]

∂λRt
= −

θ (1− η)
(
1− λBt (1− η)

)[
p(λBt , λ

R
t )
]2 < 0. (15)

Thus, assuming we are not at the default boundary, Lemma 1 implies that a small increase in Ft−1

leads to decline in ERt [rt+1] and a small increase in xt leads to an increase in ERt [rt+1]. Intuitively,

when investors are extrapolative, holding fixed the extrapolative component of beliefs λBt , worse

cash flow fundamentals and higher levels of leverage predict lower future bond returns, all else

equal.

We now turn to the role of the extrapolative component of beliefs λBt . Surprisingly, a small

increase in λBt has an ambiguous impact on ERt [rt+1]. Holding fixed expected future debt repay-
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ments, increasing λBt lowers bond prices which raises the expected return on bonds. This is the

familiar intuition that, all else equal, one wants to buy securities when investor sentiment turns

bearish. However, there is a potentially offsetting effect here due to credit market reflexivity:

movements in extrapolative beliefs impact the true probability of a default at time t+ 1. Specifi-

cally, we know from Lemma 1 that a small increase in λBt raises λRt , lowering expected future debt

repayments. As a result, the total impact is ambiguous: depending on which effect dominates, a

small increase in λBt can either lead ERt [rt+1] to rise or fall.

For instance, assuming we are at an equilibrium continuity point where ∂λRt /∂λ
B
t exists,9 we

have

∂ERt [rt+1]

∂λBt
=

>0︷ ︸︸ ︷
∂ERt [rt+1]

∂λBt
|λRt =Constant +

<0︷ ︸︸ ︷
∂ERt [rt+1]

∂λRt
×

>0︷︸︸︷
∂λRt
∂λBt

(16)

=
θ (1− η)[
p(λBt , λ

R
t )
]2 [(1− λRt (1− η)

)
−
(
1− λBt (1− η)

) ∂λRt
∂λBt

]
.

The sign of ∂ERt [rt+1] /∂λBt is ambiguous. Specifically, we have ∂ERt [rt+1] /∂λBt ≶ 0 as ∂λRt /∂λ
B
t ≷

[1 − λRt (1− η)]/[1 − λBt (1− η)]. In other words, we are more likely to have ∂ERt [rt+1] /∂λBt < 0

when the economy is in a highly reflexive state where current beliefs have a large impact on future

outcomes—i.e., where ∂λRt /∂λ
B
t is large.

Figure 8 plots ERt [rt+1] and λRt versus λBt using our baseline parameter values for (xt, Ft−1) =

(1.6, 3.4), which is a highly reflexive state. For λBt less than 0.26, λRt rises gradually with λBt and

ERt [rt+1] is increasing as the negative effect of λBt on price outweighs the positive effect on λRt .

For λBt between 0.26 and 0.32, λRt rises more rapidly with λBt and ERt [rt+1] is decreasing as the

positive effect on λRt outweighs the negative effect on price. At λBt = 0.33, λRt jumps discretely

up—the low default probability equilibrium disappears—and expected returns fall significantly.

Returns continue falling until λBt reaches 0.35 after which they are again increasing.

We collect these observations in Proposition 3.

Proposition 3 Return predictability. If investor beliefs are fully rational, then bond returns

cannot be predicted. Formally, if θ = 0, then ERt [rt+1] = 0.

If investor beliefs are partially extrapolative, then bond returns are predictable. Specifically,

when θ > 0, ERt [rt+1] is decreasing in λRt − λBt and is equal to zero when λRt − λBt = 0.

• If the economy is not at the default boundary at time t, then, all else equal, ERt [rt+1] is

increasing in xt and is decreasing in Ft−1. However, these relationships flip signs when the

economy is at the default boundary.

9As explained in Lemma 1, the derivative ∂λRt /∂λ
B
t > 0 only exists at equilibrium continuity points. At

equilibrium discontinuity points, λRt jumps up discretely in response to a small increase in λBt .
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• A small increase in λBt has an ambiguous effect on ERt [rt+1]:

– In non-reflexive states—where a small increase in λBt has a small effect on λRt —a small

increase in λBt leads to an increase in ERt [rt+1].

– In highly reflexive states—where a small increase in λBt has a large effect on λRt —a

small increase in λBt leads to a decline in ERt [rt+1].

Finally, we can use Proposition 3 to provide a heuristic understanding of the relationship

between past changes in debt outstanding ∆Ft = Ft − Ft−1 and future expected returns ERt [rt+1]

in the model. Assuming that F < Ft−1 + c− xt < F̄ , the change is debt outstanding at time t is

∆Ft =
Ft−1 + c− xt

pt
− Ft−1 =

c− xt
pt

+
1− pt
pt

Ft−1.

Using Lemma 2, it is straightforward to show that ∂∆Ft/∂xt < 0, ∂∆Ft/∂Ft−1 > 0, and

∂∆Ft/∂λ
B
t > 0. Combing these results with those in Proposition 3, one would expect large

values of ∆Ft to predict low future values of rt+1 in data simulated from the model. Specifically,

changes in xt and Ft−1 always have opposing effects on ERt [rt+1] and ∆Ft. And, changes in λBt

will have opposing effects on ∆Ft and ERt [rt+1] in reflexive states where ∂λRt /∂λ
B
t is large. Thus,

ERt [rt+1] and ∆Ft will generally move in opposite directions, leading to a negative relationship

between ∆Ft and ERt [rt+1] in data simulated from the model.

Forecasting returns and defaults in model simulations. To further explore the model’s

implications on return and default predictability, we first simulate the model for 100,000 periods.10

We then examine the return and default forecasting regressions using current variables such as

credit growth and sentiment.

Table 2 shows that the model is able to match a number of facts that researchers have docu-

mented about the credit cycle. First, credit growth forecasts future defaults: regressing defaults

(Dt+1) over the next year on the debt growth over the prior four years (Ft − Ft−4) , the model

produces a coefficient of 0.11 with an R-squared of 22%. Furthermore, credit growth forecasts de-

faults particularly when the credit cycle and the business cycle become disconnected. Regressing

defaults over the next year (Dt+1) on both prior debt growth (Ft − Ft−4) and the current level

of cash flows (xt), the model generates coefficients of 0.07 and −0.14, respectively, with an R-

squared of 31%. Notably, compared to the univariate regression, the multivariate regression leads

to a much higher R-squared. In our model, the “calm before the storm” period is accompanied

by growing credit and low growth in fundamentals. These conditions move the economy towards

default.

10We choose the parameter values such that default occurs infrequently in the model; in this example, defaults
occurs about 5% of the time.
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Second, credit growth forecasts future bond returns: regressing returns over the next year

(rt+1) on the debt growth over the prior four years (Ft − Ft−4), the model generates a coefficient

of −0.04 with an R-squared of 33%. In addition, credit growth predicts bond returns better when

credit growth becomes disconnected with growth in fundamentals. Regressing returns over the

next year (rt+1) on both prior debt growth (Ft−Ft−4) and the current level of cash flows (xt), the

model generates coefficients of −0.04 and 0.01, respectively, with an R-squared of 34%.

Third, sentiment λRt −λBt strongly predicts future returns and future defaults. Regressing bond

returns over the next year on the current level of sentiment, the model generates a coefficient of

–0.34 with an R-squared of 82%. Regressing next year defaults on the current level of sentiment,

the coefficient is 0.90, with an R-squared of 52%. Towards the end of the “calm before the

storm” period, sentiment rises because true default likelihood increases while the backward-looking

extrapolative expectations of default remain low. This is when defaults are about to occur.

Fourth, since ERt [rt+1] ≈ −Constant×(1 − η)θ(λRt − λBt ), (λRt − λBt ) is a strong univariate

predictor of returns: a regression of rt+1 on (λRt − λBt ) delivers a coefficient of −0.33 with a R-

square of 82%. However, λBt is a not a strong univariate predictor of future returns. This owes

the fact that λRt moves nearly one-for-one with λBt —the coefficient from a regression of λRt on λBt

is 0.86—which reflects both the reasonableness of the backward-looking component of beliefs and

the reflexivity effect (∂λRt /∂λ
B
t > 0) at the heart of our model. As a result, there is not a strong

univariate relationship between ERt [rt+1] ≈ −Constant×(1− η)θ(λRt − λBt ) and λBt .

Finally, the debt level in the model is more persistent than cash flows. The one-year autocor-

relation of debt level is 0.89, whereas the one-year autocorrelation of cash flows is 0.80. This result

again confirms that our model allows for periods during which the credit cycle and the business

cycle are disconnected.

Model-implied impulse-response functions. Given the highly non-linear nature of model,

impulse-response functions (IRFs) are potentially (i) highly asymmetric and (ii) highly dependent

on initial conditions. Figure 9 shows the impulse-response functions for a shock to cash flows xt

(an εt shock) and for a shock to beliefs λBt (an ωt shock). To compute these IRFs, we shock εt

and ωt up or down at t = 1 and then generate 10, 000 random paths following this shock. We then

plot the average paths following each shock.11

The initial condition in Figure 9 is xt = 2.25, Ft−1 = 2, and λBt = 0.25. As shown below, the

impulse-responses are asymmetric. Bad shocks to either fundamentals (a downward shock to cash

11Let zt = (xt, Ft−1, λ
B
t ) denote the model’s state vector and consider some model quantity yt. The re-

sponse of yt+j following an impulse εt = sε to cash flow fundamentals is Φy (j, zt−1, εt = sε) = E[yt+j |zt−1, εt =
sε] − E[yt+j |zt−1, εt = 0]. Similarly, the response of yt+j following an impulse ωt = sω to investor sentiment
is Φy (j, zt−1, ωt = sω) = E[yt+j |zt−1, ωt = sω] − E[yt+j |zt−1, ωt = 0]. Due to the nonlinear nature of the
model, these impulse response functions are asymmetric in the sense that, for example, Φy (j, zt−1, ωt = −sω) 6=
−Φy (j, zt−1, ωt = sω). The impulse response functions are also state-contingent in the sense that, for example,
Φy (j, zt−1, ωt = sω) depends on the initial condition zt−1.

22



flows) or investors beliefs (an upward shock to the perceived default likelihood) have larger and

more persistent effects on credit market outcomes. The saw-tooth patterns following shocks to

sentiment arise, even in expectation, because of the jaggedness of debt outstanding in individual

sample paths due to our mechanistic default rule.

Figure 10 shows the same impulse-response functions starting from an initial condition of

xt = 1.6, Ft−1 = 3.4, and λBt = 0.2—which is a highly reflexive region of the parameter space.

Consider first an impulse to cash flows xt at time 1—i.e., an unexpected jump in ε1. In this region,

a positive shock to fundamentals at time 1 typically helps averts what would otherwise be a near

inevitable default at time 2. However, since the firm is already in dire straits a negative shock has

a far less pivotal effect on the future path.

Next consider an unexpected shocks to beliefs at time 1—i.e., a large draw of ω1. In this

reflexive region, a similarly sized shock to beliefs has far larger impact on debt accumulation and

defaults than in the less reflexive region shown in Figure 9. However, now the asymmetry between

positive and negative belief shocks is generally smaller than it is in the non-reflexive region as

shown in Figure 10.

4 Extension with multiple firms

In this section, we consider an extension of the model that incorporates multiple firms who face

idiosyncratic cash flow shocks and study its implications in brief. This extension addresses a

limitation of baseline model which is that defaults are binary events since the baseline economy

has a single representative firm. The one additional assumption of this extension is that investors

price all firms’ bonds identically even though firms have heterogeneous cash flows. We also examine

belief contagion, the notion that investors may update their beliefs about future defaults if any

firm in the economy defaults (in the real world, downgrades might serve a similar purpose).

We assume that there are M firms, i = 1, 2, . . . ,M ; we will focus on the limiting case when M

grows large. Furthermore, we assume that the cash flow of firm i, xit, consists of two components:

xit = xt + zit, (17)

where the systematic component xt evolves according to equation (2) and the mean-zero, firm-

specific component zit follows

zit = ψ · zit−1 + ξit, (18)

where ξit ∼ N (0, σ2
ξ) is i.i.d. over time, independent across firms, and independent of the system-

atic cash flow shock (εt) and the sentiment shock (ωt).

Although firms are heterogeneous, we assume that investors pay the price the debt of all firms.

The idea is that investors cannot perfectly observe each firm’s cash flow xit and leverage Fit−1 and
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treat some class of firms as a homogeneous category. The rule under which each firm defaults is

similar to the rule in the base case model: if at any time t, Fit−1 + c− xit goes above a threshold

of F̄ , then firm i defaults. Thus, the law of motion for each firms outstanding bonds Fit is similar

to the baseline model. Specifically, we have

Fit = f
(
Fit−1, λ

B
t , λ

R
t , xit

)
=


F/p(λBt , λ

R
t ) ifFit−1 + c− xit ≤ F

(Fit−1 + c− xt)/p(λBt , λRt ) ifF < Fit−1 + c− xit < F̄

η(Fit−1 + c− xt)/p(λBt , λRt ) ifFit−1 + c− xit ≥ F̄

, (19)

where

p(λBt , λ
R
t ) =

[
1− (1− η)λRt

]
+ (1− η)θ(λRt − λBt ). (20)

With multiple firms, the beliefs λBt and λRt are specified as follows. Suppose at time t, after

the realization of {xit}Mi=1, Mt out of M firms default—these firms have outstanding debt that

Fit−1 + c− xit ≥ F̄—then

λBt = max
{

0,min
{

1, βλBt−1 + αDt + ωt
}}

, (21)

where Dt ≡Mt/M is the realized default rate and

λRt = g(λRt |{Fit−1}Mi=1, λ
B
t , xt, {zit}Mi=1) (22)

≡ 1

M

M∑
i=1

Φ

(
f(Fit−1, λ

B
t , λ

R
t , xit)− F̄ + c− ρxt − (1− ρ)x̄− ψzit√

σ2
ε + σ2

ξ

)
.

Equation (22) defines λRt as the expected default rate averaged across firms.

Here we make three observations. First, equations (19) to (22) imply that the right hand side of

(22) can be viewed as a continuous function of λRt , just as in the base case model. More important,

the distribution of {Fit−1}Mi=1, the distribution of {zit}Mi=1, and the level of xt jointly determine λRt .

Second, both (21) and (22) reflect belief contagion: past defaults and future defaults of each firm

affect the bond price that applies to all firms. Third, one aspect of having firms with different debt

levels is that, at each point in time, only a fraction of firms is close to default. Thus, many firms

will not default immediately. This makes it more difficult for the multiple equilibria described in

Section 3 to arise; rational investors do not anticipate a high λRt when a significant fraction of

firms have their debt level far below the default barrier.

This extended model yields similar implications compared to the base case model, but with

more realistic dynamics for firm defaults. Figure 11 reports a sample path of the model with

M = 100 firms. As a comparison, we also plot the sample path using the same cash flow shocks

and sentiment shocks but with a single representative firm. In this example, after staying above

the long-run mean x̄ for many periods, cash flow fundamentals xt begin to deteriorate in period
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32. The actual default rate stays lows for three more periods—a “calm before the storm” period—

and then starts to rise in period 34. Furthermore, there is a clear lead-lag structure between the

rational and the behavioral components of investor beliefs: λRt responds to deteriorating market

fundamentals in period 34 while λBt only responds several periods later. Similarly, λRt responds to

improving market fundamentals in period 41 while λBt stays high for several more periods. Overall,

the presence of multiple firms makes the rational and the behavioral components of investor beliefs

more synchronized: in this example, the time-series correlation between λRt and λBt increases from

30% in the single firm case (Panel A) to 69% in the multiple firm case (Panel B).

5 Conclusion

We present a model of credit market sentiment in which investors extrapolate past defaults. Our

key contribution is to model reflexivity in credit markets, an endogenous two-way feedback between

credit market sentiment and credit market outcomes. This feedback mechanism is unique to credit

markets because firms must return to the market to refinance maturing debts and the terms on

which debt is refinanced will impact the likelihood of future default.

This combination of extrapolative beliefs and reflexive dynamics can lead to large disconnects

between cash flow fundamentals and credit market outcomes, including “calm before the storm”

and “default spiral” episodes. Extrapolative beliefs naturally lead to bond return predictability.

But what is most striking here is that changes in investor sentiment can have an ambiguous impact

on expected bond returns due to the reflexive nature of credit markets.

Our analysis leaves open at least two areas for further analysis. First, we have not allowed

conditions in credit markets to explicitly affect the underlying cash flow fundamentals of the

economy. The relationship between credit market conditions and macroeconomic fundamentals

plays a major role in Austrian accounts of credit cycles: as the credit boom grows, increasing

amounts of capital are devoted to poor quality projects. Relatedly, as demonstrated by a growing

macro-finance literature, the inability to access credit on reasonable terms following a credit market

bust may exacerbate an incipient economic downturn. Incorporating these features into our model

would likely further strengthen the feedback loop between investor sentiment and credit market

outcomes.

Second, we have been silent on issues of welfare and optimal policy, even though our model

suggests a potential role. During credit booms, high sentiment can prevent defaults from oc-

curring in the near future, which can be welfare-improving if fundamentals recover soon enough.

Nonetheless, self-fulfilling beliefs during default spirals can be welfare-reducing, both because these

deteriorating beliefs accelerate future default realizations and because they lead to a slow recovery

in the presence of improving fundamentals. Accepting this at face value suggests a role for policy

in moderating investor beliefs.
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A Proofs

Proof of Lemma 1: Since β < 1, λBt weakly declines if there is no default at time t and the
decline is strict if λBt−1 > 0.

How do extrapolative beliefs typically react to a default at time t—i.e., if Dt = 1 and ωt = 0?
In this case, λBt = min

{
1, βλBt−1 + α

}
> 0. If α ≥ (1− β), λBt weakly increases following a default

and the increase is strict if λBt−1 < 1. Specifically, if λBt < 1, then λBt −λBt−1 = α− (1− β)λBt−1 > 0
for all λBt−1 ∈ [0, 1) since α ≥ (1− β). By contrast, if λBt then we trivially have λBt − λBt−1 > 0 for
all λBt−1 ∈ [0, 1). Thus, if α ≥ (1− β), extrapolative beliefs will converge to λBt = 1 following a
long sequence of defaults.

By contrast, if α < (1− β), extrapolative beliefs will not always become more pessimistic
following a default. Specifically, if Dt = 1 and ωt = 0, then we have λBt ≷ λBt−1 as λBt−1 ≶ α/ (1− β)
and extrapolative beliefs will converge to λBt = α/ (1− β) < 1 following a a long sequence of
defaults.

Proof of Lemma 2: First, assume that the economy is not near the default boundary
Ft−1 + c − xt = F̄ , so small changes in Ft−1 and xt do not affect whether there is a default
or the firm pays dividends at time t. Suppose that we are at an equilibrium continuity point
where the smallest solution to λRt = g(λRt |Ft−1, λ

B
t , xt) is a continuous and differentiable function

of Ft−1, λ
B
t , xt. (g(λRt |Ft−1, λ

B
t , xt) is continuous, but not differentiable in Ft−1 at the dividend

payout boundary F = Ft−1 + c − xt). At such an continuity point, for any zt ∈
{
Ft−1, λ

B
t , xt

}
,

we have λRt /∂zt = [∂g(·)/∂zt]/[1− ∂g(·)/∂λRt ]. At a stable equilibrium we have ∂g(·)/∂λRt < 1, so
this has the same sign as ∂g(·)/∂zt. This argument shows that ∂λRt /∂Ft−1 > 0, ∂λRt /∂λ

B
t > 0, and

∂λRt /∂xt < 0. There are also equilibrium discontinuity points where the number of solutions to
the fixed-point problem changes and the smallest solution discretely jumps. Although λRt is not a
continuous function of Ft−1, λBt , xt at these equilibrium discontinuity points, the signs of discrete
jumps in λRt at these points will have the same signs as the partial derivatives at equilibrium
continuity points. For instance, an small increase in xt shifts the g(λRt |·) function down for all
λRt . At an equilibrium continuity point where the relevant partial derivative is well-defined, this
results in a small decline in λRt . At an equilibrium discontinuity point where the relevant partial
derivative is not well-defined, this results in a discrete downward jump in λRt .

Second, assume that we are near the default boundary. At the default boundary the derivatives
with respect to Ft−1 and xt are undefined. Near the default boundary, a small increase in Ft−1

can trigger a default at time t, resulting in a discrete downward jump in λRt . Similarly, a small
increase in xt can avert a default at time t, resulting in a discrete upward jump in λRt .

Proof of Proposition 1 (Calm Before the Storm): We compare two sample paths,
denoted L and H, that differ only in their initial levels of λBt . Specifically, suppose that λBt (L) <
λBt (H). Because shocks to cash flows and sentiment are exogenous, we have have xt+j (L) =
xt+j (H) and ωt+j (L) = ωt+j (H) for all j ≥ 0. Because λRt and Ft are always increasing in λBt ,
we have λRt (L) < λRt (H) and Ft (L) < Ft (H). Since Ft (L) < Ft (H), if there is a default at time
t+ 1 in the H path, then there is also a default at time t+ 1 in the L path. However, we can have
default in the H path, but not in the L path at time t+ 1.

Assume that there is no default at time t + 1 along either the L or H paths. Then we
have λBt+1 (L) ≤ λBt+1 (H) by equation (10) and the equality is strict so long as 0 < λBt+1 (H).
Since λRt+1 and Ft+1 are increasing in λBt+1 and Ft, it also follows that λRt+1 (L) ≤ λRt+1 (H) and
Ft+1 (L) ≤ Ft+1 (H) and these inequalities are strict when 0 < λBt+1 (H). Since Ft+1 (L) ≤ Ft+1 (H),
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if the first default occurs at time t + 2 in the H path, then first default also occurs at time t + 2
in the L path. However, we can have default in the H path, but not in the L path at t+ 2.

Proceeding inductively in this fashion, we see that, so long as there is no default along either
path by time t+ j, we have λBt+j (L) ≤ λBt+j (H) and Ft+j (L) ≤ Ft+j (H) and these inequalities are

strict when λBt+j (H) > 0. Thus, lowering the default rate λBt weakly delays the next future default
stochastic path by stochastic path. And, averaging across these paths, lowering the default rate
λBt strictly delays the next default in expectation.

Proof of Proposition 2 (Default Spiral): Since pt ≥ η, if there is a default at time t (i.e.,
Dt = 1) we have Ft = η (Ft−1 + c− xt) /pt ≤ Ft−1 + c− xt. Thus, if Dt = 1 and xt > c, we always
have Ft < Ft−1. By contrast, if Dt = 1 and xt < c, we have Ft > Ft−1 if (c−xt)/ (pt/η − 1) > Ft−1

and Ft < Ft−1 if (c− xt)/ (pt/η − 1) < Ft−1.
Next, note that

λRt = Φ

(OtF+(1−Ot)(1−Dt(1−η))(Ft−1+c−xt)
1−(1−η)θλBt −(1−η)(1−θ)λRt

+ c− F̄ − ρxt − (1− ρ)x̄

σε

)
where Dt = 1{Ft−1+c−xt≥F̄} and Ot = 1{Ft−1+c−xt≤F}. Thus, we have

∂λRt
∂θ

=
∂g
(
λRt |·

)
/∂θ

1− ∂g
(
λRt |·

)
/∂λRt

=

OtF+(1−Ot)(1−Dt(1−η))(Ft−1+c−xt)

[1−(1−η)θλBt −(1−η)(1−θ)λRt ]
2

1− ∂g
(
λRt |·

)
/∂λRt

(1− η)
(
λBt − λRt

)
σε

∝
(
λBt − λRt

)
Thus, λRt is increasing in θ when λBt − λRt > 0.

We have assumed that (i) Ft−1 + c − xt ≥ F̄ , so Dt = 1; (ii) α > (1− β) and ωt = 0; (iii)
λBt−1 ≥ λRt−1; and xt = xt−1 = x > c. Since α > (1− β), Dt = 1, and ωt = 0, we have λBt ≥ λBt−1.
Since pt (θ) ≥ η and xt > c we have Ft (θ) = η(Ft−1 + c− xt)/pt (θ) ≤ Ft−1 + c− xt < Ft−1. Thus,
since xt = xt−1, we have

λRt (θ) = Φ

(
Ft (θ)− F̄ + c− ρxt − (1− ρ)x̄

σε

)
< Φ

(
Ft−1 − F̄ + c− ρxt−1 − (1− ρ)x̄

σε

)
= λRt−1

irrespective of the value of θ ∈ [0, 1]. Thus, we have λBt ≥ λBt−1 ≥ λRt−1 > λRt (θ) irrespective of θ,
so we have ∂λRt (θ) /∂θ > 0 and

∂λCt (θ)

∂θ
=
(
λBt − λRt (θ)

)
+ (1− θ) ∂λ

R
t (θ)

∂θ
> 0.

In other words, both the rational component and the combined belief become more pessimistic as
the fraction of backward-looking beliefs rises.

Since ∂λCt (θ) /∂θ > 0, it then follows that ∂pt (θ) /∂θ < 0 and ∂Ft (θ) /∂θ > 0. Thus, a larger
extrapolative component of beliefs lowers prices and slows the process of debt discharge in the
event of default, increasing the chances of subsequent defaults. Indeed, for any θ > 0, we have
λRt (θ) > λRt (0) .

29
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Figure 1. The credit market cycle. Panel A plots the year-over-year growth in real GDP and the year-
over-year growth in real credit outstanding (defined as the sum of loans and bonds) to nonfinancial 
corporate businesses from the Federal Reserve’s Financial Accounts of the United States. Panel B plots real 
year-over-year credit growth versus the corporate credit spread, measured as the yields on Moody’s 
seasoned Baa corporate bond yield minus the 10-year constant maturity Treasury yields.  

Panel A: Credit growth and GDP growth 

 

Panel B: Corporate credit growth and credit spreads 
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Figure 2. The credit market cycle. This figure illustrates the workings of our model. 
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Figure 3. Real GDP growth and credit growth as a function of business cycle expansion quarter. This 
figure plots real GDP growth and real credit growth—the growth in real nonfinancial corporate loans and 
bonds—as a function of NBER business cycle expansion quarter.  
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Figure 4. Multiple equilibria. This figure illustrates the potential for multiple equilibria in our model when 
investors are partially forward-looking (θ < 1), plotting the ( | )R

tg λ ⋅ function versus R
tλ  as we vary xt and 

σε. The figures use the following set of common parameters throughout: x = 2.4, ρ = 0.8, c = 2, F = 1.5, F
= 5, η = 0.5, θ = 0.5, Ft−1 = 4, and R

tλ = 0.33. The first panel shows the ( | )R
tg λ ⋅ function when σε = 0.5; the 

second panel when σε = 1.0; and the third panel when σε = 0.01. In each panel, we separately plot the 
( | )R

tg λ ⋅ function for xt ∈{1.9, 2.0, 2.1, 2.5}. 
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Figure 5. Simulated data using baseline parameter values (partially backward-looking beliefs). This 
figure shows a typical path of simulated data using our baseline set of parameter values in which beliefs are 
partially backward-looking and partially forward-looking (θ = 0.5). Specifically, the baseline parameters 
are x = 2.4, ρ = 0.8, σε = 0.5, c = 2, F = 1.5, F = 5, η = 0.5, β = 0.8, α = 0.2, σω = 0.05, and θ = 0.5. We plot 
the evolution of cash flow (xt), debt outstanding (Ft), the default indicator (Dt), bond prices (pt), rational 
forward-looking beliefs about future defaults ( ),R

tλ and extrapolative backward-looking beliefs about 
future defaults ( ).B

tλ     
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Figure 6. Calm before the storm. This figure illustrates the calm before the storm phenomenon. The figure depicts sample paths of the model with 
cash flows initially set to x0 = 1.5 < 2 = c and debt initially set to F0 = 3.5. We compare the model dynamics starting from a low initial value of 

0 ( )B Lλ = 0.15 and a high initial value 0 ( )B Hλ = 0.30. We assume all subsequent shocks are zero (εt = ωt = 0). We separately plot the dynamics for 
various values of θ ∈{0.25, 0.5, 0.75, 1}. Otherwise, the model parameters are the same as those in Figure 5. Specifically, we set x = 2.4, ρ = 0.8, 
σε = 0.5, c = 2, F = 1.5, F = 5, η = 0.5, β = 0.8, α = 0.2, σω = 0.05.   
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Figure 7. Default spirals. This figure illustrates the default spiral phenomenon. The figure depicts sample paths of the model with cash flows 
initially set to x0 = 2.25 > 2 = c and debt initially set to F0 = 6. We compare the model dynamics starting from a low initial value of 0 ( )B Lλ = 0.50 
and a high initial value 0 ( )B Hλ = 0.95. We assume ρ = 1 and that subsequent shocks are zero (εt = ωt = 0), so xt = 2.25 for all t. We separately plot 
the dynamics for various values of θ ∈{0.1, 0.5, 0.9, 1}. Otherwise, the model parameters are the same as those in Figure 5. Specifically, we set x
= 2.4, σε = 0.5, c = 2, F = 1.5, F = 5, η = 0.5, β = 0.8, α = 0.2, and σω = 0.05.   
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Figure 8. Impact of backward-looking beliefs on the true default probability and expected returns. 
This figure plots the true default probability R

tλ (in blue line) and rationally-expected returns 1][R
t tr + (in red 

line) against backward-looking beliefs B
tλ in a highly reflexive region of the state spacei.e., a region 

where /R B
t t∂λ ∂λ is large so changes in beliefs have a large impact on future defaults. Specifically, we set xt 

= 1.6 < 2 = c and Ft−1= 3.4. The other model parameters are the same as those in Figure 5: x = 2.4, ρ = 0.8, 
σε = 0.5, c = 2, F = 1.5, F = 5, η = 0.5, β = 0.8, α = 0.2, σω = 0.05, and θ = 0.5.   
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Figure 9. Model-implied impulse response functions in a non-reflexive region. The top panel shows the 
responses following a 0.5 up or down impulses to cash flows (xt) at t = 1.The top panel shows the responses 
following a 0.15 up or down impulses to backward-looking beliefs ( )B

tλ at t = 1. The initial condition in 
both cases is x0 = 2.25, F0 = 2, and 0

Bλ = 0.25. The model parameters are the same as those in Figure 5. 
Specifically, the model parameters are x = 2.4, ρ = 0.8, σε = 0.5, c = 2, F = 1.5, F = 5, η = 0.5, β = 0.8, α 
= 0.2, σω = 0.05, and θ = 0.5.   
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Figure 10. Model-implied impulse response functions in a reflexive region. The top panel shows the 
responses following a 0.5 up or down impulses to cash flows (xt) at t = 1.The top panel shows the responses 
following a 0.15 up or down impulses to backward-looking beliefs ( )B

tλ at t = 1. The initial condition in 
both cases is x0 = 1.6, F0 = 3.4, and 0

Bλ = 0.33. The model parameters are the same as those in Figure 5. 
Specifically, the model parameters are x = 2.4, ρ = 0.8, σε = 0.5, c = 2, F = 1.5, F = 5, η = 0.5, β = 0.8, α 
= 0.2, σω = 0.05, and θ = 0.5.   
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Figure 11. Simulated data with multiple firms. The top panel shows a typical path of simulated data 
using our baseline set of parameter values for a representative firm. The bottom panel show the analogous 
simulation for multiple firms (M = 100), using the exact same aggregate cash flow shocks and sentiment 
shocks identical as those in the top panel. For the top panel, the initial state of the economy is 0

Bλ = 0.2, x0 
= 2, and F0 = 4. For the bottom panel, the initial state of the economy is 0

Bλ = 0.2, x0 = 2, z0 = 0, and Fi0 = 4 
for all i. In both panels, the model parameters are x = 2.4, ρ = 0.8, σε = 0.5, c = 2, F = 1.5, F = 5, η = 0.5, 
β = 0.8, α = 0.2, σω = 0.05, and θ = 0.5. In the bottom panel, we also assume that ψ = 0.8 and σξ = 0.25. 
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Table 1. Credit market sentiment. Time-series regressions of the form 

,HY
t k t ta brx Sent+ = + +⋅   

where Sentt denotes investor sentiment in year t. The dependent variable is the cumulative k = 2- or 3-year 
excess return on high-yield bonds. HYS is the fraction of nonfinancial corporate bond issuance with a high-
yield rating from Moody’s from Greenwood and Hanson (2013). The percentage change in corporate credit 
is computed using Table L103 from the Flow of Funds. Loan Sentiment is the three-year average of the 
percentage of loan officers reporting a loosening of commercial lending standards. Excess Bond Premium 
is the excess bond premium from Gilchrist and Zakrajšek (2012). t-statistics for k-period forecasting 
regressions (in brackets) are based on Newey-West (1987) standard errors, allowing for serial correlation 
up to k-lags. 

 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 2-year future excess returns 3-year future excess returns 

log(HYS) -15.95    -18.63     
[-3.06] 

   
[-3.78] 

   

Growth of Corporate Credit  -126.50    -158.02   
 

 
[-2.28] 

   
[-2.86] 

  

Loan Sentiment   -0.57    -0.80  
 

  
[-2.12] 

   
[-4.03] 

 

Excess Bond Premium    19.29    24.72 

 
   

[2.43] 
   

[4.79] 

Constant -15.67 11.46 -0.27 3.25 -17.54 14.93 -1.26 4.51 

 [-2.18] [3.85] [-0.06] [0.94] [-2.29] [4.42] [-0.21] [1.15] 

N 29 29 20 29 28 28 19 28 

R-squared 0.20 0.11 0.20 0.20 0.25 0.16 0.38 0.32 
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Table 2. Return and default forecasting results via model simulations. This table report univariate and multivariate forecasting regressions for 
cumulative returns (1 through 5 years) and cumulative number of defaults (1 through 5 years). The model parameters are the same as those in Figure 
5. Specifically, the model parameters are x = 2.4, ρ = 0.8, σε = 0.5, c = 2, F = 1.5, F = 5, η = 0.5, β = 0.8, α = 0.2, σω = 0.05, and θ = 0.5.   

  Panel A: Return forecasting  Panel B: Default forecasting 
 Univariate forecasting 1-yr 2-yr 3-yr 4-yr 5-yr  1-yr 2-yr 3-yr 4-yr 5-yr 
(1) Cashflow (xt) 0.04 0.07 0.09 0.11 0.12  -0.19 -0.37 -0.53 -0.69 -0.84 

  12% 18% 19% 18% 16%  24% 30% 32% 32% 32% 

(2) Debt face value (Ft) -0.02 -0.02 -0.03 -0.03 -0.03  0.13 0.23 0.32 0.41 0.49 
  15% 13% 10% 7% 5%  65% 69% 68% 65% 63% 

(3) Debt growth (Ft − Ft−4) -0.04 -0.06 -0.07 -0.08 -0.09  0.11 0.17 0.22 0.28 0.33 
  33% 32% 30% 27% 24%  22% 17% 16% 14% 13% 

(4) Price (pt) 0.37 0.38 0.39 0.35 0.29  -2.49 -4.06 -5.61 -7.01 -8.29 
  21% 11% 7% 4% 2%  83% 76% 72% 68% 64% 

(5) Sentiment )( R B
t tλ λ−    -0.34 -0.37 -0.42 -0.46 -0.48  0.90 1.10 1.37 1.61 1.84 

  82% 49% 40% 33% 27%  52% 26% 20% 17% 15% 

(6) Rational beliefs ( )R
tλ   -0.22 -0.23 -0.25 -0.25 -0.25  1.00 1.51 2.03 2.51 2.94 

  51% 29% 21% 15% 10%  96% 74% 67% 62% 57% 

(7) Extrapolative beliefs ( )B
tλ   0.02 0.04 0.07 0.12 0.18  0.86 1.68 2.43 3.11 3.73 

  0% 0% 1% 2% 2%  32% 42% 44% 43% 42% 
       

      
 Multivariate forecasting 1-yr 2-yr 3-yr 4-yr 5-yr  1-yr 2-yr 3-yr 4-yr 5-yr 

(1) Cashflow (xt) 0.02 0.05 0.08 0.10 0.11  -0.03 -0.10 -0.16 -0.22 -0.29  
Debt face value (Ft) -0.01 -0.01 -0.01 -0.01 0.00  0.13 0.21 0.29 0.36 0.42 

  18% 20% 20% 18% 16%  66% 70% 70% 68% 65% 

(2) Cashflow (xt) 0.01 0.03 0.05 0.06 0.06  -0.14 -0.30 -0.46 -0.61 -0.75 
 Debt growth (Ft − Ft−4) -0.04 -0.05 -0.06 -0.06 -0.07  0.07 0.08 0.09 0.10 0.12 
  34% 35% 34% 31% 28%  31% 33% 34% 34% 33% 

(3) Cashflow (xt) 0.01 0.04 0.06 0.08 0.09  -0.02 -0.10 -0.18 -0.25 -0.32 
 Debt face value (Ft) -0.04 -0.05 -0.06 -0.06 -0.07  0.14 0.19 0.24 0.29 0.34 
 Extrapolative beliefs ( )B

tλ    0.34 0.44 0.56 0.66 0.76  -0.12 0.25 0.53 0.77 0.97 
  42% 41% 40% 38% 35%  66% 71% 71% 69% 66% 

 


