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Abstract

Future interbank uncollateralized borrowing costs can be locked in using interest rate swap
instruments tied to the effective federal funds rate (OIS) or LIBOR (IRS). Since the Global
Financial Crisis, OIS and IRS rates have fallen below maturity-matched U.S. Treasury
rates across different maturities. That is surprising, because Treasuries are deemed to have
superior liquidity and safety associated with the safe haven status of the U.S. government.
This should make Treasuries expensive and produce yields that are lower than those of
maturity-matched swap rates. We suggest that U.S. sovereign default risk explains the
negative difference between the OIS and Treasury rates. This explanation is supported using
a quantitative equilibrium model that jointly accounts for macroeconomic fundamentals, as
well as the term structures of OIS, IRS, and credit default swap (CDS) rates. In our model,
we account for interbank credit risk, liquidity effects, and cost of collateralization. Thus,
the sovereign risk channel complements existing explanations based on frictions such as
balance sheet constraints, convenience yield, and hedging demand.
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1 Introduction

The financial crisis of 2008 marked the beginning of a number of disruptions in financial
markets that have persisted to date. In fixed-income markets, three phenomena stand out:
(i) long-term swap rates linked to LIBOR fell below maturity-matched U.S. Treasury yields
(Klingler and Sundaresan, 2018; Jermann, 2019), (ii) short- to intermediate-term maturity
swap rates linked to the Effective Federal Funds Rate (EFFR) also fell below maturity-
matched U.S. Treasury yields (Klingler and Sundaresan, 2019), and (iii) premiums on CDS
contracts on the U.S. government have risen to at least 100 times their pre-crisis levels
(Chernov, Schmid, and Schneider, 2019).

Observations (i) and (ii) appear puzzling from the viewpoint of standard asset pricing theory.
They imply that swap spreads (i.e., the difference between swap and Treasury rates) linked
to LIBOR and EFFR are negative, an irregularity often referred to as ‘negative swap spread
puzzle’. While these puzzles did receive a fair amount of attention in the literature, they
are typically studied in isolation. The third phenomenon is perceived as puzzling by many
observers because of the sheer magnitude of U.S. CDS premiums.

In this paper, we argue that all these phenomena are interrelated and can be understood
jointly by accounting for a change in the perceived credit quality of the United States, a
truly new development since the crisis. In contrast, the factors behind extant explanations
of (i) and (ii), while absolutely valid, were also at work before the crisis, when swap spreads
were positive.

The puzzles stem from the no-arbitrage argument for the relative magnitude of interest
rates. Consider a strategy that sells short a par Treasury bond borrowed via a reverse repo
transaction, together with a position in a swap contract that receives a fixed rate of interest.
The total cash flows are equal to the difference between the swap rate and the Treasury
yield (coupon in the case of par), net of the difference between the floating payments in the
swap and the reverse repo. Because we expect uncollateralized interest rates to be greater
than collateralized ones, the present value of the floating payments (one-period interest
rates) is positive. Therefore, it must be that the difference between the swap rate and the
Treasury yield is positive as well. We analyze violations of this condition in three steps.

First, we provide additional evidence on various interest rate spreads. The swap linked to
the EFFR is known as the overnight indexed swap (OIS), and the one linked to LIBOR is
the interest rate swap (IRS). The difference between OIS and Treasury rates continues to
be negative at longer maturities. The difference between IRS and Treasury rates is negative
between maturities of 7 years and up to 30 years. Finally, the spread between IRS and OIS
rates is positive across all maturities for the entire sample, just as someone in 2007 would
have expected. As a consequence, the negative swap spread puzzles must have a common
source that lies with the relation between OIS and Treasury rates. Moreover, empirically, we
provide suggestive evidence that OIS swap spreads and CDS premiums exhibit significant
comovement.
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Second, we argue that the negative difference between swap and Treasury rates is driven
by the credit riskiness of the U.S. government. If the U.S. can default, one can restore a
credit-risk-free position by combining a short Treasury bond and Treasury protection sold
via a CDS contract. Thus, the original no-arbitrage argument reviewed above should be
modified by introducing a CDS position. As a result, the difference between the swap rate
and the Treasury yield minus the CDS premium should be positive, implying that negative
swap spreads can persist even in the absence of arbitrage. The key insight is that Treasury
bonds can default, but benchmark indices like LIBOR or EFFR cannot because they are not
investable. This feature can make swap contracts more valuable than Treasuries, thereby
lowering swap rates relative to those of bonds.

Third, we propose a realistic quantitative model that captures the evidence. That endeavor
necessitates accounting for the sovereign credit risk of the U.S. government. As observed
by Chernov, Schmid, and Schneider (2019), an equilibrium model is required to measure
the credit risk premium in the absence of an observed risk-free reference rate. We follow
their modeling strategy, but depart in two dimensions. Because the nature of our exercise
demands high quantitative realism, we specify a more realistic model of the joint behavior of
macroeconomic fundamentals. Furthermore, we simplify the modeling of the default trigger
and switch from the structural approach to the intensity-based approach. The default
intensity is driven by macroeconomic variables whose choice is inspired by the analysis of
Augustin (2018) and Chernov, Schmid, and Schneider (2019).

To provide plausible quantitative guidance on swap spreads, our model has to account for
other factors beyond sovereign credit risk that likely affect differences between interest rates
in current markets. We focus on the most relevant factors such as a convenience yield on
Treasuries, bank risk (credit and funding liquidity), and the opportunity cost of collateral
associated with swap transactions. The first factor lowers Treasury yields. The second
factor increases swap rates. The third factor increases swap rates if the short interest rate
and the cost of collateral are positively correlated (Johannes and Sundaresan, 2007). An
important objective of our work is to evaluate the contributions of these different channels
along with sovereign credit risk to the overall swap spreads.

Empirically, we identify the convenience yield and bank risk using observable interest rate
spreads, and the unobserved collateral factor by matching one-year IRS and the term struc-
ture of CDS. Thus, we obtain all the ingredients needed for the valuation of OIS and IRS
without using the data on their respective rates. As a result of this approach, the OIS and
IRS valuation is truly a relative value exercise whereby we determine the theoretical value
of the swap rates using the market values of other instruments. We estimate our model
via Bayesian MCMC methods and thereby recover the model-implied time series for the
relevant variables in our sample.

We find that our quantitative model provides an accurate account of the dynamics in both
OIS and IRS markets. In particular, the model generates swap spread series that were
positive before the crisis, and turned negative after the onset of the financial crisis in 2008.
In counterfactual experiments, we can asses the role of the U.S. credit risk in the behavior
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of swap spreads. Critically, we find that they are uniformly positive in the absence of that
risk. This result establishes the quantitative relevance of the sovereign risk channel in the
pricing of Treasuries and swaps. Conceptually, this relative-value-based view differs from
existing explanations of negative swap spread puzzles, all of which are based on limits to
arbitrage.

Related literature

First, we contribute to a small but growing literature on the puzzling observation that the
difference between interest rate swaps denominated in USD and U.S. Treasury rates, a.k.a.
swap spreads, turned negative for multiple maturities, effectively suggesting that the U.S.
government is riskier than a presumably safe AA-rated bank. Several explanations have
been proposed for the apparent pricing anomaly in financial markets, including demand for
duration by underfunded pension plans (Klingler and Sundaresan, 2018), dealer funding
costs (Lou, 2009), or increases in regulatory leverage ratios (Boyarchenko, Gupta, Steele,
and Yen, 2018). Klingler and Sundaresan (2019) consider fading demand for U.S. Treasury
bonds as a leading explanation for negative OIS-Treasury spreads. Jermann (2019) proposes
a theoretical equilibrium explanation for negative swap spreads by considering regulatory
leverage constraints for dealer balance sheets. Table 1 summarizes the main differences
between our and the existing contributions.

While explanations based on frictions have their merits, we argue that they fail to provide
a unified explanation of Treasury spreads that exceed maturity-matched spreads of short-
term and long-term funding instruments in interbank markets. Demand for duration by
underfunded pension plans is a plausible explanation for 30-year negative swap spreads,
but less so for shorter maturities, even though these have also been persistently negative
for many years. Second, limits-to-arbitrage arguments speak to the persistence of negative
swap spreads, but they do not explain why they turned negative in the first place. Third, a
focus on individual segments of the maturity structure or selective instruments ignores the
inherent equilibrium relationships that must exist between benchmark interest rates. Im-
portantly, we propose a model that explains both positive swap spreads before and negative
swap spreads after the crisis.

We suggest that negative swap spreads can be obtained without frictions (even though
frictions may amplify the phenomenon). By incorporating sovereign default risk into the
modeling of benchmark interest rates, we hope to provide a unified explanation of the price
dynamics of various fixed income instruments during the financial crisis, which poses a
challenge to existing partial equilibrium pricing models to date. Dittmar, Hsu, Roussellet,
and Simasek (2019) propose sovereign default risk as an explanation for the pricing anoma-
lies observed among inflation-indexed securities (Fleckenstein, Longstaff, and Lustig, 2013;
Hilscher, Raviv, and Reis, 2014).

More generally, our study builds on the vast literature on no-arbitrage affine term structure
modeling and credit-sensitive instruments, prominently summarized in Duffie and Singleton
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(2003). In addition, we relate to studies on the modeling of the term structure of overnight
index swaps, interest rate swaps, or LIBOR rates (Duffie and Huang, 1996; Duffie and Sin-
gleton, 1997; Collin-Dufresne and Solnik, 2001; Grinblatt, 2001; He, 2001; Liu, Longstaff,
and Mandell, 2006; Johannes and Sundaresan, 2007; Feldhutter and Lando, 2008; Filipovic
and Trolle, 2013; Monfort, Renne, and Roussellet, 2016) and their empirical examinations
(Litzenberger, 1992; Sun, Sundaresan, and Wang, 1993; Gupta and Subrahmanyam, 2000;
Wang and Yang, 2018). Finally, we also relate to the literature that examines the conve-
nience yield embedded in Treasury bonds (Krishnamurthy, 2002; Longstaff, 2004; Gurkay-
nak, Sack, and Wright, 2007; Goyenko, Subrahmanyam, and Ukhov, 2011; Krishnamurthy
and Vissing-Jorgensen, 2012; Nagel, 2016; Du, Im, and Schreger, 2018).

2 Preliminary evidence

2.1 Benchmark interest rates in the U.S.

Our analysis is focused on four types of U.S. interest rates and their interaction: (i) Treasury
yields; (ii) OIS premiums; (iii) IRS premiums; (iv) and CDS premiums. The U.S. Treasury
borrows money on behalf of the government by issuing debt securities of different maturities.
The effective annual interest that can be earned along the maturity spectrum characterizes
the Treasury yield curve. The Treasury yield curve can be characterized using zero coupon,
coupon, par, or forward rates. The most convenient way is to work with zero-coupon
yields that are boostrapped from coupon bonds (e.g., Gurkaynak, Sack, and Wright, 2007,
henceforth GSW). Another popular indicator of the U.S. government’s borrowing costs is
the constant maturity Treasury (CMT) yield curve, or par rates, which are bootstrapped
from coupon bonds as well. CMTnt denotes the coupon at time t of a bond maturing in n
periods.

Overnight indexed swaps (OIS) are fully collateralized contracts in which a fixed rate payer
exchanges a constant cash flow, i.e., the OIS rate, against a floating payment that is com-
puted as the geometric average of the daily EFFR. The Federal Funds Target Rate is
determined by the Federal Open Market Committee in order to conduct monetary pol-
icy. The EFFR is the actual interest rate at which banks lend reserve balances to other
banks overnight without collateral. Since March 1, 2016, it is measured as the volume-
weighted median of the bilaterally negotiated transactions. Before that, it was measured
as the volume-weighted average. OIS contracts with maturities up to one year have only
one settlement (the geometric average is computed over the lifetime of the contract), while
cash payments for contracts with maturities above one year arise quarterly (the geometric
average is re-computed every quarter). Hull and White (2013) and Wang and Yang (2018)
discuss the institutional details of OIS contracts. OISnt denotes the rate at time t of a swap
maturing in n periods.

Interest rate swaps (IRS) have arrangements similar to those of OIS but with a different
reference floating rate, which is the 3-month London interbank offered rate (LIBOR) that
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is fixed at the previous settlement date of an IRS. LIBOR is the interest rate at which
banks in the Eurodollar area are willing to lend to each other on an uncollateralized basis.
See Duffie and Singleton (1997), Collin-Dufresne and Solnik (2001), and Johannes and
Sundaresan (2007) for discussions on the institutional details of LIBOR swap contracts.
IRSnt denotes the rate at time t of a swap maturing in n periods.

The definitions of LIBOR and EFFR are conceptually similar as they both relate to un-
collateralized interbank lending. So, one should expect overnight LIBOR to be similar to
EFFR. The rates should not be literally the same, however. The banks in the LIBOR panel
are not identical to the banks in the Fed system, and logistics of lending within the Fed
system are different from that in the Eurodollar area. Figure 1 compares the two rates.

They are sitting right on top of each other with one exception: the onset of the banking
crisis of 2008. The difference between the instruments linked to LIBOR and EFFR arises
because of the term effect. The floating legs are linked to three-month LIBOR and daily
EFFR compounded over three months. In the presence of banks’ credit risk, lending to
banks without collateral for three months outright (at LIBOR) is more risky than lending
overnight (at EFFR) and rolling that over daily for three months.

Another closely related rate is the interest earned on collateralized borrowing through a
repurchase agreement contract, henceforth repo. We do not study repo in this paper as
it has its own host of issues and puzzles. In the context of our analysis, one could be
concerned about two issues. First, general collateral (GC) repo rates seem like a natural
proxy for the risk-free rate. As Duffie and Stein (2015) point out, GC rates exhibit similar
flight-to-quality spikes as Treasury bills and excess volatility due to the very short-term
maturity of one day. Also, the GC repo market is not active at maturities beyond three
months, and so there is no readily available term structure information. Finally, the post
2008 quantitative easing program that involved the purchase of Treasury bonds affected the
supply of collateral in repo transactions, leading to distortions in rates. A second concern
is whether the repo rate should play some role in our analysis. We use repo rates only
qualitatively without relying on the specific values or their dynamics.

The last rate we focus on is the premium on credit default swaps (CDS) associated with
the U.S. government. CDS are effectively insurance contracts, in which the protection
seller has to make payments in case of a credit event, which may include failure to pay,
repudiation/moratorium, and restructuring. CDSnt denotes the rate at time t of a swap
maturing in n periods.

If the U.S. government has no credit risk, one would expect these premiums to be approx-
imately zero, which was the case prior to October 2007. The subsequent elevation in the
CDS premiums is a prima facie evidence of U.S. credit risk, as argued by Chernov, Schmid,
and Schneider (2019). In fact, there is a debate in the industry and in academia whether
CDS premiums reflect compensation for credit risk at all. We argue that, on balance, both
theory and evidence are favorable of the U.S. credit risk view.
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First, existing theories imply the presence of credit risk, even in cases when it is not the
main driving force behind CDS premiums. Chernov, Schmid, and Schneider (2019) attribute
most of the CDS premium to credit risk in a model with a version of a Bansal and Yaron
(2004) pricing kernel, an intertemporal government budget constraint, and a decline in
government revenues when taxes are too high, also known as the Laffer curve. Lando and
Klingler (2018) take a different view and attribute most of the CDS premium to regulatory
frictions. The underlying reason is that uncollateralized counterparty risk exposures demand
capital charges, which can be offset by purchasing CDS protection against that counterparty.
That action artificially inflates the CDS premium. This argument crucially depends on the
presence of non-zero credit risk, otherwise there is no charge.

Second, from an empirical perspective, the United States defaulted before, both on external
and domestic debt (Zivney and Marcus, 1989; English, 1996; Reinhart and Rogoff, 2008).
Most recently, Standard & Poor’s stripped the U.S. off the highest AAA credit rating in
2011, suggesting the presence of some credit risk. In the modern times, we have also expe-
rienced effective defaults by high-quality sovereigns despite relatively low CDS premiums.
Indeed Ireland, which still benefitted from a AAA credit rating going into the global finan-
cial crisis, saw its CDS premiums rise from about 2 bps in 2007 to north of 400 bps when
it was bailed out by the Eurozone countries in 2010 (see discussions around Figure 1 in
Acharya, Drechsler, and Schnabl, 2014). Similarly, Spain received a AAA credit rating in
2003 when its CDS premiums fluctuated around 3 to 4 bps. Yet, it was at the cusp of junk
status in 2012 when it received financial support from the Eurozone, and CDS premiums
reached levels close to 600 bps.

2.2 Data

We source data on LIBOR, IRS and OIS rates from Bloomberg, and U.S. CDS premiums
from Markit. We start the sample on May 8, 2002, when data for OIS rates start having
few missing observations, and end on September 26, 2018. The 30-year OIS rates are
often discarded by researchers because of their low liquidity. Further, during the crisis, no
OIS data are available for maturities beyond 10 years. Thus, longer-term OIS rates are
available only for part of the sample period. Because swap rates are par rates, we use the
constant maturity Treasury (CMT) rates published by the U.S. Federal Reserve Bank as a
maturity-matched Treasury rate.

We report basic summary statistics for the term structure of all rates in Table 2, summariz-
ing the information for maturities of 3 and 6 months, as well as 3, 5, 7, 10, 20, and 30 years.
Panels A, B, and C in Table 2 show that, on average, CMTs are lowest, with an upward
sloping term structure ranging from 1.25% at the short end to 3.95% at the 30-year horizon.
OIS rates, reported in Panel A, are higher, ranging on average from 1.40% to 2.54% at the
5-year maturity. Average OIS rates with maturities above 5 years are not directly compa-
rable to the CMTs, as there are fewer observations. OIS data for the 7-year and 10-year
maturities start in May 2012 and August 2008, respectively, while those for the 20-year and
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30-year maturities start in September 2011. LIBOR/swap rates reported in Panel B are the
largest, ranging on average from 1.66% to 3.97% at the short and long end of the maturity
spectrum. All interest rates exhibit a decreasing term structure of volatility, as the standard
deviation for long-term maturities is lower than that for short-term maturities.

In Panel D, we report statistics for the Gurkaynak, Sack, and Wright (2007) zero coupon
Treasury yields, which we use in our estimation. These are available for 1-year to 30-years,
and are slightly larger than the CMTs, with an average yield of 1.50% to 4.07%.

In Panels E and F of Table 2, we report both USD and EUR denominated CDS premiums
on the U.S. Treasury. We use USD denominated contracts in our empirical analysis. EUR
contracts cover a longer span of data (from 2007 instead of 2010), so we use them for
qualitative indication of the magnitude of the U.S. credit risk premium during the crisis.
The average cost of insurance against a default by the U.S. Treasury ranges from 11 bps to
37 bps for USD contracts, and from 13 bps to 44 bps for EUR denominated contracts. The
5-year contract is the most liquid. At the 99th percentile of the distribution, the 5-year
insurance premium is as high as 66 bps during the post-2010 period, but at the height of the
global financial crisis (GFC), 5-year spreads jumped to a maximum of 95 bps (unreported
in the Table).

2.3 Swap spreads

Figure 2 visualizes the evidence on swap spreads, i.e., the difference between OIS or IRS
rates and maturity-matched Treasury rates. In particular, panel (d) of the figure confirms
the negative long-term IRS swap spreads observed in the post-crisis period, as empha-
sized by Jermann (2019) and Klingler and Sundaresan (2018). According to Boyarchenko,
Gupta, Steele, and Yen (2018) and Jermann (2019), long-term swap spreads remain nega-
tive because regulatory caps on leverage ratios make it too costly for investors to arbitrage
away the difference. Panels (a) and (b) of the same figure confirm the negative short-term
OIS spreads observed in the post-crisis period, as emphasized by Klingler and Sundaresan
(2019). They associate this inversion with a fading demand for U.S. Treasury notes and a
corresponding decline in the convenience yield.

All the panels put together additional evidence. Specifically, OIS swap spreads continue to
be negative at longer maturities. The liquidity of OIS with maturities over 5 years declines.
Nevertheless, the prices convey qualitative information about the relative magnitudes of
OIS and Treasury rates. The difference is so large that it is hard to imagine that it could
be explained away by liquidity effects.1

1In fact, the direction of liquidity effects could be ambiguous, ex ante. The reason is that for assets
in zero net supply, such as swaps, the liquidity premium is earned by the marginal investor, who is either
long or short swaps on average (see, e.g., Bongaerts, De Jong, and Driessen, 2011, Deuskar, Gupta, and
Subrahmanyam, 2011, and Brenner, Eldor, and Hauser, 2001).
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2.4 U.S. credit risk and negative swap spreads

In this section, we explain the intuition behind our thesis of the relation between negative
swap spreads and U.S. credit risk. We rely on the no-arbitrage bound type of argument.
To appreciate the impact of credit risk, it is worth revisiting the case without credit risk
first. A negative swap spread suggests that the Treasury is relatively less expensive. As an
arbitrageur, one would want to exploit this by buying the Treasury via a repo transaction
and take a position that pays the fixed (and receives the floating) rate in a swap contract.
The cash flows corresponding to these positions are displayed in Table 4.

We use notation CMSn0 for a generic swap rate, either OISn0 or IRSn0 . The contractual
floating rate in a swap (a LIBOR rate, or EFFR compounded over the period in-between
tenors) is ft. The three-month repo rate is rt. SS

n
0 denotes the swap spread and equals

CMSn0 − CMTn0 . The term St denotes the difference ft − rt. For expositional simplicity,
we assume that floating and fixed payments are paid each period.

One receives St−1− SSn0 at each point t. No-arbitrage implies that PV (SSn0 ) = PV (St−1),
where PV denotes the present value computed at time 0 (the swap inception). Because
uncollateralized borrowing costs are greater than collateralized borrowing costs, the present
value of the floating payments has to be positive. That implies a pure arbitrage opportunity
if SSn0 < 0.

If the Treasury is credit risky, the no-arbitrage argument above no longer holds, because,
upon default at a random date τ , the Treasury bond terminates, the future interest payments
CMTn0 are no longer received, and the bond pays 1−L instead of the full face value. That,
in turn, affects the repayment of the repo loan. The swap contract is unaffected by the
Treasury default because it is linked to an index ft that is not investable. That feature
makes a swap more valuable than a credit-risky Treasury bond.

It is possible to hedge the credit risk by complementing a position in the bond with the
purchase of default protection via a CDS contract. That affects the cash flows of the overall
position. See Table 5. Specifically, in the case of default, the joint bond-CDS position has
full recovery of par, which is used to close out the repo loan. In addition, one receives the
unwind value of the swap, Uτ . For simplicity, we assume that accruals due upon default are
rolled into the unwind value.

On balance, one receives St−1 − SSn0 − CDSn0 every period t in which there is no default.
If there is a default at time τ , one receives Uτ . By no-arbitrage, the present value of these
cash flows has to be equal to zero at the swap inception, implying:

PV (SSn0 ) = PV (St−1)− PV (CDSn0 ) + PV (Uτ ) ≥ PV (Uτ )− PV (CDSn0 ).

Thus, for sufficiently large CDS premiums and sufficiently small values of PV (Uτ ), the swap
spread can be negative. It is thus fair to conclude that the lower bound for the swap spread
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can be negative, and that observing a negative swap spread would not necessarily lead to
arbitrage opportunities.

Accounting for the cumulative probability of no default, Sn0 , the bound can be represented
as SSn0 ≥ PV (Uτ )/Sn0 − CDSn0 . Figure 2 demonstrates the relation between swap spreads
and the negative of the CDS premiums. We see that in the case of IRS, SSn0 > −CDSn0 ,
suggesting a small value of PV0(Uτ ). In the case of OIS, SSn0 is occasionally less than
−CDSn0 , implying a negative value of PV0(Uτ ).

Figure 2 suggests that, besides serving an approximate lower bound for swap spreads, CDS
premiums are co-moving with the spreads. Motivated by this observation, Table 3 pro-
vides additional evidence on the relation between OIS spreads and U.S. CDS by regressing
monthly changes in the OIS swap spread on changes in the maturity-matched U.S. CDS
premiums and various controls.2 We run panel regressions by pooling all maturities, and
match the 3-month swap spreads with the 6-month CDS premium, because there exists
no CDS contract with a lower maturity. We add maturity-specific fixed effects to absorb
time-invariant cross-maturity differences due to possible clienteles.

The finding in column (1) is consistent with a negative relation between OIS swap spreads
and CDS premiums. In column (2), we show that the economic magnitude is similar for
maturities above 5 years, and in column (3), we pool all maturities together. The estimated
coefficient suggests that a 10 bps increase in the CDS premium is associated with a 0.7
bps drop in the OIS swap spread. The larger coefficient (-0.13) reported in column (4)
suggests that the sensitivity of the changes in OIS-Treasury to changes in CDS premiums
has increased in more recent years.

In columns (5) to (10), we successively introduce lagged swap spreads, quarterly fixed ef-
fects to absorb the influence of common macroeconomic and financial factors, and controls.3

Even a conservative specification with the interaction of maturity and quarterly fixed effects
in column (7) does not alter the significance or economic magnitude of the regression coeffi-
cient. Longer-term OIS contracts were less liquid around the crisis and became successively
more liquid, as the discounting using OIS rates became more common practice over time.
Thus, the negative relation between swap spreads and CDS premiums manifests itself in
later years, as demonstrated by the larger magnitude of the regression coefficient in columns
(4), (8), and (12), in which we restrict the regression to the time period post 2014. This
finding also suggests that our result is not merely driven by the U.S. debt ceiling episodes
in August 2011 and in October 2013.

2We examine the relation between swap spreads and U.S. credit risk at the monthly frequency, because
the decision interval in our model is monthly. Results at the weekly frequency, which are stronger, are
available upon request.

3Control variables include the CBOE VIX index, the exchange rate of the USD against a basket of a
broad group of major U.S. trading partners, the West Texas Intermediate oil price index, the economic
policy uncertainty index, the high-yield and investment-grade bond indices, inflation, the TED spread, the
3-month LIBOR-OIS spread, the 3-month T-bill rate, the U.S. Treasury total cash balances, and CDS depth
defined as the number of dealer quotes used to compute the mid-market spread.
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3 A realistic model

As we have established, a negative swap spread can obtain even in absence of arbitrage
opportunities, and may in fact be plausible in the context of current market data. In order
to flesh out precisely and quantify what is happening in reality, we have to explicitly model
the forces that drive the magnitude of swap spreads. Furthermore, an important implication
of perceived credit risk of the U.S. government is that we do not get to observe a risk-free
rate. Thus, an equilibrium model is required to identify a risk-free rate. We rely on a model
of a representative agent with recursive preferences for this purpose.

Another, more subtle, advantage of using the equilibrium framework pertains to the change
in how the industry approaches the discounting of cash flows associated with collateralized
swap agreements. Because of full collateralization, market participants started using the
OIS rates instead of the LIBOR ones at the end of 2007, and the whole industry has switched
to OIS by the end of 2008 (e.g., Cameron, 2013, Spears, 2019). Thus, a no-arbitrage model
would have to address the choice of reference interest rate.4

Under the null of our model, we obtain an equilibrium pricing kernel that we use to discount
cash flows of a given financial instrument. The reference interest rate is the theoretical real
risk-free rate in this case. All other interest rates appear as derived quantities in this
framework on an internally consistent basis.

3.1 Joint dynamics of macroeconomic fundamentals

As is well-known from the long-run risk literature, accounting for variation in conditional
expectation and volatility of consumption growth is central for a quantitative success of the
framework. That motivates us to identify these quantities from a rich model of the joint
dynamics of consumption growth, inflation, output growth, and government expenditures.

This strategy has the following three attractive features. First, we identify risk-free rates
(both real and nominal) without relying on asset price data. Second, we can exploit the
rich joint interactions between the macro fundamentals to identify conditional moments
of consumption growth (Schorfheide, Song, and Yaron, 2018, Zviadadze, 2016). Third, we
identify the dynamics of macro variables other than consumption that we would need in our
model: inflation to value nominal assets; output growth and government expenditures to
model the default probability of the U.S. government (as in Chernov, Schmid, and Schnei-
der, 2019); macroeconomic uncertainty as an important driver of sovereign credit risk in
developed economies (as in Augustin, 2018).

4For example, Chernov and Creal (2016) reflect this change, by using OIS rates as a measure of reference
rates starting in 2009, and by using a weighted average of LIBOR and OIS in 2008, with weights gradually
shifting towards OIS by the end of 2008.
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Consistent with the description above, we introduce a vector zt of macroeconomic funda-
mentals:

zt = (∆ct, dt, gt, πt)
> ,

where ∆ct = log(Ct+1/Ct) is log consumption growth, dt is log output growth, gt is the
government expenditure to output ratio, and πt is inflation. Dynamics of state variables
in many long-run risk models are specified as a VAR(1) process in observable macro and
latent states, e.g., Bansal and Yaron (2004), or Bansal and Shaliastovich (2012). They are
similar to VARMA(1,1) models in observable macro states only (they are literally the same
in homoscedastic cases).

Thus, we assume that zt follows a VARMA(1,1) process with time-varying variance:

zt+1 = µz + Φzzt + Φzvvt + Σz · V 1/2
z,t · εz,t+1 + Θz · Σz · V 1/2

z,t−1 · εz,t, (1)

where zt+1 denotes a N × 1 vector (N = 4 in our case), εz,t+1 ∼ N (0, I), µz is an N × 1
vector, Φz is an N ×N matrix, and Σz is an N ×N matrix, where the diagonal elements
of Σz are defined as σzi , for i = 1, 2, . . . , N . Denote the last term in equation (1) as wt+1,

wt+1 = Θz · Σz · V 1/2
z,t · εz,t+1,

and stack the elements of zt and wt into a new vector yt =
[
z>t , w

>
t

]>
.

We treat πt as being Granger-caused by the other macro variables, but not vice-versa. This
is a reduced-form representation of the exogenous and endogenous variables that allows us
to be consistent with the setup of Chernov, Schmid, and Schneider (2019). To achieve that,
we restrict the off-diagonal elements of the last column of Φz and Θz to zero.

The vector yt follows a VAR(1):

yt+1 = µy + Φyyt + Φyvvt + Σy · V 1/2
y,t · εy,t+1,

where yt+1 denotes a 2N×1 vector, εy,t+1 ∼ N (0, I), µy is a 2N×1 vector, Φy is a 2N×2N
matrix, and Σy is a 2N × 2N matrix, where the diagonal elements of Σy are defined as σyi ,
for i = 1, 2, . . . , 2N .

We assume that the volatility vector consists of autonomous univariate autoregressive
gamma processes characterized by the bivariate vector vt, such that each element vi,t+1

follows an autoregressive gamma process vi,t+1 ∼ ARG(νi, φi, ci) (Gourieroux and Jasiak,
2006 and Le, Singleton, and Dai, 2010), that is,

vi,t+1 = νici + φivi,t + ηi,t+1, vartηi,t+1 = νic
2
i + 2ciφivi,t.

In particular, the unconditional mean is Evi,t = νici(1−φi)−1, and we select ci = (1−φi)ν−1
i

to set it to 1 for identification purposes.
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We augment the state vector yt with the volatility vector to get xt =
[
z>t , w

>
t , v

>
t

]>
. With

K = (2×N + 2) , the K × 1-dimensional multivariate state vector xt+1 follows a VAR(1)
process:

xt+1 = µ+ Φxt + Σ · V 1/2
t · εx,t+1,

where εx,t+1 defines a vector of independent shocks, Φ is a K × K matrix with positive
diagonal elements, Σ is a K ×K matrix with strictly positive elements, and V is a K ×K
diagonal matrix with elements given by:

Vi,t = ai + b>i vt,

where parameter restrictions are required to guarantee non-negativity of the volatility pro-
cess.

3.2 The pricing kernel

We assume a representative agent with recursive preferences:

Ut = [(1− β)Cρt + βµt(Ut+1)ρ]
1/ρ

,

µt(Ut+1) = Et(U
α
t+1)1/α,

where ρ < 1 captures time preferences (intertemporal elasticity of substitution is (1−ρ)−1),
and α < 1 captures the risk aversion (relative risk aversion is 1−α). Aggregate consumption
is denoted by Ct. With this utility function, the real pricing kernel is:

M̂t+1 = β(Ct+1/Ct)
ρ−1(Ut+1/µt(Ut+1))α−ρ.

We can approximate the (log) pricing kernel using the solution method outlined in Hansen,
Heaton, and Li (2008) and Backus, Chernov, and Zin (2014). We log-linearize the scaled
time-aggregator:

log(Ut/Ct) ≡ ut ≈ b0 + b1 logµt(e
∆ct+1+ut+1),

where

b1 = βeρ log µ((1− β) + βeρ logµ)−1

b0 = ρ−1 log((1− β) + βeρ log µ)− b1 logµ,

with log µ = E(logµt). We guess ut to be a linear function of the state xt, substitute
this guess into the log-linearized expression for ut, and use the method of undetermined
coefficients to solve for ut. Then the log pricing kernel is:

m̂t,t+1 = log β + (ρ− 1) ∆ct+1 + (α− ρ)
[
∆ct+1 + ut+1 − logµt

(
e∆ct+1+ut+1

)]
= log β − (α− ρ) b0b

−1
1 + (α− 1) ∆ct+1 + (α− ρ)

[
ut+1 − b−1

1 ut
]
.

See Appendix A for details.
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3.3 Equilibrium risk-free rates

The price of a zero-coupon bond paying one unit of consumption n-periods ahead from now
must satisfy the Euler equation

P̂nt = Et

[
M̂t,t+n

]
.

We show in Appendix B.1 that the term structure of real interest rates is affine in the state
vector xt.

Similarly, the price of an n-period zero-coupon nominal bond is obtained from the nominal
stochastic discount factor and must satisfy the Euler equation

Pnt = Et [Mt,t+n] ,

where the nominal (log) stochastic discount factor is defined as mt,t+1 = m̂t,t+1 − πt+1 =
m̂t,t+1−e>2 yt+1. We show in Appendix B.2 that the term structure of nominal interest rates
is affine in the state vector xt.

3.4 The valuation approach for defaultable interest rates

To capture the credit risk of the U.S. government, we use the Chernov, Schmid, and Schnei-
der (2019) model as a basis. Their model is based on the contingent claims approach (CCA),
which delivers a fiscal default via the budget deficit that can no longer be restored by raising
taxes or eroding the real value of debt by creating inflation. That model requires a numeri-
cal solution even under oversimplified assumptions about the underlying economy. Because
we are seeking high degree of realism, we do not model the whole elaborate structure of the
default mechanism for tractability. Instead, we exploit the equivalence between the CCA
and compound Poisson approaches (Duffie and Lando, 2001) and model a default hazard
rate.

The exogenous variables in Chernov, Schmid, and Schneider (2019) that drive the U.S.
credit risk are the aggregate consumption growth rate, output growth, and the government
expenditures to output ratio. Augustin (2018) also shows that macroeconomic uncertainty
is an important driver of sovereign credit risk in developed economies. Thus, we assume
that the government’s default risk is driven by a default intensity ht defined as:

ht = h+ hc∆ct + hddt + hggt + hv1v1,t + hv2v2,t. (2)

To model default risk, we also need a corresponding loss given default (LGD), denoted by
L, which we assume to be constant.

One might think that inflation or the bank credit risk would affect the default probability of
the U.S. government. The former may be relevant if one believes that the U.S. government
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may attempt to “inflate away” its nominal debt. The latter may be important because
of the potential link between banks’ solvency and government default (see, e.g., Acharya,
Drechsler, and Schnabl, 2014). For instance, if the Fed bails out the banks, it could be
forced into insolvency. That, in turn, could trigger government default because of the fiscal
support provided by the Treasury (Reis, 2015).

As we discussed earlier in the case of πt and as we will show later in the case of the factor
capturing bank risk, the two variables are being Granger-caused by macro variables, but not
vice-versa. Nevertheless, inflation and bank credit risk are related to the default probability
of the U.S. government, albeit implicitly.

Given these assumptions, we can follow the approach of Duffie and Singleton (1999) that
implies, under the recovery-of-market-value assumption, that one could account for credit
risk by augmenting the (log) discount factor with L · ht :

P̄nt ≈ Ete
∑n
j=1 mt+j−1,t+j−L·ht+j .

However, P̄nt does not correspond to an observable bond price. That is because Treasury
prices also reflect the convenience yield.

Thus, to progress further, we have to address the following conceptual challenge. While
our focus is on the U.S. credit risk, the swap spreads are affected by other factors. First,
Treasury bonds are considered to be expensive and embed a convenience yield relative
to other asset classes (e.g., Longstaff, 2004; Krishnamurthy and Vissing-Jorgensen, 2012;
Nagel, 2016; Du, Im, and Schreger, 2018). Second, the swap rates typically reflect the credit
and funding risk of financial intermediaries (e.g., Feldhutter and Lando, 2008). Third, as
pointed out by Johannes and Sundaresan (2007), full collateralization of swaps increases
the rates because of an opportunity cost of collateral (if the correlation between the short
interest rate and the cost of collateral is positive). So, we have to model all these additional
drivers of swap spreads.

Furthermore, there is no single asset that is sensitive to only one of these factors. Thus,
in order to identify them, we have to use several assets simultaneously. Specifically, both
Treasuries and U.S. CDS are informative about the U.S. credit risk. The former also
reflects the convenience yield, while the latter does not. Similarly, the latter reflects the
opportunity cost of collateral, which is irrelevant for Treasuries, but also impacts swap rates.
IRS contracts are exposed to the opportunity cost of collateral as well, and the credit risk
of banks in the Eurodollar area. Thus, the combination of these assets will help us identify
all the needed factors. Once identified, we use all factors to evaluate the central object of
the negative swap spread puzzle, i.e., the OIS-Treasury spread, as an “out-of-sample test”
of our model.

3.5 Spread factors

Empirically, we identify the safety factor via the difference between the one-month OIS rate
ot and (risky) Treasury rates ỹ1

t , s1,t = ot − ỹ1
t . As we discussed earlier, this factor reflects
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not just the ease of trading in Treasuries, but also the credit risk of banks in the Federal
Reserve system. We identify the bank credit factor via the difference between 1-month
LIBOR and OIS rates, s2,t = `t− ot. We refer to s2 as the LIBOR-OIS spread. The cost of
collateral s3,t is treated as latent in the absence of an observable measure. We stack them
into a vector st = [s1,t, s2,t, s3,t]

>.

The quantitative and conceptual evolution of these spreads is a rich topic for discussion. We
necessarily limit ourselves to the key takeaways. Roughly speaking, the difference between
LIBOR and EFFR would represent the credit risk of banks in the Eurodollar area, while the
difference between EFFR and a Treasury bill rate would represent the convenience yield.

The first point is consistent with the view of the LIBOR-OIS spread and its use as an
indicator of the health of the banking sector in the wake of the financial crisis of 2008. The
use of OIS here is subtle, because it reflects the credit risk of banks in the Federal Reserve
system. Thus, the spread s2,t, reflects the relative riskiness of the banks in the Eurodollar
area. Practically speaking, the U.S. LIBOR is used for transactions between banks and
other financial institutions, such as mutual funds, while EFFR is used for transactions
between banks in the Fed system.

The second point assumes that the EFFR and the Treasury rate represent the same credit
quality. Many researchers and practitioners treat the whole OIS curve as risk-free, because
it is used to discount fully collateralized transactions. Full collateralization largely mitigates
the counterparty risk, but not the cash flow risk of the underlying asset, the EFFR in this
case. The credit risk of the U.S. Treasury is linked to that of the Federal Reserve system
because of the fiscal support of the latter by the former (Reis, 2015). That means the Fed
will never be insolvent separately from the Treasury. If one were to assume that the EFFR
is risk-free while the Treasury is credit-risky, it would be much easier for us to explain the
negative swap spread. Because of the aforementioned bank risk embedded in the EFFR,
the spread s1,t would reflect that risk in addition to the convenience yield of Treasuries.

We assume that st follows a multivariate Gaussian AR(1) process, and it may also be
affected by the dynamics of the macro volatility vt:

st+1 = µs + Φsvvt + Φsst + Σsεs,t+1, (3)

where the innovations εs,t+1 ∼ N (0, I). By construction, st does not Granger cause the
macro variables (zt, vt). The conditional covariance of the one-period pricing kernel and the
factor is zero, so there is no one-period risk premium associated with st.

5 Their multi-period
counterparts covary, thereby generating risk premiums, because of the presence of macro
fundamentals in the conditional expectation of st. We introduce an extended state vector
x̃>t =

[
x>t , s

>
t

]
.

5The impact of macro innovations on st+1 was estimated imprecisely so we zeroed that out to save on
cumbersome notation.
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3.6 Valuation of credit sensitive instruments

Risky Treasury bonds. Following Duffie and Singleton (1999), the resulting risky Trea-
sury price is

P̃nt ≈ Ete
∑n
j=1 mt+j−1,t+j−L·ht+j+s1,t+j ,

and we show in Appendix B.3 that the term structure of risky interest rates is affine in the
extended state vector x̃t.

Hypothetical LIBOR bonds. We work with hypothetical zero-coupon LIBOR bonds Lnt
discounted at the continuously compounded yield `nt (defined at the monthly frequency),
such that:

Lnt = exp (−`nt · n) , (4)

where n ≤ 12 corresponds to LIBOR rate maturities of up to 12 months.6 Using the
approach of Duffie and Singleton (1999), the resulting price is:

Lnt ≈ Ete
∑n
j=1 mt+j−1,t+j−L·ht+j−s2,t+j ,

and we show in Appendix B.4 with the term structure of LIBOR rates is affine in the
extended state vector x̃t, with rates `nt inferred from Equation (4).

IRS. The fixed rate payer pays the annual interest rate swap premium IRSt,T . The floating
rate payer pays the LIBOR rate that has been realized at the previous coupon period. We
assume monthly time intervals to match the frequency of macroeconomic data. Thus, in
case of a quarterly IRS payment frequency, the floating leg would pay each period the 3-
month LIBOR rate realized on the previous coupon period, `3t−1. The one-month LIBOR
rate is equal to `t ≡ `1t = ỹ1

t + s1,t + s2,t.

We have valued the term structure of zero-coupon LIBOR rates in appendix B.4 and can
thus directly use the three-month LIBOR rates for the computation of the LIBOR swap
contracts.7 We discount all cash flows accounting for the cost of collateral s3,t as in Johannes
and Sundaresan (2007). Thus, the present value of expected future payments by the fixed
leg is given by:

ωfixt = IRSnt

n∆−1∑
j=1

Et
[
emt,t+j∆+s3,t+j∆

]
,

6Because actual LIBOR rates `q,nt are periodic and quoted on an annualized basis, we map the data
into continuously compounded rates according to the formula `nt = n−1 log (1 + `q,nt · n · 30/360). The day
count convention for LIBOR rates is act/360. We use 30/360 as the daycount convention given that it is
numerically close to act/360, and it simplifies the implementation.

7For maturities up to one year, zero-coupon rates are equivalent to par rates. For the numerical im-
plementation, we map the continuously compounded LIBOR rates into periodic rates assuming a 30/360
daycount convention for simplicity.
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where ∆ defines the time interval between two successive coupon periods. The present value
of expected future payments by the floating leg is given by:

ωfloatt =
n∆−1∑
j=1

Et

[
emt,t+j∆+s3,t+j∆

(
e

∆·`3
t+(j−1)∆ − 1

)]
.

where ∆ defines the time interval between two successive coupon periods.

A LIBOR swap contract is priced fairly if both the fixed and the floating legs have the same
value. The condition yields the formula for the IRS spread IRSnt :

IRSnt =

n∆−1∑
j=1

Et

[
emt,t+j∆+s3,t+j∆

(
e

∆·`3
t+(j−1)∆ − 1

)]
n∆−1∑
j=1

Et [emt,t+j∆+s3,t+j∆ ]

. (5)

See Internet Appendix B.5 for the derivation.

OIS. The fixed rate payer pays the annual OIS premium OISnt . The floating rate payer pays
the geometric mean of daily overnight rates. Because of the assumed monthly minimal time
interval in our model, there is no distinction between ot ≡ OIS1

t and EFFR compounded
over a month. Thus, the quarterly payment frequency corresponds to the floating leg paying
the geometric average of three one-month OIS rates.

As was the case for IRS premiums, we discount all cash flows accounting for the cost of
collateral s3,t+1. The present value of expected future payments by the fixed leg is given
by:

πfixt = OISnt

n∆−1∑
j=1

Et
[
emt,t+j∆+s3,t+j∆

]
,

where ∆ defines the time interval between two successive coupon periods. The present value
of expected future payments by the floating leg is given by:

πfloatt =

n∆−1∑
j=1

Et

[
emt,t+j∆+s3,t+j∆

[
exp

(
∆∑
i=1

ot+j∆−i

)
− 1

]]
.

OIS swaps of maturity less than one year are subject to only one payment settlement, while
those of maturities equal to and greater than one year are subject to quarterly payments.

An OIS contract is priced fairly if both the fixed and the floating legs have the same value.
This condition yields the formula for the OIS spread OISnt :

OISnt =

n∆−1∑
j=1

Et

[
emt,t+j∆+s3,t+j∆

[
exp

(
∆∑
i=1

ot+j∆−i

)
− 1

]]
n∆−1∑
j=1

Et [emt,t+j∆+s3,t+j∆ ]

. (6)
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See Internet Appendix B.6 for the derivation.

CDS. To value CDS contracts, we need to model both the premium leg that pays the annual
CDS premium CDSnt , and the protection leg that pays the loss given default L. We note
the distinction between CDS contracts, which contractually recover a fraction of face value,
and risky Treasuries, which are usually modeled as recovering a fraction of market value.
Duffie and Singleton (1999) find little difference across different modeling assumptions of
recovery on the term structure of defaultable interest rates (see Figure 2 on p. 703).

A CDS contract with time to maturity n pays the annual premium until the earlier of
default or the contract’s termination date. As is the case with other swap contracts, we
account for the cost of collateral. Accordingly, the present value of the premium payments
of a USD-denominated CDS contract is equal to:

πpbt = CDSnt

n∆−1∑
j=1

Et
[
emt,t+j∆+s3,t+j∆I (τ > t+ j∆)

]
,

where ∆ defines the time interval between two successive coupon periods, and I(·) is an
indicator function that is equal to one if the condition inside the brackets is met, and zero
otherwise. For simplicity, we omit accrual payments in the notation, but account for them
in the formal implementation of the model. The present value of expected future payments
by the protection seller is given by:

πpst = L · Et
[
emt,τ+s3,τ I (τ ≤ n)

]
.

A CDS contract is priced fairly if both the premium and the protection legs have the same
value. This condition yields the formula for the CDS premium CDSnt :

CDSnt = L · Et [emt,τ+s3,τ I (τ ≤ n)]∑n∆−1

j=1 Et [emt,t+j∆+s3,t+j∆I (τ > t+ j∆)]
. (7)

See Internet Appendix B.7 for the derivation of the CDS premiums.

4 Results

4.1 Estimation

We use macroeconomic fundamentals and financial asset data to estimate the model via
Bayesian MCMC with diffuse priors. The outputs of the procedure are the state variables
and parameter estimates. Posterior estimates are provided in Table 6 and Table 7.
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The key feature of our approach is that we conduct a two-stage estimation. In the first
stage, we estimate the macro dynamics described by the autonomous VARMA for zt. In
the second stage, we use asset market data for the identification of the financial factors st.

There are two advantages to doing so. First, we have a much shorter time interval with avail-
able data on CDS and interest rate swap premiums, which start in 2002 (USD-denominated
U.S. CDS start even later in 2010). Thus, the first stage allows for using a longer history
of macroeconomic fundamentals to learn about zt. Second, we can identify the dynamics
of the macroeconomic factors and, therefore, of the pricing kernel, without relying on asset
market data. Thereby, we are avoiding the “dark matter” critique of Chen, Dou, and Kogan
(2017).

We provide a brief outline of our two-stage estimation procedure. See Appendix C for
details. In the first stage, we use consumption growth, output growth, log government
expenditure-to-output ratio, and inflation from 1982 to 2018. Except for inflation data,
which are monthly, the other macro variables are quarterly.8 Because the decision interval is
one month in our model, we estimate the monthly counterparts of the respective quarterly
series. We adjust the state-space representation to address the mixed frequency of the
observables. Posterior estimates from the first stage estimation are provided in Table 6.

The estimated AR matrix Φz and MA matrix Θz imply that consumption and output
growth rates do not affect inflation and government expenditures. The latter affects all
macro fundamentals (consumption is affected indirectly via output and the MA term). The
two variance factors affect the conditional mean of inflation only. The other elements of the
matrix Φzv are set to zero because they were poorly identified in our sample.

Having filtered out the estimates for zt and vt at the monthly frequency, we use data on the
term structure of Treasury GSW zero-coupon rates (maturity of 1, 3, 5, 7, 10, 20, 30 years),
the term structure of CDS premiums (maturity of 1, 3, 5, 7, 10, 20, 30 years), and the
empirical measures of s1,t and s2,t to learn about the joint dynamics of st. We do not use
the IRS and OIS data in the estimation so that we can evaluate the implied swap spreads as
an out-of-sample test of our model. The one-year IRS is the only exception to the strategy,
because it is helpful in identifying the latent cost of collateral, s3.

9 We use the bootstrap
particle filter to estimate s3,t.

To estimate the dynamics of the financial variables in the second stage, we condition on the
filtered macroeconomic fundamentals from the corresponding period. Furthermore, these
fundamentals exhibit visible shifts in level in this later part of our sample. Thus, we re-
estimate the constant term µz to accommodate possible structural breaks in the level of
macroeconomic fundamentals zt. Relatedly, we impose a one-time structural break in the

8In particular, our choice of using quarterly consumption growth avoids modeling measurement errors
in monthly consumption growth (see Schorfheide, Song, and Yaron, 2018 for a detailed discussion). That
significantly reduces the dimension of the state vector leading to a much more tractable estimation problem.

9Using the one-year IRS data for estimation is innocuous, because it is the shortest maturity and does
not exhibit any puzzles.
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default intensity ht by assuming that it switched from zero to a positive value in December
2007 to reflect nearly zero U.S. CDS premiums prior to that date. Posterior estimates from
the second stage estimation are provided in Table 7.

With the exception of the variance factors, other macro variables do not affect the financial
ones (the matrix Φsy was poorly identified). The variances have a significant impact on the
convenience yield s1, perhaps reflecting the flight-to-safety effect, and the cost of collateral
s3, reflecting lenders’ collateral demand. With the exception of output growth, all other
macro variables play an important role in the default intensity. Output growth affects
forecasts of future ht via its impact on consumption growth (matrix Φz).

Most studies on no-arbitrage modeling of credit-sensitive assets do not estimate the LGD
separately from the default intensity because of a joint identification problem. We need
the separation between the two for the sole purpose of simplifying the interpretation of the
magnitude of the default rate. Thus, following Chernov, Schmid, and Schneider (2019), we
calibrate the LGD to a specific value of L = 0.3.

Estimated risk aversion is 1 − α ≈ 5. This value is clearly insufficient to match the equity
premium, which is natural in a bond pricing model. Elasticity of intertemporal substitution
(1− ρ)−1 ≈ 1.33 is in line with standard calibrations in the long-run risk literature.

4.2 Factors

Figures 3 and 4 display the factors that we use in our model. The first figure shows the macro
variables zt. We note a downward trend in inflation throughout the sample. While that can
be attributed to the great moderation in the early part of our sample period, it may appear
puzzling in the post-crisis sample when monetary policy was particularly accommodating.
Our series are consistent, however, with the observation, sometimes labeled the ‘missing
inflation puzzle’, that inflation is low in spite of expansionary monetary policies conducted
by central banks around the globe (Arias, Erceg, and Trabandt, 2016).

We also note a gradual elevation in government expenditures (as a fraction of output)
throughout the sample, consistent with stabilization policies put in place after the onset of
the financial crisis. Log consumption and output growth are standard series. In particular,
the latter part of the sample period exhibits lower consumption growth volatility, consistent
with the period of great moderation, except for a bump in anticipation of a potential turmoil
in 2008.

The second figure shows the observable finance variables, s1 and s2, together with the la-
tent finance variable s3. The convenience yield and the LIBOR-OIS factors exhibit familiar
patterns with substantial spikes during the period surrounding the financial crisis of 2008,
reflecting a flight to quality on the one hand, and rising perceptions of bank risk in the
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aftermath of Lehman’s collapse, on the other hand. The cost of posting collateral gradu-
ally rises during the overheating credit markets heading into the crisis, when investment
opportunities were abundant.

Both s1 and s3 collapse after the crisis. This pattern is important as a decline in both of
these factors diminishes their effects on swap spreads. Quantitatively, that leaves credit risk
of the U.S. Treasury as the main force affecting the spreads.

The post-crisis pattern in s1 and s3 is natural. The decline in convenience is associated with
an increase in the riskiness of Treasuries. In fact, our estimated parameters imply that both
variance factors are associated with an increase in the default intensity and a decline in s1.
The cost-of-collateral is influenced by the cost of holding cash and lending out Treasuries
in rehypothecation. Indeed, interest rates have been at historical lows since the financial
crisis.

4.3 Fit

Figures 5 - 6 demonstrate the model fit to the financial data used in the estimation. We
have an unusual setup in that our model is a hybrid of an endowment economy and a
reduced-form no-arbitrage valuation. Formally, it belongs to the class of affine models, but
we impose a host of additional economic restrictions not typically present in a traditional
no-arbitrage model. So we do not expect as pristine of a fit as a regular affine no-arbitrage
model would deliver. Nevertheless, a high degree of realism would be welcome. Otherwise,
the implications for the IRS-Treasury and OIS-Treasury spreads would not be very plausible
and relevant.

Figure 5 compares model-implied credit-risky and observed zero-coupon Treasury yields of
different maturities, up to a 30-year horizon. The model is having some difficulty in match-
ing the one-year rate, but performs well at longer horizons. That is not surprising. Our
model does not explicitly account for the prolonged near-zero-bound interest rate experi-
ence after the crisis. The short end of the curve is much more sensitive to that than the
long end.

Figure 6 shows observed and model-implied U.S. CDS rates. CDS premiums are stripped of
the level of benchmark interest rates, so they naturally do not have a first-order sensitivity
to the aforementioned misspecification of the short interest rates. The fit of the model is
good throughout all maturities.

4.4 The U.S. “credit spread”

Having verified a reasonable fit of the model, we proceed with exploring its implications.
Figure 7 displays nominal credit-risk-free interest rates (without convenience yield) against
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the risky nominal Treasury benchmark. Before the financial crisis, there is little difference
between the riskless and the risky nominal rates. This is expected because the U.S. CDS
premium was literally zero before the crisis. They are not identical because of the presence
of the convenience yield.

U.S. CDS premiums jumped in the financial crisis and stayed elevated ever since. As we show
in Figure 6, CDS premiums fluctuated between 20 and 60 bps at different maturities between
2011 and 2018. Accordingly, the ignition of U.S. credit risk is reflected in the difference
between risky and riskless nominal Treasury interest rates. The difference between these
rates is small at short horizons, but becomes progressively more visible at longer horizons.
For example, the difference averages around 44 bps (70 bps) at the 5-year (10-year) maturity
during the post-crisis period, and reaches maximum levels of 74 bps (91 bps).

Focusing on the variation in the quantitative magnitude of credit risk, we plot the U.S.
default intensity in Figure 8(A). The likelihood of a U.S. default spikes to 0.2% during the
global financial crisis (GFC), and then flares up again in times of elevated fiscal stress.
Over the last decade, the threats of government shutdowns have risen as anticipations of
U.S. debt ceiling breaches are increasingly common. On August 5, 2011, the rating agency
Standard & Poor’s stripped the U.S. off its AAA credit rating and lowered it by one notch
to AA+. During the post-GFC period the average intensity is about 0.05%.

Figure 8(B) quantifies the impact of the credit risk premium on the CDS valuation. Specif-
ically, we characterize the “distress” risk premium associated with unpredictable variation
in the arrival rate ht. To this end, we follow Longstaff, Mithal, and Neis (2005) and Pan
and Singleton (2008), and report the difference between the model-based five-year CDS pre-
mium and a hypothetical premium for the case of a risk-neutral investor (denoted CDS†).
We omit the cost of collateral s3 to focus on the pure effect of credit risk premium.

The difference between CDS and CDS† is stable throughout the sample averaging 14 bps.
The relative difference measuring the fraction of the CDS premium due to distress risk
ranges between 20 and 80 percent. In contrast to the difference in levels, the relative
measure is trending upwards throughout the sample. While CDS premiums have declined
in the post-GFC period, the relative contribution of the risk premium has increased.

In Figure 9, we conduct an exercise that helps us better gauge the impact of modeling the
default risk of the U.S. Treasury. We compare the sensitivity to all state variables of the
“U.S. credit spread” that is displayed in Figure 7. We measure the sensitivities as factor
loadings appearing in the theoretical linear relation between the credit spread and the state
variables. To facilitate the quantitative interpretation of the results, we multiply these
loadings by unconditional standard deviations of the respective state variables. Thus the
reported numbers represent a monthly change in the credit spread (expressed in decimals)
in response to a one standard deviation change in a given state variable.

Our discussion focuses on the four quantitatively most important variables. Higher gov-
ernment expenditures elevate the risky yield relative to the nominal one, and this effect is
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especially pronounced at the short end of the term structure. That is intuitive, as, in ex-
pectation, the government can balance its budget in the long run either by raising taxes or
by issuing more debt. Either measure is likely accompanied with dimmer default prospects,
either directly or through the negative effects of elevated taxes on growth projections, as in
Chernov, Schmid, and Schneider (2019). Quantitatively, a one standard deviation increase
in the government expenditures to output ratio increases the credit spread by approximately
20 bps at the 5-year maturity.

Higher macroeconomic uncertainty also leads to greater risky yields, as the representative
agent in our model dislikes economic uncertainty that come with a higher likelihood of
extreme events. Inflation variance has a greater impact at the short end of the yield curve,
as inflation surprises are more relevant for that maturity segment. Consumption variance
has a greater impact at the long end of the curve. This is reminiscent of long-run risk
in volatility, which has an impact due to the combination of recursive preferences with a
preference for early resolution of uncertainty.

The convenience yield affects the risky Treasury directly. A higher convenience yield implies
a lower yield. This effect is especially pronounced for short-term bills, perhaps because of
the importance of Treasuries in short-horizon repo transactions, and impacts the credit
spread by as much as 45 bps in response to a one standard deviation move. At longer
maturities, this effect stabilizes around 10 bps.

Bank risk and the cost of collateral matter indirectly via the interactions with the macroe-
conomic fundamentals and all spread factors. The LIBOR-OIS spread captures bank risk.
Bank risk interacts positively with U.S. credit risk, and so the effect on the credit spread
is positive. The cost of collateral is indirectly reflected through a negative impact on the
credit spread.

4.5 Swap spreads

Figure 10 displays our headline result – the model-implied OIS-Treasury spread. Impor-
tantly, we note that OIS information was not used in the model estimation. The model
captures both the positive spread before the crisis when U.S. credit risk was next to nil,
and the negative spread in the post-crisis period. The results are quantitatively realistic for
all maturities.

In Figure 11, we also plot the model-implied IRS-Treasury spread. Recall that we only use
the 1-year maturity in our estimation. As for OIS-Treasury spreads, we qualitatively fit the
evolution of the swap spreads well. We match positive swaps spreads before the crisis, and
negative ones thereafter.

In our analysis in section 2.4 we offer qualitative arguments and suggestive evidence linking
U.S. credit risk to swap spreads. Our quantitative model allows for a rich set of different
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effects beyond the sovereign risk channel, including the convenience yield, bank risk, cost of
collateral, and time-varying risk premiums. Thus, a natural question is whether the quan-
titative effect due to a U.S. credit risk premium is large enough to support our qualitative
analysis.

In a counterfactual analysis, we can use our model to evaluate the contribution of U.S. credit
risk to the spreads. Figure 12 reports the results of a decomposition of the OIS-Treasury
spread into the respective contributions coming from default and non-default risk. That
helps to gauge the contribution of the default risk premium to the negative swap spreads
in our model. We plot the decomposition for maturities of 1, 3, 5, 10, 20, and 30 years. We
provide a similar decomposition for IRS-Treasury spreads in Figure 13.

The quantitative implication is clear. The model implied OIS-Treasury spreads are uni-
formly positive when we only account for liquidity and bank frictions. The few negative
swap spread realizations are quantitatively tiny. Accounting for the U.S. credit risk pre-
mium, however, shifts the OIS-Treasury spread significantly downwards. That downward
shift is increasing in maturity. This clearly illustrates the critical role of U.S. credit risk
in matching negative OIS-Treasury spreads in an equilibrium model that explains multiple
benchmark rates jointly, even if we account for realistic liquidity and bank frictions.

In Table 8, we report model-implied regressions of changes in swap spreads on changes in
CDS premiums, similar to the ones reported in Table 3. In these regressions, we do not
control for common time fixed effects because, by construction, our model is driven by a
limited number of state variables that drive the common variation across swap spreads. The
relation between swap spreads and U.S. credit risk in the model reflects the salient features
of the data well. The relation is weakly significant for short-term maturities (column 1),
highly significant for maturities above 7 years (column 2), and becomes stronger over time
(columns 3 and 4). The economic magnitudes are also similar than those in the data,
slightly weaker at short-term maturities, and stronger at longer maturities. For example,
according to the results in column (5), a 10 bps increase in CDS premiums lowers swap
spreads by 0.4 bps, with an R2 of 16%. The most comparable regression in Table 3 is that
in column (5), which indicates a 0.7 bps change for a 10 bps change in CDS premiums, with
an R2 of 2%. A regression at the weekly frequency (unreported results) yields an R2 of 5%
with a regression coefficient of 2.1 bps. Post 2014, the coefficient in the data is negative
0.13, while it is negative 0.11 in the model.

Thus, our model suggests that, quantitatively, sovereign credit risk is a relevant ingredient
needed to account for negative swap-Treasury spread. The sovereign risk channel operates
through the U.S. credit risk premium, which can be large, even if the physical default
probability is small. Such a risk premium channel complements existing explanations based
on frictions. We reach this conclusion based on a realistic model of benchmark interest rates,
in which frictions are identified via observable quantities (convenience yield and LIBOR-
OIS spread) and a latent factor (cost of collateral); time-varying risk premia are pinned
down by the preferences of a representative risk averse agent and observed macroeconomic
fundamentals.
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5 Conclusion

Researchers have been struggling to explain the puzzling behavior of benchmark interest
rates since the financial crisis. Most prominently, short-term and long-term overnight bank
borrowing costs, reflected in overnight index and interest rate swap contracts, have been
lower than maturity-matched Treasury rates. Leading explanations of these negative swap
spread puzzles are based on frictions, such as demand for duration, caps on leverage, or
fading convenience yields for U.S. Treasuries.

We show that it is important to account for high-quality sovereign credit risk to enhance our
understanding of post-crisis pricing phenomena. A small probability of U.S. Treasury de-
fault lowers no-arbitrage bounds of swap spreads to negative levels. Specifically, accounting
for a U.S. credit risk premium in Treasuries is crucial if one wants to explain the dynamics
of the term structures of multiple benchmark interest rates jointly. Even if the probability
of a U.S. credit event is small, the risk premium associated with it may be large.
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Figure 1: USD overnight LIBOR and EFFR
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Notes: In this figure, we report the time series of the difference between the overnight London Interbank

Offered Rate (LIBOR) and the Effective Federal Funds Rate (EFFR). LIBOR is the average interest rate at

which leading banks borrow funds of a sizeable amount from other banks in the Eurodollar area. The EFFR

is calculated as a volume-weighted median of overnight federal funds transactions provided by domestic

banks, U.S. branches, and agencies of foreign banks, as reported in the reporting form FR 2420. The data

frequency is weekly based on Wednesday rates. All spreads are expressed in percent. The sample period is

8 May 2002 to 26 September 2018. Source: Federal Reserve Bank of St. Louis. The y-axis is in annualized

percentage terms.
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Figure 2: IRS-Treasury and OIS-Treasury spreads
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Notes: In these figures, we report the time series of the USD denominated IRS-Treasury and OIS-Treasury

swap spreads, defined as the difference between the interest rate swap (IRS) rate or the overnight indexed

swap (OIS) rate and the maturity-matched constant maturity Treasury (CMT) rate. Spreads for the 6-month

maturity are based on LIBOR. Spreads for maturities of 5 years and higher are based on IRS rates. We

overlay the (negative of the) USD maturity-matched U.S. CDS premium, i.e., the CDS premium multiplied

by (-1). The data frequency is weekly based on Wednesday rates. All spreads are expressed in percent. The

sample period is 8 May 2002 to 26 September 2018. Source: Bloomberg (OIS, IRS, LIBOR), FRED (CMT),

Markit (CDS).
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Figure 3: Macro factors
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Notes: In these figures, we plot the dynamics of the macroeconomic state variables in our model: log

consumption growth (z1), output growth (z2), government expenditures to output ratio (z3), and inflation

(z4), as well as consumption volatility (v1) and inflation volatility (v2). All variables are annualized and

represented in percentage terms, except for the government expenditures to output ratio, which is represented

in logs. The sample period is 1982 to 2018. The data frequency is quarterly for z1, z2, and z3, and monthly

for z4. Source: Federal Reserve Bank of St. Louis H.15 Report.
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Figure 4: Finance factors
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Notes: We plot the spread factors: s1 is the convenience yield, defined as the one-month OIS-Treasury

spread; s2 captures the interbank credit and funding liquidity risk, defined as the one-month LIBOR-OIS

spread; s3 is latent and captures the opportunity cost of collateral. The sample period is May 2002 to

September 2018. All variables are plotted at a monthly frequency, and are expressed in percent. Source:

Bloomberg (OIS, LIBOR), FRED (CMT).

33



Figure 5: Model-implied risky zero-coupon yields and nominal Treasury yields
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Notes: In these figures, we plot the model-implied risky zero-coupon bond yields (green line with bullets)

together with their 90% confidence bands, and compare them with the observed nominal zero-coupon Trea-

sury yields (solid black line) from Gurkaynak, Sack, and Wright (2007). We plot observed and model-implied

yields for maturities of 1y, 3y, 5y, 10y, 20y, and 30y. All variables are plotted at a monthly frequency and

are expressed in annualized percentage terms. The sample period is May 2002 to September 2018.
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Figure 6: Model-implied and actual CDS premiums
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Notes: In these figures, we plot the model-implied (green line with bullets), their 90% confidence bands,

and observed (solid black line) CDS premiums. We plot observed and model-implied CDS premiums for

maturities of 1y, 3y, 5y, and 10y. All variables are plotted at a monthly frequency, and are expressed in

annualized percentage terms. The sample period is May 2002 to September 2018. Source: Markit.
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Figure 7: Model-implied zero-coupon yields
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Notes: In these figures, we plot the model-implied zero-coupon yields for nominal bonds (gray line with

bullets), risky Treasury bonds (solid black line), and the “credit/safety” spread (green line with squares).

We plot model-implied zero-coupon yields for maturities of 1y, 3y, 5y, and 10y. All variables are plotted at

a monthly frequency, and are expressed in annualized percentage terms. The sample period is May 2002 to

September 2018. Source: Authors’ computations.
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Figure 8: Default intensity and credit risk premium
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Notes: In Panel (A), we plot the model-implied physical default intensity for U.S. credit risk from January

2008 to September 2018. In Panel (B), we plot the model implied CDS premiums for maturity 5 years under

the risk-neutral CDS and physical CDS† measures from January 2008 to September 2018. The y-axis is

expressed in annualized percentage terms. Source: authors’ computations.
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Figure 9: Credit/safety spread loadings: Risky - nominal rate
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Notes: In these figures, we examine the sensitivity of model-implied risky zero-coupon Treasury yields (which

incorporate the convenience yield) to all state variables over and above the sensitivity of model-implied nomi-

nal Treasury yields (which exclude the convenience yield). Specifically, we plot the difference of the sensitivity

loadings with respect to the state variables as a function of the maturity horizon, up to 20 years. The state

variables are log consumption growth (z1), inflation (z2), output growth (z3), government expenditures to

output ratio (z4), the convenience yield (s1), the LIBOR-OIS spread (s2), the opportunity cost of collateral

(s3), consumption volatility (v1), and inflation volatility (v2). Source: Authors’ computations.
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Figure 10: Model-implied spread between OIS and CMT
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Notes: In these figures, we plot the model-implied (green line with bullets), their 90% confidence bands,

and observed (solid black line) OIS-Treasury spreads, where we use the constant maturity Treasury par

rates. We plot observed and model-implied OIS-CMT spreads for maturities of 1y, 3y, 5y, 10y, 20y, 30y. All

variables are plotted at a monthly frequency and are expressed in annualized percentage terms. The sample

period is May 2002 to September 2018. Source: Bloomberg (OIS) and FRED (CMT).
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Figure 11: Model-implied spread between IRS and CMT
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Notes: In these figures, we plot the model-implied (green line with bullets), their 90% confidence bands, and

observed (solid black line) IRS-Treasury spreads, where we use the constant maturity Treasury par rates.

We plot observed and model-implied IRS-CMT spreads for maturities of 1y, 3y, 5y, 10y, 20y, and 30y. All

variables are plotted at a monthly frequency, and are expressed in annualized percentage terms. The sample

period is May 2002 to September 2018. Source: Bloomberg (IRS) and FRED (CMT).
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Figure 12: Model-implied spread between OIS and CMT: Counterfactual
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Notes: In these figures, we compare the fitted OIS-CMT spreads (black line) with their conterfactual values

when U.S. credit risk is shut down (gray boxes). All rates are expressed on a par basis. We plot the OIS-

CMT spreads for maturities of 1y, 3y, 5y, 10y, 20y, 30y. All variables are plotted at a monthly frequency, and

are expressed in annualized percentage terms. The sample period is May 2002 to September 2018. Source:

Authors’ computations.
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Figure 13: Model-implied spread between IRS and CMT: Counterfactual
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Notes: In these figures, we compare the fitted IRS-CMT spreads (black line) with their conterfactual values

when U.S. credit risk is shut down (gray boxes). All rates are expressed on a par basis. We plot the IRS-

CMT spreads for maturities of 1y, 3y, 5y, 10y, 20y, 30y. All variables are plotted at a monthly frequency, and

are expressed in annualized percentage terms. The sample period is May 2002 to September 2018. Source:

Authors’ computations.
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Table 1: Literature on negative IRS-Treasury and OIS-Treasury spreads

Focus Type Explanations

Stu
dy

IR
S-T

re
as

ury

OIS
-T

re
as

ury

Em
piri

cs

Theo
ry

Fundin
g

co
sts

Hed
gin

g
dem

an
d

Lev
er

ag
e ra

tio
s

Con
ve

nien
ce

yie
ld

Sov
er

eig
n

ris
k

Lou (2009) X X X
Klingler and Sundaresan (2018) X X X X
Boyarchenko, Gupta, Steele, and Yen (2018) X X X
Klingler and Sundaresan (2019) X X X
Jermann (2019) X X X
The present study X X X X X

Notes. This table summarizes the main studies explaining negative OIS-Treasury or IRS-Treasury swap

spreads. We describe the focus of the paper (IRS-Treasury or OIS-Treasury), the type of study (empirical

or theoretical), and the main explanation proposed by each study.
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Table 3: Link between OIS-Treasury spreads and CDS premiums.

In this table, we report the results from a regression of monthly changes in OIS-Treasury spreads

(∆ SS) on monthly changes of the maturity-matched U.S. CDS premium (USD, CR restructuring

clause). The 3-month OIS-Treasury spread is matched with the 6-month CDS premium. Maturities

for OIS-Treasury spreads are 3/6 months, and 1/2/3/5/7/10/20/30 years to maturity. The sample

period is January 2010 to September 2018. All specifications include maturity and/or week fixed

effects. In row Mat., we indicate maturity restrictions; in row Y EAR, we indicate sample period

restrictions. Standard errors are heteroscedasticity-robust (RO), clustered by time (CL) or adjusted

for cross-sectional dependence and serial dependence up to 3 weeks using Driscoll-Kraay standard

errors. We report the within R2 of the regression. Control variables include the CBOE VIX index,

the exchange rate of the USD against a basket of a broad group of major U.S. trading partners,

the West Texas Intermediate oil price index, the economic policy uncertainty index, the high-yield

and investment-grade bond indices, inflation, the TED spread, the 3-month LIBOR-OIS spread, the

3-month T-bill rate, the U.S. Treasury total cash balances, and CDS depth defined as the number

of dealer quotes used to compute the mid-market spread. ***, **, and * denote significance at the

1%, 5%, and 10%, respectively. CDS data is from Markit; OIS data is from Bloomberg; constant-

maturity Treasury rates are from the Federal Reserve Bank of St. Louis H.15 report.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
VARIABLES ∆SS ∆SS ∆SS ∆SS ∆SS ∆SS ∆SS ∆SS ∆SS ∆SS ∆SS ∆SS

∆CDS -0.07*** -0.08** -0.07*** -0.13* -0.07*** -0.08*** -0.06*** -0.13* -0.07*** -0.07*** -0.07*** -0.23***
(0.02) (0.04) (0.02) (0.08) (0.02) (0.02) (0.02) (0.08) (0.02) (0.02) (0.02) (0.08)

∆SSt−1 -0.09** -0.27*** -0.44*** -0.09* -0.16*** -0.16*** -0.16*** -0.13**
(0.04) (0.04) (0.05) (0.05) (0.04) (0.05) (0.05) (0.06)

∆ V IX 0.00 0.00 0.00 -0.00
(0.00) (0.00) (0.00) (0.00)

∆ FX 0.00** 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00)

∆ WTI -0.00 -0.00 -0.00 -0.00
(0.00) (0.00) (0.00) (0.00)

∆ EPU -0.00 -0.00 -0.00 0.00
(0.00) (0.00) (0.00) (0.00)

∆ IG -0.06*** -0.06** -0.06** -0.06
(0.02) (0.03) (0.03) (0.04)

∆ HY -0.01 -0.01 -0.01 -0.02
(0.01) (0.02) (0.02) (0.02)

∆ Π -0.06*** -0.06*** -0.06** -0.02
(0.01) (0.02) (0.02) (0.05)

∆ TED 0.41*** 0.41*** 0.41*** 0.54***
(0.06) (0.10) (0.09) (0.08)

∆ LIBOR−OIS3m -0.36*** -0.36*** -0.36*** -0.59***
(0.06) (0.10) (0.09) (0.09)

∆ TB3 0.09 0.09 0.09 0.17**
(0.06) (0.10) (0.08) (0.07)

∆ CB 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00)

∆ LIQ 0.00** 0.00 0.00 0.01***
(0.00) (0.00) (0.00) (0.01)

OBS. 591 347 938 411 935 935 923 411 935 935 935 411
MATURITY FE YES YES YES YES YES YES NO YES YES YES YES YES
QUARTER FE NO NO NO NO NO YES NO NO YES YES YES YES
MATURITY-QUARTER FE NO NO NO NO NO NO YES NO NO NO NO NO
CLUSTER TIME NO NO NO NO NO NO NO NO NO YES NO NO
SE RO RO RO RO RO RO RO RO RO CL DK-3 RO
MAT <=5 >=7 ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL
YEAR >2009 >2009 >2009 >2014 >2009 >2009 >2009 >2014 >2009 >2009 >2009 >2014
CONTROLS NO NO NO NO NO NO NO NO YES YES YES YES
WITHIN R2 0.02 0.01 0.01 0.01 0.02 0.09 0.20 0.02 0.24 0.24 0.34 0.32

45



Table 4: Cash flows from swap-spread trading strategy: Assuming Treasury cannot default

Cash flows at time

Strategy 0 t T

Long Treasury bond -1 CMT CMT + 1

Repo financing cash flows 1 −rt−1 −rT−1 − 1

Pay fixed on swap – −CMS −CMS

Receive floating on swap – ft−1 fT−1

Total 0 St−1 − SS ST−1 − SS

Notes: This table illustrates the cash flows generated by a stylized form of a swap-spread trading strategy.

CMS and CMT denote the fixed swap and Treasury coupon rates. ft denotes the EFFR rate compounded

from the beginning of month t to the end of month t + 2, or LIBOR at time t, and rt denotes the three-

month repo rate determined at time t. For expositional simplicity, this table assumes that floating and fixed

payments are paid each period. SS denotes the swap spread and equals CMS−CMT . The term St denotes

the difference ft − rt.
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Table 5: Cash flows from swap-spread trading strategy: Assuming Treasury can default

Cash flows at time

Strategy 0 t τ T

Long Treasury bond -1 CMT – CMT + 1

Repo financing cash flows 1 −rt−1 – −rT−1 − 1

Pay fixed on swap – −CMS – −CMS

Receive floating on swap – ft−1 – fT−1

Pay CDS premia – −CDS – −CDS
Sell Treasury bond at default – – 1− L –

Receive CDS payoff at default – – L –

Payoff repo loan at default – – −1 –

Unwind swap at default – – Uτ –

Total 0 St−1 − SS − CDS Uτ ST−1 − SS − CDS

Notes: This table illustrates the cash flows generated by a stylized form of a swap-spread trading strategy.

CMS and CMT denote the fixed swap and Treasury coupon rates. ft denotes the EFFR rate compounded

from the beginning of month t to the end of month t + 2, or LIBOR at time t, and rt denotes the three-

month repo rate determined at time t. For expositional simplicity, this table assumes that floating and fixed

payments are paid each period. SS denotes the swap spread and equals CMS−CMT . The term St denotes

the difference ft − rt. Upon random default τ before maturity T , the bond is worth 1 − L, but the CDS

hedge pays L and terminates. The swap contract is unwound at the current market value of Uτ .
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Table 6: Parameter estimates: Macroeconomic factors

zt+1 = (∆ct+1, dt+1, gt+1, πt+1)>

zt+1 = µz + Φzzt + Φzvvt + ΣzV
1/2
z,t εz,t+1 + ΘzΣzV

1/2
z,t−1εz,t

=



0.0000
[−0.0003,0.0004]

−0.0019
[−0.0032,−0.0011]

0.0181
[0.0134,0.0197]

−0.0007
[−0.0009,−0.0003]


+



0.78
[0.69,0.84]

−0.05
[−0.07,−0.04]

−0.03
[−0.04,0.01]

0

0.39
[0.29,0.43]

0.21
[0.16,0.28]

0.17
[0.14,0.24]

0

0.00
[−0.02,0.01]

−0.00
[−0.01,0.00]

0.98
[0.97,0.99]

0

0.00
[−0.07,0.04]

0.01
[−0.00,0.04]

−0.12
[−0.15,−0.08]

0.71
[0.62,0.76]


zt

+ 10−4



0 0

0 0

0 0

5.45
[2.92,6.92]

−4.95
[−6.21,−1.14]


vt + 10−3 Diag



2.84
[2.58,3.66]

+ 2.80
[1.24,3.40]

v1,t + 5.30
[3.01,7.08]

v2,t

2.38
[1.53,2.64]

+ 0.11
[0.07,0.14]

v1,t + 1.39
[1.00,1.97]

v2,t

0.13
[0.10,0.25]

+ 1.79
[1.38,2.34]

v1,t + 4.92
[3.12,6.19]

v2,t

0.12
[0.09,0.22]

+ 0.40
[0.32,0.44]

v1,t + 0.10
[0.05,0.90]

v2,t



1/2

εz,t+1

+



−1.23
[−1.44,−0.94]

0.68
[0.62,0.75]

−0.80
[−0.92,−0.75]

0

0.44
[0.36,0.62]

0.75
[0.43,1.07]

−0.06
[−0.17,0.00]

0

−0.01
[−0.09,0.00]

−0.01
[−0.03,0.04]

−0.68
[−0.73,−0.54]

0

0.05
[−0.02,0.10]

0.01
[−0.01,0.03]

0.17
[0.11,0.21]

−0.06
[−0.09,−0.02]


V

1/2
z,t−1εz,t

v1,t+1 ∼ ARG(ν1, φ1,
1−φ1

ν1
) = ARG( 2.43

[1.04,5.99]
, 0.908

[0.951,0.992]
, 0.0377)

v2,t+1 ∼ ARG(ν2, φ2,
1−φ2

ν2
) = ARG( 2.43

[0.75,5.43]
, 0.998

[0.985,0.999]
, 0.0008)

Notes: We provide the estimates for the dynamics of the macroeconomic fundamentals zt. We set Σz to be

an identity matrix for identification reasons.
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Table 7: Parameter estimates: Finance factors, default intensity, preferences

st+1 = µs + Φsvvt + Φsst + Σsεs,t+1

= 10−4



−0.20
[−0.33,0.09]

−0.04
[−0.08,0.06]

−0.00
[−0.00,0.00]

0.00
[0.00,0.00]

0.20
[0.13,0.28]

−0.17
[−0.23,−0.08]


vt +



0.61
[0.43,0.68]

−0.05
[−0.08,0.04]

0.19
[0.04,0.22]

−0.20
[−0.31,0.03]

0.94
[0.74,0.98]

0.09
[−0.10,0.23]

0.04
[0.03,0.19]

−0.02
[−0.04,0.10]

0.97
[0.89,0.99]


st

+10−4


0.17

[0.12,0.24]
0 0

0 3.17
[2.32,4.11]

0

0 0 0.36
[0.13,0.73]


εs,t+1

ht = h+ hc∆ct + hddt + hggt + hv1v1,t + hv2v2,t

= 0.0009
[0.0003,0.0011]

+ 0.13
[0.01,0.15]

∆ct + 0.00
[−0.01,0.02]

dt + 0.88
[0.47,1.11]

gt + 0.0024
[0.0015,0.0033]

v1,t + 0.0001
[0.0000,0.0003]

v2,t

Ut = [(1− β)Cρt + βµt(Ut+1)ρ]1/ρ, µ(Ut+1) = Et(U
α
t+1)1/α

β = 0.9984
[0.9981,0.9990]

, α = −3.91
[−4.90,−2.12]

, ρ = 0.25
[0.22,0.45]

L = 0.3

Notes: We provide the estimates for the dynamics of the financial variables st and the default intensity ht.

We set µs,Φsy to zero for parsimony. Risk aversion is 1 − α and intertemporal elasticity of substitution is

(1− ρ)−1. We calibrate the value of L.
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Table 8: Model-implied link between OIS-Treasury spreads and CDS premiums.

In this table, we report the model-implied results from a regression of monthly changes in OIS-

Treasury spreads (∆ SS) on monthly changes of the maturity-matched U.S. CDS premiums de-

nominated in USD. Maturities for OIS-Treasury spreads are 1, 3, 5, 7, 10, 20, and 30 years to

maturity. The sample period is January 2010 to September 2018. As in the data, results are based

on an unbalanced sample. All specificaltions include maturity fixed effects. In row Mat., we indi-

cate maturity restrictions; in row Y EAR, we indicate sample period restrictions. Standard errors

are heteroscedasticity-robust. We report the within R2 of the regression. ***, **, and * denote

significance at the 1%, 5%, and 10%, respectively. Source: Authors’ computations.

(1) (2) (3) (4) (5) (8)
VARIABLES ∆SS ∆SS ∆SS ∆SS ∆SS ∆SS

∆CDS -0.02* -0.37*** -0.06*** -0.16*** -0.04*** -0.11*
(0.01) (0.07) (0.01) (0.06) (0.01) (0.06)

∆SSt−1 0.36*** 0.40***
(0.04) (0.06)

OBS. 591 347 938 411 935 411
MATURITY FE YES YES YES YES YES YES
MAT <=5 >=7 ALL ALL ALL ALL
YEAR >2009 >2009 >2009 >2014 >2009 >2014
WITHIN R2 0.00 0.09 0.01 0.01 0.16 0.16
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A Derivation of the real pricing kernel

Since utility is defined by a constant elasticity of substitution recursion and the certainty equivalent is
homogeneous of degree one, we can scale utility and take logs:

log (Ut/Ct) ≡ ut = ρ−1 log
[
(1− β) + βµt

(
e∆ct+1+ut+1

)ρ]
.

Taking a first-order Taylor approximation of ut around the point E [logµt] = logµ, we obtain the log-
linearized form

ut ≈ ρ−1 log
[
(1− β) + βeρ log µ

]
+ ρ−1 βeρ log µρ

[(1− β) + βeρ log µ]

[
logµt

(
e∆ct+1+ut+1

)
− logµ

]
≈ b0 + b1 logµt

(
e∆ct+1+ut+1

)
,

where

b1 = βeρ log µ
(

(1− β) + βeρ log µ
)−1

b0 = ρ−1 log
[
(1− β) + βeρ log µ

]
− b1 logµ.

The state vector xt = (∆ct, πt, dt, gt, wc,t, wπ,t, wy,t, wg,t, v1,t, v2,t) describes the economy, where ∆ct =
log(Ct+1/Ct) is log consumption growth, πt is inflation, dt is log output growth, gt is the government
expenditure to output ratio, wt = [wc,t, wπ,t, wd,t, wg,t]

> is the vector of moving average components, and
vt = [v1,t, v2,t]

> is a vector of common stochastic variance processes.

Guess that the log scaled utility is affine in the state vector xt

ut = log u+ P>x xt = log u+ P>y yt + p>v vt

= log u+ pc∆ct + pππt + pddt + pggt + pv1v1,t + pv2v2,t,

which implies that Px =
[
P>y , p

>
v

]>
= [pc, pπ, pd, pg, 0, 0, 0, 0, pv1, pv2]>.

Next compute log
(
e∆ct+1+ut+1

)
and log µt

(
e∆ct+1+ut+1

)
, plug terms into the log-linarized scaled utility ut

and verify. Given the initial guess, this results in a system of seven equations, which can be solved using the
method of undetermined coefficients for the constant and the loadings of the log scaled utility on xt. For
the derivations, define the coordinate vectors ei (i = 1, 2, . . . 8) and evi (i = 1, 2) with all elements equal to
zero except element i, which is equal to one.

Step 1: Compute log
(
e∆ct+1+ut+1

)
:

log
(
e∆ct+1+ut+1

)
= ∆ct+1 + ut+1 = e>1 yt+1 + log u+ P>y yt+1 + p>v vt+1

= log u+ (Py + e1)> µy + (Py + e1)> Φyyt + (Py + e1)> Φyvvt

+ (Py + e1)> ΣyV
1/2
y,t εy,t+1 + p>v vt+1.

Step 2: Compute logµt
(
e∆ct+1+ut+1

)
:

logµt
(
e∆ct+1+ut+1

)
= log

[
Et
(
e∆ct+1+ut+1

)α]1/α
= α−1 log

[
Et
(
eα(∆ct+1+ut+1)

)]
= log u+ (Py + e1)> µy + (Py + e1)> Φyyt + (Py + e1)> Φyvvt

+
α

2
(Py + e1)> Ωy,t (Py + e1) +

2∑
j=1

−vvj
α

log
(
1− αpvj cvj

)
+

pvjφvj
1− αpvj cvj

vj,t,



where Ωy,t = ΣyVy,tΣ
>
y .

Step 3: Plug into ut and verify:

ut ≈ b0 + b1 logµt
(
e∆ct+1+ut+1

)
= b0 + b1

[
log u+ (Py + e1)> µy −

2∑
j=1

vvj
α

log
(
1− αpvj cvj

)]
+ b1

[
(Py + e1)> Φyyt

]

+ b1

[
(Py + e1)> Φyvvt +

α

2
(Py + e1)> Ωy,t (Py + e1) +

2∑
j=1

pvjφvj
1− αpvj cvj

vj,t

]
.

Given the initial guess, this results in a system of seven equations:

log u = b0 + b1
[
log u+ (Py + e1)> µy +

α

2
(Py + e1)> Σy

[
I�

(
1> ⊗A

)]
Σ>y (Py + e1)

−
2∑
j=1

vvj
α

log
(
1− αpvj cvj

)]
pc = b1 (Py + e1)> Φye1

pπ = u1 (Py + e1)> Φye2

pd = b1 (Py + e1)> Φye3

pg = b1 (Py + e1)> Φye4

pv1 = b1

[
(Py + e1)> Φyvev1 +

α

2
(Py + e1)> Σy

[
I�

(
1> ⊗B1

)]
Σ>y (Py + e1) +

pv1φv1

1− αpv1cv1

]
pv2 = b1

[
(Py + e1)> Φyvev2 +

α

2
(Py + e1)> Σy

[
I�

(
1> ⊗B2

)]
Σ>y (Py + e1) +

pv2φv2

1− αpv2cv2

]
,

where ⊗ defines the Kronecker product, � the Hadamar product, I is the identity matrix, and 1 is a column
vector of ones, and where we have defined the column vectors A, B1, B2 as follows:

A = [ac, aπ, ad, ag, 0, 0, 0, 0]>

B1 = [bcv1 , bπv1 , bdv1 , bgv1 , 0, 0, 0, 0]>

B2 = [bcv2 , bπv2 , bdv2 , bgv2 , 0, 0, 0, 0]> . (A.1)

Since, the equations for pc, pπ, pd, and pg are linear, their solutions are given by

pc = −e>1
(
b21 [Φz − I]−1 φc

)
pπ = −e>2

(
b21 [Φz − I]−1 φc

)
py = −e>3

(
b21 [Φz − I]−1 φc

)
pg = −e>4

(
b21 [Φz − I]−1 φc

)
.

The equations for pv are quadratic and have two roots. We choose the root such that lim cjpvj = 0 as
cj → 0. We have that for j = 1, 2:[

b1
(
φvj − αcvj

[
(Py + e1)> Φyvevj +

α

2
(Py + e1)> Σy

[
I�

(
1> ⊗Bj

)]
Σ>y (Py + e1)

])
− 1
]

︸ ︷︷ ︸
B∗j

pvj

+αcvj︸︷︷︸
A∗j

p2
vj + b1

[
(Py + e1)> Φyvevj +

α

2
(Py + e1)> Σy

[
I�

(
1> ⊗Bj

)]
Σ>y (Py + e1)

]
︸ ︷︷ ︸

C∗j

= 0,
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where the roots to the quadratic equation are determined by:

pvj =
−B∗j + /−

√(
B∗j
)2 − 4A∗jC

∗
j

2A∗j
.

Finally, we have that

log u = (1− b1)−1
[
b0 + b1

(
(Py + e1)> µy +

α

2
(Py + e1)> Σy

[
I�

(
1> ⊗A

)]
Σ>y (Py + e1)

−
2∑
j=1

vvj
α

log
(
1− αpvj cvj

))]
.

Plugging terms into the expression for the marginal rate of substitution, we obtain the final solution to the
real pricing kernel

m̂t,t+1 = m̄+ (ρ− 1) e>1 Φyyt + (ρ− 1) e>1 Φyvvt

−
2∑
j=1

[
(α− ρ) pvjφvj

1− αpvj cvj
+
α

2
(α− ρ) (Py + e1)> Σy

[
I�

(
1> ⊗Bj

)]
Σ>y (Py + e1)

]
vj,t

+ [(ρ− 1) e1 + (α− ρ) (Py + e1)]> ΣyV
1/2
y,t εy,t+1 + (α− ρ) p>v vt+1, (A.2)

where

m̄ = log β + (ρ− 1) e>1 µy + (α− ρ)

2∑
j=1

vvj
α

log
(
1− αpvj cvj

)
− α

2
(α− ρ) (Py + e1)> Σy

[
I�

(
1> ⊗A

)]
Σ>y (Py + e1) . (A.3)

The numerical solution to the mean log certainty equivalent E [logµt] = logµ depends on the approximated
constants from the log-linearization of the scaled log utility b0 and b1, which themselves depend on the
mean log certainty equivalent log µ. Model consistency thus requires to solve a fixed-point equation for the
mean log certainty equivalent. More specifically, using a convergence criterion of 10e−12, we solve for the
fixed-point equation logµ = f (logµ).

B Valuation

B.1 Term structure of real interest rates

The price of an n-period real zero-coupon bond must satisfy the Euler equation P̂nt = Et
[
M̂t,t+n

]
. To

derive closed-form solutions for the term structure of real interest rates, we conjecture that log zero-coupon
bond prices p̂t are affine in the state vector xt

p̂nt = log P̂nt = −Ân − B̂>y,nyt − B̂>v,nvt,

where the coefficients of the vectors B̂Y,n and B̂v,n measure the sensitivity of real bond prices to the risk
factors and where n refers to the maturity of the bond. Since the real pricing kernel is an affine function of
the state vector, log bond prices are fully characterized by the cumulant-generating function of Xt. The law
of iterated expectations implies that P̂nt satisfies the recursion

P̂nt = Et
[
M̂t,t+1P̂

n−1
t+1

]
.
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It can be shown that for all n, the scalar Ân and the components of the column vectors B̂yj ,n for j = 1, 2, . . . , 8

and B̂vj ,n for j = 1, 2, are given by

Ân = Ân−1 − m̄+ B̂>y,n−1µy +

2∑
j=1

vvj log
(

1−
[
(α− ρ) pvj − B̂vj,n−1

]
cvj

)
− 1

2

[
(ρ− 1) e1 + (α− ρ) (Py + e1)− B̂y,n−1

]>
Σy
[
I�

(
1> ⊗A

)]
Σ>y

×
[
(ρ− 1) e1 + (α− ρ) (Py + e1)− B̂y,n−1

]
B̂yj ,n =

[
B̂y,n−1 − (ρ− 1) e1

]>
Φyej

B̂vj ,n =
[
B̂y,n−1 − (ρ− 1) e1

]>
Φyvevj

+
(α− ρ) pvjφvj

1− αpvj cvj
+
α

2
(α− ρ) (Py + e1)> Σy

[
I�

(
1> ⊗Bj

)]
Σ>y (Py + e1)

− 1

2

[
(ρ− 1) e1 + (α− ρ) (Py + e1)− B̂y,n−1

]>
Σy
[
I�

(
1> ⊗Bj

)]
× Σ>y

[
(ρ− 1) e1 + (α− ρ) (Py + e1)− B̂y,n−1

]
−

[
(α− ρ) pvj − B̂vj ,n−1

]
φvj

1−
[
(α− ρ) pvj − B̂vj ,n−1

]
cvj

,

with initial conditions Â0 = 0, B̂y,0 = 0, and B̂v,0 = 0, and where ⊗ defines the Kronecker product, � the
Hadamar product, I is the identity matrix, 1 is a column vector of ones, ei (i = 1, 2, . . . 8) and evi (i = 1, 2)
are coordinate vectors with all elements equal to zero except element i = 1, the column vectors A, and Bj

for j = 1, 2 are defined in Equation (A.1), and m̄ is defined in Equation (A.3).

It follows naturally that the term structure of real interest rates is given by:

ŷnt = n−1
(
Ân + B̂>y,nyt + B̂>v,nvt

)
.

B.2 Term structure of nominal interest rates

The price of an n-period nominal zero-coupon bond must satisfy the Euler equation Pnt = Et [Mt,t+n], where
Mt,t+1 defines the nominal stochastic discount factor defined in logs as

mt,t+1 = m̂t,t+1 − πt+1 = m̂t,t+1 − e>2 yt+1,

with the real pricing kernel m̂t,t+1 defined in Equation (A.2). To derive closed-form solutions for the term
structure of nominal interest rates, we conjecture that log zero-coupon bond prices pt are affine in the state
vector xt

pnt = logPnt = −An −B>y,nyt −B>v,nvt,
where the coefficients of the vectors By,n and Bv,n measure the sensitivity of nominal bond prices to the
risk factors and where n refers to the maturity of the bond. Since the nominal pricing kernel is an affine
function of the state vector, log bond prices are fully characterized by the cumulant-generating function of
xt. The law of iterated expectations implies that Pnt satisfies the recursion

Pnt = Et
[
Mt,t+1P

n−1
t+1

]
.

It can be shown that for all n, the scalar An and the components of the column vectors Byj ,n for j = 1, 2, . . . , 8
and Bvj ,n for j = 1, 2, are given by

An = An−1 − m̄+ [e2 +By,n−1]> µy +

2∑
j=1

vvj log
(
1−

[
(α− ρ) pvj −Bvj,n−1

]
cvj
)
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− 1

2
[(ρ− 1) e1 + (α− ρ) (Py + e1)− e2 −By,n−1]> Σy

[
I�

(
1> ⊗A

)]
× Σ>y [(ρ− 1) e1 + (α− ρ) (Py + e1)− e2 −By,n−1]

Byj ,n = [By,n−1 + e2 − (ρ− 1) e1]> Φyej

Bvj ,n = [By,n−1 + e2 − (ρ− 1) e1]> Φyvevj

+
(α− ρ) pvjφvj

1− αpvj cvj
+
α

2
(α− ρ) (Py + e1)> Σy

[
I�

(
1> ⊗Bj

)]
Σ>y (Py + e1)

− 1

2
[(ρ− 1) e1 + (α− ρ) (Py + e1)− e2 −By,n−1]> Σy

[
I�

(
1> ⊗Bj

)]
× Σ>y [(ρ− 1) e1 + (α− ρ) (Py + e1)− e2 −By,n−1]−

[
(α− ρ) pvj −Bvj ,n−1

]
φvj

1−
[
(α− ρ) pvj −Bvj ,n−1

]
cvj

,

with initial conditions A0 = 0, By,0 = 0, and Bv,0 = 0, and where ⊗ defines the Kronecker product, � the
Hadamar product, I is the identity matrix, 1 is a column vector of ones, ei (i = 1, 2, . . . 8) and evi (i = 1, 2)
are coordinate vectors with all elements equal to zero except element i = 1, the column vectors A and Bj

for j = 1, 2 are defined in Equation (A.1), and m̄ is defined in Equation (A.3).

It follows naturally that the term structure of nominal interest rates is given by:

ynt = n−1
(
An +B>y,nyt +B>v,nvt

)
.

B.3 Term structure of risky treasury yields

U.S. default risk is driven by a default intensity ht defined as

ht = h+ hc∆ct + hddt + hggt + hv1v1,t + hv2v2,t = h+ h>z zt + h>v vt, (B.1)

such that hz = [hc, hπ, hd, hg]
> and hv = [hv1 , hv2 ]>. We adopt the convention that hy = [hz, 0, 0, 0, 0]>,

and hỹ = [hy, 0, 0, 0]>. We connect the default intensity to Ht, the conditional default probability of a given
reference entity at day t via Ht ≡ Prob (τ = t | τ ≥ t;Ft) = 1 − e−ht , where Ft denotes all the available
information available at time t, with the exception of credit events. This implies that the probability of
survival (no credit event) until time t is:

St ≡ Prob (τ > t | Ft) = S0

t∏
j=1

(1−Hj) , t ≥ 1. (B.2)

To price risky zero coupon Treasury bonds, we take into account the convenience yield s1,t with dynamics
defined in Equation (3), and loss given default L. Using the law of iterated expectations, it is possible to
show that risky bond prices follow the recursion

P̃nt = Et
(
Mt,t+1e

s1,t+1 [I (τ > t+ 1) + (1− L) · I (t < τ ≤ t+ 1)] · P̃n−1
t+1

)
= Et

(
Mt,t+1e

s1,t+1 [1− LHt+1] · P̃n−1
t+1

)
≈ Ete

∑n
j=1 mt+j−1,t+j−L·ht+j+s1,t+j ,

where we follow Duffie and Singleton (1999) by applying a first order Taylor approximation of log(1−LHt)
around 0 such that log(1 − LHt) ≈ −L · ht. Since all elements of the bond pricing equation are affine
functions of the extended state vector, log bond prices are fully characterized by the cumulant-generating
function of x̃t. The law of iterated expectations implies that P̃nt satisfies the recursion

P̃nt = Et
[
Mt,t+1e

−L·ht+1+s1,t+1 P̃n−1
t+1

]
.
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To derive closed-form solutions for the term structure of risky Treasury rates, we conjecture that log prices
of risky zero-coupon bonds p̃t are affine in the extended state vector x̃t = [y>t , s

>, v>t ]> = [ỹ>t , v
>
t ]>:

p̃nt = log P̃nt = −Ãn − B̃>ỹ,nỹt − B̃>v,nvt.

where the coefficients of the vectors B̃ỹ,n and B̃v,n measure the sensitivity of risky bond prices to the risk

factors and where n refers to the maturity of the bond. It can be shown that for all n, the scalar Ãn and
the components of the column vectors B̃ỹj ,n for j = 1, 2, . . . , 11 and B̃vj ,n for j = 1, 2, are given by

Ãn = Ãn−1 + L · h− m̄+
[
ẽ2 + L · hỹ − ẽ9 + B̃ỹ,n−1

]>
µ̃y

+

2∑
j=1

vvj log
(

1−
[
(α− ρ) pvj − L · hvj − B̃vj ,n−1

+
(
B̃s1,n−1 + 1

)
vs1vj + B̃s2,n−1vs2vj + B̃s3,n−1vs3vj

]
cvj

)
− 1

2

[
(ρ− 1) ẽ1 + (α− ρ) (Pỹ + ẽ1)−

(
ẽ2 + L · hỹ − ẽ9 + B̃ỹ,n−1

)]>
Σ̃y
[
Ĩ�

(
1̃> ⊗ Ã

)]
× Σ̃>y

[
(ρ− 1) ẽ1 + (α− ρ) (Pỹ + ẽ1)−

(
ẽ2 + L · hỹ − ẽ9 + B̃ỹ,n−1

)]
−

2∑
j=1

((
B̃s1,n−1 + 1

)
vs1vj + B̃s2,n−1vs2vj + B̃s3,n−1vs3vj

)
vvj cvj

B̃ỹj ,n =
[(
ẽ2 + L · hỹ − ẽ9 + B̃ỹ,n−1

)
− (ρ− 1) ẽ1

]>
Φ̃y ẽj

B̃vj ,n =
(
ẽ2 + L · hỹ − ẽ9 + B̃ỹ,n−1

)
− [(ρ− 1) ẽ1]> Φ̃ỹvevj

+
(α− ρ) pvjφvj

1− αpvj cvj
+
α

2
(α− ρ) (Pỹ + ẽ1)> Σ̃y

[
Ĩ�

(
1̃> ⊗ B̃j

)]
Σ̃>y (Pỹ + ẽ1)

− 1

2

[
(ρ− 1) ẽ1 + (α− ρ) (Pỹ + ẽ1)−

(
ẽ2 + L · hỹ − ẽ9 + B̃ỹ,n−1

)]>
Σ̃y
[
Ĩ�

(
1̃> ⊗ B̃j

)]
× Σ̃y

> [
(ρ− 1) ẽ1 + (α− ρ) (Pỹ + ẽ1)−

(
ẽ2 + L · hỹ − ẽ9 + B̃ỹ,n−1

)]
−

[
(α− ρ) pvj − L · hvj − B̃vj ,n−1 +

(
B̃s1,n−1 + 1

)
vs1vj + B̃s2,n−1vs2vj + B̃s3,n−1vs3vj

]
φvj

1−
[
(α− ρ) pvj − L · hvj − B̃vj ,n−1 +

(
B̃s1,n−1 + 1

)
vs1vj + B̃s2,n−1vs2vj + B̃s3,n−1vs3vj

]
cvj

+
((
B̃s1,n−1 + 1

)
vs1vj + B̃s2,n−1vs2vj + B̃s3,n−1vs3vj

)
φvj ,

with initial conditions Ã0 = 0, B̃ỹ,0 = 0, and B̃v,0 = 0, and where ⊗ defines the Kronecker product, � the

Hadamar product, Ĩ is the identity matrix, 1̃ is a column vector of ones, ẽi (i = 1, 2, . . . 11) and evi (i = 1, 2)
are coordinate vectors with all elements equal to zero except element i = 1, m̄ is defined in Equation (A.3),

and the column vectors Ã and B̃j for j = 1, 2 are given by

Ã = [ac, aπ, ad, ag, 0, 0, 0, 0, 1, 1, 1]>

B̃j =
[
bcvj , bπvj , bdvj , bgvj , 0, 0, 0, 0, 0, 0, 0

]>
. (B.3)

It follows naturally that the term structure of risky interest rates is given by:

ỹnt = n1
(
Ãn + B̃>ỹ,nỹt + B̃>v,nvt

)
.

B.4 Term structure of LIBOR rates

We work with hypothetical zero-coupon LIBOR bonds Lnt discounted at the continuously compounded yield
`nt (defined at the monthly frequency), such that Lnt = exp (−`nt · n), where n ≤ 12 corresponds to LIBOR
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rate maturities of up to 12 months. To price LIBOR bonds, we take into account the convenience yield s1,t

and bank risk s2,t, with dynamics defined in Equation (3), and loss given default L. The LIBOR rate is
defined as `t = ỹ1

t + s1,t + s2,t. Using the law of iterated expectations, it is possible to show that LIBOR
bond prices follow the recursion

Lnt ≈ Ete
∑n

j=1 mt+j−1,t+j−L·ht+j−s2,t+j .

Following the logic developed for risky Treasury bonds in appendix B.3, it is straightforward to show that
the log price of a risky n-period zero coupon LIBOR bond is affine in the extended state space x̃t:

logLnt = −Ān − B̄>ỹ,nỹt − B̄>v,nvt. (B.4)

where the constant Ān and the coefficients of the column vectors B̄ỹ,n and B̄v,n measure the sensitivity of
LIBOR bond prices to the risk factors and where n refers to the maturity of the bond. It can be shown that
for all n, the scalar Ān and the components of the column vectors B̄ỹj ,n for j = 1, 2, . . . , 11 and B̄vj ,n for
j = 1, 2, are given by

Ān = Ān−1 + L · h− m̄+
(
ẽ2 + L · hỹ + ẽ10 + B̄ỹ,n−1

)>
µ̃y

+

2∑
j=1

vvj log
(
1−

[
(α− ρ) pvj − L · hvj − B̄vj ,n−1

+B̄s1,n−1vs1vj +
(
B̄s2,n−1 − 1

)
vs2vj + B̄s3,n−1vs3vj

]
cvj
)

− 1

2

[
(ρ− 1) ẽ1 + (α− ρ) (Pỹ + ẽ1)−

(
ẽ2 + L · hỹ + ẽ10 + B̄ỹ,n−1

)]>
Σ̃y
[
Ĩ�

(
1̃> ⊗ Ã

)]
× Σ̃>y

[
(ρ− 1) ẽ1 + (α− ρ) (Pỹ + ẽ1)−

(
ẽ2 + L · hỹ + ẽ10 + B̄ỹ,n−1

)]
+

2∑
j=1

B̄s1,n−1vs1vj +
((
B̄s2,n−1 − 1

)
vs2vj + B̄s3,n−1vs3vj

)
vvj cvj

B̄ỹj ,n =
[(
ẽ2 + L · hỹ + ẽ10 + B̄ỹ,n−1

)
− (ρ− 1) ẽ1

]>
Φ̃y ẽj

B̄vj ,n =
[(
ẽ2 + L · hỹ + ẽ10 + B̄ỹ,n−1

)
− (ρ− 1) ẽ1

]>
Φ̃ỹvevj

+
(α− ρ) pvjφvj

1− αpvj cvj
+
α

2
(α− ρ) (Pỹ + ẽ1)> Σ̃y

[
Ĩ�

(
1̃> ⊗ B̃j

)]
Σ̃>y (Pỹ + ẽ1)

− 1

2

[
(ρ− 1) ẽ1 + (α− ρ) (Pỹ + ẽ1)−

(
ẽ2 + L · hỹ + ẽ10 + B̄ỹ,n−1

)]>
Σ̃y
[
Ĩ�

(
1̃> ⊗ B̃j

)]
× Σ̃y

> [
(ρ− 1) ẽ1 + (α− ρ) (Pỹ + ẽ1)−

(
ẽ2 + L · hỹ + ẽ10 + B̄ỹ,n−1

)]
−

[
(α− ρ) pvj − L · hvj − B̄vj ,n−1 + B̄s1,n−1vs1vj +

(
B̄s2,n−1 − 1

)
vs2vj + B̄s3,n−1vs3vj

]
φvj

1−
[
(α− ρ) pvj − L · hvj − B̄v1,n−1 + B̄s1,n−1vs1vj +

(
B̄s2,n−1 − 1

)
vs2vj + B̄s3,n−1vs3vj

]
cvj

+
(
B̄s1,n−1vs1vj +

(
B̄s2,n−1 − 1

)
vs2vj + B̄s3,n−1vs3vj

)
φvj

with initial conditions Ā0 = 0, B̄ỹ,0 = 0, and B̄v,0 = 0, and where ⊗ defines the Kronecker product, � the

Hadamar product, Ĩ is the identity matrix, 1̃ is a column vector of ones, ẽi (i = 1, 2, . . . 11) and evi (i = 1, 2)
are coordinate vectors with all elements equal to zero except element i = 1, m̄ is defined in Equation (A.3),

and the column vectors Ã and B̃j are defined in Equation (B.3). It follows naturally that the term structure
of risky LIBOR rates is given by:

`nt = n−1
(
Ān + B̄>ỹ,nỹt + B̄>v,nvt

)
.
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B.5 Term structure of IRS rates

To price IRS rates, we take into account the convenience yield s1,t, bank risk s2,t, and cost of collateral s3,t,
with dynamics defined in Equation (3). The formula for an n-period IRS rate is given by

IRSnt =

n/∆∑
j=1

(
Ψ̃`
j,t −Ψ`

j,t

)n/∆∑
j=1

Ψ`
j,t

−1

,

where the one-month LIBOR rate is defined as `t = ỹ1
t + s1,t + s2,t, ∆ defines the time interval between two

successive coupon periods, and where the expressions for Ψ̃` and Ψ` are defined as

Ψ̃`
n,t = Et

[
emt,t+n∆+s3,t+n∆e

∆·`3t+(n−1)∆

]
and Ψ`

n,t = Et
[
emt,t+n+s3,t+n

]
.

To derive closed-form solutions for the term structure of IRS rates, we conjecture that the expressions for
Ψ̃` and Ψ` are exponentially affine in the extended state vector x̃t = [y>t , s

>, v>t ]> = [ỹ>t , v
>
t ]>:

Ψ̃`
n,t = eÃ

`
n+B̃`>

ỹ,nỹt+B̃`>
v,nvt and Ψ`

n,t = eA
`
n+B`>

ỹ,nỹt+B`>
v,nvt .

It can be shown that for all n, the scalars Ã`n and A`n, and the components of the column vectors B̃`ỹj ,n and

B`ỹj ,n for j = 1, 2, . . . , 11, and B̃`vj ,n B
`
vj ,n for j = 1, 2, follow the same recursion and are given by

A`n = A`n−1 + m̄−
[
ẽ2 −B`ỹ,n−1 − ẽ11

]>
µ̃ỹ −

2∑
j=1

vvj log
(

1−
[
(α− ρ) pvj +B`vj ,n−1

+B`s1,n−1vs1vj +B`s2,n−1vs2vj +
(
B`s3,n−1 + 1

)
vs3vj

]
cvj

)
+

1

2

[
(ρ− 1) ẽ1 + (α− ρ) (Pỹ + ẽ1)−

[
ẽ2 −B`ỹ,n−1 − ẽ11

]]>
Σ̃ỹ
[
Ĩ�

(
1̃> ⊗ Ã

)]
× Σ̃>ỹ

[
(ρ− 1) ẽ1 + (α− ρ) (Pỹ + ẽ1)−

[
ẽ2 −B`ỹ,n−1 − ẽ11

]]
−

2∑
j=1

(
B`s1,n−1vs1vj +B`s2,n−1vs2vj +

(
B`s3,n−1 + 1

)
vs3vj

)
vvj cvj

B`ỹj ,n =
[
(ρ− 1) ẽ1 −

[
ẽ2 −B`ỹ,n−1 − ẽ11

]]>
Φ̃ỹ ẽj

B`vj ,n =
[
(ρ− 1) ẽ1 −

[
ẽ2 −B`ỹ,n−1 − ẽ11

]]>
Φ̃ỹvevj

−
(α− ρ) pvjφvj

1− αpvj cvj
− α

2
(α− ρ) (Pỹ + ẽ1)> Σ̃ỹ

[
Ĩ�

(
1̃> ⊗ B̃j

)]
Σ̃>ỹ (Pỹ + ẽ1)

+
1

2

[
(ρ− 1) ẽ1 + (α− ρ) (Pỹ + ẽ1)−

[
ẽ2 −B`ỹ,n−1 − ẽ11

]]>
Σ̃ỹ
[
Ĩ�

(
1̃> ⊗ B̃j

)]
× Σ̃>ỹ

[
(ρ− 1) ẽ1 + (α− ρ) (Pỹ + ẽ1)−

[
ẽ2 −B`ỹ,n−1 − ẽ11

]]
+

[
(α− ρ) pvj +B`vj ,n−1 +B`s1,n−1vs1vj +B`s2,n−1vs2vj +

(
B`s3,n−1 + 1

)
vs3vj

]
φvj

1−
[
(α− ρ) pvj +B`vj ,n−1 +B`s1,n−1vs1vj +B`s2,n−1vs2vj +

(
B`s3,n−1 + 1

)
vs3vj

]
cvj

−
(
B`s1,n−1vs1vj +B`s2,n−1vs2vj +

(
B`s3,n−1 + 1

)
vs3vj

)
φvj ,

where ⊗ defines the Kronecker product, � the Hadamar product, Ĩ is the identity matrix, 1̃ is a column
vector of ones, ẽi (i = 1, 2, . . . 11) and evi (i = 1, 2) are coordinate vectors with all elements equal to zero

except element i = 1, m̄ is defined in Equation (A.3), and the column vectors Ã and B̃j are defined in
Equation (B.3).
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While the expressions Ψ̃` and Ψ` have the same recursions, they have different starting conditions. For Ψ`
n,t,

the recursion starts at 0, with initial condition given by A`0 = 0, and all elements of B`ỹ,0 = 0 and B`v,0 = 0,

except for B`s3,0 = 1. For Ψ̃`
n,t, the recursion starts at n = ∆ (i.e., ∆ = 3 for quarterly coupon payments),

with starting condition given by:

Ψ̃`
∆,t = e∆·`3tEt

[
emt,t+∆+s3,t+∆

]
.

Since logEt
[
emt,t+∆+s3,t+∆

]
= A`∆ + B`>ỹ,∆ỹt + B`>v,∆vt, and `3t = 1

3

(
Ā3 + B̄>ỹ,3ỹt + B̄>v,3vt

)
, the initial con-

dition for Ψ̃`
n,t is given by:

Ψ̃`
∆,t = e

∆
3
Ā3+ ∆

3
B̄>ỹ,3ỹt+ ∆

3
B̄>v,3vt+A`

∆+B`>
ỹ,∆ỹt+B`>

v,∆vt = e
A

`init
∆ +

(
B

`init
ỹ,∆

)>
ỹt+

(
B

`init
v,∆

)>
vt ,

where the constant A`init
∆ and the elements of the column vectors B`init

ỹj ,∆
for j = 1, 2, . . . , 11 and B`init

vj ,∆
for

j = 1, 2 are given by:

A`init
∆ =

∆

3
Ā3 +A`∆

B`init
ỹj ,∆

=
∆

3
B̄ỹj ,3 +B`ỹj ,∆

B`init
vj ,∆

=
∆

3
B̄vj ,3 +B`vj ,∆.

B.6 Term structure of OIS rates

To price OIS rates, we take into account the convenience yield s1,t and cost of collateral s3,t, with dynamics
defined in Equation (3). The formula for an n-period OIS rate is given by

OISnt =

n/∆∑
j=1

(
Ψ̃o
j,t −Ψo

j,t

)n/∆∑
j=1

Ψo
j,t

−1

,

where the one-month OIS rate is defined as ot = ỹ1
t +s1,t, ∆ defines the time interval between two successive

coupon periods, and where the expressions for Ψ̃o and Ψo are defined as

Ψ̃o
n,t = Et

[
emt,t+n+s3,t+n exp

(
∆∑
j=1

ot+n∆−j

)]
and Ψo

n,t = Et
[
emt,t+n+s3,t+n

]
.

To derive closed-form solutions for the term structure of OIS rates, we conjecture that the expressions for
Ψ̃o and Ψo are exponentially affine in the extended state vector x̃t = [y>t , s

>, v>t ]> = [ỹ>t , v
>
t ]>:

Ψ̃o
n,t = eÃ

o
n+B̃o>

ỹ,nỹt+B̃o>
v,nvt and Ψo

n,t = eA
`
n+Bo>

ỹ,nỹt+Bo>
v,nvt .

It can be shown that for all n, the scalars Ãon and Aon, and the components of the column vectors B̃oỹj ,n and

Boỹj ,n for j = 1, 2, . . . , 11, and B̃ovj ,n B
o
vj ,n for j = 1, 2, follow the same recursion and are given by

Aon = Aon−1 + m̄−
[
ẽ2 −Boỹ,n−1 − ẽ11

]>
µ̃ỹ −

2∑
j=1

vvj log
(

1−
[
(α− ρ) pvj +Bovj ,n−1

+Bos1,n−1vs1vj +Bos2,n−1vs2vj +
(
Bos3,n−1 + 1

)
vs3vj

]
cvj
)

+
1

2

[
(ρ− 1) ẽ1 + (α− ρ) (Pỹ + ẽ1)−

[
ẽ2 −Boỹ,n−1 − ẽ11

]]>
Σ̃ỹ
[
Ĩ�

(
1̃> ⊗ Ã

)]
× Σ̃>ỹ

[
(ρ− 1) ẽ1 + (α− ρ) (Pỹ + ẽ1)−

[
ẽ2 −Boỹ,n−1 − ẽ11

]]
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−
2∑
j=1

(
Bos1,n−1vs1vj +Bos2,n−1vs2vj +

(
Bos3,n−1 + 1

)
vs3vj

)
vvj cvj

Boỹj ,n =
[
(ρ− 1) ẽ1 −

[
ẽ2 −Boỹ,n−1 − ẽ11

]]>
Φ̃ỹ ẽj

Bovj ,n =
[
(ρ− 1) ẽ1 −

[
ẽ2 −Boỹ,n−1 − ẽ11

]]>
Φ̃ỹvevj

−
(α− ρ) pvjφvj

1− αpvj cvj
− α

2
(α− ρ) (Pỹ + ẽ1)> Σ̃ỹ

[
Ĩ�

(
1̃> ⊗Bj

)]
Σ̃>ỹ (Pỹ + ẽ1)

+
1

2

[
(ρ− 1) ẽ1 + (α− ρ) (Pỹ + ẽ1)−

[
ẽ2 −Boỹ,n−1 − ẽ11

]]>
Σ̃ỹ
[
Ĩ�

(
1̃> ⊗Bj

)]
× Σ̃>ỹ

[
(ρ− 1) ẽ1 + (α− ρ) (Pỹ + ẽ1)−

[
ẽ2 −Boỹ,n−1 − ẽ11

]]
+

[
(α− ρ) pvj +Bovj ,n−1 +Bos1,n−1vs1vj +Bos2,n−1vs2vj +

(
Bos3,n−1 + 1

)
vs3vj

]
φvj

1−
[
(α− ρ) pvj +Bovj ,n−1 +Bos1,n−1vs1vj +Bos2,n−1vs2vj +

(
Bos3,n−1 + 1

)
vs3vj

]
cvj

−
(
Bos1,n−1vs1vj +Bos2,n−1vs2vj +

(
Bos3,n−1 + 1

)
vs3vj

)
φvj

where ⊗ defines the Kronecker product, � the Hadamar product, Ĩ is the identity matrix, 1̃ is a column
vector of ones, ẽi (i = 1, 2, . . . 11) and evi (i = 1, 2) are coordinate vectors with all elements equal to zero

except element i = 1, m̄ is defined in Equation (A.3), and the column vectors Ã and B̃j are defined in
Equation (B.3).

While the expressions Ψ̃o and Ψo have the same recursions, they have different starting conditions. For Ψo
n,t,

the recursion starts at 0, with initial condition given by Ao0 = 0, and all elements of Boỹ,0 = 0 and Bov,0 = 0,

except for Bos3,0 = 1. For Ψ̃o
n,t, the recursion starts at n = ∆ (i.e., ∆ = 3 for quarterly coupon payments),

with starting condition given by:

Ψ̃o
∆,t = Et

emt,t+∆+s3,t+∆+
∆∑

j=1
ot+∆−j

 = eÃ
o
∆+B̃o>

ỹ,∆ỹt+B̃o>
v,∆vt ,

where the expressions for Ão∆, B̃oỹ,∆, and B̃ov,∆ are obtained recursively. Observe that

Ψ̃o
∆,t = eotEt

[
emt,t+1+s3,t+1eot+1Et+1

[
emt+1,t+2+s3,t+2 . . . eot+∆−1Et+∆−1

[
emt+∆−1,t+∆+s3,t+∆

]]]
,

and define Ψ̃o
n,t to be equal to Ψ̃oinit

n,t characterized as

Ψ̃oinit
n,t = Et

[
eot+mt,t+1+s3,t+1Ψ̃oinit

n−1,t+1

]
,

It can be shown that for all n = 1, 2, 3, . . . ,∆

Ψ̃oinit
n,t = e

A
oinit
n +B

oinit>
ỹ,n

ỹt+B
oinit>
v,n vt , (B.5)

where the scalar Aoinit
n and components of the column vectors Boinit

ỹj ,n
for j = 1, 2, . . . , 11 (except for Boinit

s1,n )

and Boinit
vj ,n are given by:

Aoinit
n = Ã1 +Aoinit

n−1 + m̄−
[
ẽ2 −Boinit

ỹ,n−1 − ẽ11

]>
µ̃ỹ −

2∑
j=1

vvj log
(

1−
[
(α− ρ) pvj +Boinit

vj ,n−1

+Boinit
s1,n−1vs1vj +Boinit

s2,n−1vs2vj +
(
Boinit
s3,n−1 + 1

)
vs3vj

]
cvj
)

+
1

2

[
(ρ− 1) ẽ1 + (α− ρ) (Pỹ + ẽ1)−

[
ẽ2 −Boinit

ỹ,n−1 − ẽ11

]]>
Σ̃ỹ
[
Ĩ�

(
1̃> ⊗ Ã

)]
× Σ̃>ỹ

[
(ρ− 1) ẽ1 + (α− ρ) (Pỹ + ẽ1)−

[
ẽ2 −Boinit

ỹ,n−1 − ẽ11

]]
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−
2∑
j=1

(
Boinit
s1,n−1vs1vj +Boinit

s2,n−1vs2vj +
(
Boinit
s3,n−1 + 1

)
vs3vj

)
vvj cvj

Boinit
ỹj ,n

=
[
(ρ− 1) ẽ1 −

[
ẽ2 −Boinit

ỹ,n−1 − ẽ11

]]>
Φ̃ỹ ẽ1 + B̃ỹj ,1

Boinit
s1,n =

[
(ρ− 1) ẽ1 −

[
ẽ2 −Boinit

ỹ,n−1 − ẽ11

]]>
Φ̃ỹ ẽ9 + B̃s1,1 + 1

Boinit
vj ,n =

[
(ρ− 1) ẽ1 −

[
ẽ2 −Boinit

ỹ,n−1 − ẽ11

]]>
Φ̃ỹvevj + B̃vj ,1

−
(α− ρ) pvjφvj

1− αpvj cvj
− α

2
(α− ρ) (Pỹ + ẽ1)> Σ̃ỹ

[
Ĩ�

(
1̃> ⊗Bj

)]
Σ̃>ỹ (Pỹ + ẽ1)

+
1

2

[
(ρ− 1) ẽ1 + (α− ρ) (Pỹ + ẽ1)−

[
ẽ2 −Boinit

ỹ,n−1 − ẽ11

]]>
Σ̃ỹ
[
Ĩ�

(
1̃> ⊗Bj

)]
× Σ̃>ỹ

[
(ρ− 1) ẽ1 + (α− ρ) (Pỹ + ẽ1)−

[
ẽ2 −Boinit

ỹ,n−1 − ẽ11

]]
+

[
(α− ρ) pvj +Boinit

vj ,j−1 +Boinit
s1,n−1vs1vj +Boinit

s2,n−1vs2vj +
(
Boinit
s3,n−1 + 1

)
vs3vj

]
φvj

1−
[
(α− ρ) pvj +Boinit

vj ,n−1 +Boinit
s1,n−1vs1vj +Boinit

s2,n−1vs2vj +
(
Boinit
s3,n−1 + 1

)
vs3vj

]
cvj

−
(
Bos1,n−1vs1vj +Bos2,n−1vs2vj +

(
Bos3,n−1 + 1

)
vs3vj

)
φvj ,

with starting condition Ψ̃oinit
1,t = eotEt

[
emt,t+1+s3,t+1

]
. Since Et

[
emt,t+1+s3,t+1

]
= Ψo

1,t = eA
o
1+Bo>

1 x̃t ,

ot = ỹ1
t + s1,t, with ỹ1

t = Ã1 + B̃>1 x̃t, we have that:

Ψ̃oinit
1,t = eotEt

[
emt,t+1+s3,t+1

]
eÃ1+Ao

1+(B̃ỹ,1+Bo
ỹ,1+ẽ9)>ỹt+(B̃v,1+Bo

v,1)>vt

= e
A

oinit
1 +

(
B

oinit
ỹ,1

)>
x̃t+(Boinit

v,1 )>vt ,

where the constant Aoinit
1 and the elements of the column vectors Boinit

ỹj ,1
for j = 1, 2, . . . , 11 (except for

Boinit
s1,1

) and Boinit
vj ,1

for j = 1, 2 are given by:

Aoinit
1 = Ã1 +Ao1

Boinit
ỹj ,1

= B̃ỹj ,1 +Boỹj ,1

Boinit
s1,1

= B̃s1,1 +Bos1,1 + 1

Boinit
vj ,1

= B̃vj ,1 +Bovj ,1.

B.7 Term structure of CDS premiums

To price CDS premiums, we take into account the cost of collateral s3,t, with dynamics defined in Equation
(3), the hazard rate defined in Equation (B.1), and the corresponding survival probabilities defined in
Equation (B.2). The formula for an n-period CDS premium is given by

CDSnt = L ·

(
n∑
j=1

(
Ψ̃c
j,t −Ψc

j,t

))n/∆∑
j=1

Ψc
j∆,t +

n∑
j=1

(
j

∆
− b j

∆
c
)

(Ψ̃c
j,t −Ψc

j,t)

−1

,

where the floor function b·c rounds to the nearest lower integer, ∆ defines the time interval between two

successive coupon periods, and where the expressions for Ψ̃c and Ψc are defined as

Ψ̃c
n,t = Et

[
emt,t+n+s3,t+n

St+n−1

St

]
and Ψc

n,t = Et

[
emt,t+n+s3,t+n

St+n
St

]
.
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The law of iterated expectations implies that Ψ̃c
j,t and Ψc

j,t satisfy the recursions

Ψ̃c
n,t = Et

[
emt,t+1+s3,t+1 (1−Ht+1) Ψ̃c

n−1,t+1

]
, Ψc

n,t = Et
[
emt,t+1+s3,t+1 (1−Ht+1) Ψc

n−1,t+1

]
,

starting at n = 1 for Ψ̃c
n,t and at n = 0 for Ψc

n,t. To evaluate the expressions for Ψ̃c and Ψc, we conjecture
that they are exponentially affine functions of the extended state vector x̃t:

Ψ̃c
n,t = eÃ

c
n+(B̃c

ỹ,n)>ỹt+(B̃c
v,n)>vt and Ψc

n,t = eA
c
n+(Bc

ỹ,n)>ỹt+(Bc
v,n)>vt .

It can be shown that for all n, the scalars Ãcn and Acn, and the components of the column vectors B̃cỹj ,n and

Bcỹj ,n for j = 1, 2, . . . , 11, and B̃cvj ,n for j = 1, 2, follow the same recursion and are given by

Ãcn = Ãcn−1 − h+ m̄−
[
ẽ2 + hỹ − B̃cỹ,n−1 − ẽ11

]>
µ̃ỹ

−
2∑
j=1

vvj log
(

1−
[
(α− ρ) pvj − hvj + B̃cvj ,n−1

+B̃cs1,n−1vs1vj + B̃cs2,n−1vs2vj +
(
B̃cs3,n−1 + 1

)
vs3vj

]
cvj

)
+

1

2

[
(ρ− 1) ẽ1 + (α− ρ) (Pỹ + ẽ1)−

(
ẽ2 + hỹ − B̃cỹ,n−1 − ẽ11

)]>
Σ̃ỹ
[
Ĩ�

(
1̃> ⊗ Ã

)]
× Σ̃>ỹ

[
(ρ− 1) ẽ1 + (α− ρ) (Pỹ + ẽ1)−

(
ẽ2 + hỹ − B̃cỹ,n−1 − ẽ11

)]
−

2∑
j=1

(
B̃cs1,n−1vs1vj + B̃cs2,n−1vs2vj +

(
B̃cs3,n−1 + 1

)
vs3vj

)
vvj cvj

B̃cỹj ,n =
[
(ρ− 1) ẽ1 −

(
ẽ2 + hỹ − B̃cỹ,n−1 − ẽ11

)]>
Φ̃ỹ ẽj

B̃cvj ,n =
[
(ρ− 1) ẽ1 −

(
ẽ2 + hỹ − B̃cỹ,n−1 − ẽ11

)]>
Φ̃ỹvevj

−
(α− ρ) pvjφvj

1− αpvj cvj
− α

2
(α− ρ) (Pỹ + ẽ1)> Σ̃ỹ

[
Ĩ�

(
1̃> ⊗ B̃j

)]
Σ̃>ỹ (Pỹ + ẽ1)

+
1

2

[
(ρ− 1) ẽ1 + (α− ρ) (Pỹ + ẽ1)−

(
ẽ2 + hỹ − B̃cỹ,n−1 − ẽ11

)]>
Σ̃ỹ
[
Ĩ�

(
1̃> ⊗ B̃j

)]
× Σ̃>ỹ

[
(ρ− 1) ẽ1 + (α− ρ) (Pỹ + ẽ1)−

(
ẽ2 + hỹ − B̃cỹ,n−1 − ẽ11

)]
+

[
(α− ρ) pvj − hvj + B̃cvj ,n−1 + B̃cs1,n−1vs1vj + B̃cs2,n−1vs2vj +

(
B̃cs3,n−1 + 1

)
vs3vj

]
φvj

1−
[
(α− ρ) pvj − hvj + B̃cvj ,n−1 + B̃cs1,n−1vs1vj + B̃cs2,n−1vs2vj +

(
B̃cs3,n−1 + 1

)
vs3vj

]
cvj

−
(
B̃cs1,n−1vs1vj + B̃cs2,n−1vs2vj +

(
B̃cs3,n−1 + 1

)
vs3vj

)
φvj ,

where ⊗ defines the Kronecker product, � the Hadamar product, Ĩ is the identity matrix, 1̃ is a column
vector of ones, ẽi (i = 1, 2, . . . 11) and evi (i = 1, 2) are coordinate vectors with all elements equal to zero

except element i = 1, m̄ is defined in Equation (A.3), and the column vectors Ã and B̃j are defined in
Equation (B.3).

Even though the expressions for Ψ̃c and Ψc follow the same recursion, they have different initial conditions.
The initial condition for Ψc is given by log Ψc

0,t = Ac0 + Bc>ỹ,0ỹt + Bc>v,0vt, where the scalar Ac0 = 0 and the
elements of the column vectors Bcỹj ,0 = 0 for j = 1, 2, . . . , 11, and Bcv,0 = 0 for j = 1, 2, except for Bcs3,0 = 1.

The initial condition for Ψ̃c is given by:

Ψ̃c
1,t = Et

[
emt,t+1+s3,t+1

]
= eÃ

c
1+B̃c>

ỹ,1ỹt+B̃c>
v,1vt ,
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where the scalar Ãc1 and components of the column vectors B̃cỹj ,1 for j = 1, 2, . . . , 11 and B̃cvj ,1 for j = 1, 2
are given by:

Ãc1 = m̄+ [ẽ11 − ẽ2]> µ̃Y −
2∑
j=1

vvj log
(
1−

[
(α− ρ) pvj + vs3vj

]
cvj
)
−

2∑
j=1

vs3vjvvj cvj

+
1

2
[(ρ− 1) ẽ1 + (α− ρ) (Pỹ + ẽ1) + ẽ11 − ẽ2]> Σ̃ỹ

[
Ĩ�

(
1̃> ⊗ Ã

)]
× Σ̃>ỹ [(ρ− 1) ẽ1 + (α− ρ) (Pỹ + ẽ1) + ẽ11 − ẽ2]

B̃cỹj ,1 = [(ρ− 1) ẽ1 + ẽ11 − ẽ2]> Φ̃ỹ ẽj

B̃cvj ,1 = [(ρ− 1) ẽ1 + ẽ11 − ẽ2]> Φ̃ỹvevj

−
(α− ρ) pvjφvj

1− αpvj cvj
− α

2
(α− ρ) (Pỹ + ẽ1)> Σ̃ỹ

[
Ĩ�

(
1̃> ⊗ B̃j

)]
Σ̃>ỹ (Pỹ + ẽ1)

+
1

2
[(ρ− 1) ẽ1 + (α− ρ) (Pỹ + ẽ1) + ẽ11 − e2]> Σ̃ỹ

[
Ĩ�

(
1̃> ⊗ B̃j

)]
× Σ̃>ỹ [(ρ− 1) ẽ1 + (α− ρ) (Pỹ + ẽ1) + ẽ11 − ẽ2] +

[
(α− ρ) pvj + vs3vj

]
φvj

1−
[
(α− ρ) pvj + vs3vj

]
cvj
− vs3vjφvj .

C Estimation

We provide two different state-space representations. The first one, shown in Section C.1, is used when
macroeconomic fundamentals are only used in the estimation. The second one, shown in Section C.2, is an
extended state-space representation for which we can (potentially) jointly use macroeconomic fundamentals
and asset data.

C.1 State-space representation

The underlying state transition dynamics run at a monthly frequency. We first provide the case in which
all observables are available at the monthly frequency. The corresponding state-transition dynamics are
shown in Section C.1.1 and the measurement equation is presented in Section C.1.2. In the presence of
mixed-frequency observables, i.e., some observables are available at the quarterly frequency, we explain how
to adjust the state space in Section C.1.3 with an illustrative example. Finally, in Section C.1.4, we explain
the availability of data and provide our state-space representation that we estimate.
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C.1.1 State transition dynamics

Define xt = [z>t , w
>
t , v

>
t ]>. We describe the joint dynamics of xt below

z1,t+1

z2,t+1

z3,t+1

z4,t+1

w1,t+1

w2,t+1

w3,t+1

w4,t+1

v1,t+1

v2,t+1


︸ ︷︷ ︸

xt+1

=



µz1
µz2
µz3
µz4
0
0
0
0

νv1cv1

νv2cv2


︸ ︷︷ ︸

µ

+



φz11 φz12 φz13 φz14 1 0 0 0 φzv11 φzv12

φz21 φz22 φz23 φz24 0 1 0 0 φzv21 φzv22

φz31 φz32 φz33 φz34 0 0 1 0 φzv31 φzv32

φz41 φz42 φz43 φz44 0 0 0 1 φzv41 φzv42

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 φv1 0
0 0 0 0 0 0 0 0 0 φv2


︸ ︷︷ ︸

Φ



z1,t

z2,t

z3,t

z4,t

w1,t

w2,t

w3,t

w4,t

v1,t

v2,t


︸ ︷︷ ︸

xt

+



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

θw11 θw12 θw13 θw14 0 0 0 0 0 0
θw21 θw22 θw23 θw24 0 0 0 0 0 0
θw31 θw32 θw33 θw34 0 0 0 0 0 0
θw41 θw42 θw43 θw44 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


︸ ︷︷ ︸

ΣA

×



ν11 0 0 0 0 0 0 0 0 0
ν21 ν22 0 0 0 0 0 0 0 0
ν31 ν32 ν33 0 0 0 0 0 0 0
ν41 ν42 ν43 ν44 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


︸ ︷︷ ︸

ΣB

×





V1,t 0 0 0 0 0 0 0 0 0
0 V2,t 0 0 0 0 0 0 0 0
0 0 V3,t 0 0 0 0 0 0 0
0 0 0 V4,t 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ωv1,t 0
0 0 0 0 0 0 0 0 0 ωv2,t


︸ ︷︷ ︸

Vt



1/2 

εz1,t+1

εz2,t+1

εz3,t+1

εz4,t+1

0
0
0
0

ηv1,t+1

ηv2,t+1


︸ ︷︷ ︸

ηt+1

,

for i ∈ {1, 2, 3, 4} and j ∈ {1, 2},

Vi,t = ai + bi1v1,t + bi2v2,t, ωvj ,t = νvj c
2
vj + 2cvjφvjvj,t

with εzi,t+1 ∼ N (0, 1) and ηvj ,t+1 being a zero mean unit variance shock. In vector notations, we express
the state space by zt+1

wt+1

vt+1


︸ ︷︷ ︸

xt+1

=

 µz
0

νv � cv


︸ ︷︷ ︸

µ

+

 Φz4×4 I4×4 Φzv4×2

04×4 04×4 04×2

02×4 02×4 Φv2×2


︸ ︷︷ ︸

Φ

 zt
wt
vt


︸ ︷︷ ︸

xt

+

 I4×4 04×4 04×2

Θw4×4 04×4 04×2

02×4 02×4 I2×2


︸ ︷︷ ︸

ΣA

(C.1)
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×

 νz4×4 04×4 04×2

04×4 04×4 04×2

02×4 02×4 I2×2


︸ ︷︷ ︸

ΣB

×


 Vz,t4×4 04×4 04×2

04×4 04×4 04×2

02×4 02×4 ωv,t2×2


︸ ︷︷ ︸

Vt


1/2

×

 εz,t+1

0
ηv,t+1


︸ ︷︷ ︸

ηt+1

.

C.1.2 Measurement equation

For ease of illustration, assume that the observables are available at a monthly frequency. Define ot =
[∆ct, dt, gt, πt]

>. Then, the measurement equation becomes

ot = β>xt + ut, ut ∼ N(0,Σu) (C.2)

where β = [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]> and Σu is a measurement error (diagonal) variance-covariance matrix.

C.1.3 Dealing with the mixed-frequency issue

When some observables are available at a quarterly frequency, we need to adjust both measurement and
transition equations to deal with the mixed-frequency issue. We provide an example whereby the dimension
of zt, wt, and vt are reduced to half for ease of illustration. We assume that the first observable is available at
a quarterly while the second observable is available at a monthly frequency. We introduce the superscript q
to indicate if the observable is available at the quarterly frequency. Thus, ot = [zq1,t, z2,t]

′. Also for simplicity,
we do not allow for measurement errors. There are two cases to consider.

1. If zq1,t is expressed in growth rates, adjust the measurement loading β and state vector to

β =

[
1
3

2
3

1 2
3

1
3

0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0

]
, xt =



z1,t

z1,t−1

z1,t−2

z1,t−3

z1,t−4

z2,t

z2,t−1

z2,t−2

z2,t−3

z2,t−4

w1,t

w2,t

v1,t



. (C.3)

We can relate the mixed-frequency observables to the state vector by

ot =

[
zq1,t
z2,t

]
=

[ z1,t+2z1,t−1+3z1,t−2+2z1,t−3+z1,t−4

3

z2,t

]
= β>xt. (C.4)
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2. If zq1,t is expressed in levels, adjust the measurement loading β and state vector to

β =

[
1
3

1
3

1
3

0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0

]
, xt =



z1,t

z1,t−1

z1,t−2

z1,t−3

z1,t−4

z2,t

z2,t−1

z2,t−2

z2,t−3

z2,t−4

w1,t

w2,t

v1,t



. (C.5)

We can relate the mixed-frequency observables to the state vector by

ot =

[
zq1,t
z2,t

]
=

[ z1,t+z1,t−1+z1,t−2

3

z2,t

]
= β>xt. (C.6)

C.1.4 Implementation

We use quarterly consumption growth (∆cqt ), output growth (dqt ), and log government expenditure-to-
output ratio (gqt ), and monthly inflation (πt) in the estimation. Except for consumption growth data, we are
using the highest available frequency. Our choice of using quarterly consumption growth avoids modeling
measurement errors in monthly consumption growth (see Schorfheide, Song, and Yaron (2018) for a detailed
discussion), which significantly reduces the dimension of the state vector leading to a much more tractable
estimation problem. Note that ∆cqt and dqt are expressed in growth rates, but πt and gqt are expressed in
levels. Following the idea described in Section C.1.3, we modify the measurement equation loading β and
state vector Xt to equate the observables to our state variables

ot =


∆cqt
dqt
gqt
πt

 =


z1,t+2z1,t−1+3z1,t−2+2z1,t−3+z1,t−4

3
z2,t+2z2,t−1+3z2,t−2+2z2,t−3+z2,t−4

3
z3,t+z3,t−1+z3,t−2

3

z4,t

 . (C.7)

The most efficient characterization of the state vector is

xt =

[
z1,t, z1,t−1, z1,t−2, z1,t−3, z1,t−4, z2,t, z2,t−1, z2,t−2, z2,t−3, z2,t−4,

z3,t, z3,t−1, z3,t−2, z4,t, w1,t, w2,t, w3,t, w4,t, v1,t, v2,t

]>
. (C.8)

The coefficient matrices in (C.1) are adjusted accordingly to match the dimension of (C.8). It is easy to
deduce the form of β from (C.7) and (C.8).

Because of the conditionally linear structure of our state-space form, we can directly apply the Rao-
Blackwellization particle filter as in Schorfheide, Song, and Yaron (2018). The details are omitted for
brevity.

C.2 State-space representation: Extended form

We now introduce an extended state-space representation in which we additionally introduce s factors which
are crucial elements for asset prices. We allow the s factors to depend on the lagged values of z and ν factors
to model inter-dependence.
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C.2.1 State transition dynamics



z1,t+1

z2,t+1

z3,t+1

z4,t+1

w1,t+1

w2,t+1

w3,t+1

w4,t+1

s1,t+1

s2,t+1

s3,t+1

v1,t+1

v2,t+1



=



µ1

µ2

µ3

µ4

0
0
0
0
µs1
µs2
µs3

νv1cv1

νv2cv2



+



φz11 φz12 φz13 φz14 1 0 0 0 0 0 0 φzv11 φzv12

φz21 φz22 φz23 φz24 0 1 0 0 0 0 0 φzv21 φzv22

φz31 φz32 φz33 φz34 0 0 1 0 0 0 0 φzv31 φzv32

φz41 φz42 φz43 φz44 0 0 0 1 0 0 0 φzv41 φzv42

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

φsz11 φsz12 φsz13 φsz14 0 0 0 0 φs11 φs12 φs13 φsv11 φsv12

φsz21 φsz22 φsz23 φsz24 0 0 0 0 φs21 φs22 φs23 φsv21 φsv22

φsz31 φsz32 φsz33 φsz34 0 0 0 0 φs31 φs32 φs33 φsv31 φsv32

0 0 0 0 0 0 0 0 0 0 0 φv1 0
0 0 0 0 0 0 0 0 0 0 0 0 φv2





z1,t
z2,t
z3,t
z4,t
w1,t

w2,t

w3,t

w4,t

s1,t
s2,t
s3,t
v1,t

v2,t



+



1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0

θw11 θw12 θw13 θw14 0 0 0 0 0 0 0 0 0
θw21 θw22 θw23 θw24 0 0 0 0 0 0 0 0 0
θw31 θw32 θw33 θw34 0 0 0 0 0 0 0 0 0
θw41 θw42 θw43 θw44 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 1 1
1 1 1 1 1 1 1 1 0 1 0 1 1
1 1 1 1 1 1 1 1 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1



×



ν11 0 0 0 01×4 01×3 0 0
ν21 ν22 0 0 01×4 01×3 0 0
ν31 ν32 ν33 0 01×4 01×3 0 0
ν41 ν42 ν43 ν44 01×4 01×3 0 0
0 0 0 0 01×4 01×3 0 0
0 0 0 0 01×4 01×3 0 0
0 0 0 0 01×4 01×3 0 0
0 0 0 0 01×4 01×3 0 0

− (ν11 + ν21 + ν31 + ν41) + νsz11 − (ν22 + ν32 + ν42) + νsz12 − (ν33 + ν43) + νsz13 −ν44 + νsz14 01×4 [νs1 , 0, 0] −1 + νsv11 −1 + νsv12

− (ν11 + ν21 + ν31 + ν41) + νsz21 − (ν22 + ν32 + ν42) + νsz22 − (ν33 + ν43) + νsz23 −ν44 + νsz24 01×4 [0, νs2 , 0] −1 + νsv21 −1 + νsv22

− (ν11 + ν21 + ν31 + ν41) + νsz31 − (ν22 + ν32 + ν42) + νsz32 − (ν33 + ν43) + νsz33 −ν44 + νsz34 01×4 [0, 0, νs3 ] −1 + νsv31 −1 + νsv22

0 0 0 0 01×4 01×3 1 0
0 0 0 0 01×4 01×3 0 1



×





V1,t 0 0 0 0 0 0 0 0 0 0 0 0
0 V2,t 0 0 0 0 0 0 0 0 0 0 0
0 0 V3,t 0 0 0 0 0 0 0 0 0 0
0 0 0 V4,t 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 ωv1,t 0
0 0 0 0 0 0 0 0 0 0 0 0 ωv2,t





1/2 

εz1,t+1

εz2,t+1

εz3,t+1

εz4,t+1

0
0
0
0

εs1,t+1

εs2,t+1

εs3,t+1

ηv1,t+1

ηv2,t+1



,

for i ∈ {1, 2, 3, 4}, l ∈ {1, 2, 3} and j ∈ {1, 2},

Vi,t = ai + bi1v1,t + bi2v2,t, ωvj ,t = νvj c
2
vj + 2cvjφvjvj,t

with εzi,t+1 ∼ N (0, 1), εsl,t+1 ∼ N (0, 1), and ηvj ,t+1 being a zero mean unit variance shock.

In vector notations, we express the state space by
zt+1

wt+1

st+1

vt+1


︸ ︷︷ ︸

x̃t+1

=


µz
0
µs

νv � cv


︸ ︷︷ ︸

µ̃

+


Φz4×4 I4×4 04×3 Φzv4×2

04×4 04×4 04×3 04×2

Φsz3×4 03×4 Φs3×3 Φsv3×2

02×4 02×4 02×3 Φv2×2


︸ ︷︷ ︸

Φ̃


zt
wt
st
vt


︸ ︷︷ ︸

x̃t

(C.9)
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+


I4×4 04×4 04×3 04×2

Θw4×4 04×4 04×3 04×2

J3×4 J3×4 I3×3 J3×2

02×4 02×4 02×3 I2×2


︸ ︷︷ ︸

Σ̃A

×


νz4×4 04×4 04×3 04×2

04×4 04×4 04×3 04×2

−J3×4 · νz4×4 + νsz3×4 03×4 νs3×3 −J3×2 + νsv3×2

02×4 02×4 02×3 I2×2


︸ ︷︷ ︸

Σ̃B

×




Vz,t4×4 04×4 04×3 04×2

04×4 04×4 04×3 04×2

03×4 03×4 I3×3 03×2

02×4 02×4 02×3 ωv,t2×2


︸ ︷︷ ︸

Ṽt



1/2

×


εz,t+1

0
εs,t+1

ηv,t+1


︸ ︷︷ ︸

η̃t+1

.

C.2.2 Measurement equation

Consider various different maturities of the risky Treasury zero-coupon yields (T), interest rate swap premi-
ums (I), CDS premiums (C), and OIS spreads (O). We introduce new notations to relate the observed rates
to our state variables, given our solution coefficients. Define

yTm,t = ΞT (ATm, B
T
m, Ã

T
m, B̃

T
m, x̃t) = ΞT (ÃTm, B̃

T
m, x̃t) (C.10)

yCm,t = ΞC(ACm, B
C
m, Ã

C
m, B̃

C
m, x̃t)

yIm,t = ΞI(AIm, B
I
m, Ã

I
m, B̃

I
m, x̃t)

yOm,t = ΞI(AOm, B
O
m, Ã

O
m, B̃

O
m, x̃t)

to match the m-maturity rate of the observable to our state variables x̃t. We provide the derivation of
solution coefficients Ajm, B

j
m, Ã

j
m, B̃

j
m and an expression for Ξj(·) in Appendix B for j ∈ {T, I, C,O}. We

select the maturities of 1y, 3y, 5y, 7y, 10y, and 15y in the estimation, which are collected in

yjt =



yj1,t
...

yjm,t
...

yj15,t


=



Ξj(Aj1, B
j
1, Ã

j
1, B̃

j
1, x̃t)

...

Ξj(Ajm, B
j
m, Ã

j
m, B̃

j
m, x̃t)

...

Ξj(Aj15, B
j
15, Ã

j
15, B̃

j
15, x̃t)


. (C.11)

We consider yTt , y
C
t , y

I
t in the estimation and use yOt as out-of-sample validation. We have defined s1,t and

s2,t as observables in the main body of our paper. Define vectors es1 and es2 that select s1,t and s2,t from
x̃t, respectively. Put together, [

s1,t

s2,t

]
=

[
e>s1
e>s2

]
x̃t (C.12)

disciplines the dynamics of the s factors. In sum, our state-space representation is comprised of state
transition equations (C.9) and measurement equations (C.11) for j ∈ {T,C, I} and (C.12). There are two
ways in which we can proceed.

1. A joint estimation of macroeconomic observables and prices:

We augment our measurement equations with (C.7) and adjust the state transition equation (C.9)
to deal with mixed-frequency observations as explained in Section C.1.3. While the joint estimation
approach can be appealing, it is computationally challenging since we have to increase the dimension
of our state vector substantially. More importantly, because the system no longer preserves the
conditionally linear structure, e.g., (C.11), we cannot apply the solution proposed by Schorfheide,
Song, and Yaron (2018), and thus the non-linear filtering algorithm can be highly inefficient.
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2. Two-stage estimation in which macroeconomic observables and prices are separated:

For this, we treat the filtered estimates of ẑt and ŵt from the first stage estimation, which only involves
macroeconomic data, as observables for the second stage estimation. Among our state vector x̃t, we
are assuming that zt, wt, s1,t, s2,t are observed factors and treating s3,t, v1,t, v2,t as latent factors. We
can then partition the state vector into

x̃t = (x̃o,>t , x̃l,>t )> (C.13)

where the superscript o and l indicate “observed” and “latent” respectively. The non-linearing filtering
technique only deals with x̃lt in the state transition equation (C.9), since the other variables are
observed. In this case, the measurement equations are (C.11) for j ∈ {T,C, I} and (C.12).

C.2.3 Particle filter

We use a particle-filter approximation of the likelihood function and embed this approximation into a fairly
standard random walk Metropolis algorithm. In the subsequent exposition, we omit the dependence of all
densities on the parameter vector Θ. In slight abuse of notations, we denote all observables with

yt =
[
yC,>t , yT,>t , yI,>t , s1,t, s2,t

]>
(C.14)

The particle filter approximates the sequence of distributions {p(x̃lt|y1:t)}Tt=1 by a set of pairs
{
x̃
l,(i)
t , π

(i)
t

}N
i=1

,

where x̃
l,(i)
t is the ith particle vector, π

(i)
t is its weight, and N is the number of particles. As a by-product,

the filter produces a sequence of likelihood approximations p̂(yt|y1:t−1), t = 1, . . . , T .

• Initialization: We generate the particle values x̃
l,(i)
0 from the unconditional distribution. We set

π
(i)
0 = 1/N for each i.

• Propagation of particles: We simulate (C.9) forward to generate x̃
l,(i)
t conditional on x̃

l,(i)
t−1 and ob-

served x̃ot−1. We use q(x̃
l,(i)
t |x̃l,(i)t−1 , x̃

o
t−1, yt) to represent the distribution from which we draw x̃

l,(i)
t .

• Correction of particle weights: Define the unnormalized particle weights for period t as

π̃
(i)
t = π

(i)
t−1 ×

p(yt|x̃l,(i)t , x̃ot )p(x̃
l,(i)
t |x̃l,(i)t−1 , x̃

o
t−1)

q(x̃
l,(i)
t |x̃l,(i)t−1 , x̃

o
t−1, yt)

.

The term π
(i)
t−1 is the initial particle weight and the ratio

p(yt|x̃
l,(i)
t ,x̃ot )p(x̃

l,(i)
t |x̃l,(i)t−1 ,x̃

o
t−1)

q(x̃
l,(i)
t |x̃l,(i)t−1 ,x̃

o
t−1,yt)

is the impor-

tance weight of the particle.

The approximation of the log likelihood function is given by

log p̂(yt|y1:t−1) = log p̂(yt−1|y1:t−2) + log

(
N∑
i=1

π̃
(i)
t

)
.

• Resampling: Define the normalized weights

π
(i)
t =

π̃
(i)
t∑N

j=1 π̃
(j)
t

and generate N draws from the distribution {x̃l,(i)t , π
(i)
t }Ni=1 using multinomial resampling. In slight

abuse of notation, we denote the resampled particles and their weights also by x̃
l,(i)
t and π

(i)
t , where

π
(i)
t = 1/N .
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