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Abstract
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1 Introduction

Automation and globalization are two of the most debated contemporary long-run trends. They

are perceived as having a disruptive effect on the labour market with worrying implications for

inequality in terms of both employment opportunities and wages across different groups of workers.

Understanding their effects, their relative importance and their possible interactions is, therefore,

of preeminent relevance and, as such, has attracted a lot of research.1

Conventional wisdom, based on neoclassical reasonings about technological progress, is that

both trends are not going to have different effects from those of previous industrial revolutions as

in the end both can be seen as two types of ‘technological change’. With constant-return-to-scale

technologies, competitive input markets and homothetic preferences, the neoclassical paradigm

predicts that any improvement in the state of technology leads to an increase in labor produc-

tivity. In turn, higher labor productivity maps into higher wages, which raise demand so as to

compensate the investment that fosters technological change in the first place. Labor demand,

hence employment, cannot deviate from the long-run path dictated by the evolution of labor pro-

ductivity. This argument is very general and stands also in the presence of skill-biased technological

change (SBTC), whereby new technology complements workers with high skills, or routine-biased

technological change (RBTC), whereby technology crowds out workers from repetitive tasks.2 It

highlights a win-win situation as the efficiency gains in production eventually trickle down to both

capital owners and workers. If labor is the only factor of production and the relative price of

investment goods declines, then workers as a whole gain from new technology. Moreover, if the

supply of labor to different occupations is perfectly elastic, then all workers gain.3

People do observe, however, a number of facts (such as decreasing labor share, vanishing jobs

especially in manufacturing, and increasing inequality) that might challenge the rosy neoclassical

view. Concerns have been raised about the impact of automation on labor demand from various

angles.4 Similar concerns have also been raised with respect to offshoring as this is seen to work

1See e.g. Autor and Dorn [10], Goos et al. [32], Ottaviano et al. [45], Graetz and Michaels [33], Acemoglu and
Restrepo [3], Dauth et al. [24] on the empirical side; Acemoglu and Autor [1], Aghion et al. [5], Acemoglu and
Restrepo [2] and [4], Caselli and Manning [21] on the theoretical one.

2See, e.g., Acemoglu and Restrepo [2].
3Caselli and Manning [21].
4See for instance Bostrom [16], Brynjolfsson and McAfee [18], Goos et al [32], Ford [30], Susskind and Susskind

[50], White House [52], Stone et al [49], Frey and Osborne [29], Caselli and Manning [21].
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just like a new production technology.5 More generally, some commentators fear that things are

very different this time when compared with previous industrial revolutions.6 All these concerns

can be rationalized only if one departs from the neoclassical paradigm in that, from a theoretical

viewpoint, any threat to wages and employment may be expected to come more from the impacts

of new technology on the competitiveness of markets in the presence of various types of frictions

than from changes in the production function in the presence of frictionless markets.7

Against this backdrop, the aim of the present paper is to show, theoretically and empirically,

that the effects of technological change associated with automation and offshoring on the labor

market can substantially deviate from the rosy neoclassical conclusions when search frictions hinder

efficient matching between firms that need heterogenous tasks to be performed and workers who

are endowed with heterogenous skills to perform those tasks. The type of heterogeneity we have

in mind is ‘horizontal’ rather than ‘vertical’ as usually assumed in the literature on skill-biased

or routine-biased technological change. In models of skill-biased technological change some tasks

are more ‘skill intensive’ than others and some skills are ‘higher’ in a vertical scale than others.

In the dominant case of positive assortative matching, high-skill workers end up performing more

skill-intensive tasks. Skill-biased technological change then increases the relative demand of high-

skill workers to the detriment of low-skill ones, boosting the skill premium. The same logic works

in models of routine-biased technological change, the only difference being that the skill intensity

of tasks is replaced by their ‘routine intensity’ and the high-low ranking of skills is replaced by

a ranking in terms of routiness. Analogously, routine-biased technological change increases the

relative demand of non-routine workers to the detriment of routine ones, boosting the non-routine

premium.

While SBTC and RBTC are very relevant concepts, here we want to highlight additional effects

of automation and offshoring that are at work independently from any vertical heterogeneity. From

a theoretical point of view, our hypothesis is the following. With two-sided heterogeneity, firms and

workers have ‘ideal matches’, that is, matches that produce the highest surplus. However, in the

presence of search frictions, meetings do not necessarily lead to ideal matches. Hence, whenever

5Grossman and Rossi-Hansberg [34], Costinot and Vogel [23], Goos et al. [32], Ottaviano et al [45].
6Bowen [17], Akst [8], Brynjolfsson and McAfee [18], Autor [9].
7Caselli and Manning [21].
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a firm and a worker meet with a less-than-ideal counterpart, they both face a trade-off between

accepting the current match and leaving in search of a better match. A better match generates

higher surplus but this gain has to be discounted as time is lost in search. That is why in equilibrium

firms (workers) settle for an ‘acceptance set’ of workers (firms) with skills (tasks) that are ‘good

enough’ for them, in the sense that they generate enough surplus. The intersection between the

two acceptance sets determines the ‘matching set’ of productive matches that are implemented.

The larger the acceptance sets and thus the matching set, the higher the inefficiency in production

due to more ‘mismatch’ between tasks and skills. Meetings that are not converted into productive

matches generate frictional unemployment.

Our hypothesis is then that technological change may increase the productivity of ideal matches

relative to less-than-ideal ones, above and beyond any consideration of skill or routine bias. It may,

therefore, make firms and workers more ‘selective’ reducing their acceptance sets as they become

more willing to forgo the surplus of a less-than-ideal match while waiting for a better one. Increased

selectivity is good for the productive efficiency of matches that are eventually formed as ‘mismatch’

in the matching set diminishes. However, as firms and workers are willing to sit longer on the fence

waiting for better matches, unemployment rises. Moreover, for matches that are actually formed,

ideal matches end up commanding a higher premium with respect to less-than-ideal matches. The

result is that technological change leads to higher match productivity, but also lower employment

and more wage inequality. This ‘mismatch effect’ interferes with the standard neoclassical forces

and materializes as long as less-than-ideal skills and tasks become less substitutable with ideal ones.

As ideal matches are the ones that define firms’ and workers’ core competencies, we use ‘core-biased

technological change’ (CBTC) to label the way technology evolves in our conceptual framework.

We formalize our hypothesis through a growth model that, beyond neoclassical forces, features

search frictions in the labor market and assortativity with two-sided heterogeneity of horizontally

differentiated skills and tasks.8 Workers and firms are risk-neutral and maximize lifetime discounted

utility in continuous time. The matching process, based on a one-to-one relation, is governed by

a canonical constant return to scale function.9 Workers’ skills and firms’ tasks are uniformly and

8On this modeling of the labor market see Shimer and Smith [48] and, more recently, Hagedorn, Law and
Manovskii [35].

9See Mortensen and Pissarides [43].
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symmetrically distributed around a circle that describes the space of their heterogeneous charac-

teristics. Due to search frictions, workers and firms do not match efficiently, but instead search

and accept matches in an interval around their ideal ones. The distance between matched skill and

task affects the production function of the match. This function is log-submodular in total factor

productivity (‘state of technology’) and skill-task distance in the characteristics space (‘mismatch’)

so that matches at lower distance (‘better matches’) have a comparative advantage in exploiting

higher total factor productivity (‘better state of technology’).

In this context technological change increases the productivity of any given match (‘neoclassical

effect’), but also the degree of assortativity (‘mismatch effect’). On the one hand, the first effect

increases labor demand, hence raising employment. On the other hand, the second effect increases

the cost of mismatch and induces workers and firms to search for longer time, which in turn

reduces employment. We show that, due to these opposite effects, employment is an inverted

U-shaped function of the state of technology. Low initial total factor productivity implies that

firms and workers are not very selective to start with because the cost of mismatch is small. In

this situation the neoclassical effect prevails so that employment rises as the state of technology

improves. However, as technology keeps on improving, the cost of mismatch grows and firms as

well as workers become increasingly selective and wait longer in search of better matches. Beyond a

certain level of total factor productivity and thus of selectivity, the cost of mismatch becomes high

enough that the mismatch effect starts dominating the neoclassical effect with employment falling

as technology improves. Hence, technological change promotes employment when initial total factor

productivity is low so that firms and workers are not very selective, whereas it hampers employment

when initial total factor productivity is high enough to make firms and workers sufficiently selective.

Whether our theoretical mechanism operates in practice, and the mismatch effect is strong

enough to reverse the neoclassical conclusions, is in the end an empirical issue. We tackle this issue

by capturing skill heterogeneity at the occupational level and task heterogeneity at the sectoral level.

We focus on 92 occupations at the 3-digits ISCO-88 level and 16 (out of 21) sectors according to the

NACE Rev.2 classification.10 To check that our findings are not driven by country specificities (such

as labour market institutions), our dataset covers 13 European countries for the period 1995−2010.

10We exclude occupations and sectors closely associated with public and agricultural activities.
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The dataset includes information on employment from the European Labour Force Survey (EU-

LFS) as well as automatability and offshorability indices at the beginning of the observation period,

which we use as proxies for actual automation and offshoring in the subsequent years.

To investigate the empirical relevance of the specific mechanism of the model, according to which

automation and offshoring reduce employment through increased firms’ and workers’ selectivity,

we construct an index of selectivity that can be computed with our data based on the notion of

employers’ and employees’ matching set. The index proxies the size of this set through the ‘sectoral

specialization of occupations’ (SSO) defined as the concentration of an occupation’s employment

across sectors. This index is meant to inversely capture the willingness of firms and workers to

accept less-than-ideal matches so that selectivity is considered to be high (low) for larger (small)

values of the SSO.

We first find that automation affects positively the change in selectivity, confirming the key

mechanism of the model. This effect is driven by the occupations with a high content of routine

operations while the effect of being below the median in terms of routineness has virtually no

impact of selectivity. Using recent methods proposed by Berg and Streitz (2019), we conclude

that this effect is not driven by spillover effects. We also show that our results hold if we use

more standard selectivity measures (skill mismatch at unemployment duration). Then, we show a

robust and negative impact of selectivity on employment at the occupation level. To control for

potential endogeneity, we employ a instrumental variable strategy close to the ”Double-Bartik”

strategy implemented by Chodorow-Reich and Wieland, (2019). This negative effect of selectivity

on employment materializes especially in occupations with above-median routineness. These results

overall confirm the results and channels described in the theoretical model.

The rest of the paper is structured as follows. Section 2 introduces and solves the model. Section

3 presents the dataset, some descriptive statics and the regression results. Section 4 concludes.

2 A Model of ‘Core-Biased Technological Change’

We want to investigate how technological progress, driven by automation and offshoring, affects

employment and wage inequality when new technologies change the matching and sorting patterns

between firms’ heterogeneous tasks and workers’ heterogeneous skills in the presence of search
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frictions.11 We assume that firms in different sectors require different tasks to be performed and

workers in different occupations provide different skills to perform those tasks. We model hetero-

geneity by placing tasks and skills in a characteristics space. In particular, we place firms and

workers at different ‘addresses’ continuously distributed along a unit circle (i.e. with radius 1/2π).

Performing each task requires workers with the appropriate skill. There is an ideal match of each

task with the most appropriate skill, which is the one with the same address as the task. The ideal

match delivers the maximum achievable productivity. Less-than-ideal matches are also productive

but their productivity decreases with the distance d ∈ [0, 1/2] between their matched task’s and

skill’s addresses along the circle. Minimum productivity thus corresponds to matches at distance

1/2.

Matches between tasks and skills are not necessarily ideal as search frictions make firms and

workers willing to accept less-than-ideal matches. In other words, search frictions induce ‘mismatch’

(measured by the equilibrum value of d) between tasks and skills, that is, divergence between the

actual matches and the ideal ones. Technological change increases the productivity of any given

match (‘neoclassical effect’) but also increases the relative productivity of ideal matches relative to

less-than-ideal ones (‘mismatch effect’) thus raising the cost of mismatch.

The timing of events in the model is as follows. Workers and firms meet randomly. Next, and

upon observing their types, they decide whether to match. Finally, based on the match surplus,

they bargain wages according to the Nash protocol. The steady state pure strategy of each type of

firm (worker) is to decide which workers (firms) to match with, taking the strategies of all other

firms and workers as given.

2.1 Skill and Tasks

All agents are risk-neutral, infinitely lived and maximize the present value of their future income

streams, discounted by the common discount factor ρ. Time is continuous. In terms of the dis-

tributions on the two sides of the labor market, we assume the following. There is a continuum

of workers with heterogeneous skills indexed x ∈ [0, 1] clockwise from noon (‘skill address’). The

11Two-sided heterogeneity is featured in models of assortative matching à la Becker [13] and their applications
to the labour market. Influential applications, including Shimer and Smith [48] and Hagedorn, Law and Manovskii
[35], insert two-sided vertical heterogeneity and general assortativity into models with search and matching fric-
tions. Differently from them, given the specific nature of our research question, we focus on production functions
with positive assortative matching and two-sided horizontal heterogeneity.
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distribution of skills features a uniform p.d.f. gw(x) and a measure L of workers. Likewise, there

is a continuum of firms with heterogeneous sector-specific tasks indexed y ∈ [0, 1] clockwise from

noon (‘task address’). The distribution of tasks features a uniform p.d.f. gf (y).

There is no asymmetric information in the model. All agents know their own type and the

types of all potential partners they meet. Complementarity between workers’ skills and firms’ tasks

induces labor market sorting, which means that for every worker (firm) an ideal firm (worker) exists

and matching with this ideal partner maximizes surplus.12 Search frictions, however, hamper the

formation of these ideal matches.13 This implies, first, that some meetings do not result in an

employment relation, hence unemployment arises. Second, firms (workers) do not consider only

workers (firms) with ideal skills (tasks), but are also willing to hire workers (be hired by firms) with

skills (tasks) in a range centered around their ideal skills (tasks). This induces mismatch between

skills and tasks, measured by their distance along the circle:

d(x, y) = min [x− y + 1, y − x] (1)

where the min function selects the shorter arc distance between clockwise and counterclockwise

travels between x and y along the unit circle.

2.2 Production and Technological Change

Regarding production, we keep neoclassical assumptions so as to preserve the role of technological

progress that increases total factor productivity, and thus workers and firms income. Specifically,

we assume that production requires labor and capital, and that the technology frontier exhibits

constant returns to scale with respect to both factors at the match level. Capital is endogenously

accumulated. This serves the purpose of covering all neoclassical adjustment margins. By reducing

the price of investment, an increase in productivity raises labor demand. In this respect, introducing

capital is a conservative choice. If the cost of mismatch reduces employment, it will do so even in

presence of a declining price of investment.

Matches are one-worker-one-job relationships. Then a firm’s output is the sum of outputs of

its matches.14 Moreover, the measure of active firms in the labor market is governed by free entry.

12In absence of search or information frictions all workers and firms would be matched to their optimal partner
as in Becker [13].

13See Shimer and Smith [48].
14We do not consider firm size and the complementarities between workers within the same firm as in Eeckhout
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The functional form for production at match level is Cobb-Douglas:

f(d) = AK(d)βL(d)1−β (2)

with β ∈ (0, 1), where K(d) is capital, L(d) is effective labor, d is ‘mismatch’ as measured by

distance (1) and A > 0 is the ‘state of technology’ as measured by total factor productivity.15

For simplicity, we assume that automation and offshoring are two equivalent exogenous drivers

of technological change. In the empirical analysis we will allow for richer patterns of interactions

between them.

Mismatch implies that effective labor at match level declines with distance, which we capture

by assuming the following functional form:

L(d) =

(
F − γAη

2
d

)
L (3)

where L is the measure of workers we already introduced. Effective labor equals F > 0 for the ideal

match (d = 0) and declines as d increases until it reaches its minimum γAη/4 for the worst match

(d = 1/2). The decline is steeper for better states of technology (larger A), the more so the larger

η > 0. This captures our story according to which technological progress increases the losses from

mismatch.

We endogenize capital accumulation by assuming that capital is supplied elastically at return

r = ρ, which pins down capital’s equilibrium marginal productivity:

ρ = βAK(d)β−1L(d)1−β. (4)

This relation can be inverted to obtain

K(d) =

(
βA

ρ

) 1
1−β

L(d),

which, after substitution into (2) together with (3), allows us to write output at the match level as

f(d,A) = ϕA
1

1−β

(
F − γAη

2
d

)
(5)

and Kircher[27]. While complementarity within the firms are certainly important, they are not immediately rele-
vant for our purposes.

15A subsumes all sources of produtivity gains. Let bK , bL and B capture capital-enhancing, labor-enhancing and
Hicks-neutral technological change. With Cobb-Douglas technology we have f(d) = B (bKK(d))β (bLL(d))1−β ,
which can be rewritten as (2) after defining A ≡ B (bK)β (bL)1−β .
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where ϕ ≡ (β/ρ)
β

1−β is a constant bundling parameter and we have imposed L = 1 by choice of

units. This expression highlights two channels through which technological change affects match

output. First, output for the ideal match, d = 0, equals ϕA
1

1−βF . In this case, better technology

(larger A) univocally increases production, as it raises labour productivity by neoclassical forces.

We will refer to this as the neoclassical ‘productivity effect’. Second, output for less-than-ideal

matches, d ∈ (0, 1/2), decreases from ϕA
1

1−βF as mismatch d increases. This happens with slope

f ′(d) = −γAη/2 < 0. Hence, for less-than-ideal matches better technology has the additional effect

of increasing the cost of mismatch. We will refer to this as the ‘mismatch effect’. If η = 0 held,

this effect would vanish.16

Formally, the production function f(d,A) is log-submodular in d and A as, for all d′ > d

and A′ > A, we have f(d′, A′)f(d,A) < f(d,A′)f(d′, A) or equivalently f(d′, A′)/f(d,A′) <

f(d′, A)/f(d,A), i.e. by (5) we have

(
d′ − d

) [(
A′
)η − (A)η

]
> 0. (6)

In words, better matches (i.e. matches with lower d) have a comparative advantage in exploiting

better states of technology (i.e. higher total factor productivity). This comparative advantage is

stronger for larger η, hence when the impact of technology on the cost of mismatch is larger. If

η = 0 held, log-submodularity would vanish.

To sum up, in this setup better technological opportunities (equivalently due to automation or

offshoring) have two opposing effects on match surplus. They increase match productivity through

A
1

1−β , but also increase the cost of mismatch through Aη in (5). The latter effect materializes

as long as less-than-ideal skills or tasks become less substitutable with the corresponding ideal

ones. These are the ones that define firms’ and workers’ ‘core competencies’. For this reason, we

can use the term ‘core-biased technological change’ (CBTC) to label the way in which the state of

technology evolves in our model. This is different from the concepts of ‘routine-biased technological

change’ and ‘skill-biased technological change’ previously examined in the literature as discussed

in the Introduction.

16See also see Gautier and Teulings [31] for similar considerations.
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2.3 Search and Match

As already mentioned, workers and firms are infinitely lived, risk neutral, and maximize future

income streams discounted at rate ρ. Workers and firms know their own type and the types of

potential partners. Firms are either producing, labeled by P , or vacant, labelled by V . Workers

are either employed, labelled by E, or unemployed, labelled by U , and the sum of employed and

unemployed equals the labour force, E + U = L = 1. Only vacant firms and unemployed workers

engage in search.

Meeting rates are set according to a standard random search setup featuring Poisson distributed

meeting intervals. We adopt a linear matching technology described by a homogenous-of-degree-

one Cobb-Douglas matching function M(U, V ) = ϑU ξV 1−ξ, where ϑ is matching efficiency, U is

unemployment, V are vacancies and ξ ∈ (0, 1) is the elasticity of new matches to unemployment.17

In this setup the Poisson arrival rate can be derived as a function of aggregate labor market tightness

θ = V/U . We can then define qv(θ) = M(U, V )/V = ϑ (U/V )ξ = ϑθ−ξ as the rate at which vacant

firms meet unemployed workers and qu(θ) = M(U, V )/U = ϑ (V/U)1−ξ = ϑθ1−ξ as the rate at

which unemployed workers meet vacancies.

Firms face a cost c of maintaining a job either filled or vacant. This is akin to a cost of capital.

Unemployed workers’ income is normalized to 0. Match surplus is shared according to the Nash

bargaining solution with worker bargaining weight α ∈ (0, 1).18 We impose zero outside options for

both workers and firms.

Once matched, workers and firms decide whether to produce by comparing their shares of the

match surplus with their outside options. Given the Nash bargaining protocol, risk-neutrality and

zero outside option, workers of type x accept a job of type y if and only if

Λ(x) = {y : S(x, y) ≥ 0} (7)

holds, where S(x, y) is the surplus of the match (x, y), while Λ(x) defines the workers’ acceptance

17See Mortensen and Pissarides [43]. Our assumption departs from the non-linear matching function employed
in models with two-sided heterogeneity à la Shimer and Smith [48]. In particular, our matching technology implies
that congestion externalities arise for each task.

18We could consider alternative wage protocols, such as sequential auctions à la Postel-Vinay and Robin [46] or
Lise and Robin [40], or also other competiitve wage protocols like in Moen [42]. However, for the purpose of our
study, a simple rent sharing rule is appropriate.
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set. Firms have a similarly defined acceptance set

Ω(y) = {x : S(x, y) ≥ 0} , (8)

Given the two acceptance sets, the joint matching set Λ(x) ∩ Ω(y) evaluates to

M(x, y) = {x, y : S(x, y) ≥ 0} . (9)

All sets are Borel measurable and depend also on the state of technology A. Matches can be

destroyed by separations shocks, which we assume to happen with per-period probability δ.

We restrict our attention to acceptance sets featuring positive assortative matching with uni-

formly distributed workers x and thus also uniformly distributed firms y.19 This case has the

following appealing features from an analytical point of view. The values of unemployment and

vacancies are identical for all worker and firm types respectively. Values of employment and produc-

tion depend on the distance d only. Also the Nash bargained wage w(d) depends only on distance

d. Workers and firms accept matches at some common maximum distance d∗ from their address.

This implies that we can write the acceptance sets for workers as

Λ(x) = [y − d∗, y + d∗] (10)

and for firms as

Ω(y) = [x− d∗, x+ d∗] . (11)

2.4 Value Functions and Nash Bargaining

A worker’s discounted value of being employed ve(d) equals the current wage plus the option value

of the potential future loss from unemployment:

ρve(d) = w(d)− δ(ve(d)− vu). (12)

Analogously, the worker’s discounted value of being unemployed vu satisfies

ρvu = 2qu(θ)

∫ d∗

0
(ve(d)− vu)dz, (13)

As we have assumed zero outside option for the unemployed, the value of unemployment is given

by the option value of future employment net of the value of unemployment. The worker obtains

19See Lemma 1 in Marimon and Zilibotti [41].
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a job if he meets the firm (with contact rate qu(θ)), and if the worker’s type falls in the matching

set.

Next, the discounted value of a filled vacancy vp(d) equals what is left of the value of output

after the wage and the maintenance costs have been paid:

ρvp(d) = (f(d)− w(d)− c)− δ [vp(d)− vv] . (14)

Finally, the value of an unfilled vacancy vv satifies

ρvv = −c+ 2qv(θ)

∫ d∗

0
(vp(d)− vv)dz, (15)

where the right hand side corresponds to the option value of future employment net of the main-

tenance cost.

Given the foregoing value functions, we can write the general implicit expression for the surplus

as:

S(d) = ve(d)− vu + vp(d)− vv (16)

The set of equilibrium conditions is then completed by the free entry conditions for the value of a

vacancy

vv = 0, (17)

the zero cut-off value of production

vp(d
∗) = 0 (18)

and the steady state flow condition

2qu(θ)d∗ =
δE

L− E
. (19)

To summarize, an equilibrium is a distribution of matches and a wage equation satisfying: (i)

the matching set (9); (ii) the Nash bargaining rule

(1− α) (ve(d)− vu) = α (vp(d)− vv) (20)

given the values determined by (12), (13), (14) and (15); (iii) all technological constraints (i.e.

E + U = L+ 1, M(U, V ) = ϑU ξV 1−ξ, qv(θ) = ϑθ−ξ, qu(θ) = ϑθ1−ξ, f(d) = ϕA
1

1−β (F − γAηd/2));

(iv) the steady state flow condition (19); (v) the free entry condition (17); and (vi) the zero cut-off

value condition (18).
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2.5 Equilibrium and Horizontal Specialization

The set of equilibrium conditions can be solved analytically for employment E and mismatch

d∗. From the equilibrium levels of employment and mismatch it is also possible to derive the

equilibrium wage schedule. The derivation of the analytical solution is presented in Appendix B.

Hereby we focus instead on comparative statics as this is what will inform our empirical analysis. In

particular, we discuss the impact of technological change on the equilibrium levels of employment

and mismatch. To do this in a parsimonious way, we solve the model numerically. Parameter values

are chosen from standard values in the literature and deliver empirically relevant levels of steady

state employment and unemployment (see Appendix D).

Figure 1 shows results for the employment schedule (left panel) and mismatch schedule (right

panel), while Figure 2 shows results for the wage schedule. Specifically, the left panel of Figure 2

plots the wages of top and bottom earners, who are the best-matched and worst-matched workers

respectively. The right panel plots the ratio of top to bottom wage. Figure 2 therefore allows us

to discuss also the model’s implications for wage inequality.

Starting with Figure 1, the left panel shows that the model predicts that equilibrium em-

ployment E is a non-monotone function of the state of technology A, increasing for small A and

decreasing for large A . The right panel shows that equilibrium mismatch d∗ is a decreasing func-

tion of the state of technology A. To see this, note that this panel has 1/d∗ on the vertical axis,

which is an inverse measure of the size of the firms’ and workers’ matching set or intuitively a

direct measure of the ‘selectivity’ of their matching decisions. This notion will come handy in the

empirical analysis.

The non-monotonicity of the employment schedule results from the balance of the opposite

productivity and mismatch effects discussed above. Low initial total factor productivity implies that

firms and workers are not very selective to start with (see right panel) because the cost of mismatch

is small. In this situation the neoclassical productivity effect prevails so that employment rises as

the state of technology improves. However, as technology keeps on improving, the cost of mismatch

grows and firms as well as workers become increasingly selective and wait longer in search of better

matches. Beyond a critical level of productivity and thus of selectivity, the cost of mismatch becomes

high enough that the mismatch effect starts dominating the productivity effect with employment

14



0.5 1 1.5 2 2.5 3

0.9

0.92

0.94

0.96

0.98

1

A

E
m
p
lo
y
m
en
t

0.5 1 1.5 2 2.5 3

2

4

6

A

S
el
ec
ti
v
it
y
(1
/d

∗ )

Figure 1: Effects of technological change on employment (left panel) and selectivity (right).

falling as technology improves. Hence, technological change promotes employment when initial total

factor productivity and hence selectivity are low, whereas it hampers employment when initial total

factor productivity is high enough to make firms and workers sufficiently selective.

Turning to Figure 2, the left panel shows that the wage of top earners is an increasing function

of the state of technology A, while that of bottom earners is an inverted U-shaped function of the

state of technology A. Moreover, even when the bottom wage rises, the top wage rises more. These

features are explained by the fact that the rising mismatch cost is a burden for the worst matched

workers but not for the best matched ones. The result is rising wage inequality as shown in the

right panel of Figure 2.

Growing firms’ and workers’ selectivity as technology improves entails growing tasks’ special-

ization across skills and skills’ specialization across tasks. It is worthwhile noting that for high

levels of specialization employment falls despite two forces that tend to dampen such fall. First, as

total factor productivity increases, the price of capital falls. This raises labor demand. Second, as

the cost of mismatch rises, firms’ surplus falls, which on its own would lead firms to reduce their

acceptance sets and this in turn would endogenously reduce mismatch.

To summarize, in our model core-biased technological change (associated with automation or

offshoring) can have a detrimental impact on employment as less-than-ideal ‘non-core’ tasks/skills

become less substitutable with ideal ‘core’ ones. This detrimental impact materializes as the state

of technology improves as long as better matches of firms and workers have a comparative advantage

in exploiting the new technologies. The mismatch effect of technological change is the novel element
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Figure 2: Effects of technological change on wages of top earners and bottom earners (left panel)
and on their ratio (right panel).

in our model, which by counteracting neoclassical forces may induce jobs to vanish as the state

of technology improves. It then remains an empirical question whether this new channel has any

practical relevance, and is strong enough to alter the traditional neoclassical conclusions. We

now show evidence that this may indeed be the case. In addition, while for simplicity we have not

explicitly modelled any specific patterns of complementarity or substitutability between automation

and offshoring, we will also shed light on those patterns.

2.6 Adding Vertical Specialization

Before looking at the data, a remark is in order. So far we have assumed full symmetry within skills

and within tasks. This assumption has allowed us to highlight the key mismatch mechanism at work

in our model through the quantitative discussion of a closed-form equilibrium solution. In reality,

however, such symmetry does not necessarily hold as skills and tasks are not only horizontally but

also vertically differentiated. In other words, some skills are higher than others and some tasks are

more productive than others. In this section we extend our model to check the robustness of our

mechanism to asymmetry. While the extended model will not be amenable to closed-form solution,

the numerical investigation of its equilibrium properties shows that our mechanism is still at work

and may be even reinforced in the presence of vertical differentiation.

To facilitate comparison with the original model, the simplest way to introduce vertical differen-
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tiation is to keep the distributions of workers and thus firms uniform along the circle while changing

the production possibilities. In particular, we make two new assumptions. First, larger x and larger

y are associated with higher workers’ skills and more productive firms’ tasks respectively. Second,

the mismatch between a firm with task y and a worker with lower-than-ideal skill x < y is more

costly in terms of foregone productivity than an equally distant mismatch with larger-than-ideal

skill x > y by a factor τ ≥ 1 (with τ = 1 corresponding to the original symmetric case). In other

words, for a given task and a given skill-task distance, employing an underskilled worker is more

penalizing in terms of lost match surplus than hiring an overskilled one. This way the extended

model also embeds a ‘skill premium’ in addition to the mismatch cost.20

The introduction of this asymmetry implies that the probability of forming a match now depends

not only on the skill-task distance but also on the distribution of skills x and tasks y in the

pools of unemployed workers and vacant firms respectively. Accordingly, the value vu(x) of being

unemployed for a worker with skill x now satisfies:

ρvu(x) = qu(θ)

∫
ỹ∈Ω(y)

dv(ỹ) (ve(x, ỹ)− vu(x)) dỹ. (21)

Analogously, the value of an unfilled vacancy vv(y) for a firm with task y is given by:

ρvv(y) = −c+ qv(θ)

∫
x̃∈Λ(x)

du(x̃) (vp(x̃, y)− vv(y)) dx̃. (22)

Figures 3 and 4 report the equilibrium outcomes of the extended model for different degrees

of asymmetry τ while holding the state of technology constant at A = 2.5. These outcomes are

obtained numerically through value function iteration on a grid of workers’ skills x and firms’ tasks

y.21 We then iterate over the surplus and matching density until they converge.

20Changing the production possibilities as we do and changing the distribution of either side of the labor mar-
ket are anyway equivalent. This is due to the fact that one can think of workers’ skills and firms’ tasks as ranks
in their respective productivity distributions. Since workers’ and firms’ types as well as the production function
are unobserved, it is not possible to separately identify each of them. See Hagedorn, Law and Manovskii [35] and
Katenga and Law [37] for a discussion of this point. Specifically, if the original distributions for skills and tasks
are H(x) and G(y) respectively and the original production function is f̃(x̃, ỹ), then we are simply performing the
following transformation of the production function: f(x, y) = f(F−1(x), G−1(y). The simplest example is in the
1-dimensional case, where x ∼ [0, 1] with f(x) = 3x and x ∼ [0, 3] with f(x) = x are observationally identical.

21Our numerical solution follows Hagedorn, Law and Manovski [35], who accommodate non-uniform distribu-
tions. They assume that the cost of posting vacancies adjusts so that the the mass of vacancies equals the mass of
unemployed workers. Differently from them we solve for the number of vacancies using equation:

ρVv = −c+
(1 − α)2qv(θ)

∫
y∈Ω(y)

f(z)dz

δ + ρ+ (1 − α)2qb(θ) + α2qu(θ)
.
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The three panels of Figure 3 depict the matching densities for different levels of τ = (0.85, 1, 1.15).

Firms’ tasks y are displayed on the horizontal axis while workers’ skills x are displayed on the ver-

tical axis. For all tasks and skills pairs, the panels show the simulated steady-state probabilities of

being observed in a match. Blue areas are outside the matching sets of firms and workers so that

the matching density of the corresponding pairs is zero. Color coding for the other areas goes from

pale green to bright yellow in increasing order of matching density.

To interpret these color patterns recall that both tasks and skills are arranged along a circle

[0, 1]. Panel (a) τ = 1 corresponds to the original model, in which all addresses on the circle are

symmetric and their ordering from noon is inconsequential. The circle is turned into segments along

the panel’s axes and we can see that each task y on the horizontal axis has a symmetric matching

interval centered around the ideal skill x = y along the vertical axis. Vice versa, each skill x on

the vertical axis has a symmetric matching interval centered around the ideal task y = x along

the horizontal axis. Moreover, all feasible matches have equal density as shown by the uniformly

yellow areas.

The other two panels correspond to scenarios in which the mismatch cost is asymmetric. In

panel (b) we have τ = 1.15 so that mismatch at a given distance is more costly than in panel (a)

for underskilled workers (those with x < y), which our case of interest. For comparison, in panel

(c) we look at the reverse case with τ = 0.85 so that mismatch at given distance is more costly

than in panel (a) for overskilled workers (those with x > y). The density patterns in these two

panels are perturbed by the fact that our distance metric d(x, y) = min [x− y + 1, y − x] implies

that very productive tasks at address y just below 1 are very close along the circle to very low skills

with address x just above 0, which creates a strong incentive to match despite high matching cost

per unit distance. Hence, to minimize the resulting distortions in the equilibrium density patterns,

it is useful to focus on tasks and skills that are matched on the same round of the circle. This are

the ones inside the inner dashed rectangles.

Comparing panels (a) and (b), we see that, going from τ = 1 to τ = 1.15, the lower blue band

becomes thicker whereas the upper blue band is unchanged. This means that the matching set

shrinks from below as the most underskilled matches are not feasible anymore. In addition to this

adjustment at the extensive margin, we also observe an adjustment at the intensive margin due
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to the relative change in density for pairs that are still matched in favor of those between high

skills and high productivity tasks (those in brighter yellow). Analogously, we observe the opposite

evolution going from τ = 1 to τ = 0.85 as in this case underskilled matching becomes less costly.

        

   (a)                  (b)       (c) 

 

 
Figure 3: Matching set and matching density

Figure 4 shows how technology (measured by A) on the horizontal axis affects employment and

selectivity on the vertical axes of panels (a) and (b) respectively. The figure confirms that, when

the state of technology is good enough, the mismatch effect can dominate the productivity effect of

technological change so that any further progress (larger A) not only increases selectivity in panel

(b) but also employment in panel (a). Moreover, in the asymmetric case of interest (τ = 1.15), the

negative impact on employment is even stronger.
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Figure 4: Effects on employment (left panel) and selectivity (right)
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Overall, the economic mechanism highlighted in the original symmetric model is confirmed, and

the associated results are even amplified for emploment in the extended asymmetric model as an

additional vertical specialization effect reinforces the original horizontal specialization one. This is

the way SBTC and CBTC interact in our framework.

3 Empirical Evidence: Insights from occupation-level data.

In this section we test some of the implications of our model according to which automation and

offshoring drive a type of technological progress that is core-biased in that it increases firms’ and

workers’ selectivity.

3.1 Data and Variables

We exploit the European Labour Force Survey (hereafter EULFS). This is an extensive cross-

country dataset of national Labour Force Surveys that includes several variables at the occupational

and sectoral level. We restrict the period of analysis to 1995−2010 in order to include the maximum

number of available countries and keep a consistent classification of occupations. We aggregate

worker-level observations into country × sector × occupation × year cells. This way, we are able

to analyse country, sectoral and occupational heterogeneities. Note that we will exploit long-

differences between 1995 and 2010 assuming that a technological shock materializes between these

two dates, as documented in other studies.22 For the rest of the paper, the long-difference of a

variable, ∆1995−2010, will be simply noted ∆.

We focus on 92 occupations at the 3-digits ISCO-88 level and 16 sectors according to the NACE

Rev.2 classification. To ensure the stability of the sector definition across years, we group these 16

sectors into 11 sectors. Following Goos et al. [32], occupations and sectors closely associated to

public and agricultural activities are dropped. We also drop 3-digits ISCO occupations that are

not precisely reported.23

We include 13 countries, among which we have both Anglo-Saxon and continental countries,

22For instance Chiacchio et al. (2018) show that the robot penetration in the EU28 has been multiplied by 3 be-
tween these two dates. They also document that the majority of this robot shock materialised in the period 1995-
2007 compared to the period 2007-2015.

23In some cases, only 2-digits occupations are reported. These occupations are dropped from the final sample.
This corresponds to 1.1% of total hours worked in the sample and this only affects 6 countries in the sample.
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making the analysis robust to local institutions or cultural trends.24 The dataset mainly provides

us with information about cell-level employment, number of employees, number of hours worked,

number of unemployed workers, etc. Further details on the dataset are presented in Appendix A.

We merge this dataset with variables capturing automatability and offshorability at the beginning

of our observation period, which we use a proxies of actual automation and offshoring during the

period. To measure automatability we use the ‘routine task intensity’ index (RTI, hereafter) as

computed by Acemoglu and Autor [1]. This measure has been widely used in previous studies, such

as Autor, Levy and Murnane [53], Autor and Dorn [11] and Goos et al. [32]. The U.S. Dictionary

of Occupational Titles (DOT) provides information about the task contents of occupations. The

RTI builds on this information and is determined by the difference between the log of Routine

tasks and the sum of the log of Abstract and the log of Manual tasks in an occupation. Specifically,

we adopt the refinement proposed by Lewandoski et al. [39]: RTI = ln(RoutineCognitive +

RoutineManual)− ln(NonroutineAnalytical+NonroutineInterpersonnal). The measure of the

RTI is standardized in order to have mean equal to zero and standard deviation of one. We use

a crosswalk to go from the SOC 2000 classification to the 4-digits ISCO88 classification before

aggregating to the 3-digits ISCO88 classification (see Appendix A for additional details). For

completeness, we compare the RTI with the alternative automatability measure constructed by

Frey and Osborne [29], which is given by the probability of computerization based on a Gaussian

process classifier. This alternative measure builds on the selection of solutions that engineers need

to devise for specific occupations to be automated. Checking the correlation between the two

measures, we find a large positive correlation between them, with only few exceptions for specific

occupations.25

To measure offshorability three indices have been proposed in the literature: by Blinder [14], by

Blinder and Krueger [15] (hereafter BK [15]) and by Acemoglu and Autor [1] (hereafter AA [1]).

The first two indices build on questionnaires and qualitative observations. They are constructed

by professional coders based on an occupational classification of workers.26 For both measures

24These countries are Austria, Belgium, Germany, Denmark, Spain, France, Great Britain, Greece, Ireland, Italy,
Luxembourg, Netherlands, Portugal. For these countries full time coverage is available.

25It is actually the goal of Frey and Osborne [29] to show that some non-routine occupations could be auto-
mated.

26See PDII: Princeton Data Improvement Initiative (https://krueger.princeton.edu/pages/
princeton-data-improvement-initiative-pdii).
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the authors propose a qualitative scale of offshorability, ranking occupations from ‘Highly Non

Offshorable’ (1) to ‘Highly Offshorable’ (4). The difference between the two measures lies in the

fact that Blinder [14] proposes a qualitative ranking of occupations according to their degree of

offshorability, whereas BK [15] provides 4 categories of offshorability. The third measure by AA [1]

is instead a quantitative index based on aggregating several ONET indicators.27 In Appendix A we

show that the correlations between the three offshorability measures are mostly positive. However,

when Goos et al. [32] compare these offshorability indices with actual offshoring measures, they

find that the indices by Blinder [14] and BK [15] are more reliable. Accordingly, we will use the BK

index as our benchmark measure of offshorability. The matching procedure of occupations with

our automatability and offshorability indices is detailed in Appendix A.

While both automation and offshoring may displace workers, it is important to note that they

are conceptually quite different. The likelihood of automation is linked to the routineness of a task,

hence to the possibility that it can be solved algorithmically by a computer or a robot. Differently

offshorability à la BK refers to the ability to perform one’s work duties, for the same employer and

customers, in a foreign country, even though the supply of the good or the service is still based in

the home market. As a result, while the correlation between our measures of automatability and

offshorability is positive, there are important exceptions across occupations. These are reported in

Appendix A.

3.2 Measuring selectivity

In the model presented above, firms in different sectors match with workers in different occupations.

Each sector is seen as requiring different tasks to be performed while each occupation provides

different skills to perform those tasks. The model shows that increasing automation have a positive

effect on the matching quality that is detrimental to employment. Put differently, as automation

increases, the selectivity increases, meaning that the size of the matching sets decreases. Using

sectors to proxy ‘tasks’ and occupations to proxy ‘skills’, we define selectivity as the concentration

of an occupation’s employment across sectors, which we call the ‘Sectoral Specialization of the

27This index is itself inspired by Firpo et al. [28]. The metric constructed is based on face to face discussions
with employers in the following occupations: Assisting and Caring for Others, Performing for or Working Directly
with the Public, Inspecting Equipment, Structures, or Material, Handling and Moving Objects, Repairing and
Maintaining Mechanical Equipment, Repairing and Maintaining Electronic Equipment.
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Occupation’ (SSO hereafter). This is computed at the occupation × country level. Concentration

in measured with the non-standardized Herfindhal index. With O the set of occupations, O =

{o1, . . . , o92}, K, the set of industries, K = {k1, . . . , k11} and soki = Loki∑
k∈K Loki

the share of share of

each occupation in each industry, computed for each country:

SSOoi =
∑
k∈K

s2
oki

Remark 1: Note that a key feature of our selectivity index is that it is not standardized to

account for the number of industries used in the estimation. Indeed, each occupation is not present

in every sector. For a simple example, assume that an occupation is equally observed in 5 different

sectors in 1995. Now assume that one occupation completely disappears from a sector in 2010 and

that employment from this sector is equally reallocated to the 4 other sectors. It is then equally

present in 4 sectors. A standardized Herfindahl index would be equal to zero in both cases, implying

that selectivity has not changed between 1995 and 2010 for this occupation. However, it is key to

our identification strategy that the change in selectivity in positive in this case, to account for the

fact that employment in more concentrated between industries in 2010 than in 1995.

Remark 2: High SSO implies that few sectors account for a large share of the occupation’s

employment, while low SSO implies that employees in an occupation are similarly spread across

many sectors. Accordingly, we see the SSO as inversely related to the size of the theoretical matching

set. To investigate the robustness of our findings, we use also alternative measures of selectivity,

in particular two traditional measures of ‘mismatch’: unemployment duration and education-based

metrics of skill mismatch.

3.3 Descriptive Statistics

Table 1 presents descriptive statistics on the occupations aggregated at the 2-digit level. Occupa-

tions are ranked from the least to the most routine-intensive ones. Column 1 displays the percentage

point change in the share of hours worked between 1995 and 2010. Overall, the change is smaller (or

negative) for occupations that are more automatable (i.e. the more routine-intensive ones). Among

the ten most routine-intensive occupations, only Customer service clerks (42) and Sales and ser-

vices elementary occupations (91) do not exhibit a fall in the share of hours. Column 2 reports
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the change in unemployment. For most occupations at the top of the table the unemployment rate

falls. In particular, eight out of the ten least routine-intensive occupations experience a decrease

in their unemployment rate between 1995 and 2010. It is worth noting that half of the ten most

routine-intensive occupations experienced a decrease or a relative stability in their unemployment

rate over the period. Notably, columns 4 and 5 reveal that there is no clear correlation between

automatability and offshorability.

Figure 5 presents some simple graphical evidence on the direct effects of automatability on

employment for different levels of offshorability. We aggregate our data at the cell level (coun-

try × sector × occupation × year) into occupation × year cells. Then we compute the log

change in hours worked across the countries in our sample for each occupation: ∆ln(Hours)o =

ln(Hours)2010
o − ln(Hours)1995

o . The 92 occupations are then divided into two groups according

to median offshorability. The figure shows that the average change in total hours worked in an

occupation decreases with automatability (grey dotted line). On average occupations that have low

routine intensity in 1995 experience an increase in hours worked in the subsequent period. On the

contrary, occupations with high automatability experience a negative change in the number of hours

worked. This illustrates a reallocation of employment from routine to non-routine occupations.

The figure also confirms that automatability and offshorability are not capturing the same

information. When occupations are partitioned in two groups according to their high or low off-

shorability, no clear relation appears with their routineness ranks. In particular, for occupations

with a low offshorability (solid grey line) the change in hours worked does not seem to be related

to the routineness of their tasks. For highly offshorable occupations (black line), there is a clear

negative relation between the change in hours worked and automatability. For these occupations

the decline in employment is stronger.

3.4 Empirical strategy

We test the relevance of the channels acting in the model in two steps:

1. As depicted in Figure 1, selectivity should increase with the level of technology. By regressing

selectivity measures on the routine-intensity of an occupation as well as its offshorability, we

confirm this theoretical finding.
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Figure 5: The impact of routineness and offshorability on labour hours

2. By increasing selectivity, technology has an adverse impact on employment. We explain the

change in employment by the change in selectivity. To account for potential endogeneity, we

build a double Bartik instrument (see Chodorow-Reich and Wieland, 2019).

Step 1: From technology to selectivity. The goal of these regressions is to establish the fact

that more-routine occupations, i.e. occupations that are more likely to be automatized following

a technology shock, experienced an increase in selectivity in the period 1995-2010. To this end we

estimate the following equation:

∆SSOoi = α+ β1RTI
95
o + β2Offshor

95
o + Z ′oiC +mui + εoi (23)

where ∆SSOoi is the change in SSO between 1995-2010, RTI95
o the initial routine task intensity,

Offshor95
o the initial offshorability index and C is a vector of coefficients associated to a set of

control variables Zoi. Additionally we include country-level fixed effects (µi) that account for any

country-level shock. Table 2 column (1) reports the corresponding estimates. As predicted by the

model, positive changes in RTI are associated with increases in selectivity, but is not statistically
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different from zero. Higher offshorability is instead statistically significant and affects selectivity

negatively following the model’s narrative. This shows that automation and offshoring are indeed

two technologies that differently affect the matching between skills and tasks.

The specification in Equation (23) assumes the effect of routineness to be symmetric, Figure 5

shows that occupations with a high RTI experienced a decrease in employment while occupations

with a low RTI experienced an increase of employment over the period. Therefore next we estimate

a less restrictive model, where we explicitly allow for assymetric effects. We distinguish the case

where the RTI is larger than the median RTI in the country (RTIHo = RTI95
o × 1RTI95

o >q50(RTI95
o ))

from the case where RTI is lower than the median (RTILo = RTI95
o ×

(
1− 1RTI95

o >q50(RTI95
o )

)
) and

estimate:

∆ln(SSOoi) = α+ β1RTI
H
o + β2RTI

L
o + β3Offshor

95
o + Z ′oiC +mui + εoi (24)

While β1 captures the effect of routineness, when routineness is high and the negative effect of

routineness are more likely to materialize, β2 will account for the effect of routineness where its

positive effect is more likely to materialize.

This intuition is confirmed in column (2) of Table 2 where the effect of RTI in high RTI occupations

is large, positive and significant while this effect is virtually zero for low-RTI occupations. It means

that occupations that are the most at risk of automation at the beginning of the period experienced

a large increase in selectivity between 1995 and 2010. This confirms a key result of the model: au-

tomation have an impact on matching sets. Taking into account the potential interactions between

routineness and offshorability (column 3) does not affect this result.

In column (4) we return to the simple specification of equation 23 to further decompose the effect

and uncover heterogenous effects. 28 We add the share of employment in an occupation in 1995

and its interaction with the RTI index. This allows to capture any differential effect affecting larger

occupations at the country level. Column (4) reveals that heterogeneity in the effects of RTI on

selectivity. The positively significant coefficient (note that the scale of this coefficient is largely

dependent on the scale of the shares, that are very small) illustrates that the positive effect of RTI

on selectivity is largely channelled through larger occupations.

28In order to keep parsimony in the number of coefficients estimated we prefer to estimate equation 23 instead of
estimating 24
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In column (5), we control for potential spillover effects of RTI on other occupations’ selectivity.

Indeed reallocation following a potential shock may bias the selectivity measure in other occupations

of the same country (assuming that spillover effects are restrained within country). Such spillover

effects may then affect the estimate of the direct effect. We base our test on the recent contribution

of Berg and Streitz (2019) that propose a parsimonious way of estimating treatment, spillover and

aggregate effects. Their method relies on adding the interaction between the variable of interest

and its average over the group that may be affected by spillovers. The method is effectively a

linear-in-means estimate where spillovers are assumed to vary within the most-likely spillover-

dimension linearly with the average treatment effect. We adapt their approach in order to deal

with a variable that is continuous instead of discrete by creating an indicator variable that takes

the value one for occupations above the median routine-intensity and zero otherwise and interact

this with its respective group-mean. Further we consider spillovers to be effective within country

and between occupations, assuming that there is limited mobility and hence no spillovers between

countries. Note that the assumption of mean-linearity implies the omission of any fixed effects at

the level of the groups as the mean itself would generate bias in the estimation.

We estimate the following equation where positive and significant estimation of β1 confirms

that the effect of RTI on selectivity holds, even after controlling for spillover effects:

∆ln(SSOoi) = β1(RTI95
o × 1RTI95

o >q50(RTI95
o )) + β2

(
RTI95

o ×
(
1− 1RTI95

o >q50(RTI95
o )

))
+ β3

(
RTIi × 1RTI95

o >q50(RTI95
o )

)
+ β4

(
RTIi ×

(
1− 1RTI95

o >q50(RTI95
o )

))
+ Z ′C + εoi,

where RTIi is the country-average of RTI that excludes occupation o. Results in column (5),

confirm that the effect of RTI on selectivity hold even when considering potential spillover effects.

Step 2: From selectivity to employment. We have first shown that automation-based tech-

nology increased selectivity between 1995 and 2010. According to the model narrative increases in

selectivity have a negative impact on employment. To test this narrative we estimate the following

equation:
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Table 2: Selectivity and technology.

(1) (2) (3) (4) (5)
VARIABLES ∆ln(SSO) ∆ln(SSO) ∆ln(SSO) ∆ln(SSO) ∆ln(SSO)

RTI95 0.0755 0.0312
(0.0522) (0.0552)

RTIH95 0.207** 0.168* 0.301**
(0.100) (0.0994) (0.150)

RTIL95 -0.0151 0.00885 0.00952
(0.0792) (0.0781) (0.0972)

Offshor.95 -0.0765* -0.0923** -0.123** -0.0691 -0.0943**
(0.0414) (0.0432) (0.0525) (0.0427) (0.0440)

RTI × Offshor. 0.0667
(0.0470)

Share95 0.0727
(2.117)

Share95 ×RTI95 4.874***
(1.596)

SSO95 -1.146*** -1.231*** -1.328*** -1.156*** -1.268***
(0.184) (0.189) (0.203) (0.183) (0.195)

Observations 1,063 1,063 1,063 1,063 1,063
R-squared 0.139 0.143 0.149 0.146 0.115
Fixed effects Country Country Country Country Country
Spillover Controls Yes

Robust standard errors clustered at the occupation level in parentheses. Data is
aggregated at the country × occupation level. Based on Berg and Streitz (2019),
spillover controls include the interaction of a dummy indicating that RTI is above
the country median interacted with the average RTI at the contry-level, excluding
the occupation considered.

*** p<0.01, ** p<0.05, * p<0.1
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∆ln(Hoursoi) = γ + δ1∆ln(SSOoi) +K ′C2 + ηi + υoi (25)

where ∆ln(Hoursoi) is the long difference in total hours worked in occupation o in country i,

∆SSOoi the change in selectivity previously defined, K ′ a matrix a control variables and C2 the

vector of associated coefficients . We further include country fixed effect ηi corresponds to country

fixed effects.

The coefficients estimated in Equation (25) may be biased due to endogeneity concerns. The

selectivity index is constructed using employment shares. This implies that there may be reverse

causation from change in hours worked to change in selectivity. The sign of the bias is intricate

given that it will ultimately depend on the distribution of employment between industries for a

given occupation. We tackle this endogeneity concerns using an instrumental variable approach

by constructing a so-called Bartik instrument or shift-share instrument. This is most used in the

development and trade literature, but has also been recently used by Chodorow-Reich and Wieland

(2019) in a labor market context to study local labor market reallocation and unemployment. Our

proposed instrument follows their methodology as our instrument is also a so-called double-Bartik.

In particular the instrument is constructed in two steps: First we compute the Bartik-predicted

change in employment in a occupation-industry-country cell as the employment growth if that

cell grew at exactly the same rate as employment in that occupation and industry in all other

countries in our sample. In a second step we compute the Bartik-predicted selectivity using the

shares computed in the first step to derive the Herfindahl index.

More formally, the predicted employment in 2010 is ̂Lboik,2010 = gbo,−i,k,2010×so,i,k,1995 with gbo,−i,k,2010

the average growth rate of a occupation-industry pair in all other countries of the sample (denoted

by the index −i) and so,i,k,1995 the employment of occupation o in sector k in country i in 1995. The

Bartik-predicted SSO for year 2010 is then: ̂SSOboi,2010 =
∑

k∈K(ŝboik,2010)2 with ŝboik,2010 being the

share of predicted employment of occupation o, in sector k, in country i in 2010. Our instrument

is then the log change in predicted SSO:

∆̂SSOboi = ln

 ̂SSOboi,2010

SSOoi,1995


We use the Bartik-predicted change in specialization as the included instrument and further
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include the predicted occupation-industry employment growth (∆ln(Lb) = ln(
Loi,1995

̂Lboik,2010

)) from the

leave-one-out estimates as a control variable for unobserved variation in employment due to any

secular occupation-industry specific trends in employment shared across countries (see Chodorow-

Reich and Wieland, 2019).

Results are displayed in table 3. We display different specifications that use different sets of

controls or fixed effects. Importantly in each case (columns 2, 3 and 5) the Kleinberger-Paap

F-statistic is large and largely above the Montiel-Pflueger robust weak instrument test critical val-

ues (Montiel and Pflueger, 2013 and Pflueger and Wang, 2015 for Stata implementation). The

associated first-stage estimates are displayed in the first line of the table. They are positive and

significant for each IV regressions.

In the first column, the OLS regression shows a negative and significant effect of an increase in

selectivity on employment. The predicted growth of occupation’s employment in other countries

is positively linked to employment, as expected. In column (2), we implement our double Bartik

strategy to control for endogeneity concerns. The coefficient estimated is negative and close than

the OLS coefficient. It is also a bit less precisely estimated, leading to an estimate significant at the

10% level. In column (3), we see that the coefficient on the change in selectivity is rather constant

when controlling for occupation level factors, including the initial routineness. This variable con-

trols for the direct effect of automation on employment. The IV regression in column (4) confirms

the robustness of this finding with a negative and significant coefficient for the change in selectivity.

We include occupation fixed effects together with country fixed effects in column (5). These fixed

effects control for any occupation-level determinants of the change in employment that is common

to all countries in the sample. The coefficient estimated is now negative, significant and larger than

the OLS estimate in column (1).

Additional estimation results are displayed in table 4. In column (1), we restrict the sample to

positive increases in selectivity. This way, we are able to isolate the specific effect of an increase in

selectivity versus a decrease in selectivity. For our narrative to be confirmed, we need to observe
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Table 3: Selectivity and employment I

(1) (2) (3) (4) (5)
∆ln(Hours)

First Stage 1.780*** 1.789*** 1.925***
(0.127) (0.139) (0.204)

∆ln(SSO) -0.160*** -0.161* -0.169*** -0.267*** -0.446***
(0.0417) (0.0852) (0.0349) (0.0658) (0.0809)

∆ln(Lb) 0.266*** 0.266*** 0.297*** 0.302*** 0.0697
(0.0640) (0.0647) (0.0629) (0.0650) (0.0883)

RTI95 -0.226*** -0.225***
(0.0425) (0.0427)

Offshor.95 0.0719 0.0668
(0.0562) (0.0578)

RTI × Offshor. -0.178*** -0.181***
(0.0447) (0.0453)

FE Country Country Country Country Country Occup.
Instrument No Bartik No Bartik Bartik

Observations 1,073 1,073 1,062 1,062 1,073
K-P F-Test 1st 196.6 165.1 88.71

Robust standard errors clustered at the occupation level in parentheses.
Data is aggregated at the country × occupation level.

*** p<0.01, ** p<0.05, * p<0.1
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a decrease in employment following an exogenous increase in selectivity. The coefficient estimated

in column (1) for the change in selectivity is negative and significant. It is also larger in absolute

value than the coefficient estimated on the full sample in column (4). The same remarks hold when

we include occupation-level fixed effects in column (2). The employment growth in other countries

is not significant any more when we add the fixed effects. This is driven by the limited scope for

variation within occupation of this variable.

We now want to establish a more direct link between change in selectivity and initial routineness,

this would help to show that it is really the automation channelled through a change in selectivity

that affects negatively employment. As before, we separate our RTI variable at the country-level

median and interact it with the change in selectivity. We now have to deal with two endogenous

variables that are constructed by interacting our instrument with RTIH95 and RTIL95. The fact of

having two endogenous variables and two instruments naturally reduces the Kleinberger-Paap F

statistic. In column (3) to (6), this first stage F-statistic is always above the threshold proposed

by Stock and Yogo (2005) to identify weak instruments.29 Column (3) reveals that the effect of

selectivity estimated before is mainly driven by large routine occupations experiencing an increase

in selectivity. This confirm that the mismatch effect plays an important role in explaining the

employment decrease. This result holds when we restrict the sample to increases in selectivity only

in column (4) and when we replicate columns (3) and (4) with occupation fixed effects.

This set of regressions provides result in line with the theory predictions: more routine-intensive

occupations experienced an increase in selectivity,i.e. a decrease in the matching sets, between 1995

and 2010. This increase in selectivity then has a negative effect on employment, even controlling

for the direct effect of automation on employment.

3.5 Alternative Measures of Selectivity

In this subsection, we provide an alternative strategy to identify the effect of technology on match-

ing. Instead of relying on a theory-based measure, we rely on more standard metrics of mismatch.

29In our context, this threshold for a bias of 10% is 7.03.
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Table 4: Selectivity and employment II

(1) (2) (3) (4) (5) (6)
∆ln(Hours)

∆ln(SSO) -0.339*** -0.694***
(0.101) (0.151)

∆ln(SSO)×RTIH95 -0.343*** -0.507*** -0.357*** -0.714**
(0.119) (0.159) (0.126) (0.288)

∆ln(SSO)×RTIL95 0.105 0.0594 0.244** 0.241**
(0.107) (0.112) (0.0973) (0.109)

∆ln(Lb) 0.223*** -0.145 0.326*** 0.248*** 0.113 -0.0954
(0.0845) (0.109) (0.0700) (0.0764) (0.0846) (0.116)

RTI95 -0.194***
(0.0511)

Offshor.95 0.0445 0.00564 0.0340
(0.0644) (0.0521) (0.0606)

RTI × Offshor. -0.182*** -0.205*** -0.147***
(0.0507) (0.0394) (0.0485)

FE ISCO3 ISCO3 ISCO3
Instrument Bartik Bartik Bartik Bartik Bartik Bartik
∆ln(SSO) > 0 Yes Yes Yes Yes

Observations 558 563 1,062 558 1,073 563
K-P F-Test 1st 90.11 63.88 24.31 17.93 9.593 11

Robust standard errors clustered at the occupation level in parentheses.
Data is aggregated at the country × occupation level.

*** p<0.01, ** p<0.05, * p<0.1
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Alternative 1: Educational mismatch We measure educational mismatch, over-education

and under-education, by comparing each worker’s education in terms of years to the educational

level of his peers (as defined by occupation, sector or country) at the date of the observation.

The worker is considered as over-educated (under-educated) when his or her educational level is

above (below) the average in its occupation, industry, country and 10-year cohort by more than

2 standard deviations (see e.g. Hartog [54] for a similar definition). To make our estimates of

mismatch more precise avoiding the case of a small number of observations in a cell (that would

bias our measure), we aggregate the observations at the 2-digit ISCO level. In order to be able to

compute the mismatch metrics, these regression are realized on the long difference between 1998

and 2010.

Intuitively, as automation takes place, employers become more picky and want to select better

(in the sense of the match output) employees. In consequence we should observe a decrease of under-

education, id est, employees relatively less qualified that the average employee in the occupation.

The effect on over-education is ambiguous. Indeed, matching output decreases if the employee is

”too skilled” for the a given task. However, recent literature on matching in the labor market

suggests that worker type increases with education (see Lochner and Schultz, 2016). Following

this fact, one could imagine that pickier employers would match with more educated workers. The

effect on educational mismatch is then also undetermined.

Alternative 2: Unemployment duration The fact that employers become more selective

should have a direct impact on unemployment duration since matches are less likely to happen.

Especially, increase in selectivity should end up in an increase in the unemployment duration in

a cell. Defining unemployment at the cell level in not straightforward as cells are defined based

on having an activity. In order to proxy unemployment duration in a cell, we assign unemployed

workers to the cell of their last job. Again we aggregate the occupations observations at the 2-digits

ISCO level in order to make the estimations of the left-hand side variable more precise. Note that

France and Netherlands are not present in these regressions since the information provided for these

countries does not allow us to compute unemployment duration.

Results We run the following econometric estimation:
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∆Yoik =α+ β1RTIo + β2Offshorabilityo

+β3(Offshorabilityo ×RTIo) + µik + εoik

(26)

where ∆Yoik stands for the long difference on variable Y , which will be either educational mis-

match, over-education, under-education or unemployment duration. Standards errors are clustered

at the occupation × country level. All estimations are weighted by initial employment shares and

all right-hand side variables are standardized so their mean equals zero and their standard deviation

equals one.

Table 5 reports the corresponding results. In column (1), we observe a negative but non-

significant estimate of the RTI on mismatch. We cannot conclude from this result. We then

decompose mismatch between under-education in column 2 and over-education in column 1.

Columns 2 and 3 reveal that the most automatable occupations as of 1998 experienced a decrease

in the under-education rate and an increase in the over-education rate. The opposite pattern is

associated with offshorability. Note also the complementarity between automation and offshoring

in column 2. The effect of automation on under-education corresponds to what was expected. As

explained before, the effect of RTI on over-education was not determined. Results indicate that

more routine-intensive occupations experienced an increase in over-education. This is in line with

employers becoming pickier associated with a positive link between employee type and education.

Column 4 shows that automatability is associated with an increase in unemployment duration.

This provides further evidence that automation may induce firms and workers to wait and search

for longer. Overall, these results are in line with our theoretical framework and confirm the results

obtained with a theory-driven measure of selectivity.

3.6 Aggregate effects

In this section we propose a back-of-the-envelope calculation of the aggregate effects of technological

change on employment, after a brief discussion of the related literature.

Acemoglu and Restrepo (2018) with US data and Chiacchio et al. (2018) with European data

have found a negative effect of industrial robots on aggregate employment. These papers study

whether the displacement effect of technology is larger than its employment enhancing productivity

effect. In both papers the displacement effect of robot exposure exceeds the productivity gains and
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Table 5: Impact of technology on educational mismatch and unemployment duration

(1) (2) (3) (4)
∆ Mismatch ∆ Under-educ. ∆ Over-educ. ∆ Unemp. duration

RTI95 -0.0347 -0.00340*** 0.00305*** 0.0409*
(0.0984) (0.000742) (0.000778) (0.0243)

Offshor.95 0.0532 0.00220** -0.00167** -0.0183
(0.114) (0.000858) (0.000795) (0.0319)

RTI95 × Offshor.95 -0.290*** -0.00177** -0.00113 0.0454
(0.111) (0.000814) (0.000805) (0.0328)

Observations 1,915 1,915 1,915 905
R-squared 0.236 0.143 0.235 0.183
Fixed effects Country-Industry

Robust standard errors clutered at the occupation × country level in parentheses.
*** p<0.01, ** p<0.05, * p<0.1

make the aggregate effect of technology on employment negative. It is important to note that the

two papers use a specific technology shock, that is, the increase in robot exposure. As defined in

their papers, robots do not cover all cases of automation. In particular, automation through the

routinization of computer tasks is not taken into account. When Autor and Salomons (2018) adopt

a broader measure of technology, they find a positive effect of technology on aggregate employment.

Using changes in TFP at the industry level across European countries, Asian countries and the US to

capture technological change, they allow for many channels to be potentially relevant: own-industry

effects (expected to have a negative impact on employment) as well as cross-industry input-output

effects, between-industry shifts and final demand effects (all expected to have a positive impact

on employment). Overall, they find that technological change increases aggregate employment but

decreases the labour share. Closer to the spirit of our analysis, Salomons et al. (2019) investigate

the labor demand and employment effects of routine-biased technological change (RBTC) and show

that its effect on aggregate employment in the EU is positive. Both Autor and Salomons (2018)

and Salomons et al. (2019), however, do not offer country-by-country estimations.

Here we adopt a less structural approach than all these papers. Specifically, in order to estimate

the employment effect of technological change, we build the counterfactual outcome, in which

technological change has no effect on employment, by using the estimated parameters and fixed

effects of an econometric model to create a prediction of the change in employment when the impact

of initial automatability is shut down. For this strategy to be effective, we need an econometric
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model that can explain a large share of the variation in employment changes. We therefore aggregate

our occupations at the 2-digits level so as to be able to exploit the within-occupation cross-country

and cross-industry variation of automatability. Accounting for the share of employment of each 3-

digits occupation collapsed to 2-digits occupations allows us to add occupation-specific fixed effects

in the estimation.

The econometric model we run is:

∆ln(Hoursoik) = β1RTI
95
oik + β2Off

95
oik + β3RTI

95
oik ×Off95

oik + µik + µoi + εokc (27)

where µik and µoi are industry × country and occupation × industry fixed effects respectively. We

also allow the effect of the RTI on employment to depend on the extent of occupation routineness

by splitting the variable RTI95
oik into two variables RTIHoik and RTILoik depending on whether the

RTI is above or below the median level of routineness in a country × industry pair. Lastly, we

control for the average education level in a cell and the relative size of the cell. Specification (27)

partly captures the displacement effect of technological change as long as we observe decreasing

employment in routine-intensive occupations and increasing employment in non-routine-intensive

occupations. It also partly captures the productivity effect of technological change as long as the

gains in low-routine occupations are allowed to differ from the losses in high-routine occupations.

Then, for each country k, we use the aggregate employment changes ̂ln
(
Hk

10/H
k
95

)
predicted

by (27) to construct the predicted aggregate hours worked in 2010, which we denote by Ĥk
10.

Specifically, imposing ̂ln
(
Hk

10/H
k
95

)
= ln

(
Ĥk

10/H
k
95

)
, we obtain

Ĥk
10 = Hk

10 exp

( ̂
ln

(
Hk

10

Hk
95

)
− ln

(
Hk

10

Hk
95

))
(28)

where all terms on the right-hand side are either observed (Hk
95 andHk

10) or estimated ( ̂ln
(
Hk

10/H
k
95

)
)

from (27).

For the estimated β1 the comparison of predicted and actual outcomes tells us how much we

should believe ‘statistically’ in the counterfactual. The correlation between predicted and actual

employment changes in a cell is 0.53. However, the correlation between predicted and actual

employment levels is 0.98. The quality of this prediction increases for higher levels of predicted

employment, while it falls to 0.17 in the first quartile (rank correlation of 0.46). Figure 6 plots the
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distribution of observed and predicted changes in employment (left panel) and employment (right

panel) in 2010.
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Figure 6: Predicted and observed outcomes

For the counterfactual in which the impact of automatability on employment is shut down, we

replace the estimated β1 with β1 = 0. The counterfactual employment of country k in 2010 in

denoted H̃k
10. In Table 6 we consider two types of predictions for the impacts of automatability on

aggregate employment across countries. Column ∆1 compares the observed employment in 2010

(Hk
10) with the correspoding counterfactual employment (H̃k

10): ∆1 = Hk
10 − H̃k

10. Column ∆2

compares the predicted employment in 2010 (Ĥk
10) with the corresponding counterfactual employ-

ment (H̃k
10) to account for the fact that our prediction may not be totally in line with observed

employment : ∆2 = Ĥk
10 − H̃k

10.

Table 6 highlights the heterogenous effects of automatability on employment across countries.

In both columns, a negative aggregate effect is found for Germany, Spain and Greece while it is

positive for all other countries. When comparing the predicted and counterfactual outcomes, we

also find a negative effect in Austria, France, Italy, Luxembourg and Portugal. Assuming that an
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employee works 35 hours a week for 45 weeks a year, the negative effect in the first column for

Germany corresponds to a loss of 4585 jobs in 2010. Hence, we can conclude that, according to

our back-of-the-envelope, the aggregate impact of automation on employment is either positive or

slightly negative for all countries in our sample despite large negative developments for specific

occupations.

Table 6: Predicted impact of automation on aggregate employment

Number of hours

Country
Observed - Counterfactual Predicted - Counterfactual

∆1 ∆2

AUT 5588166 -3400177
BEL 4682215 2741240
DEU -7083773 -15680964
DNK 3544136 51327
ESP -33149281 -39131725
FRA 13787699 -10408017
GBR 65426662 6381045
GRC -3572807 -5935122
IRL 12653495 1409682
ITA 39957419 -20904866
LUX 436904 -69497
NLD 12442593 4042058
PRT 10267282 -10856301

4 Conclusions

There are growing concerns about the negative impacts of automation and offshoring on employ-

ment and wage inequality. As long as both phenomena are to be interpreted as technological

changes, traditional neoclassical arguments imply that those concerns are unfounded. We have

shown, theoretically and empirically, that the effects of technological change associated with au-

tomation and offshoring on the labor market can substantially deviate from standard neoclassical

conclusions when search frictions hinder efficient matching between firms with heterogenous tasks

and workers with heterogenous skills.

Our key hypothesis is that better-matched workers and firms enjoy a comparative advantage

in exploiting new technologies. This way technological change has two effects on employment,

one benign and one detrimental. The first produces a standard increase in labor productivity at
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match level. The second raises the cost of mismatch making firms and workers more selective with

respect to matching opportunities. As a result, technological change promotes employment when

initial productivity is low so that firms and workers are not very selective in matching, whereas it

hampers employment when initial productivity is high enough to make firms and workers sufficiently

selective.

Capturing task heterogeneity at the sectoral level and skill heterogeneity at the occupational

level, we have found empirical support to our mechanisms in a dataset covering 92 occupations

and 16 sectors in 13 countries from 1995 to 2010. Automation increases selectivity and reduces

employmen, the more so for highly offshorable occupations. At the aggregate level, however, the

impact of automation on employment is either positive or slightly negative for all countries in our

sample despite large negative developments for specific occupations.
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A Data Description.

We use the annual files of the European Labour Force Survey (EULFS) made available by Eurostat.

This survey combines labour force surveys conducted at the national level in European countries.

It has the advantage to provide harmonized information on basic labour markets variables. Our

final database corresponds to country× industry×occupation×year cells. The information on the

sector is based on the broad NACE sectors (21 sectors in the NACE Rev.2 classification) and the

information on the occupation is based on the 3-digits ISCO-88 classification. The EULFS is used

to derive the number of employed and unemployed workers in each cell by collapsing individuals

observations using the provided weighting coefficients. We also use the EULFS to compute the

unemployment duration in each cell.

Construction of the variables We keep the employed people as defined by the ILO criteria and

derived by Eurostat. It is less common to compute unemployment at the sector× occupation level

since workers can be mobile across sectors and occupations. We define unemployment in a given

sector and a given occupation as the number of unemployed people who had this precise occupation

in this precise sector. This measure corresponds to the true and unobservable unemployment rate

at the sector × occupation level if workers do not move across sectors and occupations.

Dataset selection We restrict our dataset to the 13 following countries: Austria, Belgium, Ger-

many, Denmark, Spain, France, Great Britain, Greece, Ireland, Italy, Luxembourg, Netherlands

and Portugal. This group of countries corresponds to all countries that provided data at least from

1995. It is important to note that France and the Netherlands do not provide enough information

to compute the unemployment rate at the cell level. Following Goos et al. [32], we also drop the

following industries: Agriculture, Forestry, Fishing (A); Mining and Quarrying (B), Public Ad-

ministration and Defence and Compulsory Social security (O); Education (P) and Extra-territorial

organizations and bodies (U). These sectors corresponds to public sectors and agricultural sectors.

They account for 26% of all jobs in our sample. The following occupations, closely associated to

the sectors deleted are also dropped from the sample: Legislators and senior officials (ISCO-88:

11); teaching professionals (ISCO-88: 23); teaching associate professionals (ISCO-88: 33); market-
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oriented skilled agricultural and fishery workers (ISCO-88: 61); agricultural, fishery and related

labourers (ISCO-88: 92).30 Finally, our data contains information, virtually complete, at the cell

level for 92 occupations, in 16 sectors.

Table 7 sums up the coverage of our database relative to official statistics. According to official

Eurostat statistics, we cover around 70% of the employment in each country, except for Luxembourg

for which we only cover 58.5% of the employment. This is due to the fact that Luxembourg is a small

country with a large institutional sector driven by the presence of some European institutions. Our

coverage of unemployment is a bit less precise, going from 36.2% of official unemployment numbers

in Italy to 69.6% in Denmark. This is principally due to the lack of precise reporting of the last job

for unemployed people and to dropped industries. Especially the coverage is very low for Portugal

in 1995 (around 10%).

Table 7: Database Coverage (in % of official Eurostat figures)

Country # of employees # of un-
employed
workers

Austria 70,9% 56,1%
Belgium 70,5% 51,5%
Germany 75,4% 62,3%
Denmark 73,3% 69,6%

Spain 70,5% 61,1%
France 69,1% -

Great Britain 74,2% 59,8%
Greece 61,1% 42,3%
Ireland 66,5% 51,1%
Italy 71,8% 36,2%

Luxembourg 58,5% 44,0%
Netherlands 68,0% -

Portugal 69,8% 38,6%

The time frame of our analysis corresponds to 1995-2010 in order to include the maximum

number of countries. Our analysis stops in 2010 because after this date, a change in the occupation

classification (ISCO-88 to ISCO-08) prevents us from accurately representing changes in the time

series.

30These occupations respectively account for 0.12%, 0.27%, 0.53%, 0.39% and 0.07% observations in the sectors
kept.
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A.1 Offshorability

Three different measures of offshorability are proposed in the literature: by Blinder (2009), by

Blinder and Krueger (2013, hereafter BK) and by Acemoglu and Autor (2011, hereafter AA). In

the first two cases, the authors propose a qualitative scale of offshorability, ranking occupations

from ”Highly Non Offshorable” (1) to ”Highly Offshorable” (4) (Blinder, 2009). Blinder then

proposes a qualitative ranking of occupations according to their degree of offshorability. BK only

provide 4 categories. AA propose a quantitative index of offshorability based on ONET. 31 Their

measure aggregates several ONET indicators: Face to face discussions, Assisting and Caring for

Others, Performing for or Working Directly with the Public, Inspecting Equipment, Structures, or

Material, Handling and Moving Objects, 0.5*Repairing and Maintaining Mechanical Equipment,

0.5*Repairing and Maintaining Electronic Equipment.

While Blinder and BK measures are based on questionnaires and qualitative observations about

offshorability, the AA measure is not. The two types of measures are likely to diverge for some

occupations. In Table 8, we compute the correlation coefficient between these measures. The

correlation between Blinder and BK indexes is large while for both indices the correlation with the

AA measure is quite low.

Table 8: Correlation table between offshorability measures

AA (2011) Blinder (2009) BK (2013)

Acemoglu-Autor (2011) 1 –
Blinder (2009) 0.34 1 –
Blinder-Krueger (2013) 0.25 0.94 1

For instance, Models, Salespersons and Demonstrators (code 52) is an occupation classified

among the five most offshorable occupations according to the AA index while it is ranked as Highly

Non-Offshorable by Blinder (2009). Teaching professionals (code 23) are also in the same situation.

On the contrary, Machine operators and assemblers (code 82) are ranked as offshorable in Blinder

(2009) while being ranked as a low offshorability activity by the AA index.

In their data appendix Manning et al. (2013) compare different offshorability index with actual

offshorability measures. Blinder/BK types of measures seem more reliable. We consider these two

31This index is inspired by Firpo et al., 2009
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measures as our preferred ones, using the BK index in our baseline regressions.

A.2 Automation

We proxy the probability of future automation of an occupation using the RTI measure constructed

by Autor and Dorn (2013) [10]. This measure correlates with the one provided by Frey and Osborne

(2017). Using the files by Autor and Acemoglu [1] and the definition of the RTI by Lewandowski et

al. (2017) we compute the RTI index based on DOT data.32 The measure of the RTI is standardized

in order to have a mean of zero and a standard error of one. We use a crosswalk to go from SOC

2000 classification to 4-digits ISCO88 classification and then aggregate it to the three-digits ISCO88

classification. At this level the correlation between the RTI (‘routineness’) and measure by Frey

and Osborne (‘probability of automation’) is 0.77 (see figure 7). However, the two variables diverge

for some occupations.
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Figure 7: Correlation between automation probability and routiness

To assess the evolution of routine jobs across countries and industries, Dao et al. (2017) also

use an index of ‘routineness’ fixed for the nine 1-digit ISCO-88 occupations. They then assume

that the partition of jobs within 1-digit ISCO occupations is fixed among countries, industries and

32Lewandowski et al. (2017) slightly modify the RTI definition compared to Autor and Dorn (2013) in order
to adapt it to the use of ONET data instead of DOT data: RTI = ln(RoutineCognitive + RoutineManual) −
ln(Nonroutineanalytical + nonroutineinterpersonnal).
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time. We relax this assumption by only assuming that the RTI of a 3-digits ISCO occupation is

fixed. This way we are able to observe the evolution in the automatability by country, industry

and occupation.

A.3 Link between automation probability and offshorability

In this subsection we document that automatability and offshorability are not trivially correlated.

First, conceptually the two concepts are different. Offshorability is defined as “the ability to per-

form one’s work duties (for the same employer and customers) in a foreign country but still supply

the good or service to the home market” (Blinder and Krueger, 2009) while the automatability is

more strictly linked to the routineness of a task, its possibility to be solved algorithmically, etc.

Figure 8 documents the correlation between the two variables. There is a global positive correlation

but the figure also highlights the diversity of RTI/offshorability combinations. Especially some oc-

cupations are both offshorable and routine-intensive (73: Precision, handicraft, printing and related

trades workers; 81: Stationary-plant and related operators; 82: machine operators and assemblers),

other are not routine intensive but offshorable (21: Physical, mathematical and engineering science

professional) while some are protected from offshorability but at risk of automation (83: Drivers

and mobile-plant operators; 91: sales and services elementary occupations; 93: labourers in mining,

construction, manufacturing and transport). Finally, some occupations are both protected from

automation and from offshorability (12: corporate managers; 13: general managers; 22: life sci-

ence and health professionals). Note, however, that the scope of occupations that are not routine

intensive but offshorable is very limited.

A.4 Merging procedure

Our matching strategy could be decomposed as follows: i) We only keep the observations before

2011, ii) we compute the RTI for each 4-digit ISCO-88 using official crosswalks, iii) we average

the probabilities of automation when many SOC occupations are matched into a single ISCO

occupation, iv) we take the unweighted average probability of automation to aggregate our measure

at the 3-digits ISCO-88 levels, v) we match each occupation with its RTI, vi) we proceed in the

same way to assign RTI and offshorability indexes to occupation reported at the 2-digits ISCO

level. Finally, when necessary, we obtain the measure of routine task intensity and offshorability
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at the 2-digits ISCO level by collapsing (with appropriate weights) all observations at the 3-digits

level in their corresponding 2-digits ISCO occupation.

B Derivation of Value Functions

Time is discrete. The value function of an employed worker being in a match with a firm at distance

d reads:

V E
t (d) = wt(d) + (1− ρ)

[
(1− δ)V E

t+1(d) + δV U
t+1

]
,

where on the right-hand side the first term is the wage the worker currently earns and the second

term is the discounted value of still being employed tomorrow if the current match survives (with

probability (1 − δ)) and the value of unemployment when the match gets destroyed exogenously

(probability δ). Rewriting in ∆ units of time gives

V E
t (d) = ∆wt(d) + (1−∆ρ)

[
(1−∆δ)V E

t+∆(d) + ∆δV U
t+∆

]
,

where flow variables are now simply a share ∆ of the flows. Dividing through by ∆ and rearranging

terms yields:

V E
t (d)− V E

t+∆(d)

∆
= wt(d)− (ρ+ δ − ρ∆δ)V E

t+∆(d) + (1−∆ρ)δV U
t+∆.
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Taking the limit lim∆→0 then gives the continuous-time value functions, where time subscripts are

inessential since we consider stationary steady-states only and lower case letters will be used for

continuous time value functions:

ρve(d) = w(d)− δ (ve(d)− vu) .

The value of being unemployed can be derived in the same fashion:

V U
t = (1− ρ)qu(θ)2

∫ d?

0
V E
t+1(z)dz + (1− ρ)qu(θ)2

∫ 1

d?
V U
t+1(z)dz + (1− ρ) (1− qu(θ))V U

t+1.

With probability qu(θ) a given worker meets a firm at distance d. If this firm is acceptable (i.e.

−d? < d < d?, the value of being employed at that firm is V E
t+1(d). Note that symmetry over the

circle implies that integration from −d? to d? is equivalent to taking twice the integral from 0 to

d?. If the match is unacceptable the value is V U
t+1 (second term). With probability (1− qu(θ)) the

worker does not meet a firm. Adding and subtracting (1− ρ)qu(θ)2
∫ d?

0 V U
t+1dz, we have

V U
t = (1− ρ)qu(θ)2

∫ d?

0

(
V E
t+1(z)− V U

t+1

)
dz + (1− ρ)V u

t+1

Following the same steps as above then yields:

ρvu = qu(θ)2

∫ d?

0
(ve(z)− vu) dz.

The value of a vacancy (VV ) and a filled vacancy (VP (d)) can be derived analogously.

C Model Solution

We detail here the analytical steps needed to solve the full system of the model’s equilibrium

conditions. We start with merging the value functions. Specifically we first derive an expression

for the workers’ surplus by subtracting (12) from (13):

ρ (ve(d)− vu) = w(d)− δ (ve(d)− vu)− 2qu(θ)

∫ d∗

0
(ve(z)− vu) dz (29)

ρ

∫ d∗

0
(ve(z)− vu) dz =

∫ d∗

0
w(z)dz − δ

∫ d∗

0
(ve(z)− vu) dz − 2qu(θ)

∫ d∗

0
(ve(z)− vu) dz

(ρ+ δ + 2qu(θ))

∫ d∗

0
(ve(z)− vu) dz =

∫ d∗

0
w(z)dz∫ d∗

0
(ve(z)− vu) dz =

∫ d∗
0 w(z)dz

ρ+ δ + 2qu(θ)
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Next, we find an expression for the firms’ surplus. To this purpose we subtract (14) from (15):

ρ (vP (d)− vv) = (f(d)− w(d)− c)− δ (vp(d)− vv) + c− 2qv(θ)

∫ d∗

0
(vp(z)− vv) dz (30)

ρ

∫ d∗

0
(vp(z)− vv) dz =

∫ d∗

0
(f(z)− w(z)) dz − δ

∫ d∗

0
(vp(z)− vv) dz − 2qv(θ)

∫ d∗

0
(vp(z)− vv) dz∫ d∗

0
(vp(z)− vv) dz =

∫ d∗
0 (f(z)− w(z)) dz

ρ+ δ + 2qv(θ)

To find the expression for wages we substitute the workers’ and firms’ surpluses into the Nash

bargaining rule (20):

(1− α) (ve(d)− vu) = α (vp(d)− vv) (31)

(1− α)

∫ d∗

0
(ve(z)− vu) dz = α

∫ d∗

0
(vp(z)− vv) dz

(1− α)

∫ d∗
0 w(z)dz

ρ+ δ + 2qu(θ)
= α

∫ d∗
0 (f(z)− w(z)) dz

ρ+ δ + 2qv(θ)

(1− α)
w(z)

ρ+ δ + 2qu(θ)
= α

(f(z)− w(z))

ρ+ δ + 2qv(θ)

1− α
α

ρ+ δ + 2qv(θ)

ρ+ δ + 2qu(θ)
w(z) = f(z)− w(z)(

1 +
1− α
α

ρ+ δ + 2qv(θ)

ρ+ δ + 2qu(θ)

)
w(z) = f(z)

This leads to:

w(z) = f(z)

(
1 +

1− α
α

ρ+ δ + 2qv(θ)

ρ+ δ + 2qu(θ)

)−1

(32)

=
α (δ + ρ+ 2qu(θ)) f(z)

δ + ρ+ (1− α) 2qv(θ) + α2qu(θ)

Next, we substitute the firms’ share of surplus into the value of a vacancy (15):

ρvv = −c+ 2qv(θ)

∫ d∗

0
(vp(z)− vv) dz (33)

= −c+ 2qv(θ)
1− α
α

∫ d∗

0
(ve(z)− vU ) dz
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We express the value of a vacancy in (29) by substituting wages, (32):∫ d∗

0
(ve(z)− vu) dz =

∫ d∗
0 w(z)dz

ρ+ δ + 2qu(θ)
(34)

=

(
1 + 1−α

α
ρ+δ+2qv(θ)
ρ+δ+2qu(θ)

)−1

ρ+ δ + 2qu(θ)

=
α
∫ d∗

0 f(z)dz

δ + ρ+ (1− α) 2qv (θ) + α2qu (θ)

Thus, using (34) and (33) implies:

ρvv = −c+ 2qv(θ)
1− α
α

∫ d∗

0
(ve(z)− vu) dz (35)

= −c+ 2qv(θ)
1− α
α

α
∫ d∗

0 f(z)dz

δ + ρ+ (1− α) 2qv (θ) + α2qu (θ)

= −c+
(1− α) 2qv(θ)

∫ d∗
0 f(z)dz

δ + ρ+ (1− α) 2qv (θ) + α2qu (θ)

Using the definition of the probability of finding a job

qu(θ) =
M(U, V )

U

and the steady state flow condition

2d∗qu(θ) = 2d∗
M(U, V )

U
=

δE

L− E
(36)

qu(θ) =
δE

2d∗(L− E)
(37)

we find:

M(U, V ) = ϑU ξV 1−ξ =
δE

2d∗

V =

(
δE

2d∗ϑU ξ

) 1
1−ξ

,

which, once substituted into the labour market tightness, gives:

qv(θ) =
M(U, V )

V
=

δE

2d∗
(

δE
2d∗ϑUξ

) 1
1−ξ

(38)

=
(δE)

1− 1
1−ξ

(2d∗)
−ξ
1−ξ (ϑU ξ)

− 1
1−ξ

(39)

= ϑ
1

1−ξ
(δE)

− ξ
1−ξ

(2d∗ (L− E))
−ξ
1−ξ

= ϑ
1

1−ξ (qu(θ))
− ξ

1−ξ .33 (40)
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Thus, substituting (36) and (38) in (35) gives:

ρvv = −c+
(1− α) 2qv(θ)

∫ d∗
0 f(z)dz

δ + ρ+ (1− α) 2qv (θ) + α2qu (θ)
(41)

= −c+
(1− α) 2ϑ

1
1−ξ (δE)

− ξ
1−ξ (2d∗ (L− E))

ξ
1−ξ
∫ d∗

0 f(z)dz

δ + ρ+ (1− α) 2ϑ
1

1−ξ (δE)
− ξ

1−ξ (2d∗ (L− E))
ξ

1−ξ + α2δE/ (2d∗ (L− E))

where integrating implies the following aggregate production over equilibrium matches:

∫ d∗

0
f(z)dz =

∫ d∗

0
ϕA

1
1−β

(
F − γAη

2
d

)
dz

= ϕA
1

1−β

(
F − γAη

4
d∗
)
d∗

Hence, substituting the above into (41), we obtain an equation in unknown E and d∗:

c =
(1− α) 2ϑ

1
1−ξ (δE)

− ξ
1−ξ (2d∗ (L− E))

ξ
1−ξ
[
ϕA

1
1−β

(
F − γAη

4 d∗
)
d∗
]

δ + ρ+ (1− α) 2ϑ
1

1−ξ (δE)
− ξ

1−ξ (2d∗ (L− E))
ξ

1−ξ + α2δE/ (2d∗ (L− E))

A second equation in the same unknowns can be obtained by substituting the flow of employment

and zero profit condition into the value of a filled vacancy (14):

ρvp(d
∗) = (f(d∗)− w(d∗)− c)− δ (vp(d

∗)− vv) (42)

0 = f(d∗)− w(d∗)− c

w(d∗) = f(d∗)− c

which together with (32) evaluated at d∗:

w(d∗) =
α (δ + ρ+ 2qu(θ)) f(d∗)

δ + ρ+ (1− α) 2qv(θ) + α2qu(θ)

gives:

f(d∗)− c =
α (δ + ρ+ 2qu(θ)) f(d∗)

δ + ρ+ (1− α) 2qv(θ) + α2qu(θ)

c =

(
1− α (δ + ρ+ 2qu(θ))

δ + ρ+ (1− α) 2qv(θ) + α2qu(θ)

)
f(d∗)

c = (1− α)
δ + ρ+ 2qv(θ)

δ + ρ+ 2 (1− α) qv(θ) + 2αqu(θ)
f(d∗)

Thus, substituting (36) and (38) we get:
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c = (1− α)
δ + ρ+ 2ϑ

1
1−ξ (δE)

− ξ
1−ξ (2d∗ (L− E))

ξ
1−ξ
[
ϕA

1
1−β

(
F − γAη

2 d
)]

δ + ρ+ 2 (1− α)ϑ
1

1−ξ (δE)
− ξ

1−ξ (2d∗ (L− E))
ξ

1−ξ + 2αδE/ (2d∗ (L− E))

This is the second equation in unknown E and d∗. To sum up, the equilibrium outcome solves the

following 2 equations in the 2 unknown E and d∗:

c =
(1− α) 2ϑ

1
1−ξ (δE)

− ξ
1−ξ (2d∗ (L− E))

ξ
1−ξ
[
ϕA

1
1−β

(
F − γAη

4 d∗
)
d∗
]

δ + ρ+ (1− α) 2ϑ
1

1−ξ (δE)
− ξ

1−ξ (2d∗ (L− E))
ξ

1−ξ + α2δE/ (2d∗ (L− E))

c = (1− α)
δ + ρ+ 2ϑ

1
1−ξ (δE)

− ξ
1−ξ (2d∗ (L− E))

ξ
1−ξ
[
ϕA

1
1−β

(
F − γAη

2 d
)]

δ + ρ+ 2 (1− α)ϑ
1

1−ξ (δE)
− ξ

1−ξ (2d∗ (L− E))
ξ

1−ξ + 2αδE/ (2d∗ (L− E))
(43)

i.e. in more compact notation:

qu =
δE

(2d∗ (L− E))
, q′u(E) > 0 (44)

c = (1− α)
2ϑ

1
1−ξ (qu)

− ξ
1−ξ
[
ϕA

1
1−β

(
F − γAη

4 d∗
)
d∗
]

δ + ρ+ 2 (1− α)ϑ
1

1−ξ (qu)
− ξ

1−ξ + 2α (qu)
(45)

c = (1− α)
δ + ρ+ 2ϑ

1
1−ξ (qu)

− ξ
1−ξ
[
ϕA

1
1−β

(
F − γAη

2 d
)]

δ + ρ+ 2 (1− α)ϑ
1

1−ξ (qu)
− ξ

1−ξ + 2α (qu)
= c (46)

with ϕ = (β/ρ)
β

1−β .

With the equilibrium values of E and d∗ we can also evaluate the wage. Using the profit function

(32) and (40) we get:

w(d) =
α (δ + ρ+ 2qu(θ))

[
ϕA

1
1−β

(
F − γAη

2 d
)]

δ + ρ+ 2 (1− α)ϑ
1

1−ξ (qu)
− ξ

1−ξ + 2α(qu)
.
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D Parameter Values

Table 9 reports the parameter values used in Section 2.5

Parameter Description Value

α Bargaining Weight 0.5
ρ Patience 0.05
δ Per-period Seperation Shock 0.1
ξ Matching Function Elasticity 0.5
ϑ Matching Function Constant 0.5
β Capital share in CB 0.3
F Max. Productivity 20
γ Mismatch Cost Param. 1 25
η Mismatch Cost Param. 2 2
c Vacancy Cost 1

Table 9: Parameter
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