Discussion of “The Micro Anatomy of Macro Consumption Adjustments” by Guntin, Ottonello and Perez

Corina Boar
NYU

Macroeconomics and Monetary Policy Conference
March 2021
This paper

- **Insight**: leading theories of crises have different distributional implications
 - even though they generate the same aggregate Y and C dynamics

- Data on the consumption response to aggregate shocks in the distribution
 - can discriminate between leading theories

- Find support for view that crises are shocks to trend growth
 - consistent with permanent income hypothesis
My assessment

• Very clever idea, I wish I had come up with it!

• Testing workhorse models is important work
 – understand limitations, identify avenues for improvement

• This discussion:
 – permanent income hypothesis
 – measurement
 – comments on framework and measurement
The permanent income hypothesis

- Special case: quadratic utility, $\beta (1 + r) = 1$, no borrowing constraint

- Consumption equals permanent income

$$c_t = \frac{r}{1 + r} a_t + \frac{r}{1 + r} \sum_{j=0}^{\infty} \left(\frac{1}{1 + r} \right)^j E_t y_{t+j}$$

- Consumption dynamics

$$\Delta c_t = \frac{r}{1 + r} \sum_{j=0}^{\infty} \left(\frac{1}{1 + r} \right)^j \underbrace{(E_t - E_{t-1}) y_{t+j}} \quad \text{revision in expected earnings}$$
The permanent income hypothesis

- Income process: \(y_t = \bar{y} + \rho y_{t-1} + \varepsilon_t \), where \(\mathbb{E}\varepsilon_t = 0 \)

- Consumption response to income shocks: \(\Delta c_t = \frac{r}{1+r-\rho} \varepsilon_t \)

- Special cases
 1. \(\rho = 0 \): \(\Delta c_t = \frac{r}{1+r} \varepsilon_t \)
 - consume annuity value of transitory shocks
 - if constrained consumption responds one-to-one to transitory shocks
 2. \(\rho = 1 \): \(\Delta c_t = \varepsilon_t \)
 - consumption responds one-to-one to permanent shocks
 - also true if constrained
The permanent income hypothesis

• Income process: \(y_t = \bar{y} + \rho y_{t-1} + \varepsilon_t, \) where \(\mathbb{E}\varepsilon_t = 0 \)

• Consumption response to income shocks: \(\Delta c_t = \frac{r}{1+r-\rho} \varepsilon_t \)

• Special cases

1. \(\rho = 0 \): \(\Delta c_t = \frac{r}{1+r} \varepsilon_t \) \textit{credit tightening view}
 - consume annuity value of transitory shocks
 - if constrained consumption responds one-to-one to transitory shocks

2. \(\rho = 1 \): \(\Delta c_t = \varepsilon_t \)
 - consumption responds one-to-one to permanent shocks
 - also true if constrained
The permanent income hypothesis

• Income process: \(y_t = \bar{y} + \rho y_{t-1} + \varepsilon_t \), where \(\mathbb{E}\varepsilon_t = 0 \)

• Consumption response to income shocks: \(\Delta c_t = \frac{r}{1+r-\rho} \varepsilon_t \)

• Special cases

1. \(\rho = 0 \): \(\Delta c_t = \frac{r}{1+r} \varepsilon_t \)
 - consume annuity value of transitory shocks
 - if constrained consumption responds one-to-one to transitory shocks

2. \(\rho = 1 \): \(\Delta c_t = \varepsilon_t \)
 - consumption responds one-to-one to permanent shocks
 - also true if constrained
Measurement

- Here, low income used as proxy for being borrowing constrained.

- Elasticity of consumption to aggregate income, by income group j

\[\frac{\Delta \log \bar{c}_j}{\Delta \log \bar{y}_j}, \] where \(\Delta \log \bar{y}_j = \log \bar{y}_j^{\text{peak}} - \log \bar{y}_j^{\text{trough}} \)

- \bar{c}_j and \bar{y}_j: average residualized consumption and income for group j

- Elasticity calculated using two observations for average c and y
Findings – Italy

Consistent with *permanent income view* of crises
Comments – framework

• How do agents smooth consumption in response to an *aggregate* shock?

 – closed economy: aggregate shocks are not insurable

 – small open economy: can borrow from abroad

 – do agents hold foreign bonds in their portfolio?

 – or redistribution from government: what is the mechanism?
Comments – measurement

• Constrained households
 – tradition is to proxy constrained with low assets (liquid or net-worth)
 – why use income?

• What are assumptions on income process so that averaging across j is ok?
 – does this preclude income process that is the same for everyone?

• Why not use entire time series of c and y to compute elasticities?
 – mechanism does not rely on large negative shocks (crises, sudden-stops)
• Excellent paper!

 – the exercise is a service to this line of work

 – neat example on how micro data is useful for macro models of aggregates

 – all done within the confines of one of my favorite theories, the PIH