Discussion of Basu and House "Allocative and Remitted Wages: New Facts and Challenges for Keynesian Models"

Marianna Kudlyak
FRB San Francisco

The views expressed here are the author’s and do not necessarily reflect those of the Federal Reserve Bank of San Francisco, or the Federal Reserve System.
Main question

- Monetary business-cycle models
- In the data, shocks have an amplified and persistent effect
- In the models, need an amplification mechanism
 - wage rigidity
 - price rigidity
- Do data exhibit required wage rigidity?
Main takeaway

- Susanto Basu and Chris House employ direct measurement of allocative wage and suggest that the most promising place to look for market imperfections in the monetary business-cycle models is not the labor market but possibly the product market.
Observed wage in the data

- Aggregate wage in the data appears rigid

However, there are three main criticisms of accepting wage rigidity

1. Is the rigidity rational: why not renegotiate?
 -

 -

3. Conceptually, wages might not be allocative
 -
Discussion of Basu and House

Observed wage in the data

- Aggregate wage in the data appears rigid

However, there are three main criticisms of accepting wage rigidity

1. Is the rigidity rational: why not renegotiate?
 - Theories that rationalize endogenous wage rigidity

 - Easily implementable but modest quantitative impact

3. Conceptually, wages might not be allocative
 - What is the allocative price of labor
What is the allocative price of labor?

- Observed wage might not equal the price of labor

- Employment relationships are often long-term
 - "With implicit contracts, payments are not perfectly associated over time with labor services supplied." (Kydland Prescott '82)
 - "One should look at the implicit asset prices of labor contracts recently negotiated" (Hall 1980).

- Need a measure of the price of labor that acknowledges labor as a long-term asset.
User cost of labor

- For any long-term production asset, the user cost is
User cost of labor

- For any long-term production asset, the user cost is
 - price at t - (expected discounted) price at $t+1$
User cost of labor

- For any long-term production asset, the user cost is
 - price at t - (expected discounted) price at $t + 1$

- Firm’s decision: hire in t versus postpone hiring until $t + 1$.
User cost of labor

- For any long-term production asset, the user cost is
 - price at t - (expected discounted) price at $t+1$

- Firm’s decision: hire in t versus postpone hiring until $t+1$.
 - Wage costs of adding a worker in t

$$PDV_t^W = w_{t,t} + E_t \sum_{\tau=t+1}^{\infty} (\beta(1-\delta))^{\tau-t} w_{t,\tau}$$
User cost of labor

- For any long-term production asset, the user cost is
 - price at t - (expected discounted) price at $t+1$

- Firm’s decision: hire in t versus postpone hiring until $t+1$.
 - Wage costs of adding a worker in t

\[
PDV_t^W = w_{t,t} + E_t \sum_{\tau=t+1}^{\infty} (\beta(1-\delta))^{\tau-t} w_{t,\tau}
\]

- User cost of labor in t:

\[
UCL_t \equiv PDV_t^W - \beta(1-\delta) E_t PDV_{t+1}^W
\]

\[
= w_{t,t} + \sum_{\tau=t+1}^{\infty} (\beta(1-\delta))^{\tau-t} E_t (w_{t,\tau} - w_{t+1,\tau})
\]
User cost of labor versus wage

- User cost of labor:

\[UCL_t = w_{t,t} + E_t \sum_{\tau=t+1}^{\infty} (\beta (1 - \delta))^{\tau-t} (w_{t,\tau} - w_{t+1,\tau}). \]

- If \(w_{t,\tau} = w_{t+1,\tau} \), then \(UCL_t = \text{new hire wage} = \text{av wage} \).

- But \(w_{t,\tau} \neq w_{t+1,\tau} \)
 - Wages depend on history (Beaudry DiNardo 1994)
 - Wages of new hires more cyclical than of stayers (Bils 1985)

- The distinction between the user cost and wage is important if they respond differently to shocks!
Cyclicality of the user cost and wages
Real wage measures, unconditional correlations

<table>
<thead>
<tr>
<th></th>
<th>Coefficient on $u_t \cdot 100%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>User cost of labor</td>
<td>-5.24 (0.81)</td>
</tr>
<tr>
<td>Wages, new hires</td>
<td>-3.10 (0.72)</td>
</tr>
<tr>
<td>Wages, all workers</td>
<td>-1.51 (0.71)</td>
</tr>
</tbody>
</table>

Note: The bootstrapped standard errors are in parentheses (1000 replications)
Cyclicality of the user cost and wages

- Pro-cyclical wages of new hires and rigid wages within employment relationships generate highly pro-cyclical user cost.
Cyclicality of the user cost, time-varying separation rate

Real wage measures, unconditional correlations

<table>
<thead>
<tr>
<th>User cost of labor, $\delta_t = const$</th>
<th>-5.24 (0.81)</th>
</tr>
</thead>
<tbody>
<tr>
<td>User cost of labor, δ_t</td>
<td>-5.19 (0.76)</td>
</tr>
<tr>
<td>User cost of labor, $\delta_{t_0,t}$</td>
<td>-4.91 (0.59)</td>
</tr>
</tbody>
</table>

Note: The bootstrapped standard errors are in parentheses (1000 replications)
Impulse responses to an identified monetary contraction

Real wage measures

Fig. 3 Impulse responses to an identified monetary contraction: Real wage measures.
Allocative role of the user cost

- Example: the textbook search and matching model
Allocative role of the user cost

- Example: the textbook search and matching model
- Vacancy creation/free entry for firms

\[J_{t,t} = \frac{c}{q(\theta_t)} \]

where \(J_{t,t} \equiv \sum_{\tau=t}^{\infty} (\beta(1-\delta))^{\tau-t} E_t (z_{\tau} - w_{t,\tau}) \)
Allocative role of the user cost

- Example: the textbook search and matching model
- Vacancy creation/free entry for firms

\[J_{t,t} = \frac{c}{q(\theta_t)} \]

where \(J_{t,t} \equiv \sum_{\tau=t}^{\infty} (\beta(1 - \delta))^{\tau-t} E_t (z_\tau - w_{t,\tau}) \)

- Consider

\[J_{t,t} - \beta(1 - \delta) E_t J_{t+1,t+1} \]
Allocative role of the user cost

- Example: the textbook search and matching model
- Vacancy creation/free entry for firms

\[J_{t,t} = \frac{c}{q(\theta_t)} \]

where \(J_{t,t} \equiv \sum_{\tau=t}^{\infty} (\beta(1 - \delta))^{\tau-t} E_t (z_\tau - w_{t,\tau}) \)

- Consider

\[J_{t,t} - \beta(1 - \delta) E_t J_{t+1,t+1} \]

- Use free entry

\[J_{t,t} - \beta(1 - \delta) E_t J_{t+1,t+1} = \frac{c}{q(\theta_t)} - \beta(1 - \delta) E_t \frac{c}{q(\theta_{t+1})} \]
Allocative role of the user cost

- Example: the textbook search and matching model
- Vacancy creation/free entry for firms

\[J_{t,t} = \frac{c}{q(\theta_t)} \]

where \(J_{t,t} \equiv \sum_{\tau=t}^{\infty} \beta(1-\delta)^{\tau-t} E_t (z_\tau - w_{t,\tau}) \)

- Consider

\[J_{t,t} - \beta(1-\delta)E_t J_{t+1,t+1} \]

- Use free entry

\[J_{t,t} - \beta(1-\delta)E_t J_{t+1,t+1} = \frac{c}{q(\theta_t)} - \beta(1-\delta)E_t \frac{c}{q(\theta_{t+1})} \]

- Substitute for \(J_{t,t}, J_{t+1,t+1} \)
Allocative role of the user cost

- Free entry

\[z_t = w_{t,t} + \sum_{\tau=t+1}^{\infty} (\beta(1-\delta))^{\tau-t} E_t (w_{t,\tau} - w_{t+1,\tau}) + \frac{c}{q(\theta_t)} - \beta(1-\delta) E_t \frac{c}{q(\theta_{t'})} \]

- Free entry ties \(UCL \) and \(\theta \), but no direct restriction on \(w \).

- Distinct paths of wages can be consistent with the same path of \(UCL \), and thus - \(\theta \).
Allocative role of the user cost

\[z_t = w_{t,t} + \sum_{\tau=t+1}^{\infty} (\beta(1-\delta))^{\tau-t} E_t (w_{t,\tau} - w_{t+1,\tau}) + \frac{c}{q(\theta_t)} - \beta(1-\delta) E_t \frac{c}{q(\theta_{t'})} \]

- Typical wage-setting
Allocative role of the user cost

\[z_t = w_{t,t} + \sum_{\tau=t+1}^{\infty} (\beta(1 - \delta))^{\tau-t} E_t (w_{t,\tau} - w_{t+1,\tau}) + \frac{c}{q(\theta_t)} - \beta(1 - \delta) E_t \frac{c}{q(\theta_{t'})} \]

\[UCL_t \]

- Typical wage-setting
 - Equal wages in all matches in \(t \) (Nash bargaining each period)
Allocative role of the user cost

\[z_t = w_{t,t} + \sum_{\tau=t+1}^{\infty} (\beta(1-\delta))^{\tau-t} E_t (w_{t,\tau} - w_{t+1,\tau}) + \frac{c}{q(\theta_t)} - \beta(1-\delta)E_t \frac{c}{q(\theta_{t'})} \]

\[UCL_t \]

- Typical wage-setting
 - Equal wages in all matches in \(t \) (Nash bargaining each period)
 - In such a model, \(UCL_t = w_{t,t} = w_t \)
Allocative role of the user cost

\[z_t = w_{t,t} + \sum_{\tau=t+1}^{\infty} (\beta(1 - \delta))^{\tau-t} E_t (w_{t,\tau} - w_{t+1,\tau}) + \frac{c}{q(\theta_t)} - \beta(1 - \delta) E_t \frac{c}{q(\theta_t')} \]

\[UCL_t \]

- Typical wage-setting
 - Equal wages in all matches in t (Nash bargaining each period)
 - In such a model, $UCL_t = w_{t,t} = w_t$
- But in the data they are not the same
Allocative role of the user cost

\[z_t = w_{t,t} + \sum_{\tau=t+1}^{\infty} (\beta(1-\delta))^{\tau-t} E_t (w_{t,\tau} - w_{t+1,\tau}) + \frac{c}{q(\theta_t)} - \beta(1-\delta) E_t \frac{c}{q(\theta_{t'})} \]

\[UCL_t \]

- Typical wage-setting
 - Equal wages in all matches in \(t \) (Nash bargaining each period)
 - In such a model, \(UCL_t = w_{t,t} = w_t \)
- But in the data they are not the same

![Graphs showing impulse responses to a monetary contraction](image)

Fig. 3 Impulse responses to an identified monetary contraction: Real wage measures.
Allocative role of the user cost

\[z_t = w_{t,t} + \sum_{\tau=t+1}^{\infty} (\beta(1-\delta))^{\tau-t} E_t (w_{t,\tau} - w_{t+1,\tau}) + \frac{c}{q(\theta_t)} - \beta(1-\delta) E_t \frac{c}{q(\theta_{t'})} \]

- Typical wage-setting
 - Equal wages in all matches in \(t \) (Nash bargaining each period)
 - In such a model, \(UCL_t = w_{t,t} = w_t \)

- But in the data they are not the same

![Graphs showing average hourly earnings, new hire wage, and user cost of labor](image)

Fig. 3 Impulse responses to an identified monetary contraction: Real wage measures.

- The empirical counterpart is the user cost.
Wage dynamics in baseline new Keynesian models

User cost = new hire wage = average wage

- In the baseline model, $UCL_t = w_{t,t} = w_t$
- Comparing model’s UCL_t to UCL_t in the data:
 - only sticky prices have a chance
Implicit contracts in sticky price models

Different wage flexibility within contract

Three wage settings differ by wage flexibility within a contract:

- \(s = 1 \) is the case of \(UCL_t = w_{t,t} = w_t \)
- \(s = 0.21 \) (Barattieri, Basu, Gottschalk 2014) matches well new hire wage and average wage
- But the flexibility or stickiness of wages within contract has no impact on quantities as long as the user costs are the same.
Where from here?

- Key friction in the monetary business cycles models in the labor market or the product market?
 - Basu and House employ direct measurement of allocative wage and show that price rigidities are the most promising.

- Why are prices sticky or inflexible?
 - customer markets (Phelps and Winter 1970)
 - collusive industry theory (Green and Porter 1984)
 - aversion to uncertainty (Arellano, Bai, Kehoe 2012)
 - financial constraints and customer base (Gilchrist, Schoenle, Sim, Zakrajsek 2016)
 - menu costs and non-collusive oligopoly (Mongey 2017)