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Technical Appendix

A The economy

A.1 Intertemporal allocation of expenditure

A.1.1 Households: Preferences

Households are ex ante identical, but have heterogeneous preferences at any point in

time, owing to independent fluctuations in their preferences. Each aims to maximize an

expected discounted utility

𝐸0

∞∑︁
𝑡=0

𝛽𝑡
[︂
𝑢𝜏𝑡(𝑖) (𝑐𝑡 (𝑖) ; 𝜉𝑡)−

∫︁ 1

0

𝑣𝜏𝑡(𝑖) (ℎ𝑡 (𝑗, 𝑖) ; 𝜉𝑡) 𝑑𝑗

]︂
, (1.1)

where 𝜏𝑡 (𝑖) ∈ {𝑏, 𝑠} indicates household 𝑖’s type in period 𝑡, with the utility from consump-

tion given by

𝑢𝜏 (𝑐𝑡 (𝑖) ; 𝜉𝑡) ≡
[𝑐𝑡 (𝑖)]

1−𝜎−1
𝜏
(︀
𝐶𝜏
𝑡

)︀𝜎−1
𝜏

1− 𝜎−1
𝜏

, (1.2)

and the disutility of labor given by

𝑣𝜏 (ℎ𝑡 (𝑗, 𝑖) ; 𝜉𝑡) ≡
𝜓𝜏

1 + 𝜈
[ℎ𝑡 (𝑗, 𝑖)]

1+𝜈 𝐻̄−𝜈
𝑡 , (1.3)

for 𝜏 = 𝑏, 𝑠.

Assumptions:

∙ There is a continuum of differentiated goods; 𝑐𝑡 (𝑖) is a Dixit-Stiglitz aggegator of the

household’s purchases of differentiated goods indexed by 𝑗,

𝑐𝑡(𝑖) ≡
[︂∫︁ 1

0

𝑐𝑡(𝑗, 𝑖)
𝜃−1
𝜃 𝑑𝑖

]︂ 𝜃
𝜃−1

(1.4)

for some constant elasticity of substitution 𝜃 > 1.

∙ Each household supplies a continuum of different types of specialized labor, indexed

by 𝑗, that are hired by firms in different sectors of the economy.

∙ Stochastic evolution of a household’s type:

– 𝜏𝑡 (𝑖) evolves as an independent two-state Markov chain for each 𝑖.

– Each period, with probability 0 ≤ 𝛿 < 1 the household’s type remains the same,

while with probability 1− 𝛿 a new type is drawn.
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– When a new type is drawn, it is 𝑏 with probability 𝜋𝑏 and 𝑠 with probability 𝜋𝑠,

where 0 < 𝜋𝑏, 𝜋𝑠 < 1, 𝜋𝑏 + 𝜋𝑠 = 1.

– If and only if household 𝑖 draws a new type in period 𝑡, it has access to the

insurance agency at the beginning of period 𝑡 (after learning that it will draw a

new type, but before learning what its new type is).

Note that each household’s consumption and labor supply (as well as its saving or bor-

rowing) in any period 𝑡 will in general depend both on the economy’s aggregate state

𝑠𝑡 ≡ (. . . , 𝑠𝑡−1, 𝑠𝑡), where 𝑠𝑡 is the vector of (aggregate) disturbances (such as the prefer-

ence states 𝜉𝑡) in period 𝑡, and on the individual household’s type history 𝜏 𝑡(𝑖). We shall

represent 𝜏 𝑡(𝑖) by a sequence of elements drawn from the set {0, 𝑏, 𝑠}; the element 0 is en-

tered for any period in which the household’s type does not change, while 𝑏 (or 𝑠) is entered

for any period in which the household draws a new type that is 𝑏 (or 𝑠). (The household’s

current type, 𝜏𝑡(𝑖), is then indicated by the most recent element of 𝜏 𝑡(𝑖) that is not equal to

0.) We use this notation for the type history so that it also indicates the periods in which the

household has access to the insurance agency. In expressions such as (1.1), 𝑐𝑡(𝑖) should be

interpreted as referring to a state-contingent consumption level 𝑐(𝑠𝑡; 𝜏 𝑡(𝑖)), and similarly for

expressions such as ℎ𝑡(𝑗, 𝑖). When there is no risk of ambiguity, we shall sometimes omit the

household index 𝑖, and write for example 𝑐(𝑠𝑡; 𝜏 𝑡). In fact, since we assume that households

are ex ante identical, in equilibrium 𝑐(𝑠𝑡; 𝜏 𝑡(𝑖)) is the same for all households 𝑖 with the same

type history 𝜏 𝑡.

Finally, it is worth noting that the variable 𝑐𝑡(𝑖) has two possible interpretations (cor-

responding to the two possible interpretations of the resources used by the intermediary

sector, discussed below in section A.5.2). In the case that the intermediaries purchase pro-

duced goods (in addition to the purchases of households and government), 𝑐𝑡(𝑖) is simply the

consumption of household 𝑖 (of the composite good). Under the alternative interpretation

(discussed further below), under which intermediation has a utility cost rather than using

produced goods, 𝑐𝑡(𝑖) should instead be interpreted as indicating the household’s purchases

net of its work for the intermediary; but utility is still a function of 𝑐𝑡(𝑖) in this case, rather

than of the household’s purchases of goods. Subject to this stipulation about the interpre-

tation of the variables, (1.1) applies in either case, and the same is true of the expressions

given below for the household’s budget constraint, the optimal choice of the variable 𝑐𝑡(𝑖),

and so on.
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A.1.2 Households: Budget constraints

The nominal assets of household 𝑖 at the beginning of any period 𝑡, after insurance

payments (if any) and distributions by intermediaries, are given by

𝐴𝑡 (𝑖) = [𝐵𝑡−1 (𝑖)]
+ (︀1 + 𝑖𝑑𝑡−1

)︀
+ [𝐵𝑡−1 (𝑖)]

− (︀1 + 𝑖𝑏𝑡−1

)︀
+ 𝑇𝑡 (𝑖) , (1.5)

where 𝐵𝑡−1(𝑖) denotes the household’s nominal assets at the end of period 𝑡− 1,

[𝐵𝑡−1 (𝑖)]
+ ≡ max [𝐵𝑡−1 (𝑖) , 0] ,

[𝐵𝑡−1 (𝑖)]
− ≡ min [𝐵𝑡−1 (𝑖) , 0] ,

𝑖𝑑𝑡−1 is the riskless one-period nominal interest rate on deposits, 𝑖𝑏𝑡−1 is the nominal interest

rate on riskless one-period loans, and 𝑇𝑡 (𝑖) denotes the household’s nominal transfers from

the insurance agency (if 𝑖 has access in period 𝑡).

Note that in writing (1.5) we assume that 𝑖𝑏𝑡 ≥ 𝑖𝑑𝑡 each period. Were this not to be the

case, households would face an arbitrage opportunity, and choose both to borrow and deposit

unbounded amounts; hence there can obviously be no equilibrium of that kind. Given the

inequality, it is optimal for a household to deposit an amount equal to its positive asset level

(if end-of-period assets are positive) and to borrow an amount equal to (the absolute value

of) its negative asset level (if end-of-period assets are negative), so that beginning-of-period

assets the following period are given by (1.5).

The end-of-period net asset position of household 𝑖 is given by

𝐵𝑡 (𝑖) = 𝐴𝑡 (𝑖) +

∫︁
𝑊𝑡 (𝑗)ℎ𝑡 (𝑗, 𝑖) 𝑑𝑗 +𝐷𝑓

𝑡 +𝐷𝑖𝑛𝑡
𝑡 + 𝑇 𝑔𝑡 − 𝑃𝑡𝑐𝑡 (𝑖) , (1.6)

where 𝑊𝑡 denotes the nominal wage for labor of type 𝑗, 𝐷𝑓
𝑡 denotes the nominal distribu-

tion by goods-producing firms (integrating over all of the sectors 𝑗, and the same for each

household 𝑖, as there is no trading in shares of the firms), 𝐷𝑖𝑛𝑡
𝑡 similarly denotes the nom-

inal distribution by intermediaries (also the same for each household), and 𝑇 𝑔𝑡 denotes net

nominal (lump-sum) government transfers (also the same for each 𝑖).

As noted above, in expressions such as (1.5) and (1.6), 𝐵𝑡(𝑖) actually means 𝐵(𝑠𝑡; 𝜏 𝑡(𝑖)).

Aggregate variables such as 𝐷𝑓
𝑡 instead mean 𝐷𝑓 (𝑠𝑡), as the values are the same for a given

household regardless of its type history.

In addition to influencing the evolution of its net asset position through adjustment of its

consumption expenditure and labor supply each period, the household also chooses its state-
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contingent transfers from the insurance agency, in an ex ante insurance market at some initial

date 𝑡0.
1 The state-contingent transfers {𝑇 (𝑠𝑡; 𝜏 𝑡(𝑖))} that the household arranges through

the insurance agency must satisfy the following constraints:

∙ 𝑇 (𝑠𝑡; (𝜏 𝑡−1, 0)) = 0; i.e., there is no access to insurance transfers except in periods in

which the household draws a new type.

∙ 𝑇 (𝑠𝑡; (𝜏 𝑡−1, 𝑏)) = 𝑇 (𝑠𝑡; (𝜏 𝑡−1, 𝑠)); i.e., the transfer cannot be contingent upon the house-

hold’s new type. In fact, it is useful to introduce the notation 𝜎(𝜏 𝑡−1) for the type

history after it is learned that a household (that had type history 𝜏 𝑡−1 through period

𝑡 − 1) will have access to the insurance agency in period 𝑡, but before its new type is

drawn. We can then write 𝑇 †(𝑠𝑡; 𝜏 𝑡−1) ≡ 𝑇 (𝑠𝑡;𝜎(𝜏 𝑡−1)) to indicate the transfer received

in the state (𝑠𝑡;𝜎(𝜏 𝑡−1)), regardless of what the new type 𝜏𝑡(𝑖) turns out to be.

∙ The transfers must satisfy an intertemporal budget constraint

∞∑︁
𝑡=𝑡0

∑︁
𝑠𝑡

∑︁
𝜏 𝑡−1

𝜋(𝑠𝑡)𝜋(𝜏 𝑡−1)𝑄(𝑠𝑡)𝑇 †(𝑠𝑡; 𝜏 𝑡−1) = 0, (1.7)

where 𝜋(𝑠𝑡) is the ex ante probability of reaching the aggregate state 𝑠𝑡 in period 𝑡 and

𝜋(𝜏 𝑡−1) is the ex ante probability of reaching the type history 𝜏 𝑡−1 in period 𝑡 − 1,2

and 𝑄(𝑠𝑡) is a stochastic discount factor indicating the relative prices in the ex ante

market of transfers to different possible future states.

The relative prices of transfers to different states satisfy 𝑄(𝑠𝑡) > 0 in all states, and

the value depends only on the aggregate state, and not the type history of the household

receiving the payment. These relative prices are determined in a competitive market, which

clears if and only if ∑︁
𝜏 𝑡−1

𝜋(𝜏 𝑡−1)

∫︁
𝑇 †(𝑠𝑡; 𝜏 𝑡−1)(𝑖)𝑑𝑖 = 0 (1.8)

in each aggregate state 𝑠𝑡, so that the net transfer from the insurance agency to households is

zero. (Here we use the fact that the ex ante probability of a type history 𝜏 𝑡−1 in period 𝑡− 1

1We suppose that this initial date may have occurred prior to the date 0 from which utility is calculated
in (1.1). The reason is that while we assume that all households had identical circumstances at the initial
date 𝑡0, we do not necessarily assume that they have identical financial claims at the beginning of period 0;
households may have different financial claims as a consequence of different type histories prior to date 0.
Similarly, when we say that all households with the same “type history” have the same wealth, we do not
necessarily mean only their type history since date 0.

2The ex ante probability of reaching the type history 𝜎(𝜏 𝑡−1) is (1 − 𝛿)𝜋(𝜏 𝑡−1), but the form of (1.7) is
unaffected if we divide out the constant factor (1− 𝛿) from each term.
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for any individual household is also the fraction of households with access to the insurance

agency in period 𝑡 that have type history 𝜎(𝜏 𝑡−1).)

The household’s asset accumulation plan must also satisfy an asymptotic constraint,

that implies that any borrowing must eventually be repaid (so that “Ponzi schemes” are not

possible). Looking forward from any date 𝑡 at which household 𝑖 has access to the insurance

agency, we require that

lim inf
𝑇→∞

𝐸†
𝑡𝑄𝑇 (𝑇 )𝐴

†
𝑇 (𝑇 )

(𝑖) ≥ 0, (1.9)

using the notation 𝐸†
𝑡 [·] for the expectation conditional on the state (𝑠𝑡;𝜎(𝜏 𝑡−1)), and letting

the random date 𝑇 (𝑇 ) be the first date (equal to 𝑇 or later) at which the household has access

to the insurance agency, along any type history. It suffices to impose such a constraint looking

forward from the states in which the household has access to the insurance agency, since at

any time the household expects to again have access to the insurance agency with probability

1; and it makes the most sense to state the constraint only for those states, since (owing to

the credit frictions) present values are only unambiguously defined when discounting wealth

in some state (𝑠𝑇 ;𝜎(𝜏𝑇−1)) back to some prior state (𝑠𝑡;𝜎(𝜏 𝑡−1)). Constraints (1.5)–(1.9)

then completely describe the ways in which the household can shift purchasing power across

dates and states of the world.

It is sometimes useful to measure the household’s total financial wealth, taking account

of the present value of expected future transfers from the insurance agency in addition to the

household’s net claims on the intermediary sector.3 Thus in any state (𝑠𝑡;𝜎(𝜏 𝑡−1) in which

a household has access to the insurance agency, we can define

𝐴†
𝑡(𝑖) ≡ 𝐴†

𝑡(𝑖) +𝑄−1
𝑡

∞∑︁
𝑠=𝑡+1

𝐸†
𝑡 [𝑄𝑠𝑇𝑠], (1.10)

where the infinite sum necessarily has a finite value owing to (1.7). The borrowing constraint

(1.9) implies that a similar asymptotic condition must be satisfied by the evolution of {𝐴†
𝑡(𝑖)},

and vice versa, so that it does not matter in terms of which measure of financial wealth we

express the borrowing constraint.

3Note that there are no claims to future payments by or to intermediaries, since we assume that all
contracts with intermediaries are one-period contracts.
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A.1.3 Households: Euler equations

The first-order conditions for optimal intertemporal allocation of household consumption

expenditure imply that

𝜆𝑡 (𝑖) = 𝑢𝜏𝑡(𝑖)𝑐 (𝑐𝑡 (𝑖) ; 𝜉𝑡) , (1.11)

where 𝜆𝑡(𝑖) is household 𝑖’s marginal utility of additional real income (in units of the com-

posite good) in period 𝑡. (The form of period utility function assumed implies that there

is always an interior solution for the level of consumption in each state of the world, so

that the marginal utility of income and the marginal utility of consumption are necessarily

equal.) Our observations above about 𝑐𝑡(𝑖) then apply as well to 𝜆𝑡(𝑖): it is a function of

(𝑠𝑡; 𝜏𝑡(𝑖)), and since all households are ex ante identical and choose identical consumption

plans contingent on their type histories, we can simply write 𝜆𝑡(𝑖) = 𝜆(𝑠𝑡; 𝜏𝑡(𝑖)), where the

function 𝜆(𝑠𝑡; 𝜏 𝑡) is independent of 𝑖.

An optimal ex ante choice of the state-contingent insurance transfers will furthermore

require that between any two states (defined to include the household’s type history), the

first-order condition
𝜆†(𝑠𝑇 ; 𝜏𝑇−1)

𝜆†(𝑠𝑡; 𝜏 𝑡−1)
= 𝛽𝑡−𝑇

𝑄(𝑠𝑇 )

𝑄(𝑠𝑡)

𝑃 (𝑠𝑇 )

𝑃 (𝑠𝑡)
(1.12)

must be satisfied, where

𝜆†(𝑠𝑡; 𝜏 𝑡−1) ≡ 𝜋𝑏𝜆(𝑠
𝑡; (𝜏 𝑡−1, 𝑏)) + 𝜋𝑠𝜆(𝑠

𝑡; (𝜏 𝑡−1, 𝑠))

is the marginal utility of real income in a state (𝑠𝑡;𝜎(𝜏 𝑡−1)) in which the household has

access to the insurance agency, and 𝑃 (𝑠𝑡) is the state-contingent value of 𝑃𝑡, the nominal

price of the composite good. Note that the relative prices on the right-hand side of (1.12)

are independent of the type histories; hence it follows that 𝜆†(𝑠𝑡; 𝜏 𝑡−1) must in fact be

independent of the type history 𝜏 𝑡−1. (This is a consequence of risk-sharing among the ex

ante identical households through the insurance agency.) Thus we can use the simpler

notation 𝜆†(𝑠𝑡)4 for the marginal utility of real income when the aggregate state is 𝑠𝑡 and a

household has access to the insurance agency (but has not yet drawn its new type). Note

that the marginal utilities of all households with access to the insurance agency in state 𝑠𝑡

must be the same, until they learn their new types.

Finally, optimal choice of the quantity to deposit with or borrow from intermediaries in

4In the text, this variable is called simply 𝜆𝑡, which is possible without ambiguity as the variable called
𝜆(𝑠𝑡; 𝜏 𝑡) here is never referred to without a type index superscript.
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any state (𝑠𝑡; 𝜏 𝑡) requires that

𝜆(𝑠𝑡; 𝜏 𝑡) ≥ 𝛽𝐸𝑡

[︂
1 + 𝑖𝑑𝑡
Π𝑡+1

{︀
𝛿𝜆(𝑠𝑡+1; (𝜏 𝑡, 0)) + (1− 𝛿)𝜆†(𝑠𝑡+1)

}︀]︂
, (1.13)

𝜆(𝑠𝑡; 𝜏 𝑡) ≤ 𝛽𝐸𝑡

[︂
1 + 𝑖𝑏𝑡
Π𝑡+1

{︀
𝛿𝜆(𝑠𝑡+1; (𝜏 𝑡, 0)) + (1− 𝛿)𝜆†(𝑠𝑡+1)

}︀]︂
, (1.14)

where Π𝑡 ≡ 𝑃𝑡/𝑃𝑡−1 is the gross rate of inflation. Here condition (1.13) follows from the

possibility of (non-negative) saving at the riskless rate 𝑖𝑑𝑡 and (1.14) follows from the possi-

bility of (non-negative) borrowing at the riskless rate 𝑖𝑏𝑡 . Moreover, (1.13) must hold with

equality in any state in which 𝐵𝑡(𝑖) > 0, while (1.14) must hold with equality in any state

in which 𝐵𝑡(𝑖) < 0. Hence one of three situations must obtain in any state: either 𝐵𝑡(𝑖) > 0

and 𝜆𝑡(𝑖) is equal to the right-hand side of (1.13); 𝐵𝑡 = 0 and 𝜆𝑡(𝑖) is bounded between the

right-hand side of (1.13) and the right-hand side of (1.14); or 𝐵𝑡(𝑖) < 0 and 𝜆𝑡(𝑖) is equal

tot he right-hand side of (1.14).

The complementary slackness relations between the sign of 𝐵𝑡(𝑖) and the signs of the

Euler inequalities imply that in any period, the household’s saving/borrowing decision must

satisfy

𝜆𝑡(𝑖)
𝐵𝑡(𝑖)

𝑃𝑡
= 𝛽𝐸𝑡

[︂
𝜆𝑡+1(𝑖)

𝐴𝑡+1 − 𝑇𝑡+1(𝑖)

𝑃𝑡+1

]︂
, (1.15)

regardless of whether it saves or borrows. This allows us to write present-value budget

relations for the household, in which the multipliers {𝜆𝑡(𝑖)} play the role of a household-

specific stochastic discount factor allowing present values of random income streams to be

defined. (See Proposition 2 below.)

A.1.4 Households: Asymptotic wealth accumulation

In addition to the first-order conditions stated in the previous subsection, optimality of

the household’s intertemporal expenditure plan requires that a transversality condition be

satisfied. This is most simply established if we restrict attention to equilibria that satisfy

certain bounds. Looking forward from any date 𝑡, let

𝑣𝑡(𝑖) ≡ 𝐸𝑡

∞∑︁
𝑇=𝑡

𝛽𝑇−𝑡
[︂
𝑢𝜏𝑇 (𝑖) (𝑐𝑇 (𝑖) ; 𝜉𝑇 )−

∫︁ 1

0

𝑣𝜏𝑇 (𝑖) (ℎ𝑇 (𝑗, 𝑖) ; 𝜉𝑇 ) 𝑑𝑗

]︂
(1.16)

be household 𝑖’s continuation utility in a given equilibrium. In addition, let 𝑣𝜏𝑡 instead be the

maximum attainable continuation utility for a household of type 𝜏𝑡(𝑖) = 𝜏 under autarchy,
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i.e., if assets brought into the period are 𝐴𝑡(𝑖) = 0, and the household has no access to either

the intermediaries or the insurance agency from date 𝑡 onward. (Note that for either value

of 𝜏, 𝑣𝜏𝑡 depends only on the aggregate state 𝑠𝑡.) We shall restrict attention to equilibria that

satisfy the following bound.

Assumption 1 In equilibrium, there exists 𝐾 <∞ such that for each household 𝑖,

𝑣𝑡(𝑖) ≤ 𝑣
𝜏𝑡(𝑖)
𝑡 +𝐾 (1.17)

at all times.

We do not bother to establish general conditions under which this assumption can be shown

to hold, since in the paper we only characterize equilibria which are small perturbations of a

deterministic steady state (stationary equilibria in which aggregate shocks are small), and in

the case of those equilibria Assumption 1 is obviously satisfied, as both 𝑣𝑡 and 𝑣
𝜏
𝑡 fluctuate

over bounded intervals.

We can then establish necessity of the following transversality condition.

Proposition 1 In equilibrium,

lim
𝑇→∞

𝐸†
𝑡𝑄𝑇 (𝑇 )𝐴

†
𝑇 (𝑇 )

(𝑖) = 0, (1.18)

looking forward from any date 𝑡 at which household 𝑖 has access to the insurance agency.

Proof. We prove the result by contradiction. Suppose instead that

lim sup
𝑇→∞

𝐸†
𝑡𝑄𝑇 (𝑇 )𝐴

†
𝑇 (𝑇 )

> 0, (1.19)

looking forward from some state (𝑠𝑡;𝜎(𝜏 𝑡−1)). The intertemporal budget constraint (1.7)

implies that each household’s plan must also satisfy

lim
𝑇→∞

∞∑︁
𝑠=𝑇+1

𝐸†
𝑡 [𝑄𝑠𝑇𝑠] = 0,

so that (1.19) implies that one must also have

lim sup
𝑇→∞

𝐸†
𝑡𝑄𝑇 (𝑇 )𝐴

†
𝑇 (𝑇 )

> 0,

10
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where 𝐴†
𝑇
is defined in (1.10). Then there exists 𝜖 > 0 and a sequence of dates {𝑇𝑛} such

that

𝐸†
𝑡𝑄𝑇 (𝑇𝑛)

𝐴†
𝑇 (𝑇𝑛)

≥ 𝜖𝑃 (𝑠𝑡)𝑄(𝑠𝑡)

for each date 𝑇𝑛.

We show that this cannot be an optimal plan by exhibiting an alternative plan from

date 𝑡 onward that yields higher continuation utility (and requires no change in behavior

prior to date 𝑡, or along histories in which the state (𝑠𝑡;𝜎(𝜏 𝑡−1)) is never reached). For any

𝑇 belonging to the sequence {𝑇𝑛}, consider the following alternative plan: (i) at date 𝑡,

increase the household’s transfer from the insurance agency 𝑇 †(𝑠𝑡; 𝜏 𝑡−1) by the amount

𝛿 ≡ 1

𝑄(𝑠𝑡)
𝐸†
𝑡 [𝑄𝑇 (𝑇 ) max(𝐴†

𝑇 (𝑇 )
, 0)] ≥ 𝜖𝑃 (𝑠𝑡),

but also increase consumption by amount 𝛿/𝑃 (𝑠𝑡), whichever type the household draws in

period 𝑡, while leaving labor supply and end-of-period assets unchanged; (ii) at all dates

𝑡 < 𝑡′ < 𝑇 (𝑇 ), make no change in the household’s plan with regard to consumption, labor

supply, transfers from the insurance agency, or end-of-period assets; (iii) at date 𝑇 (𝑇 ), if

𝐴†(𝑠𝑇 ; 𝜏𝑇−1) ≤ 0, make no change in the household’s plan at dates 𝑡′ ≥ 𝑇 (𝑇 ) either; (iv)

if instead 𝐴†(𝑠𝑇 ; 𝜏𝑇−1) > 0, make the following changes in the household’s plan for dates

𝑡′ ≥ 𝑇 (𝑇 ) : (a) reduce the household’s transfer from the insurance agency 𝑇 †(𝑠𝑇 ; 𝜏𝑇−1) by the

amount of 𝐴†(𝑠𝑇 ; 𝜏𝑇−1), so that beginning-of-period assets are instead equal to zero; (b) at

each date 𝑡′ > 𝑇 (𝑇 ) at which the household again has access to the insurance agency, set the

planned transfer from the insurance agency to zero; and (c) at each date 𝑡′ ≥ 𝑇 (𝑇 ), change

the household’s consumption, labor supply, and saving/borrowing decisions to those corre-

sponding to the optimal autarchy plan at that date (which depends only on the aggregate

state 𝑠𝑡
′
at that date and the household’s current type 𝜏𝑡′). This is a feasible plan, because

the present value of the adjustments to the transfers from the insurance agency is zero (so

that (1.7) continues to be satisfied); consumption expenditure in period 𝑡 is increased by

the amount of the increased transfer from the insurance agency, so that no other changes in

the household’s plan need to be made in order to satisfy the flow budget constraint (1.6);

and in the event that 𝐴†
𝑇 (𝑇 )

> 0 under the original plan, one switches to a plan under which

𝐴𝑡′(𝑖) = 0 and 𝐵𝑡′(𝑖) = 0 for all 𝑡′ ≥ 𝑇 (𝑇 ), so that the consumption and labor supply that are

optimal under autarchy are consistent with the flow budget constraint (1.6) in each period.

Let us consider the effect on the household’s continuation utility

𝑣†(𝑠𝑡; 𝜏 𝑡−1) ≡ 𝐸†
𝑡 [𝑣𝑡(𝑠

𝑡; 𝜏 𝑡)]

11
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of this change in the household’s plan. For each state (𝑠𝑇 (𝑇 ); 𝜏𝑇 (𝑇 )−1) at which𝐴†(𝑠𝑇 (𝑇 ); 𝜏𝑇 (𝑇 )−1) >

0 under the original plan, the continuation utility 𝑣𝑇 (𝑇 )(𝑖) is replaced by 𝑣𝜏
𝑇 (𝑇 )

, for either of

the possible draws 𝜏 of the household’s new type in period 𝑇 (𝑇 ). It then follows from (1.17)

that the continuation utility is reduced by at most 𝐾 in any such state. For each state

(𝑠𝑇 (𝑇 ); 𝜏𝑇 (𝑇 )−1) at which 𝐴†(𝑠𝑇 (𝑇 ); 𝜏𝑇 (𝑇 )−1) ≤ 0 under the original plan, there is instead no

change in continuation utility. Hence the total reduction in 𝑣𝑑𝑎𝑔(𝑠𝑡; 𝜏 𝑡−1) due to the changes

in the plan at dates 𝑡′ ≥ 𝑇 is at most equal to 𝛽𝑇−𝑡𝐾. At the same time, consumption is

increased in period 𝑡 by an amount 𝛿/𝑃 (𝑠𝑡), that is at least of size 𝜖, regardless of the new

type that is drawn in period 𝑡. This increases 𝑣†(𝑠𝑡; 𝜏 𝑡−1) by an amount that is at least equal

to

𝛿 ≡ 𝐸†
𝑡 [𝑢(𝑐𝑡(𝑖) + 𝜖; 𝜉𝑡)− 𝑢(𝑐𝑡(𝑖); 𝜉𝑡)] > 0.

Hence there is a net increase in 𝑣†(𝑠𝑡; 𝜏 𝑡−1) of at least the magnitude 𝛿 − 𝛽𝑇−𝑡𝐾. Since

there exist dates 𝑇 in the sequence {𝑇𝑛} that are arbitrarily far in the future, it is possible

to choose 𝑇 so that

𝛿 − 𝛽𝑇−𝑡𝐾 > 0,

in which case the alternative plan has a higher continuation utility. (Note that neither 𝛿 nor

𝐾 depends on the value of 𝑇 .) Since the household’s plan is not changed at any dates prior

to 𝑡 or along histories in which the state (𝑠𝑡;𝜎(𝜏 𝑡−1)) is never reached, it follows that (1.1) is

higher as well, and the original plan cannot have been optimal among those plans satisfying

the household’s budget constraints.

We have thus obtained a contradiction to our assumption that in an optimal plan (1.19)

holds. It follows that under any optimal plan, we must instead have

lim sup
𝑇→∞

𝐸†
𝑡𝑄𝑇 (𝑇 )𝐴

†
𝑇 (𝑇 )

≤ 0.

But this together with (1.9) implies that (1.18) must hold.

This result allows us to write a present-value relation between a household’s total financial

wealth and the value of its subsequent expenditure in excess of non-financial income, defined

as

𝑋𝑡(𝑖) ≡ 𝑃𝑡𝑐𝑡(𝑖)−
∫︁
𝑊𝑡 (𝑗)ℎ𝑡 (𝑗, 𝑖) 𝑑𝑗 −𝐷𝑓

𝑡 −𝐷𝑖𝑛𝑡
𝑡 − 𝑇 𝑔𝑡 .

12
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Proposition 2 In equilibrium,

𝜆†𝑡(𝑖)
𝐴†
𝑡(𝑖)

𝑃𝑡
= 𝐸†

𝑡

{︃
∞∑︁
𝑠=𝑡

𝛽𝑠−𝑡𝜆𝑠(𝑖)
𝑋𝑠(𝑖)

𝑃𝑠

}︃
, (1.20)

looking forward from any date 𝑡 at which household 𝑖 has access to the insurance agency.

Proof. Condition (1.6) together with (1.15) implies that

𝜆𝑡(𝑖)
𝐴𝑡(𝑖)

𝑃𝑡
= 𝜆𝑡(𝑖)

𝑋𝑡(𝑖)

𝑃𝑡
+ 𝛽𝐸𝑡

[︂
𝜆𝑡+1(𝑖)

𝐴𝑡+1 − 𝑇𝑡+1(𝑖)

𝑃𝑡+1

]︂
.

Summing this relation between date 𝑡 and the random date 𝑇 (𝑇 ), for any 𝑇 > 𝑡, yields

𝜆𝑡(𝑖)
𝐴𝑡(𝑖)

𝑃𝑡
+ 𝐸𝑡

⎧⎨⎩
𝑇 (𝑇 )∑︁
𝑠=𝑡+1

𝛽𝑠−𝑡𝜆𝑠(𝑖)
𝑇𝑠(𝑖)

𝑃𝑠

⎫⎬⎭ = 𝐸𝑡

⎧⎨⎩
𝑇 (𝑇 )−1∑︁
𝑠=𝑡

𝛽𝑠−𝑡𝜆𝑠(𝑖)
𝑋𝑠(𝑖)

𝑃𝑠

⎫⎬⎭
+𝐸𝑡

{︂
𝛽𝑇 (𝑇 )−𝑡𝜆𝑇 (𝑇 )(𝑖)

𝐴𝑇 (𝑇 )(𝑖)

𝑃𝑡

}︂
.

Letting 𝑡 be a date at which the household has access to the insurance agency, and

taking the conditional expectation of all terms with respect to the state (𝑠𝑡;𝜎(𝜏 𝑡−1)) before

the household’s new period-𝑡 type is learned, we obtain

𝜆†𝑡(𝑖)
𝐴†
𝑡(𝑖)

𝑃𝑡
+ 𝐸†

𝑡

⎧⎨⎩
𝑇 (𝑇 )∑︁
𝑠=𝑡+1

𝛽𝑠−𝑡𝜆†𝑠(𝑖)
𝑇 †
𝑠 (𝑖)

𝑃𝑠

⎫⎬⎭
= 𝐸†

𝑡

⎧⎨⎩
𝑇 (𝑇 )−1∑︁
𝑠=𝑡

𝛽𝑠−𝑡𝜆𝑠(𝑖)
𝑋𝑠(𝑖)

𝑃𝑠

⎫⎬⎭+ 𝐸†
𝑡

{︂
𝛽𝑇 (𝑇 )−𝑡𝜆𝑇 (𝑇 )(𝑖)

𝐴𝑇 (𝑇 )(𝑖)

𝑃𝑡

}︂
. (1.21)

We further observe that using (1.12), the second term on the left-hand side must be equal

to

𝜆†𝑡(𝑖)

𝑄𝑡

𝐸†
𝑡

⎧⎨⎩
𝑇 (𝑇 )∑︁
𝑠=𝑡+1

𝑄𝑠𝑇
†
𝑠 (𝑖)

⎫⎬⎭ . (1.22)

Since 𝑇 (𝑇 ) is a period in which the household has access to the insurance agency (and

draws a new type), and the value of 𝐴𝑇 (𝑇 )(𝑖) is the same regardless of the new type drawn,

13
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the final term on the right-hand side of (1.21) can equivalently be written

𝐸†
𝑡

⎧⎨⎩𝛽𝑇 (𝑇 )−𝑡𝜆†𝑇 (𝑇 )(𝑖)𝐴
†
𝑇 (𝑇 )

(𝑖)

𝑃𝑡

⎫⎬⎭ .

Moreover, (1.12) implies that this must in turn equal

𝜆†𝑡(𝑖)

𝑄𝑡

𝐸†
𝑡 [𝑄𝑇 (𝑇 )𝐴

†
𝑇 (𝑇 )

(𝑖)].

The transversality condition (1.18) implies that this quantity must have a limiting value of

zero as 𝑇 is made unboundedly large. Since (1.7) implies that (1.22) must have a well-defined

limit as 𝑇 is made unboundedly large as well, it follows that the first term on the right-hand

side on (1.21) must also have a well-defined limit as 𝑇 is made large. Hence we can take the

limit of each term in (1.21) as 𝑇 goes to infinity, obtaining (1.20).

This establishes a present-value relation between a household’s total financial wealth (at

the beginning of any period in which it has access to the insurance agency) and its planned

future expenditure in excess of its non-financial income (in which we count both its labor

income and the distributions that it expects to receive from the firms, all of which income

is unrelated to any transactions with either intermediaries or the insurance agency). Note

that the marginal utility of income of the individual household (which generally depends on

its type history, in addition to the aggregate state) must be used as a “personal stochastic

discount factor” in defining the present value of income and expenditure in states in which

the household does not have access to the insurance agency (or any other opportunity to

trade state-contingent claims).

A.1.5 Aggregate behavior of the household sector

Aggregation is simplified if we restrict attention to equilibria in which certain more special

assumptions are satisfied.

Assumption 2 In equilibrium, in each period in which 𝜏𝑡(𝑖) = 𝑠, household 𝑖 chooses

𝐵𝑡(𝑖) > 0, and in each period in which 𝜏𝑡(𝑖) = 𝑏, it chooses 𝐵𝑡(𝑖) < 0. Hence at any point in

time, every type 𝑠 household is a saver and every type 𝑏 household is a borrower.

14



Technical Appendix

Assumption 3 In equilibrium,

1 + 𝑖𝑑𝑡
Π𝑡+1

≤ 1 + 𝑖𝑏𝑡
Π𝑡+1

≤ 1 + 𝑟* (1.23)

at all times, where the bound 𝑟* satisfies

𝛽𝛿(1 + 𝑟*) < 1. (1.24)

Moreover, there exists a bound 𝜆* <∞ such that

0 < 𝜆𝑡(𝑖) < 𝜆* (1.25)

at all times, for every household 𝑖.

Below, we state more primitive assumptions about the model parameterization under which

these assumptions hold as long as the exogenous random disturbances are small enough in

amplitude. (This requires only that we verify that certain inequalities are satisfied in the

deterministic steady state implied by the model.) We also verify that the assumptions are

satisfied by the calibrated parameter values used in the numerical results presented in the

paper.

We are then able to obtain an important aggregation result relied upon in the text.

Proposition 3 In any equilibrium consistent with Assumptions 2 and 3, the marginal utility

of income 𝜆(𝑠𝑡; 𝜏 𝑡) depends only on the household’s type 𝜏𝑡 in the current period, and is

independent of the household’s prior type history.

Proof. In any equilibrium consistent with Assumption 3, we observe that

lim
𝑗→∞

(𝛽𝛿)𝑗𝐸𝑡

[︃{︃
𝑗∏︁

𝑘=1

1 + 𝑖𝑏𝑡+𝑘−1

Π𝑡+𝑘

}︃
𝜆(𝑠𝑡+𝑗; (𝜏 𝑡, 0, . . . , 0))

]︃
= 0, (1.26)

looking forward from any state (𝑠𝑡; 𝜏 𝑡) at date 𝑡, and the same is true a fortiori if we replace

𝑖𝑏𝑡+𝑘−1 by 𝑖𝑑𝑡+𝑘−1 in each term. And in any equilibrium consistent with Assumption 2, we

observe that at any point in time, (1.13) must hold with equality in the case of any type

history 𝜏 𝑡 such that 𝜏𝑡 = 𝑠, while (1.14) must hold with equality in the case of any type

history such that 𝜏𝑡 = 𝑏.
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It then follows that in the case of any type history 𝜏 𝑡 that implies that the household’s

current type is 𝑏,

𝜆(𝑠𝑡; 𝜏 𝑡) = 𝛽(1− 𝛿)𝐸𝑡

[︂
1 + 𝑖𝑏𝑡
Π𝑡+1

𝜆†(𝑠𝑡+1)

]︂
+ 𝛽𝛿𝐸𝑡

[︂
1 + 𝑖𝑏𝑡
Π𝑡+1

𝜆(𝑠𝑡+1; (𝜏 𝑡, 0))

]︂
= 𝛽(1− 𝛿)𝐸𝑡

[︂
1 + 𝑖𝑏𝑡
Π𝑡+1

𝜆†(𝑠𝑡+1)

]︂
+ 𝛽2𝛿(1− 𝛿)𝐸𝑡

[︂
1 + 𝑖𝑏𝑡
Π𝑡+1

1 + 𝑖𝑏𝑡+1

Π𝑡+2

𝜆†(𝑠𝑡+2)

]︂
+(𝛽𝛿)2𝐸𝑡

[︂
1 + 𝑖𝑏𝑡
Π𝑡+1

1 + 𝑖𝑏𝑡+1

Π𝑡+2

𝜆(𝑠𝑡+2; (𝜏 𝑡, 0, 0))

]︂
.

Continuing recursively in this way, using the fact that (1.14) holds with equality to substitute

for the final term of each successive stage, and using (1.26) to guarantee convergence of the

infinite sequence, we find that

𝜆(𝑠𝑡; 𝜏 𝑡) =
∞∑︁
𝑗=0

𝛽(𝛽𝛿)𝑗(1− 𝛿)𝐸𝑡

[︃{︃
𝑗∏︁

𝑘=0

1 + 𝑖𝑏𝑡+𝑘
Π𝑡+𝑘+1

}︃
𝜆†(𝑠𝑡+𝑘+1)

]︃
.

Note that the right-hand side of this expression involves only the forecasted evolution of

the future aggregate states, and so depends only on the aggregate state 𝑠𝑡. It follows that

𝜆(𝑠𝑡; 𝜏 𝑡) is the same for all type histories for which the current type is 𝑏. Similarly, the

fact that (1.13) holds with equality for all type 𝑠 households can be used to establish that

𝜆(𝑠𝑡; 𝜏 𝑡) is the same for all type histories for which the current type is 𝑠.

Thus the marginal utility of income of all type 𝜏 households is the same at any point in

time, for 𝜏 = 𝑏, 𝑠.We can denote the common marginal utility of type 𝑏 households by 𝜆𝑏(𝑠𝑡),

and the common marginal utility of type 𝑠 households by 𝜆𝑠(𝑠𝑡). It then follows from (1.11)

that the level of consumption expenditure by all type 𝜏 households is also the same at any

point in time, and we can introduce the notation 𝑐𝜏 (𝑠𝑡) for the common expenditure level of

type 𝜏 households, for 𝜏 = 𝑏, 𝑠. It similarly follows from the first-order conditions for optimal

household labor supply (discussed in section xx below) that there must be a common level of

labor supply by type 𝜏 households at any point in time, and correspondingly a common level

of wage income. These results are useful in aggregating the expenditure and labor supply

decisions of the households in order to obtain dynamic equations for aggregate expenditure

and aggregate labor supply; in fact, we need only to aggregate the variables describing the

decisions of the two types.
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As stated in the text, the Euler equations for optimal expenditure by either type 𝜏 satisfy5

𝜆𝜏𝑡 = 𝑢𝜏𝑐 (𝑐
𝜏
𝑡 ; 𝜉𝑡) , (1.27)

𝜆𝜏𝑡 = 𝛽𝐸𝑡

[︂
1 + 𝑖𝜏𝑡
Π𝑡+1

{︀
𝛿𝜆𝜏 (𝑠𝑡+1) + (1− 𝛿)𝜆†(𝑠𝑡+1)

}︀]︂
(1.28)

at all times, where in the case 𝜏 = 𝑠 the notation 𝑖𝜏𝑡 is understood to mean the deposit rate

𝑖𝑑𝑡 , and where in each period

𝜆†(𝑠𝑡) = 𝜋𝑏𝜆
𝑏(𝑠𝑡) + 𝜋𝑠𝜆

𝑠(𝑠𝑡).

(Here, as in the text, we use the shorthand 𝜆𝜏𝑡 for 𝜆𝜏 (𝑠𝑡) and 𝜆†𝑡 for 𝜆
†(𝑠𝑡).6)

The result that the equilibrium expenditure of a household of type 𝜏 at any time is in-

dependent of the household’s prior type history similarly implies that after any insurance

transfer, a household’s post-transfer assets 𝐴†(𝑠𝑡; 𝜏 𝑡−1) must also be independent of its prior

type history 𝜏 𝑡−1. Since both 𝜆𝑡(𝑖) and 𝑋𝑡(𝑖) have been shown not to depend on a house-

hold’s type history prior to period 𝑡, it follows from (1.20) that 𝐴†
𝑡(𝑖) will be independent of

household 𝑖’s type history. That is, there will be a common value for total financial wealth

𝐴†
𝑡 for all households that access the insurance agency at a given time, that depends only on

the aggregate state 𝑠𝑡 at that time. Moreover, while there will in general be some indetermi-

nacy of the way in which the total wealth 𝐴†
𝑡 is decomposed into assets outside the insurance

agency as opposed to expected future insurance transfers, since the same total wealth is used

to support an identical planned continuation path for expenditure, we can without loss of

generality assume that these households also have the same beginning-of-period assets 𝐴†
𝑡(𝑖)

and the same expectations regarding future state-contingent insurance transfers. Under this

assumption, there is also a common value 𝐴†
𝑡 that depends only on 𝑠𝑡, that represents the

beginning-of-period assets 𝐴𝑡(𝑖) for any household 𝑖 with access to the insurance agency in

period 𝑡.

A.1.6 Equilibrium end-of-period wealth distribution

It follows from the analysis of the previous subsection that (in an equilibrium consistent

with Assumptions 1-3) a household’s end-of-period asset position 𝐵𝑡(𝑖) will depend only on

5Note that writing 𝜉𝑡 without a superscript for the type does not mean that we assume that aggregate
shocks must affect the utilities of the two types in the same way. We allow 𝜉𝑡 to be a vector of disturbances,
some components of which may affect the preferences of only one type. Indeed, in the paper we present
results for disturbances to the utility of consumption of only a single type.

6In the text, we further simplify by using the notation 𝜆𝑡 for the variable here called 𝜆†
𝑡 .
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the household’s type and the number of periods since it has last had access to the insurance

agency (which will also be the number of periods since it drew that type). Letting 𝐵
𝜏(𝑗)
𝑡 be

the assets of a type 𝜏 household that last had access to the insurance agency in period 𝑡− 𝑗,

for 𝜏 ∈ {𝑏, 𝑠}, 𝑗 = 0, 1, 2, . . . , we can completely describe the evolution of the distribution of

wealth by specifying the evolution of the quantities {𝐵𝜏 (𝑗)𝑡}.
Integrating (1.5) over all of the households 𝑖 with access to the insurance agency in period

𝑡, we find that their common level of beginning-of-period assets must equal

𝐴†
𝑡 = 𝑃𝑡−1[𝑠𝑡−1(1 + 𝑖𝑑𝑡−1)− 𝑏𝑡−1(1 + 𝑖𝑏𝑡−1)], (1.29)

where

𝑠𝑡 ≡
∫︁

[𝐵𝑡 (𝑖)]
+ 𝑑𝑖/𝑃𝑡

denotes aggregate real (end-of-period) private saving and

𝑏𝑡 ≡ −
∫︁

[𝐵𝑡 (𝑖)]
− 𝑑𝑖/𝑃𝑡

denotes aggregate real (end-of-period) private borrowing. Here we use the fact that the

households which have access to the insurance agency in period 𝑡 are a uniform random

sample from among all households, so that the total saving and borrowing by these house-

holds at the end of period 𝑡 − 1 is exactly the same (per capita) as that of the aggregate

economy, and the fact that the average transfer from the insurance agency must be zero, by

(1.8).

It then follows from (1.6) that the end-of-period assets of a household that has access to

the insurance agency in period 𝑡 and then draws type 𝜏 will equal

𝐵
𝜏(0)
𝑡 = 𝐴†

𝑡 +𝑊 𝜏
𝑡 − 𝑃𝑡𝑐

𝜏
𝑡 +𝐷𝑓

𝑡 +𝐷𝑖𝑛𝑡
𝑡 + 𝑇 𝑔𝑡 , (1.30)

for 𝜏 ∈ {𝑏, 𝑠}, where

𝑊 𝜏
𝑡 ≡

∫︁ 1

0

𝑊𝑡(𝑗)ℎ
𝜏
𝑡 (𝑗)𝑑𝑗

denotes the total wage earnings of each type 𝜏 household in period 𝑡.7 The end-of-period

assets of a household that has not had access to the insurance agency in the current period

7These are common to all households of a given type because equilibrium labor supply depends only on
the household’s current type, as explained further in section A.2 below.

18



Technical Appendix

will correspondingly be given by

𝐵
𝜏(𝑗+1)
𝑡 = 𝐵

𝜏(𝑗)
𝑡−1 (1 + 𝑖𝜏𝑡−1) +𝑊 𝜏

𝑡 − 𝑃𝑡𝑐
𝜏
𝑡 +𝐷𝑓

𝑡 +𝐷𝑖𝑛𝑡
𝑡 + 𝑇 𝑔𝑡 , (1.31)

for any 𝑗 ≥ 0.

Aggregate saving and borrowing can then be obtained by summing these quantities,

𝑠𝑡 =
∞∑︁
𝑗=0

𝜋𝑠(1− 𝛿)𝛿𝑗𝐵
𝑠(𝑗)
𝑡 /𝑃𝑡, (1.32)

𝑏𝑡 = −
∞∑︁
𝑗=0

𝜋𝑏(1− 𝛿)𝛿𝑗𝐵
𝑏(𝑗)
𝑡 /𝑃𝑡. (1.33)

It is a requirement for equilibrium that the infinite sums in (1.32) and (1.33) must converge,

when the individual terms are defined by (1.30)–(1.31).

It follows from (1.30)–(1.31) that sufficient conditions for Assumption 2 to hold are that

𝑃𝑡𝑐
𝑏
𝑡 −𝑊 𝑏

𝑡 > 𝐴†
𝑡 +𝐷𝑓

𝑡 +𝐷𝑖𝑛𝑡
𝑡 + 𝑇 𝑔𝑡 > 𝑃𝑡𝑐

𝑠
𝑡 −𝑊 𝑠

𝑡 , (1.34)

𝑃𝑡𝑐
𝑏
𝑡 −𝑊 𝑏

𝑡 > 𝐷𝑓
𝑡 +𝐷𝑖𝑛𝑡

𝑡 + 𝑇 𝑔𝑡 > 𝑃𝑡𝑐
𝑠
𝑡 −𝑊 𝑠

𝑡 (1.35)

at all times. The inequalities in (1.34) are equivalent to the requirement that 𝐵
𝑠(0)
𝑡 > 0 and

𝐵
𝑏(0)
𝑡 < 0. The inequalities in (1.35) are sufficient conditions to establish for arbitrary 𝑗 ≥ 0

that 𝐵
𝑠(𝑗+1)
𝑡 > 0, 𝐵

𝑏(𝑗+1)
𝑡 < 0 if one assumes that 𝐵

𝑠(𝑗)
𝑡 > 0, 𝐵

𝑏(𝑗)
𝑡 < 0. Hence if (1.34)–(1.35)

are jointly satisfied, one can show by a recursive argument that 𝐵
𝑠(𝑗)
𝑡 > 0, 𝐵

𝑏(𝑗)
𝑡 < 0 for all

𝑗 ≥ 0.

A.1.7 Fiscal Transfers by Government and Firms

Government is assumed to purchase a quantity 𝐺𝑡 each period of the composite good de-

fined by (1.4). These are assumed to be financed through some combination of a proportional

sales tax 𝜏𝑡 on all output sold by firms, lump-sum taxation (assumed to apply uniformly to

all households), and borrowing. We assume for simplicity that all government debt is one-

period riskless nominal debt, so that government debt and deposits with the intermediaries

are perfect substitutes from the standpoint of savers (hence our assumption of only a single

interest rate available on savings in (1.5)). We specify fiscal policy by exogenous sequences

{𝐺𝑡} for government purchases, {𝜏𝑡} for the sales tax rate, and {𝑏𝑔𝑡} for the real value of

the (end-of-period) government debt. The implied value of the net lump-sum transfers 𝑇 𝑔𝑡 is
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then determined as a residual, by the government’s flow budget constraint,

𝑇 𝑔𝑡 = 𝜏𝑡𝑃𝑡𝑌𝑡 − 𝑃𝑡𝐺𝑡 +𝐵𝑔
𝑡 − (1 + 𝑖𝑑𝑡−1)𝐵

𝑔
𝑡−1, (1.36)

where 𝐵𝑔
𝑡 ≡ 𝑃𝑡𝑏

𝑔
𝑡 is the nominal value of government debt and we use the fact that the

equilibrium interest yield on government debt must be the same as that on deposits.

The per capita distribution 𝐷𝑓
𝑡 each period by goods-producing firms is equal to the

aggregate sales revenues of the firms, net of sales taxes, minus the aggregate wage bill of the

firms,

𝐷𝑓
𝑡 = (1− 𝜏𝑡)𝑃𝑡𝑌𝑡 − 𝜋𝑏𝑊

𝑏
𝑡 − 𝜋𝑠𝑊

𝑠
𝑡 . (1.37)

Here we use the fact that, because the composition of the demand for individual goods (on

the part of all final consumers: households, government, and intermediaries) corresponds

to the cost-minimizing way of achieving a given quantity of the composite good, total sales

revenues are equal simply to 𝑃𝑡𝑌𝑡, as well as the fact that the total wage bill of the firm

sector is equal to the total wage income of all households. It is moreover worth noting that

in both (1.36) and (1.37), total sales revenues of the firms must equal total expenditure by

households, government and intermediaries. Thus we may substitute

𝑌𝑡 = 𝜋𝑏𝑐
𝑏
𝑡 + 𝜋𝑠𝑐

𝑠
𝑡 +𝐺𝑡 + Ξ𝑡 (1.38)

for 𝑌𝑡 in either of these equations, where the variable Ξ𝑡 indicates the resources consumed

by the intermediary sector (see section A.5 below).

Finally, as explained further in section A.5 below, the profit distribution by intermediaries

each period will equal

𝐷𝑖𝑛𝑡
𝑡 /𝑃𝑡 = 𝑑𝑡 − 𝑏𝑡 − Ξ𝑡, (1.39)

where 𝑑𝑡 is the real value of one-period deposits with the intermediaries in period 𝑡, 𝑏𝑡 is the

real value of one-period loans extended by the intermediaries (which must equal aggregate

household borrowing, defined in (1.33), and Ξ𝑡 again represents the real resources consumed

in the activity of loan origination. There are no profits to distribute in the period in which

the loan and deposit contracts mature, as we assume that an intermediary lends an amount

that just suffices to allow it to repay what it owes its depositors out of the proceeds from

loan repayments,

(1 + 𝑖𝑏𝑡)𝑏𝑡 = (1 + 𝑖𝑑𝑡 )𝑑𝑡. (1.40)
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Given the latter relation, (1.39) can alternatively be written

𝐷𝑖𝑛𝑡
𝑡 /𝑃𝑡 = 𝜔𝑡𝑏𝑡 − Ξ𝑡, (1.41)

where 𝜔𝑡 ≥ 0 is the spread between borrowing rates and deposit rates, defined by

1 + 𝑖𝑏𝑡 = (1 + 𝜔𝑡)(1 + 𝑖𝑑𝑡 ). (1.42)

Aggregate deposits 𝑑𝑡 must furthermore be related to aggregate household saving (defined

in (1.32)) through the equilibrium relation

𝑠𝑡 = 𝑑𝑡 + 𝑏𝑔𝑡 . (1.43)

Comparison of (1.40) and (1.43) with (1.29) allows us to write

𝐴†
𝑡 = 𝐵𝑔

𝑡−1(1 + 𝑖𝑑𝑡−1). (1.44)

This is because the aggregate financial wealth of households at the beginning of any period

(not counting the value of expected net transfers from the insurance agency, or future distri-

butions from firms) will equal the value of maturing government debt, which represents the

aggregate per capita wealth of the households that access the insurance agency, and that is

uniformly redistributed among those households.

We can use equations (1.36)– (1.38), (1.41) and (1.44) to eliminate 𝑇 𝑔𝑡 , 𝐷
𝑓
𝑡 , 𝐷

𝑖𝑛𝑡
𝑡 , and 𝐴†

𝑡

from the inequalities (1.34)–(1.35). We observe that the two inequalities (1.34) both hold if

and only if

(𝑐𝑏𝑡 − 𝑐𝑠𝑡)− (𝑤𝑏𝑡 − 𝑤𝑠𝑡 ) > max{𝜋−1
𝑠 (𝜔𝑡𝑏𝑡 + 𝑏𝑔𝑡 ),−𝜋−1

𝑏 (𝜔𝑡𝑏𝑡 + 𝑏𝑔𝑡 )},

where 𝑤𝜏𝑡 ≡ 𝑊 𝜏
𝑡 /𝑃𝑡 for 𝜏 = 𝑏, 𝑠. Under the assumption that government debt is always

non-negative under the policies that we consider, the first of the two terms on the right-hand

side is necessarily at least as large as the second, so that the condition can be written more

simply as

(𝑐𝑏𝑡 − 𝑐𝑠𝑡)− (𝑤𝑏𝑡 − 𝑤𝑠𝑡 ) > 𝜋−1
𝑠 (𝜔𝑡𝑏𝑡 + 𝑏𝑔𝑡 ). (1.45)

Similarly, the two inequalities (1.35) both hold if and only if

(𝑐𝑏𝑡−𝑐𝑠𝑡)−(𝑤𝑏𝑡−𝑤𝑠𝑡 ) > max{𝜋−1
𝑠 (𝜔𝑡𝑏𝑡+𝑏

𝑔
𝑡−(1+𝑟𝑑𝑡 )𝑏

𝑔
𝑡−1),−𝜋−1

𝑏 (𝜔𝑡𝑏𝑡+𝑏
𝑔
𝑡−(1+𝑟𝑑𝑡 )𝑏

𝑔
𝑡−1)}, (1.46)
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where

1 + 𝑟𝑑𝑡 ≡ (1 + 𝑖𝑑𝑡−1)/Π𝑡 (1.47)

is the ex post real return on deposits that mature in period 𝑡. We verify below that the

bounds (1.45)–(1.46) hold at all times in our numerical examples, so that Assumption 2 is

satisfied. (We show that for our numerical parameter values, both inequalities hold in the

deterministic steady state; it then follows that they also both at all times in the case of

small enough random disturbances.) Note that both conditions are satisfied in the event

that there is sufficient heterogeneity in the equilibrium levels of expenditure of the two types

of household (in excess of any heterogeneity in their levels of wage income).

A.1.8 Dynamics of Aggregate Private Debt

The law of motion for aggregate (real) private debt 𝑏𝑡 can then be obtained by summing

equation (1.30), multiplied by −𝜋𝑏(1 − 𝛿)𝑃−1
𝑡 , and equation (1.31) for each value of 𝑗 ≥ 0,

multiplied by −𝜋𝑏(1− 𝛿)𝛿𝑗+1𝑃−1
𝑡 . One obtains

𝑏𝑡 = 𝛿[𝑏𝑡−1 + 𝜋𝑠𝜔𝑡−1(𝑏𝑡−1)𝑏𝑡−1 + 𝜋𝑏Ξ𝑡−1(𝑏𝑡−1)](1 + 𝑖𝑑𝑡−1)/Π𝑡 − 𝜋𝑏Ξ𝑡(𝑏𝑡)

+𝜋𝑏[𝛿𝑏
𝑔
𝑡−1(1 + 𝑖𝑑𝑡−1)/Π𝑡 − 𝑏𝑔𝑡 ] + 𝜋𝑏𝜋𝑠[(𝑐

𝑏
𝑡 − 𝑐𝑠𝑡)− (𝑤𝑏𝑡 − 𝑤𝑠𝑡 )], (1.48)

employing the same substitutions as in the previous subsection to replace terms such as

𝐷𝑓
𝑡 , 𝐷

𝑖𝑛𝑡
𝑡 , and 𝑇 𝑔𝑡 in (1.30)–(1.31), and again using (1.33) to define aggregate private debt.

Notice that this is the equation shown at the beginning of section 2.3 in the main paper

describing the law of motion of debt. We can further re-write this equation as

𝑏𝑡 = 𝛿(1+𝑟𝑏𝑡 )𝑏𝑡−1+𝜋𝑏𝜋𝑠[(𝑐
𝑏
𝑡−𝑐𝑠𝑡)−(𝑤𝑏𝑡−𝑤𝑠𝑡 )]−𝜋𝑏[𝑏

𝑔
𝑡−(1+𝑟𝑑𝑡 )𝑏

𝑔
𝑡−1]−𝜋𝑏𝜔𝑡𝑏𝑡−𝜋𝑏(1−𝛿)(1+𝑟𝑑𝑡 )𝑏

𝑔
𝑡−1,

where 𝑟𝑏𝑡 is the ex post real return on loans maturing in period 𝑡, defined analogously to

(1.47).

If we suppose that the credit spread 𝜔𝑡 is a non-decreasing function 𝜔𝑡(𝑏𝑡) of the volume of

intermediated credit, as explained in section A.5, we can solve this equation for 𝑏𝑡, obtaining

𝑏𝑡 = Φ−1
𝑡

(︀
𝜋𝑏𝜋𝑠[(𝑐

𝑏
𝑡 − 𝑐𝑠𝑡)− (𝑤𝑏𝑡 − 𝑤𝑠𝑡 )] + 𝛿(1 + 𝑟𝑑𝑡 )[(1 + 𝜔𝑡−1(𝑏𝑡−1))𝑏𝑡−1 + 𝜋𝑏𝑏

𝑔
𝑡−1]− 𝜋𝑏𝑏

𝑔
𝑡

)︀
,

(1.49)

where Φ𝑡(·) is the monotonic (and hence invertible) function defined by

Φ𝑡(𝑏) ≡ [1 + 𝜋𝑏𝜔𝑡(𝑏)] 𝑏,
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and we have used (1.42) to substitute for 1+ 𝑖𝑏𝑡 . Equation (1.49) determines the evolution of

aggregate private credit 𝑏𝑡 from date zero onward, given an initial condition 𝑏−1 for private

credit, and the evolution of the real deposit rate 𝑟𝑑𝑡 , the real public debt 𝑏
𝑔
𝑡 , the expenditure-

imbalance measure (𝑐𝑏𝑡 − 𝑐𝑠𝑡) − (𝑤𝑏𝑡 − 𝑤𝑠𝑡 ), and the exogenous determinants of the function

𝜔𝑡(·), discussed further in section A.5.

A.1.9 Interest Rates and Aggregate Demand

We can now summarize the equilibrium relations that determine the path for the policy

rate required to support a given evolution of aggregate expenditure. Given the evolution of

the marginal utilities {𝜆𝑏𝑡 , 𝜆𝑠𝑡}, aggregate demand for produced goods is equal to

𝑌𝑡 = 𝜋𝑏𝑐
𝑏(𝜆𝑏𝑡 ; 𝜉𝑡) + 𝜋𝑠𝑐

𝑠(𝜆𝑠𝑡 ; 𝜉𝑡) +𝐺𝑡 + Ξ𝑡, (1.50)

where where for 𝜏 = 𝑏, 𝑠, 𝑐𝜏 (𝜆𝜏𝑡 ; 𝜉𝑡) is the function obtained by inverting (1.27). Given our

isoelastic utility specification, these functions take the specific form

𝑐𝜏𝑡 = 𝐶𝜏
𝑡 · (𝜆𝜏𝑡 )𝜎𝜏 .

The evolution of the marginal utilities of income 𝜆𝜏𝑡 is in turn related to the path of

interest rates through the pair of equilibrium relations (1.28) for 𝜏 = 𝑏, 𝑠. Using (1.42) to

substitute for 𝑖𝑏𝑡 in these equations, we obtain a pair of equations for the evolution of 𝜆𝑏𝑡

and 𝜆𝑠𝑡 , given the paths of the real deposit return 𝑟𝑑𝑡 and the credit spread 𝜔𝑡. The system

consisting of these equations together with (1.50) provide a set of equations to determine the

joint evolution of the variables 𝑌𝑡, 𝜆
𝑏
𝑡 , 𝜆

𝑠
𝑡 , given the evolution of 𝑟𝑑𝑡 , 𝜔𝑡, and Ξ𝑡; or alternatively,

to determine the joint evolution of 𝑟𝑑𝑡 , 𝜆
𝑏
𝑡 , 𝜆

𝑠
𝑡 , given the evolution of 𝑌𝑡, 𝜔𝑡, and Ξ𝑡.

The relation thus established between the path of real interest rates on the one hand

and the level of real aggregate demand (or output) on the other generalizes the relation

summarized by the “intertemporal IS equation” of the basic New Keynesian model, to take

account of heterogeneity and credit frictions. Note that in the case that the two types have

identical preferences and there are no credit frictions (so that 𝜔𝑡 = Ξ𝑡 = 0), 𝜆𝑏𝑡 = 𝜆𝑠𝑡 , which

is in turn simply the marginal utility of consumption of the representative household, given

by 𝑢𝑐(𝑐𝑡; 𝜉𝑡), where 𝑐𝑡 is the common level of consumption; there is a single real interest rate

𝑟𝑑𝑡 = 𝑟𝑏𝑡 = 𝑟𝑡; and the system of equations reduces to the single Euler equation

𝑢𝑐(𝑌𝑡 −𝐺𝑡; 𝜉𝑡) = 𝛽𝐸𝑡[(1 + 𝑟𝑡+1)𝑢𝑐(𝑌𝑡+1 −𝐺𝑡+1; 𝜉𝑡+1)]
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of the basic New Keynesian model. While this relation is complicated in the present model by

the presence of heterogeneity and credit frictions, the essential character of the equilibrium

relation between the path of 𝑌𝑡 and the path of 𝑟𝑑𝑡 remains the same; the credit frictions

are mainly a source of additional disturbances to the “IS equation,” as is made clear by the

log-linear approximation presented in section C.

A.2 Labor supply

Suppose that firms in industry 𝑗 hire labor of type j from both ”borrower” and ”saver”

households. Then, for each type, we get

𝑣𝜏ℎ (ℎ
𝜏
𝑡 (𝑗) ; 𝜉𝑡) =

𝜆𝜏𝑡
𝜇𝑤𝑡
𝑤𝑡 (𝑗) , (1.51)

where 𝑤𝑡 (𝑗) is the real wage, 𝜇𝑤𝑡 is a wage markup. With preferences

𝑣 (ℎ𝑡 (𝑗) ; 𝜉𝑡) ≡
𝜓𝜏

1 + 𝜈
[ℎ𝑡 (𝑗)]

1+𝜈 𝐻̄−𝜈
𝑡 ,

we get

ℎ𝜏𝑡 (𝑗) = 𝐻̄𝑡

(︂
𝜆𝜏𝑡
𝜓𝜏

𝑤𝑡 (𝑗)

𝜇𝑤𝑡

)︂1/𝜈

, (1.52)

for 𝜏 = 𝑏, 𝑠.

The market clearing condition

𝜋𝑏ℎ
𝑏
𝑡 (𝑗) + (1− 𝜋𝑏)ℎ

𝑠
𝑡 (𝑗) = ℎ𝑡 (𝑗) (1.53)

and

ℎ𝑡 (𝑗) = 𝐻̄𝑡

(︂
𝑤𝑡 (𝑗)

𝜇𝑤𝑡

)︂1/𝜈
[︃
𝜋𝑏

(︂
𝜆𝑏𝑡
𝜓𝑏

)︂1/𝜈

+ (1− 𝜋𝑏)

(︂
𝜆𝑠𝑡
𝜓𝑠

)︂1/𝜈
]︃

or, equivalently,

ℎ𝑡 (𝑗) = 𝐻̄𝑡

(︃
𝜆̃𝑡
𝜓

𝑤𝑡 (𝑗)

𝜇𝑤𝑡

)︃1/𝜈

, (1.54)

with

𝜆̃𝑡 ≡ 𝜓

[︃
𝜋𝑏

(︂
𝜆𝑏𝑡
𝜓𝑏

)︂ 1
𝜈

+ (1− 𝜋𝑏)

(︂
𝜆𝑠𝑡
𝜓𝑠

)︂ 1
𝜈

]︃𝜈
, (1.55)

𝜓− 1
𝜈 ≡ 𝜋𝑏𝜓

− 1
𝜈

𝑏 + (1− 𝜋𝑏)𝜓
− 1

𝜈
𝑠 . (1.56)
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Note: these definitions are normalized so that if 𝜆𝑏𝑡 = 𝜆𝑠𝑡 , 𝜆̃𝑡 = 𝜆𝑏𝑡 = 𝜆𝑠𝑡 , and if 𝜓𝑏 = 𝜓𝑠,

then 𝜓 = 𝜓𝑏 = 𝜓𝑠. Also, 𝜆̃𝑡 is a homogeneous of degree 1 functions of
(︀
𝜆𝑏𝑡 , 𝜆

𝑠
𝑡

)︀
, and 𝜓 is a

homogeneous degree 1 function of (𝜓𝑏, 𝜓𝑠).

Real wage is determined by

𝑤𝑡 (𝑗) = 𝜓𝜇𝑤𝑡

(︂
ℎ𝑡 (𝑗)

𝐻̄𝑡

)︂𝜈
𝜆̃−1
𝑡 . (1.57)

A.3 Firms

Continuum of firms operating in environment typical of Calvo pricing.

Technology

𝑌𝑡 (𝑖) = 𝑍𝑡ℎ𝑡 (𝑖)
1/𝜑 , (1.58)

implying that labor demand is

ℎ𝑡 (𝑖) =

(︂
𝑌𝑡 (𝑖)

𝑍𝑡

)︂𝜑
. (1.59)

Labor market equilibrium for industry 𝑗 implies

𝑤𝑡 (𝑗) = 𝜓𝜇𝑤𝑡 𝜆̃
−1
𝑡

(︃(︂
𝑌𝑡 (𝑗)

𝑍𝑡

)︂𝜑
1

𝐻̄𝑡

)︃𝜈

, (1.60)

and demand for each variety of goods

𝑌𝑡 (𝑖) = 𝑌𝑡

(︂
𝑝𝑡 (𝑖)

𝑃𝑡

)︂−𝜃

. (1.61)

The profits function for a given firm in industry 𝑗 is:

Π
(︁
𝑝, 𝑝𝑗, 𝑃 ;𝑌, 𝜆̃, 𝜉

)︁
≡ (1− 𝜏) 𝑝𝑌 (𝑝/𝑃 )−𝜃−𝜓𝜇𝑤𝜆̃−1

⎛⎝(︃𝑌 (𝑝𝑗/𝑃 )
−𝜃

𝑍

)︃𝜑
1

𝐻̄

⎞⎠𝜈

𝑃

(︃
𝑌 (𝑝/𝑃 )−𝜃

𝑍

)︃𝜑

,

(1.62)

where 𝑝 is the price of individual firm, 𝑝𝑗 the common price in industry 𝑗, 𝑃 is the aggregate

price, 𝑌 is the aggregate level of output and 𝜇𝑤 is a markup shock.

A firm’s objective is to maximize the contribution to the average utility of shareholders

(share in firms can’t be traded) so that the relevant stochastic discount factor is

𝑄𝑡,𝑇 = 𝛽𝑇−𝑡
𝜆𝑇
𝜆𝑡

𝑃𝑡
𝑃𝑇

. (1.63)
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The FOC is

0 = 𝐸𝑡

∞∑︁
𝑇=𝑡

(𝛼𝛽)𝑇−𝑡
Λ𝑇
𝑃𝑇

[︃
(1− 𝜏𝑇 )𝑌𝑇

(︂
𝑝𝑡
𝑃𝑇

)︂−𝜃

− 𝜇𝑝𝜑𝜓𝜇𝑤𝑇 𝜆̃
−1
𝑇 𝐻̄−𝜈

𝑇

(︂
𝑌𝑇
𝑍𝑇

)︂1+𝜔𝑦
(︂
𝑝𝑡
𝑃𝑇

)︂−𝜃(1+𝜔𝑦)−1
]︃
,

(1.64)

where 𝜇𝑝 ≡ 𝜃/ (𝜃 − 1), 𝜔𝑦 ≡ 𝜑 (1 + 𝜈)− 1 and

Λ𝑡 = 𝜋𝑏𝜆
𝑏
𝑡 + (1− 𝜋𝑏)𝜆

𝑠
𝑡 (1.65)

We then get

𝑝
1+𝜃𝜔𝑦

𝑡 =

𝐸𝑡
∑︀∞

𝑇=𝑡 (𝛼𝛽)
𝑇−𝑡 Λ𝑇

[︂
𝜇𝑝𝜑𝜓𝜇𝑤𝑇 𝜆̃

−1
𝑇 𝐻̄−𝜈

𝑇

(︁
𝑌𝑇
𝑍𝑇

)︁1+𝜔𝑦

𝑃
𝜃(1+𝜔𝑦)
𝑇

]︂
𝐸𝑡
∑︀∞

𝑇=𝑡 (𝛼𝛽)
𝑇−𝑡
𝑇 Λ

[︀
(1− 𝜏𝑇 )𝑌𝑇𝑃

𝜃−1
𝑇

]︀
⇔

(︂
𝑝𝑡
𝑃𝑡

)︂1+𝜃𝜔𝑦

=

𝐸𝑡
∑︀∞

𝑇=𝑡 (𝛼𝛽)
𝑇−𝑡
𝑇 Λ

[︂
𝜇𝑝𝜑𝜓𝜇𝑤𝑇 𝜆̃

−1
𝑇 𝐻̄−𝜈

𝑇

(︁
𝑌𝑇
𝑍𝑇

)︁1+𝜔𝑦
(︁
𝑃𝑇

𝑃𝑡

)︁𝜃(1+𝜔𝑦)
]︂

𝐸𝑡
∑︀∞

𝑇=𝑡 (𝛼𝛽)
𝑇−𝑡
𝑇 Λ

[︂
(1− 𝜏𝑇 )𝑌𝑇

(︁
𝑃𝑇

𝑃𝑡

)︁𝜃−1
]︂

so that
𝑝𝑡
𝑃𝑡

=

(︂
𝐾𝑡

𝐹𝑡

)︂ 1
1+𝜔𝑦𝜃

(1.66)

with

𝐾𝑡 ≡ 𝐸𝑡

∞∑︁
𝑇=𝑡

(𝛼𝛽)𝑇−𝑡 Λ𝑇

[︃
𝜇𝑝𝜑𝜓𝜇𝑤𝑇 𝜆̃

−1
𝑇 𝐻̄−𝜈

𝑇

(︂
𝑌𝑇
𝑍𝑇

)︂1+𝜔𝑦
(︂
𝑃𝑇
𝑃𝑡

)︂𝜃(1+𝜔𝑦)
]︃
, (1.67)

𝐹𝑡 ≡ 𝐸𝑡

∞∑︁
𝑇=𝑡

(𝛼𝛽)𝑇−𝑡 Λ𝑇

[︃
(1− 𝜏𝑇 )𝑌𝑇

(︂
𝑃𝑇
𝑃𝑡

)︂𝜃−1
]︃
. (1.68)

Further write it in recursive form:

𝐾𝑡 = Λ𝑡𝜇
𝑝𝜑𝜓𝜇𝑤𝑡 𝜆̃

−1
𝑡 𝐻̄−𝜈

𝑡

(︂
𝑌𝑡
𝑍𝑡

)︂1+𝜔𝑦

+ 𝛼𝛽𝐸𝑡

[︁
Π
𝜃(1+𝜔𝑦)
𝑡+1 𝐾𝑡+1

]︁
(1.69)

𝐹𝑡 = Λ𝑡 (1− 𝜏𝑡)𝑌𝑡 + 𝛼𝛽𝐸𝑡
[︀
Π𝜃−1
𝑡+1𝐹𝑡+1

]︀
(1.70)

where the law of motion of prices is

1 = 𝛼
(︀
Π−1
𝑡

)︀1−𝜃
+ (1− 𝛼)

(︂
𝐾𝑡

𝐹𝑡

)︂ 1−𝜃
1+𝜔𝑦𝜃

,
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or, equivalently,

1− 𝛼Π𝜃−1
𝑡

1− 𝛼
=

(︂
𝐹𝑡
𝐾𝑡

)︂ 𝜃−1
1+𝜔𝑦𝜃

. (1.71)

A.4 Income distribution

The total real wage bill is∫︁
𝑤𝑡 (𝑗)𝐻𝑡 (𝑗) 𝑑𝑗 =

∫︁
𝜇𝑤𝑡 𝜓

𝜆̃𝑡

(︂
𝐻𝑡 (𝑗)

𝐻̄𝑡

)︂𝜈
𝐻𝑡 (𝑗) 𝑑𝑗

=
𝜇𝑤𝑡 𝜓

𝜆̃𝑡
𝐻̄−𝜈
𝑡

∫︁
𝐻𝑡 (𝑗)

1+𝜈 𝑑𝑗.

Using (1.59) and (1.61) we get

∫︁
𝐻𝑡 (𝑗)

1+𝜈 𝑑𝑗 =

(︂
𝑌𝑡
𝑍𝑡

)︂𝜑(1+𝜈) ∫︁ (︂
𝑝𝑡 (𝑗)

𝑃𝑡

)︂−𝜃𝜑(1+𝜈)

𝑑𝑗 (1.72)

hence ∫︁
𝑤𝑡 (𝑗)𝐻𝑡 (𝑗) 𝑑𝑗 =

𝜓𝜇𝑤𝑡
𝜆̃𝑡

𝐻̄−𝜈
𝑡

(︂
𝑌𝑡
𝑍𝑡

)︂1+𝜔𝑦

Δ𝑡, (1.73)

with Δ𝑡, a measure of price dispersion, defined as

Δ𝑡 ≡
∫︁ 1

0

(︂
𝑝𝑡 (𝑗)

𝑃𝑡

)︂−𝜃(1+𝜔𝑦)

𝑑𝑗, (1.74)

and its law of motion given by

Δ𝑡 = 𝛼Δ𝑡−1Π
𝜃(1+𝜔𝑦)
𝑡 + (1− 𝛼)

(︂
𝐾𝑡

𝐹𝑡

)︂−𝜃(1+𝜔𝑦)
1+𝜔𝑦𝜃

,

or, equivalently,

Δ𝑡 = 𝛼Δ𝑡−1Π
𝜃(1+𝜔𝑦)
𝑡 + (1− 𝛼)

(︂
1− 𝛼Π𝜃−1

𝑡

1− 𝛼

)︂ 𝜃(1+𝜔𝑦)
𝜃−1

. (1.75)

Type 𝜏 share of each type of labor is

(︂
𝜓

𝜓𝜏

𝜆𝜏𝑡
𝜆̃𝑡

)︂ 1
𝜈

.
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Hence this is also the type 𝜏 share of the wage bill. This implies that the wage income

differential is

𝑤𝑏𝑡 − 𝑤𝑠𝑡 =

(︁
𝜆𝑏𝑡
𝜓𝑏

)︁ 1
𝜈 −

(︁
𝜆𝑠𝑡
𝜓𝑠

)︁ 1
𝜈

(︁
𝜆̃𝑡
𝜓

)︁ 1
𝜈

𝜓𝜇𝑤𝑡
𝜆̃𝑡𝐻̄𝜈

𝑡

(︂
𝑌𝑡
𝑍𝑡

)︂1+𝜔𝑦

Δ𝑡. (1.76)

A.5 Financial intermediation

A.5.1 Financial intermediation problem

Suppose that in order to make legitimate loans in real quantity 𝑏𝑡, a bank must also make

loans in real quantity 𝜒𝑡 (𝑏𝑡) to fraudulent borrowers. We assume that 𝜒′
𝑡 (𝑏𝑡) ≥ 0, 𝜒′′

𝑡 (𝑏𝑡) ≥ 0,

𝜒𝑡 (0) = 0. (𝜒𝑡 (𝑏) may be strictly convex, because of reduced accuracy of screening the larger

the volume of lending relative to the banks capacity, e.g. the available time of its managers.)

The bank cannot tell the legitimate borrowers and fraudulent borrowers apart, and so must

treat them equally. However, the bank is able to predict the fraction of its loans that will

turn out to be fraudulent, and so correctly predicts that loan repayments in period 𝑡+1 will

total only 𝑃𝑡𝑏𝑡
(︀
1 + 𝑖𝑏𝑡

)︀
, even though the loans extended had value 𝑃𝑡 [𝑏𝑡 + 𝜒𝑡 (𝑏𝑡)].

The opportunity to make a fraudulent loan contract is assumed to arrive randomly to

all households with equal probability, regardless of the households current type. Thus each

household has additional real income each period equal to 𝜒𝑡 (𝑏𝑡), its earnings from fraud.

Each household also chooses how many legitimate loan contracts to enter into, understanding

that these loans must be repaid; only type 𝑏 households choose to enter legitimate loan

contracts in equilibrium.

A bank also has real resource costs of loan origination of an amount Ξ𝑡 (𝑏𝑡) in period 𝑡

(costs paid in the period when loans are originated). We assume that Ξ′
𝑡 (𝑏𝑡) ≥ 0, Ξ′′

𝑡 (𝑏𝑡) ≥ 0,

Ξ𝑡 (0) = 0. (Strict convexity of Ξ𝑡 (𝑏) would indicate increasing costs owing to a capacity

constraint, e.g. the scarcity of available managerial time.)

A bank collects deposits 𝑑𝑡 in the largets quantity that can be repaid from the proceeds

of its loans (anticipating that some fraction of those will prove to be fraudulent). Any excess

funds received from depositors that are not lent out or used to pay the resource costs of loan

origination are distributed immediately to shareholders. Thus real distributions in period 𝑡

equal

Π𝑖𝑛𝑡
𝑡 = 𝑑𝑡 − 𝑏𝑡 − 𝜒𝑡 (𝑏𝑡)− Ξ𝑡 (𝑏𝑡) . (1.77)

Since deposits 𝑑𝑡 satisfy
(︀
1 + 𝑖𝑑𝑡

)︀
𝑑𝑡 =

(︀
1 + 𝑖𝑏𝑡

)︀
𝑏𝑡, 𝑑𝑡 = (1 + 𝜔𝑡) 𝑏𝑡, and real distributions
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by intermediaries equal

Π𝑖𝑛𝑡
𝑡 = 𝜔𝑡𝑏𝑡 − 𝜒𝑡 (𝑏𝑡)− Ξ𝑡 (𝑏𝑡) . (1.78)

The income flow to households (𝐷𝑖𝑛𝑡
𝑡 ) should also include households’ earnings from fraud;

hence

𝐷𝑖𝑛𝑡
𝑡 = 𝑃𝑡 [𝜔𝑡𝑏𝑡 − Ξ𝑡 (𝑏𝑡)] . (1.79)

Competitive loan pricing: a bank that can lent at a spread 𝜔𝑡 will choose 𝑏𝑡 to maximize

Π𝑖𝑛𝑡
𝑡 , leading to the following F.O.C.

𝜔𝑡 − 𝜒′
𝑡 (𝑏𝑡)− Ξ′

𝑡 (𝑏𝑡) = 0. (1.80)

hence in equilibrium, competition between banks leads to an equilibrium credit spread

𝜔𝑡 = 𝜔𝑡 (𝑏𝑡) ≡ 𝜒′
𝑡 (𝑏𝑡) + Ξ′

𝑡 (𝑏𝑡) . (1.81)

Thus 𝜒𝑡 (𝑏𝑡) plays the role of a ”markup” factor that can cause credit spreads in excess of

the marginal resource cost of loan origination.

Further assume that

𝜒𝑡 (𝑏𝑡) ≡ 𝜒̃𝑡𝑏
1+κ
𝑡 , (1.82)

Ξ𝑡 (𝑏𝑡) ≡ Ξ̃𝑡𝑏
𝜂
𝑡 , (1.83)

with κ ≥ 0 and 𝜂 ≥ 1. Under this parametrization the spread is

𝜔𝑡 = (1 + κ) 𝜒̃𝑡𝑏κ𝑡 + 𝜂Ξ̃𝑡𝑏
𝜂−1
𝑡 (1.84)

A.5.2 Alternative interpretations of financial intermediation costs

We can interpret the cost of financial intermediation in one of two ways:

∙ a quantity of the composite produced good that is used in the activity of banking

∙ a quantity of a distinct type of labor that happens to be a perfect substitute for

consumption in the utility of households

In the first case we simply consider:

∙ Ξ𝑡 (𝑏𝑡) : quantity of the composite produced good that is used in the activity of banking
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∙ 𝑐𝑡 (𝑖) : real consumption

∙ Utility defined in terms of real consumption, 𝑐𝑡 (𝑖)

∙ Aggregate expenditure:

𝑌𝑡 = 𝐺𝑡 +

∫︁
𝑐𝑡 (𝑖) 𝑑𝑖+ Ξ𝑡 (𝑏𝑡)

In the second case we consider:

∙ Ξ𝑡 (𝑏𝑡) : quantity of distinctive labor used in financial intermediation

∙ 𝑐𝑡 (𝑖) : consumption purchases net of work for intermediary

∙ 𝑐𝑡 (𝑖) : gross consumption purchases

∙ Utility defined in terms of 𝑐𝑡 (𝑖) ≡ 𝑐𝑡 (𝑖)− Ξ𝑡 (𝑏𝑡)

∙ Aggregate expenditure:

𝑌𝑡 = 𝐺𝑡 +

∫︁
𝑐𝑡 (𝑖) 𝑑𝑖

= 𝐺𝑡 +

∫︁
𝑐𝑡 (𝑖) 𝑑𝑖+ Ξ𝑡 (𝑏𝑡)

In both cases the profit function for the financial intermediaries is exactly the same.

A.5.3 Dynamics of private debt

Combining law of motion of debt stated in equation (1.49) with the wage income differ-

ential (1.76) allows us to write

(1 + 𝜋𝑏𝜔𝑡) 𝑏𝑡 = 𝜋𝑏 (1− 𝜋𝑏)𝐵
(︀
𝜆𝑏𝑡 , 𝜆

𝑠
𝑡 , 𝑌𝑡,Δ𝑡; 𝜉𝑡

)︀
− 𝜋𝑏𝑏

𝑔
𝑡 (1.85)

+𝛿
[︀
𝑏𝑡−1 (1 + 𝜔𝑡−1) + 𝜋𝑏𝑏

𝑔
𝑡−1

]︀ 1 + 𝑖𝑑𝑡−1

Π𝑡

with

𝐵
(︀
𝜆𝑏𝑡 , 𝜆

𝑠
𝑡 , 𝑌𝑡,Δ𝑡; 𝜉𝑡

)︀
≡ 𝐶𝑏

𝑡

(︀
𝜆𝑏𝑡
)︀−𝜎𝑏 − 𝐶𝑠

𝑡 (𝜆
𝑠
𝑡)

−𝜎𝑠 (1.86)

−

[︃(︂
𝜆𝑏𝑡
𝜓𝑏

)︂ 1
𝜈

−
(︂
𝜆𝑠𝑡
𝜓𝑠

)︂ 1
𝜈

]︃(︃
𝜆̃𝑡
𝜓

)︃− 1+𝜈
𝜈

𝜇𝑤𝑡 𝐻̄
−𝜈
𝑡

(︂
𝑌𝑡
𝑍𝑡

)︂1+𝜔𝑦

Δ𝑡
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A.6 Welfare function

When considering optimal policy we assume that the central planner maximizes the

average household welfare, where each individual’s utility is

𝑈
𝜏𝑡(𝑖)
𝑡 (𝑖) = 𝑢𝜏𝑡(𝑖) (𝑐𝑡 (𝑖) ; 𝜉𝑡)−

∫︁ 1

0

𝑣𝜏𝑡(𝑖) (ℎ𝑡 (𝑗; 𝑖) ; 𝜉𝑡) 𝑑𝑗

Using the labor market equilibrium we get

ℎ𝑡 (𝑗; 𝑖) =

(︃
𝜆
𝜏𝑡(𝑖)
𝑡

𝜓𝜏𝑡(𝑖)

𝜓

𝜆̃𝑡

)︃1/𝜈

𝐻𝑡 (𝑗) (1.87)

hence

∫︁ 1

0

𝑣𝜏𝑡(𝑖) (ℎ𝑡 (𝑗; 𝑖) ; 𝜉𝑡) 𝑑𝑗 =
𝜋𝑏𝜓𝑏

(︁
𝜆𝑏𝑡
𝜓𝑏

)︁ 1+𝜈
𝜈

+ (1− 𝜋𝑏)𝜓𝑠

(︁
𝜆𝑠𝑡
𝜓𝑠

)︁ 1+𝜈
𝜈

1 + 𝜈

(︂
𝜓

𝜆̃𝑡

)︂ 1+𝜈
𝜈

𝐻̄−𝜈
𝑡

∫︁ 1

0

𝐻𝑡 (𝑗)
1+𝜈 𝑑𝑗

=
𝜓

1 + 𝜈

(︃
Λ̃𝑡

𝜆̃𝑡

)︃ 1+𝜈
𝜈

𝐻̄−𝜈
𝑡

(︂
𝑌𝑡
𝑍𝑡

)︂1+𝜔𝑦

Δ𝑡

and the welfare function is

𝑈̃𝑡 = 𝜋𝑏

(︀
𝑐𝑏𝑡
)︀1−𝜎−1

𝑏
(︀
𝐶𝑏
𝑡

)︀𝜎−1
𝑏

1− 𝜎−1
𝑏

+ (1− 𝜋𝑏)
(𝑐𝑠𝑡)

1−𝜎−1
𝑠
(︀
𝐶𝑠
𝑡

)︀𝜎−1
𝑠

1− 𝜎−1
𝑠

(1.88)

− 𝜓

1 + 𝜈

(︃
𝜆̃𝑡

Λ̃𝑡

)︃− 1+𝜈
𝜈

𝐻̄−𝜈
𝑡

(︂
𝑌𝑡
𝑍𝑡

)︂1+𝜔𝑦

Δ𝑡

with

Λ̃
1+𝜈
𝜈

𝑡 ≡ 𝜓
1
𝜈

[︁
𝜋𝑏𝜓

− 1
𝜈

𝑏

(︀
𝜆𝑏𝑡
)︀ 1+𝜈

𝜈 + (1− 𝜋𝑏)𝜓
− 1

𝜈
𝑠 (𝜆𝑠𝑡)

1+𝜈
𝜈

]︁
(1.89)

A.7 All equations

The objective:

𝑈̃𝑡 = 𝜋𝑏

(︀
𝜆𝑏𝑡
)︀1−𝜎𝑏 𝐶𝑏

𝑡

1− 𝜎−1
𝑏

+ (1− 𝜋𝑏)
(𝜆𝑠𝑡)

1−𝜎𝑠 𝐶𝑠
𝑡

1− 𝜎−1
𝑠

− 𝜓

1 + 𝜈

(︃
𝜆̃𝑡

Λ̃𝑡

)︃− 1+𝜈
𝜈

𝐻̄−𝜈
𝑡

(︂
𝑌𝑡
𝑍𝑡

)︂1+𝜔𝑦

Δ𝑡 (1.90)
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The equations describing the economy are summarized below:

0 =
(︀
1 + 𝑖𝑑𝑡

)︀
(1 + 𝜔𝑡) 𝛽𝐸𝑡

[︂
[𝛿 + (1− 𝛿) 𝜋𝑏]

𝜆𝑏𝑡+1

Π𝑡+1

+ (1− 𝛿) (1− 𝜋𝑏)
𝜆𝑠𝑡+1

Π𝑡+1

]︂
− 𝜆𝑏𝑡 (1.91)

0 =
(︀
1 + 𝑖𝑑𝑡

)︀
𝛽𝐸𝑡

[︂
(1− 𝛿)𝜋𝑏

𝜆𝑏𝑡+1

Π𝑡+1

+ [𝛿 + (1− 𝛿) (1− 𝜋𝑏)]
𝜆𝑠𝑡+1

Π𝑡+1

]︂
− 𝜆𝑠𝑡 (1.92)

0 = Λ
(︀
𝜆𝑏𝑡 , 𝜆

𝑠
𝑡

)︀
𝜇𝑝𝜑𝜓𝜇𝑤𝑡 𝜆̃

(︀
𝜆𝑏𝑡 , 𝜆

𝑠
𝑡

)︀−1
𝐻̄−𝜈
𝑡

(︂
𝑌𝑡
𝑍𝑡

)︂1+𝜔𝑦

+ 𝛼𝛽𝐸𝑡

[︁
Π
𝜃(1+𝜔𝑦)
𝑡+1 𝐾𝑡+1

]︁
−𝐾𝑡 (1.93)

0 = Λ
(︀
𝜆𝑏𝑡 , 𝜆

𝑠
𝑡

)︀
(1− 𝜏𝑡)𝑌𝑡 + 𝛼𝛽𝐸𝑡

[︀
Π𝜃−1
𝑡+1𝐹𝑡+1

]︀
− 𝐹𝑡 (1.94)

0 = 𝜋𝑏 (1− 𝜋𝑏)𝐵
(︀
𝜆𝑏𝑡 , 𝜆

𝑠
𝑡 , 𝑌𝑡,Δ𝑡; 𝜉𝑡

)︀
− 𝜋𝑏𝑏

𝑔
𝑡 (1.95)

+𝛿
[︀
𝑏𝑡−1 (1 + 𝜔𝑡−1) + 𝜋𝑏𝑏

𝑔
𝑡−1

]︀ 1 + 𝑖𝑑𝑡−1

Π𝑡

− (1 + 𝜋𝑏𝜔𝑡) 𝑏𝑡

0 = 𝜋𝑏𝐶
𝑏
𝑡

(︀
𝜆𝑏𝑡
)︀−𝜎𝑏 + (1− 𝜋𝑏)𝐶

𝑠
𝑡 (𝜆

𝑠
𝑡)

−𝜎𝑠 + Ξ̃𝑡𝑏
𝜂
𝑡 +𝐺𝑡 − 𝑌𝑡 (1.96)

0 = 𝛼Δ𝑡−1Π
𝜃(1+𝜔𝑦)
𝑡 + (1− 𝛼)

(︂
1− 𝛼Π𝜃−1

𝑡

1− 𝛼

)︂ 𝜃(1+𝜔𝑦)
𝜃−1

−Δ𝑡 (1.97)

0 =
1− 𝛼Π𝜃−1

𝑡

1− 𝛼
−
(︂
𝐹𝑡
𝐾𝑡

)︂ 𝜃−1
1+𝜔𝑦𝜃

(1.98)

0 = 1 + (1 + κ) 𝜒̃𝑡𝑏κ𝑡 + 𝜂Ξ̃𝑡𝑏
𝜂−1
𝑡 − (1 + 𝜔𝑡) (1.99)

Auxiliary:

𝐵
(︀
𝜆𝑏𝑡 , 𝜆

𝑠
𝑡 , 𝑌𝑡,Δ𝑡; 𝜉𝑡

)︀
≡ 𝐶𝑏

𝑡

(︀
𝜆𝑏𝑡
)︀−𝜎𝑏 − 𝐶𝑠

𝑡 (𝜆
𝑠
𝑡)

−𝜎𝑠 (1.100)

−

[︃(︂
𝜆𝑏𝑡
𝜓𝑏

)︂ 1
𝜈

−
(︂
𝜆𝑠𝑡
𝜓𝑠

)︂ 1
𝜈

]︃(︃
𝜆̃𝑡
𝜓

)︃− 1+𝜈
𝜈

𝜇𝑤𝑡 𝐻̄
−𝜈
𝑡

(︂
𝑌𝑡
𝑍𝑡

)︂1+𝜔𝑦

Δ𝑡

Λ
(︀
𝜆𝑏𝑡 , 𝜆

𝑠
𝑡

)︀
≡ 𝜋𝑏𝜆

𝑏
𝑡 + (1− 𝜋𝑏)𝜆

𝑠
𝑡 (1.101)

𝜆̃
(︀
𝜆𝑏𝑡 , 𝜆

𝑠
𝑡

)︀
≡ 𝜓

[︃
𝜋𝑏

(︂
𝜆𝑏𝑡
𝜓𝑏

)︂ 1
𝜈

+ (1− 𝜋𝑏)

(︂
𝜆𝑠𝑡
𝜓𝑠

)︂ 1
𝜈

]︃𝜈
(1.102)

Λ̃
(︀
𝜆𝑏𝑡 , 𝜆

𝑠
𝑡

)︀
≡ 𝜓

1
1+𝜈

[︁
𝜋𝑏𝜓

− 1
𝜈

𝑏

(︀
𝜆𝑏𝑡
)︀ 1+𝜈

𝜈 + (1− 𝜋𝑏)𝜓
− 1

𝜈
𝑠 (𝜆𝑠𝑡)

1+𝜈
𝜈

]︁ 𝜈
1+𝜈

(1.103)

𝑐𝑏𝑡 = 𝐶𝑏
𝑡

(︀
𝜆𝑏𝑡
)︀−𝜎𝑏 (1.104)
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𝑐𝑠𝑡 = 𝐶𝑠
𝑡 (𝜆

𝑠
𝑡)

−𝜎𝑠 (1.105)

B Steady state

B.1 List of equations in steady state

Full list of equations in steady state:

0 =
(︀
1 + 𝑟𝑑

)︀
(1 + 𝜔̄) 𝛽

[︀
[𝛿 + (1− 𝛿) 𝜋𝑏] 𝜆̄

𝑏 + (1− 𝛿) (1− 𝜋𝑏) 𝜆̄
𝑠
]︀
− 𝜆̄𝑏 (2.1)

0 =
(︀
1 + 𝑟𝑑

)︀
𝛽
[︀
(1− 𝛿) 𝜋𝑏𝜆̄

𝑏 + [𝛿 + (1− 𝛿) (1− 𝜋𝑏)] 𝜆̄
𝑠
]︀
− 𝜆̄𝑠 (2.2)

0 = Λ
(︀
𝜆̄𝑏, 𝜆̄𝑠

)︀
𝜇𝑝𝜑𝜓𝜇̄𝑤𝜆̃

(︀
𝜆̄𝑏, 𝜆̄𝑠

)︀−1
𝐻̄−𝜈

(︂
𝑌

𝑍

)︂1+𝜔𝑦

−
[︀
1− 𝛼𝛽Π̄𝜃(1+𝜔𝑦)

]︀
𝐾̄ (2.3)

0 = Λ
(︀
𝜆̄𝑏, 𝜆̄𝑠

)︀
(1− 𝜏)𝑌 −

[︀
1− 𝛼𝛽Π̄𝜃−1

]︀
𝐹 (2.4)

0 = 𝜋𝑏 (1− 𝜋𝑏)𝐵
(︀
𝜆̄𝑏, 𝜆̄𝑠, 𝑌 , Δ̄; 0

)︀
− 𝜋𝑏𝑏̄

𝑔 (2.5)

+𝛿
[︀
𝑏̄ (1 + 𝜔̄) + 𝜋𝑏𝑏̄

𝑔
]︀ (︀

1 + 𝑟𝑑
)︀
− (1 + 𝜋𝑏𝜔̄) 𝑏̄

0 = 𝜋𝑏𝐶
𝑏
(︀
𝜆̄𝑏
)︀−𝜎𝑏 + (1− 𝜋𝑏)𝐶

𝑠
(︀
𝜆̄𝑠
)︀−𝜎𝑠

+ Ξ̃𝑏̄𝜂 + 𝐺̄− 𝑌 (2.6)

0 = 𝛼Δ̄Π̄𝜃(1+𝜔𝑦) + (1− 𝛼)

(︂
1− 𝛼Π̄𝜃−1

1− 𝛼

)︂ 𝜃(1+𝜔𝑦)
𝜃−1

− Δ̄ (2.7)

0 =
1− 𝛼Π̄𝜃−1

1− 𝛼
−
(︂
𝐹

𝐾̄

)︂ 𝜃−1
1+𝜔𝑦𝜃

(2.8)

0 = 1 + (1 + κ) 𝜒̄𝑏̄κ + 𝜂Ξ̄𝑏̄𝜂−1 − (1 + 𝜔̄) (2.9)

Auxiliary:

𝐵
(︀
𝜆̄𝑏, 𝜆̄𝑠, 𝑌 , Δ̄; 0

)︀
= 𝐶𝑏

(︀
𝜆̄𝑏
)︀−𝜎𝑏 − 𝐶𝑠

(︀
𝜆̄𝑠
)︀−𝜎𝑠

(2.10)

−

(︁
𝜆̄𝑏

𝜓𝑏

)︁ 1
𝜈 −

(︁
𝜆̄𝑠

𝜓𝑠

)︁ 1
𝜈

(︂
𝜆̃(𝜆̄𝑏,𝜆̄𝑠)

𝜓

)︂ 1+𝜈
𝜈

𝜇̄𝑤𝐻̄−𝜈
(︂
𝑌

𝑍

)︂1+𝜔𝑦

Δ̄

Λ
(︀
𝜆̄𝑏, 𝜆̄𝑠

)︀
= 𝜋𝑏𝜆̄

𝑏 + (1− 𝜋𝑏) 𝜆̄
𝑠 (2.11)
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𝜆̃
(︀
𝜆̄𝑏, 𝜆̄𝑠

)︀
= 𝜓

[︃
𝜋𝑏

(︂
𝜆̄𝑏

𝜓𝑏

)︂ 1
𝜈

+ (1− 𝜋𝑏)

(︂
𝜆̄𝑠

𝜓𝑠

)︂ 1
𝜈

]︃𝜈
(2.12)

Λ̃
(︀
𝜆̄𝑏, 𝜆̄𝑠

)︀
= 𝜓

1
1+𝜈

[︁
𝜋𝑏𝜓

− 1
𝜈

𝑏

(︀
𝜆̄𝑏
)︀ 1+𝜈

𝜈 + (1− 𝜋𝑏)𝜓
− 1

𝜈
𝑠

(︀
𝜆̄𝑠
)︀ 1+𝜈

𝜈

]︁ 𝜈
1+𝜈

(2.13)

𝑐𝑏 = 𝐶𝑏
(︀
𝜆̄𝑏
)︀−𝜎𝑏 (2.14)

𝑐𝑠 = 𝐶𝑠
𝑡

(︀
𝜆̄𝑠
)︀−𝜎𝑠

(2.15)

B.2 Zero inflation steady state

We consider first the solution to steady state in which we simply assume zero inflation.

For simplification of the analysis consider the following definitions

𝑠𝑐 ≡ 𝜋𝑏𝑠𝑏 + (1− 𝜋𝑏) 𝑠𝑠,

𝑠𝑏 ≡ 𝑐𝑏/𝑌 ,

𝑠𝑠 ≡ 𝑐𝑠/𝑌 ,

𝑠𝑏𝑠𝑐 ≡ 𝑠𝑏/𝑠𝑠,

𝜎̄ ≡ 𝜋𝑏𝑠𝑏𝜎𝑏 + (1− 𝜋𝑏) 𝑠𝑠𝜎𝑠,

𝜎𝑏𝑠 ≡ 𝜎𝑏/𝜎𝑠,

𝜌𝑏 ≡ 𝑏̄/𝑌 ,

𝑠Ξ ≡ Ξ̄
(︀
𝑏̄
)︀
/𝑌 ,

𝜌𝑔𝑏 ≡ 𝑏̄𝑔/𝑌 ,

𝑠𝑔 ≡ 𝐺̄/𝑌 ,

𝜓𝑏𝑠 ≡ 𝜓𝑏/𝜓𝑠.

Without any loss of generality we calibrate the following values:

𝑌 = 1,

𝜓 = 1.

The values of 𝑠𝑐, 𝑠𝑏/𝑠𝑠 and 𝜎𝑏/𝜎𝑠 are set according to the calibration described in the
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paper.

For the interest rate we have:

1 + 𝑟𝑑 = 𝛽−1
(𝛿 + 1) + 𝜔̄ [𝛿 + (1− 𝛿) 𝜋𝑏]−

√︁
{(𝛿 + 1) + 𝜔̄ [𝛿 + (1− 𝛿) 𝜋𝑏]}2 − 4𝛿 (1 + 𝜔̄)

2𝛿 (1 + 𝜔̄)
.

(2.16)

(Note that if 𝜔̄ = 0, this reduces to 1 + 𝑟𝑑 = 𝛽−1.) We use this steady-state relation to

calibrate 𝛽, given assumed values for 𝛿, 𝜋𝑏, 𝜔̄ and 𝑟𝑑.

We can also write

1 + 𝚤̄𝑑 = 1 + 𝑟𝑑. (2.17)

The markup is calibrated so that 𝜒̄ and Ξ̄ insure that the equation defining 𝜔̄ is satisfied.

We consider four cases:

∙ Exogenous, takes resources: set 𝜂 = 1, κ = 0 and 𝜒̃ = 0, implying that Ξ̃ = 𝜔̄ and

𝑠Ξ = 𝜔̄𝜌𝑏.

∙ Exogenous, no resources: 𝜂 = 1, κ = 0 and Ξ̃ = 0, implying that 𝜒̃ = 𝜔̄ and 𝑠Ξ = 0.

∙ Endogenous, takes resources: set 𝜂 > 1, κ > 0 and 𝜒̄ = 0, implying that Ξ̄′ (︀𝑏̄)︀ = 𝜔̄,

𝑠Ξ = 𝜔̄
𝜂
𝜌𝑏 and Ξ̃ = 𝜔̄/

(︀
𝜂𝑏̄𝜂−1

)︀
.

∙ Endogenous, no resources: set κ > 0 and Ξ̄ = 0, implying that 𝜒̄′ (︀𝑏̄)︀ = 𝜔̄, 𝑠Ξ = 0 and

𝜒̃ = 𝜔̄/
(︀
(1 + κ) 𝑏̄κ

)︀
.

Furthermore we can write, from one of the Euler equations:

𝜆̄𝑏 = Ω̄𝜆̄𝑠, (2.18)

where

Ω̄ ≡
1−

(︀
1 + 𝑟𝑑

)︀
𝛽 [𝛿 + (1− 𝛿) (1− 𝜋𝑏)]

(1 + 𝑟𝑑) 𝛽 (1− 𝛿) 𝜋𝑏
. (2.19)

Given the assumption that we calibrate 𝜓𝑏𝑠 and 𝜓, we can then write

𝜓𝑠 = 𝜓
[︁
𝜋𝑏𝜓

− 1
𝜈

𝑏𝑠 + (1− 𝜋𝑏)
]︁𝜈
, (2.20)

and 𝜓𝑏 = 𝜓𝑏𝑠𝜓𝑠.

This implies that, given 𝜓𝑏 and 𝜓𝑠, we get

Λ
(︀
𝜆̄𝑏, 𝜆̄𝑠

)︀
=
[︀
𝜋𝑏Ω̄ + (1− 𝜋𝑏)

]︀
𝜆̄𝑠, (2.21)
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𝜆̃
(︀
𝜆̄𝑏, 𝜆̄𝑠

)︀
= 𝜓

[︁
𝜋𝑏Ω̄

1
𝜈𝜓

− 1
𝜈

𝑏 + (1− 𝜋𝑏)𝜓
− 1

𝜈
𝑠

]︁𝜈
𝜆̄𝑠, (2.22)

Λ̃
(︀
𝜆̄𝑏, 𝜆̄𝑠

)︀
= 𝜓

1
1+𝜈

[︁
𝜋𝑏𝜓

− 1
𝜈

𝑏 Ω̄
1+𝜈
𝜈 + (1− 𝜋𝑏)𝜓

− 1
𝜈

𝑠

]︁ 𝜈
1+𝜈

𝜆̄𝑠. (2.23)

Using 𝐹 = 𝐾̄,

(1− 𝜏) = 𝜇𝑝𝜑𝜓𝜇𝑤𝑡 𝜆̃
(︀
𝜆̄𝑏, 𝜆̄𝑠

)︀−1 𝐻̄−𝜈

𝑍1+𝜔𝑦
,

hence

𝜆̄𝑠 =
𝜇𝑝𝜑𝜇𝑤 𝐻̄−𝜈

𝑍1+𝜔𝑦

(1− 𝜏)
[︁
𝜋𝑏Ω̄

1
𝜈𝜓

− 1
𝜈

𝑏 + (1− 𝜋𝑏)𝜓
− 1

𝜈
𝑠

]︁𝜈 . (2.24)

Given our calibration of 𝑠𝑐 and 𝑠
𝑏𝑠
𝑐 , we can write:

𝑠𝑠 =
𝑠𝑐

𝜋𝑏𝑠𝑏𝑠𝑐 + (1− 𝜋𝑏)
, (2.25)

and 𝑠𝑏 = 𝑠𝑏𝑠𝑐 𝑠𝑐.

The resources constraint implies

1− 𝑠𝑐 − 𝑠𝑔 =
𝜔̄

𝜂
𝜌𝑏. (2.26)

Zero inflation implies that

Δ̄ = 1. (2.27)

The debt equation is

[︀
1 + 𝜋𝑏𝜔̄ − 𝛿 (1 + 𝜔̄)

(︀
1 + 𝑟𝑑

)︀]︀
𝜌𝑏 = 𝜋𝑏 (1− 𝜋𝑏)

𝐵
(︀
𝜆̄𝑏, 𝜆̄𝑠, 𝑌 , Δ̄; 0

)︀
𝑌

− 𝜋𝑏𝜌
𝑔
𝑏

[︀
1− 𝛿

(︀
1 + 𝑟𝑑

)︀]︀
,

with
𝐵
(︀
𝜆̄𝑏, 𝜆̄𝑠, 1, 1; 0

)︀
𝑌

= 𝑠𝑏 − 𝑠𝑠 −
Ω̄

1
𝜈𝜓

− 1
𝜈

𝑏 − 𝜓
− 1

𝜈
𝑠

𝜋𝑏Ω̄
1
𝜈𝜓

− 1
𝜈

𝑏 + (1− 𝜋𝑏)𝜓
− 1

𝜈
𝑠

1− 𝜏

𝜇𝑝𝜑
,

implying that

𝜌𝑏 =

𝜋𝑏 (1− 𝜋𝑏)

(︂
𝑠𝑏 − 𝑠𝑠 −

Ω̄
1
𝜈 𝜓

− 1
𝜈

𝑏 −𝜓− 1
𝜈

𝑠

𝜋𝑏Ω̄
1
𝜈 𝜓

− 1
𝜈

𝑏 +(1−𝜋𝑏)𝜓
− 1

𝜈
𝑠

1−𝜏
𝜇𝑝𝜑

)︂
− 𝜋𝑏𝜌

𝑔
𝑏

[︀
1− 𝛿

(︀
1 + 𝑟𝑑

)︀]︀
1 + 𝜋𝑏𝜔̄ − 𝛿 (1 + 𝜔̄) (1 + 𝑟𝑑)

, (2.28)

which is then used to solve for real debt according to 𝑏̄ = 𝜌𝑏𝑌 . Given 𝑏̄ and 𝑠𝑐, the real

resources equation (2.26) determines 𝑠𝑔 = 1− 𝑠𝑐 − 𝜔̄
𝜂
𝜌𝑏.
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Furthermore, we set 𝜎̄, hence

𝜎𝑠 =
𝜎̄

𝜋𝑏𝑠𝑏𝜎𝑏𝑠 + (1− 𝜋𝑏) 𝑠𝑠
, (2.29)

𝜎𝑏 = 𝜎𝑏𝑠𝜎𝑠. (2.30)

Finally,

𝐶𝑏 = 𝑠𝑏
(︀
𝜆̄𝑏
)︀𝜎𝑏 , (2.31)

𝐶𝑠 = 𝑠𝑏
(︀
𝜆̄𝑠
)︀𝜎𝑠

, (2.32)

𝐾̄ =
Λ
(︀
𝜆̄𝑏, 𝜆̄𝑠

)︀
𝜇𝑝𝜑𝜓𝜇𝑤𝜆̃

(︀
𝜆̄𝑏, 𝜆̄𝑠

)︀−1 𝐻̄−𝜈

𝑍1+𝜔𝑦

1− 𝛼𝛽
, (2.33)

𝐹 =
Λ
(︀
𝜆̄𝑏, 𝜆̄𝑠

)︀
(1− 𝜏)

1− 𝛼𝛽
. (2.34)

We further set 𝜓𝑏/𝜓𝑠 such that the labor supply is the same in steady state, which implies

that
𝜆̄𝑏

𝜓𝑏
=
𝜆̄𝑠

𝜓𝑠
⇔ 𝜆̄𝑏

𝜆̄𝑠
=
𝜓𝑏
𝜓𝑠

⇒ 𝜓𝑏
𝜓𝑠

= Ω̄, (2.35)

hence

𝜓𝑠 =
[︁
𝜋𝑏Ω̄

− 1
𝜈 + (1− 𝜋𝑏)

]︁𝜈
, (2.36)

𝜓𝑏 = Ω̄𝜓𝑠, (2.37)

𝜆̄𝑠 =
𝜇𝑝𝜑𝜇𝑤 𝐻̄−𝜈

𝑍1+𝜔𝑦

(1− 𝜏)
[︁
𝜋𝑏Ω̄

1
𝜈𝜓

− 1
𝜈

𝑏 + (1− 𝜋𝑏)𝜓
− 1

𝜈
𝑠

]︁𝜈 , (2.38)

𝜆̄𝑏 = Ω̄𝜆̄𝑠, (2.39)

Λ
(︀
𝜆̄𝑏, 𝜆̄𝑠

)︀
= 𝜋𝑏𝜆̄

𝑏 + (1− 𝜋𝑏) 𝜆̄
𝑠. (2.40)

B.3 Optimal steady state

The central planner maximizes the social welfare function (1.90) subject to the laws of

motion of the economy given by (1.91)-(1.99). Assign Lagrangian multipliers 𝜙1, ..., 𝜙9 to

those equations respectively. Then the F.O.C. of the central planner in steady state are the

following ones.
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B.3.1 FOC

FOC w.r.t. 𝑖𝑑𝑡

0 = 𝜙1𝜆̄
𝑏 + 𝜙2𝜆̄

𝑠 + 𝜙5𝛿𝛽
[︀
𝑏̄ (1 + 𝜔̄) + 𝜋𝑏𝑏̄

𝑔
]︀ (︀

1 + 𝑟𝑑
)︀
. (2.41)

FOC w.r.t. Π𝑡

0 = −𝛽−1𝜙1𝜆̄
𝑏 − 𝛽−1𝜙2𝜆̄

𝑠 − 𝜙5𝛿
[︀
𝑏̄ (1 + 𝜔̄) + 𝜋𝑏𝑏̄

𝑔
]︀ (︀

1 + 𝑟𝑑
)︀

(2.42)

+𝜙3𝛼𝜃 (1 + 𝜔𝑦) Π̄
𝜃(1+𝜔𝑦)𝐾̄ + 𝜙4𝛼 (𝜃 − 1) Π̄𝜃−1𝐹

+𝜙7𝜃 (1 + 𝜔𝑦)𝛼Δ̄Π̄𝜃(1+𝜔𝑦) − 𝜙7𝜃 (1 + 𝜔𝑦)𝛼Π̄
𝜃−1

(︂
1− 𝛼Π̄𝜃−1

1− 𝛼

)︂ 𝜃(1+𝜔𝑦)
𝜃−1

−1

−𝜙8
𝛼 (𝜃 − 1)

1− 𝛼
Π̄𝜃−1.

FOC w.r.t. Δ𝑡

0 =
𝜓

1 + 𝜈

(︃
𝜆̃

Λ̃

)︃− 1+𝜈
𝜈

𝐻̄−𝜈
(︂
𝑌

𝑍

)︂1+𝜔𝑦

(2.43)

+𝜙5𝜋𝑏 (1− 𝜋𝑏)

[︃(︂
𝜆̄𝑏

𝜓𝑏

)︂ 1
𝜈

−
(︂
𝜆̄𝑠

𝜓𝑠

)︂ 1
𝜈

]︃(︃
𝜆̃

𝜓

)︃− 1+𝜈
𝜈

𝜇𝑤𝐻̄−𝜈
(︂
𝑌

𝑍

)︂1+𝜔𝑦

+𝜙7

(︀
1− 𝛼𝛽Π̄𝜃(1+𝜔𝑦)

)︀
.

FOC w.r.t. 𝐾𝑡

0 = −𝜙3

(︀
1− 𝛼Π̄𝜃(1+𝜔𝑦)

)︀
+ 𝜙8

𝜃 − 1

1 + 𝜔𝑦𝜃

(︂
1− 𝛼Π̄𝜃−1

1− 𝛼

)︂
𝐾̄−1. (2.44)

FOC w.r.t. 𝐹𝑡

0 = −𝜙4

(︀
1− 𝛼Π̄𝜃−1

)︀
− 𝜙8

𝜃 − 1

1 + 𝜔𝑦𝜃

1− 𝛼Π̄𝜃−1

1− 𝛼
𝐹−1 (2.45)
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FOC w.r.t. 𝑌𝑡

0 = − (1 + 𝜔𝑦)
𝜓

1 + 𝜈

(︃
𝜆̃

Λ̃

)︃− 1+𝜈
𝜈

𝐻̄−𝜈
(︂
𝑌

𝑍

)︂1+𝜔𝑦

Δ̄𝑌 −1 (2.46)

+𝜙4Λ
(︀
𝜆̄𝑏, 𝜆̄𝑠

)︀
(1− 𝜏)− 𝜙6

+𝜙3 (1 + 𝜔𝑦)
Λ
(︀
𝜆̄𝑏, 𝜆̄𝑠

)︀
𝜆̃
(︀
𝜆̄𝑏, 𝜆̄𝑠

)︀𝜇𝑝𝜑𝜓𝜇𝑤𝐻̄−𝜈
(︂
𝑌

𝑍

)︂1+𝜔𝑦

𝑌 −1

−𝜙5𝜋𝑏 (1 + 𝜔𝑦) (1− 𝜋𝑏)

[︃(︂
𝜆̄𝑏

𝜓𝑏

)︂ 1
𝜈

−
(︂
𝜆̄𝑠

𝜓𝑠

)︂ 1
𝜈

]︃(︃
𝜆̃

𝜓

)︃− 1+𝜈
𝜈

𝜇𝑤𝐻̄−𝜈
(︂
𝑌

𝑍

)︂1+𝜔𝑦

Δ̄𝑌 −1.

FOC w.r.t. 𝜆𝑏𝑡

0 = 𝜋𝑏
1− 𝜎𝑏

1− 𝜎−1
𝑏

(︀
𝜆̄𝑏
)︀−𝜎𝑏 𝐶𝑏 (2.47)

+𝜋𝑏
𝜓

𝜈

(︂
𝜓

𝜓𝑏

𝜆̄𝑏

𝜆̃

)︂ 1
𝜈 (︀
𝜆̄𝑏
)︀−1

⎡⎣(︃ 𝜆̃
Λ̃

)︃− 1+𝜈
𝜈

− 𝜆̄𝑏

𝜆̃

⎤⎦ 𝐻̄−𝜈
(︂
𝑌

𝑍

)︂1+𝜔𝑦

Δ̄

−𝜙1 + 𝜙1

(︀
1 + 𝑟𝑑

)︀
(1 + 𝜔̄) [𝛿 + (1− 𝛿)𝜋𝑏] + 𝜙2

(︀
1 + 𝑟𝑑

)︀
(1− 𝛿)𝜋𝑏

+𝜙3𝜇
𝑝𝜑𝜓𝜇𝑤𝜋𝑏

[︃
𝜆̃−1 −

(︂
𝜓

𝜓𝑠

𝜆̄𝑠

𝜆̃

)︂ 1
𝜈 (︀
𝜆̄𝑠
)︀−1 Λ

𝜆̃

]︃
𝐻̄−𝜈

(︂
𝑌

𝑍

)︂1+𝜔𝑦

+𝜙4 (1− 𝜏)𝑌 𝜋𝑏 − 𝜙5𝜋𝑏 (1− 𝜋𝑏)𝜎𝑏𝐶
𝑏
(︀
𝜆̄𝑏
)︀−𝜎𝑏−1 − 𝜙6𝜎𝑏𝜋𝑏𝐶

𝑏
(︀
𝜆̄𝑏
)︀−𝜎𝑏−1

+𝜙5𝜋𝑏 (1− 𝜋𝑏)

(︃
𝜆̃

𝜓

)︃−1(︂
𝜓

𝜓𝑏

𝜆̄𝑏

𝜆̃

)︂ 1
𝜈 (︀
𝜆̄𝑏
)︀−1

[︃
1− 1 + 𝜈

𝜈

(︂
𝜓

𝜓𝑠

𝜆̄𝑠

𝜆̃

)︂ 1
𝜈

]︃
𝜇𝑤𝐻̄−𝜈

(︂
𝑌

𝑍

)︂1+𝜔𝑦

Δ̄.
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FOC w.r.t. 𝜆𝑠𝑡

0 = (1− 𝜋𝑏)
1− 𝜎𝑠
1− 𝜎−1

𝑠

(︀
𝜆̄𝑠
)︀−𝜎𝑠

𝐶𝑠 (2.48)

+ (1− 𝜋𝑏)
𝜓

𝜈

(︂
𝜓

𝜓𝑠

𝜆̄𝑠

𝜆̃

)︂ 1
𝜈

⎡⎣(︃ 𝜆̃
Λ̃

)︃− 1+𝜈
𝜈

− 𝜆̄𝑠

𝜆̃

⎤⎦(︀𝜆̄𝑠)︀−1
𝐻̄−𝜈

(︂
𝑌

𝑍

)︂1+𝜔𝑦

Δ̄

+𝜙1

(︀
1 + 𝑟𝑑

)︀
(1 + 𝜔̄) (1− 𝛿) (1− 𝜋𝑏)− 𝜙2 + 𝜙2

(︀
1 + 𝑟𝑑

)︀
(1− 𝛿) 𝜋𝑏

+𝜙3𝜇
𝑝𝜑𝜓𝜇𝑤 (1− 𝜋𝑏)

[︃
𝜆̃−1 −

(︂
𝜓

𝜓𝑠

𝜆̄𝑠

𝜆̃

)︂ 1
𝜈 (︀
𝜆̄𝑠
)︀−1 Λ

𝜆̃

]︃
𝐻̄−𝜈

(︂
𝑌

𝑍

)︂1+𝜔𝑦

+𝜙4 (1− 𝜋𝑏) (1− 𝜏)𝑌

+𝜙5𝜋𝑏 (1− 𝜋𝑏)

(︃
𝜆̃

𝜓

)︃−1(︂
𝜓

𝜓𝑠

𝜆̄𝑠

𝜆̃

)︂ 1
𝜈 (︀
𝜆̄𝑠
)︀−1

[︃
1 + 𝜈

𝜈

(︂
𝜓

𝜓𝑏

𝜆̄𝑏

𝜆̃

)︂ 1
𝜈

− 1

]︃
𝜇𝑤𝐻̄−𝜈

(︂
𝑌

𝑍

)︂1+𝜔𝑦

Δ̄

+𝜙5𝜎𝑠𝜋𝑏 (1− 𝜋𝑏)𝐶
𝑠
(︀
𝜆̄𝑠
)︀−𝜎𝑠−1 − 𝜙6 (1− 𝜋𝑏)𝐶

𝑠
(︀
𝜆̄𝑠
)︀−𝜎𝑠−1

.

FOC w.r.t. 𝑏𝑡

0 = − (1 + 𝜋𝑏𝜔̄)𝜙5 + 𝜙5𝛿𝛽
(︀
1 + 𝑟𝑑

)︀
(1 + 𝜔̄) + 𝜙6Ξ

′ (︀𝑏̄)︀+ 𝜙9

[︀
𝜒̄′′ (︀𝑏̄)︀+ Ξ̄′′ (︀𝑏̄)︀]︀ . (2.49)

FOC w.r.t. 𝜔𝑡

0 = 𝜙1
𝜆̄𝑏

1 + 𝜔̄
+ 𝜙5

[︀
𝛽𝛿
(︀
1 + 𝑟𝑑

)︀
− 𝜋𝑏

]︀
𝑏̄− 𝜙9. (2.50)

B.3.2 Simplification

We can thus write the FOC as follows.

FOC w.r.t. 𝑖𝑑𝑡

0 = 𝜛𝑖𝑑,1𝜙1 +𝜛𝑖𝑑,2𝜙2 +𝜛𝑖𝑑,5𝜙5, (2.51)

with

𝜛𝑖𝑑,1 ≡ 𝜆̄𝑏,

𝜛𝑖𝑑,2 ≡ 𝜆̄𝑠,

𝜛𝑖𝑑,5 ≡ 𝛿𝛽
[︀
𝑏̄ (1 + 𝜔̄) + 𝜋𝑏𝑏̄

𝑔
]︀ (︀

1 + 𝑟𝑑
)︀
.

FOC w.r.t. Π𝑡

0 = 𝜛Π,3𝜙3 +𝜛Π,4𝜙4 +𝜛Π,7𝜙7 +𝜛Π,8𝜙8, (2.52)
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with

𝜛Π,3 ≡ 𝛼𝜃 (1 + 𝜔𝑦) Π̄
𝜃(1+𝜔𝑦)𝐾̄,

𝜛Π,4 ≡ 𝛼 (𝜃 − 1) Π̄𝜃−1𝐹 ,

𝜛Π,7 ≡ 𝜃 (1 + 𝜔𝑦)𝛼

⎡⎣Δ̄Π̄𝜃(1+𝜔𝑦) − Π̄𝜃−1

(︂
1− 𝛼Π̄𝜃−1

1− 𝛼

)︂ 𝜃(1+𝜔𝑦)
𝜃−1

−1
⎤⎦ ,

𝜛Π,8 ≡ −𝛼 (𝜃 − 1)

1− 𝛼
Π̄𝜃−1,

where I used the fact that 𝜛Π,1 = −𝛽−1𝜛𝑖𝑑,1, 𝜛Π,2 = −𝛽−1𝜛𝑖𝑑,2, 𝜛Π,5 = −𝛽−1𝜛𝑖𝑑,5 and

(2.51).

FOC w.r.t. Δ𝑡

0 = 𝜛Δ,0 +𝜛Δ,5𝜙5 +𝜛Δ,7𝜙7, (2.53)

with

𝜛Δ,0 ≡
𝜓

1 + 𝜈

(︃
𝜆̃

Λ̃

)︃− 1+𝜈
𝜈

𝐻̄−𝜈
(︂
𝑌

𝑍

)︂1+𝜔𝑦

,

𝜛Δ,5 ≡ 𝜋𝑏 (1− 𝜋𝑏)

[︃(︂
𝜆̄𝑏

𝜓𝑏

)︂ 1
𝜈

−
(︂
𝜆̄𝑠

𝜓𝑠

)︂ 1
𝜈

]︃(︃
𝜆̃

𝜓

)︃− 1+𝜈
𝜈

𝜇𝑤𝐻̄−𝜈
(︂
𝑌

𝑍

)︂1+𝜔𝑦

,

𝜛Δ,7 ≡ 1− 𝛼𝛽Π̄𝜃(1+𝜔𝑦).

FOC w.r.t. 𝐾𝑡

0 = 𝜛𝐾,3𝜙3 +𝜛𝐾,8𝜙8, (2.54)

with

𝜛𝐾,3 ≡ −
(︀
1− 𝛼Π̄𝜃(1+𝜔𝑦)

)︀
,

𝜛𝐾,8 ≡
𝜃 − 1

1 + 𝜔𝑦𝜃

(︂
1− 𝛼Π̄𝜃−1

1− 𝛼

)︂
𝐾̄−1.

FOC w.r.t. 𝐹𝑡

0 = 𝜛𝐹,4𝜙4 +𝜛𝐹,8𝜙8, (2.55)

with

𝜛𝐹,4 ≡ −
(︀
1− 𝛼Π̄𝜃−1

)︀
,

𝜛𝐹,8 ≡ − 𝜃 − 1

1 + 𝜔𝑦𝜃

1− 𝛼Π̄𝜃−1

1− 𝛼
𝐹−1.
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FOC w.r.t. 𝑌𝑡

0 = 𝜛𝑌,0 +𝜛𝑌,3𝜙3 +𝜛𝑌,4𝜙4 +𝜛𝑌,5𝜙5 +𝜛𝑌,6𝜙6, (2.56)

with

𝜛𝑌,0 ≡ − (1 + 𝜔𝑦)
𝜓

1 + 𝜈

(︃
𝜆̃

Λ̃

)︃− 1+𝜈
𝜈

𝐻̄−𝜈
(︂
𝑌

𝐴

)︂1+𝜔𝑦

Δ̄𝑌 −1,

𝜛𝑌,3 ≡
Λ
(︀
𝜆̄𝑏, 𝜆̄𝑠

)︀
𝜆̃
(︀
𝜆̄𝑏, 𝜆̄𝑠

)︀𝜇𝑝𝜑 (1 + 𝜔𝑦)𝜓𝜇
𝑤𝐻̄−𝜈

(︂
𝑌

𝑍

)︂1+𝜔𝑦

𝑌 −1,

𝜛𝑌,4 ≡ Λ
(︀
𝜆̄𝑏, 𝜆̄𝑠

)︀
(1− 𝜏) ,

𝜛𝑌,5 ≡ −𝜋𝑏 (1 + 𝜔𝑦) (1− 𝜋𝑏)

[︃(︂
𝜆̄𝑏

𝜓𝑏

)︂ 1
𝜈

−
(︂
𝜆̄𝑠

𝜓𝑠

)︂ 1
𝜈

]︃(︃
𝜆̃

𝜓

)︃− 1+𝜈
𝜈

𝜇𝑤𝐻̄−𝜈
(︂
𝑌

𝑍

)︂1+𝜔𝑦

Δ̄𝑌 −1,

𝜛𝑌,6 ≡ −1.

FOC w.r.t. 𝜆𝑏𝑡

0 = 𝜛𝜆𝑏,0 +𝜛𝜆𝑏,1𝜙1 +𝜛𝜆𝑏,2𝜙2 +𝜛𝜆𝑏,3𝜙3 +𝜛𝜆𝑏,4𝜙4 +𝜛𝜆𝑏,5𝜙5 +𝜛𝜆𝑏,6𝜙6, (2.57)

with

𝜛𝜆𝑏,0 ≡ 𝜋𝑏
1− 𝜎𝑏

1− 𝜎−1
𝑏

(︀
𝜆̄𝑏
)︀−𝜎𝑏 𝐶𝑏

+𝜋𝑏
𝜓

𝜈

(︂
𝜓

𝜓𝑏

𝜆̄𝑏

𝜆̃

)︂ 1
𝜈 (︀
𝜆̄𝑏
)︀−1

⎡⎣(︃ 𝜆̃
Λ̃

)︃− 1+𝜈
𝜈

− 𝜆̄𝑏

𝜆̃

⎤⎦ 𝐻̄−𝜈
(︂
𝑌

𝑍

)︂1+𝜔𝑦

Δ̄,

𝜛𝜆𝑏,1 ≡
(︀
1 + 𝑟𝑑

)︀
(1 + 𝜔̄) [𝛿 + (1− 𝛿) 𝜋𝑏]− 1,

𝜛𝜆𝑏,2 ≡
(︀
1 + 𝑟𝑑

)︀
(1− 𝛿) 𝜋𝑏,

𝜛𝜆𝑏,3 ≡ 𝜇𝑝𝜑𝜓𝜇𝑤𝜋𝑏

[︃
𝜆̃−1 −

(︂
𝜓

𝜓𝑠

𝜆̄𝑠

𝜆̃

)︂ 1
𝜈 (︀
𝜆̄𝑠
)︀−1 Λ

𝜆̃

]︃
𝐻̄−𝜈

(︂
𝑌

𝑍

)︂1+𝜔𝑦

,

𝜛𝜆𝑏,4 ≡ (1− 𝜏)𝑌 𝜋𝑏,

42



Technical Appendix

𝜛𝜆𝑏,5 ≡ −𝜋𝑏 (1− 𝜋𝑏)𝜎𝑏𝐶
𝑏
(︀
𝜆̄𝑏
)︀−𝜎𝑏−1

+𝜋𝑏 (1− 𝜋𝑏)

(︃
𝜆̃

𝜓

)︃−1(︂
𝜓

𝜓𝑏

𝜆̄𝑏

𝜆̃

)︂ 1
𝜈 (︀
𝜆̄𝑏
)︀−1

[︃
1− 1 + 𝜈

𝜈

(︂
𝜓

𝜓𝑠

𝜆̄𝑠

𝜆̃

)︂ 1
𝜈

]︃
𝜇𝑤𝐻̄−𝜈

(︂
𝑌

𝑍

)︂1+𝜔𝑦

Δ̄,

𝜛𝜆𝑏,6 ≡ −𝜎𝑏𝜋𝑏𝐶𝑏
(︀
𝜆̄𝑏
)︀−𝜎𝑏−1

.

FOC w.r.t. 𝜆𝑠𝑡

0 = 𝜛𝜆𝑠,0 +𝜛𝜆𝑠,1𝜙1 +𝜛𝜆𝑠,2𝜙2 +𝜛𝜆𝑠,3𝜙3 +𝜛𝜆𝑠,4𝜙4 +𝜛𝜆𝑠,5𝜙5 +𝜛𝜆𝑠,6𝜙6, (2.58)

with

𝜛𝜆𝑠,0 ≡ (1− 𝜋𝑏)
1− 𝜎𝑠
1− 𝜎−1

𝑠

(︀
𝜆̄𝑠
)︀−𝜎𝑠

𝐶𝑠

+(1− 𝜋𝑏)
𝜓

𝜈

(︂
𝜓

𝜓𝑠

𝜆̄𝑠

𝜆̃

)︂ 1
𝜈

⎡⎣(︃ 𝜆̃
Λ̃

)︃− 1+𝜈
𝜈

− 𝜆̄𝑠

𝜆̃

⎤⎦(︀𝜆̄𝑠)︀−1
𝐻̄−𝜈

(︂
𝑌

𝑍

)︂1+𝜔𝑦

Δ̄,

𝜛𝜆𝑠,1 ≡
(︀
1 + 𝑟𝑑

)︀
(1 + 𝜔̄) (1− 𝛿) (1− 𝜋𝑏) ,

𝜛𝜆𝑠,2 ≡
(︀
1 + 𝑟𝑑

)︀
(1− 𝛿) 𝜋𝑏 − 1,

𝜛𝜆𝑠,3 ≡ 𝜇𝑝𝜑𝜓𝜇𝑤 (1− 𝜋𝑏)

[︃
𝜆̃−1 −

(︂
𝜓

𝜓𝑠

𝜆̄𝑠

𝜆̃

)︂ 1
𝜈 (︀
𝜆̄𝑠
)︀−1 Λ

𝜆̃

]︃
𝐻̄−𝜈

(︂
𝑌

𝑍

)︂1+𝜔𝑦

,

𝜛𝜆𝑠,4 ≡ (1− 𝜋𝑏) (1− 𝜏)𝑌 ,

𝜛𝜆𝑠,5 ≡ 𝜎𝑠𝜋𝑏 (1− 𝜋𝑏)𝐶
𝑠
(︀
𝜆̄𝑠
)︀−𝜎𝑠−1

𝜋𝑏 (1− 𝜋𝑏)

(︃
𝜆̃

𝜓

)︃−1(︂
𝜓

𝜓𝑠

𝜆̄𝑠

𝜆̃

)︂ 1
𝜈 (︀
𝜆̄𝑠
)︀−1

[︃
1 + 𝜈

𝜈

(︂
𝜓

𝜓𝑏

𝜆̄𝑏

𝜆̃

)︂ 1
𝜈

− 1

]︃
𝜇𝑤𝐻̄−𝜈

(︂
𝑌

𝑍

)︂1+𝜔𝑦

Δ̄,

𝜛𝜆𝑠,6 ≡ − (1− 𝜋𝑏)𝐶
𝑠
(︀
𝜆̄𝑠
)︀−𝜎𝑠−1

.

FOC w.r.t. 𝑏𝑡

0 = 𝜛𝑏,5𝜙5 +𝜛𝑏,6𝜙6 +𝜛𝑏,9𝜙9, (2.59)

with

𝜛𝑏,5 ≡ 𝛿𝛽
(︀
1 + 𝑟𝑑

)︀
(1 + 𝜔̄)− (1 + 𝜋𝑏𝜔̄) ,

𝜛𝑏,6 ≡ Ξ′ (︀𝑏̄)︀ ,
43



Technical Appendix

𝜛𝑏,9 ≡ 𝜒̄′′ (︀𝑏̄)︀+ Ξ̄′′ (︀𝑏̄)︀ .
FOC w.r.t. 𝜔𝑡

0 = 𝜛𝜔,1𝜙1 +𝜛𝜔,5𝜙5 +𝜛𝜔,9𝜙9, (2.60)

with

𝜛𝜔,1 ≡
𝜆̄𝑏

1 + 𝜔̄
,

𝜛𝜔,5 ≡ 𝛽𝛿
(︀
1 + 𝑟𝑑

)︀
− 𝜋𝑏,

𝜛𝜔,9 ≡ −1.

B.3.3 Simplified FOC list

Summarize the equations as:

0 = 𝜛Π,3𝜙3 +𝜛Π,4𝜙4 +𝜛Π,7𝜙7 +𝜛Π,8𝜙8, (2.61)

0 = 𝜛𝑖𝑑,1𝜙1 +𝜛𝑖𝑑,2𝜙2 +𝜛𝑖𝑑,5𝜙5, (2.62)

0 = 𝜛Δ,0 +𝜛Δ,5𝜙5 +𝜛Δ,7𝜙7, (2.63)

0 = 𝜛𝐾,3𝜙3 +𝜛𝐾,8𝜙8, (2.64)

0 = 𝜛𝐹,4𝜙4 +𝜛𝐹,8𝜙8, (2.65)

0 = 𝜛𝑌,0 +𝜛𝑌,3𝜙3 +𝜛𝑌,4𝜙4 +𝜛𝑌,5𝜙5 +𝜛𝑌,6𝜙6, (2.66)

0 = 𝜛𝜆𝑏,0 +𝜛𝜆𝑏,1𝜙1 +𝜛𝜆𝑏,2𝜙2 +𝜛𝜆𝑏,3𝜙3 +𝜛𝜆𝑏,4𝜙4 +𝜛𝜆𝑏,5𝜙5 +𝜛𝜆𝑏,6𝜙6, (2.67)

0 = 𝜛𝜆𝑠,0 +𝜛𝜆𝑠,1𝜙1 +𝜛𝜆𝑠,2𝜙2 +𝜛𝜆𝑠,3𝜙3 +𝜛𝜆𝑠,4𝜙4 +𝜛𝜆𝑠,5𝜙5 +𝜛𝜆𝑠,6𝜙6, (2.68)

0 = 𝜛𝑏,5𝜙5 +𝜛𝑏,6𝜙6 +𝜛𝑏,9𝜙9, (2.69)

0 = 𝜛𝜔,1𝜙1 +𝜛𝜔,5𝜙5 +𝜛𝜔,9𝜙9. (2.70)

Notice that, conditional on the endogenous variables this is a system of 10 linear equations

and 9 unknowns.

We will now show that setting Π̄ = 1 satisfies the above system and that one of the

equations drops out (is always satisfied for all {𝜙𝑖}) hence we will end up with a linear

equation system of 9 equations and 9 unknowns.
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B.3.4 Zero inflation is solution to the FOC w.r.t. inflation variable

We further know that with zero inflation, 𝜛Π,7 = 0. We can also solve (2.64) and (2.65)

to get

𝜙3 = −𝜛𝐾,8

𝜛𝐾,3

𝜙8, (2.71)

𝜙4 = −𝜛𝐹,8

𝜛𝐹,4

𝜙8, (2.72)

and plug it into 2.61

0 = −𝜛𝐾,8

𝜛𝐾,3

𝜛Π,3 −
𝜛𝐹,8

𝜛𝐹,4

𝜛Π,4 +𝜛Π,8. (2.73)

As long as this is a true statement we know that Π̄ = 1 is a solution to the optimal steady

state and that (2.61) drops out of the system of linear equations.

Let’s evaluate (2.73):

0 = −
𝜃−1

1+𝜔𝑦𝜃
𝐾̄−1

− (1− 𝛼)
𝛼𝜃 (1 + 𝜔𝑦) 𝐾̄ −

− 𝜃−1
1+𝜔𝑦𝜃

𝐹−1

− (1− 𝛼)
𝛼 (𝜃 − 1)𝐹 − 𝛼 (𝜃 − 1)

1− 𝛼

= (1 + 𝜔𝑦𝜃)− 𝜃 (1 + 𝜔𝑦) + (𝜃 − 1) ,

which is indeed a true proposition.

B.3.5 Solution to Lagrangian multipliers

For the subsystem of steady state conditions (2.1)-(2.9) we already characterized the

solution previously. Let us turn now into the solution of the remainder of the system.

Use (2.64) to write

𝜙3 = 𝜛3,8𝜙8, (2.74)

with

𝜛3,8 ≡
𝜃 − 1

(1− 𝛼) (1 + 𝜔𝑦𝜃)
𝐾̄−1.

Use (2.65) and (2.8) to write

𝜙4 = −𝜙3. (2.75)

Use (2.63) to write

𝜙7 = 𝜛7,0 +𝜛7,5𝜙5, (2.76)

with

𝜛7,0 ≡ −𝜋𝑏 (1− 𝜋𝑏)

1− 𝛼𝛽

[︃(︂
𝜆̄𝑏

𝜓𝑏

)︂ 1
𝜈

−
(︂
𝜆̄𝑠

𝜓𝑠

)︂ 1
𝜈

]︃(︃
𝜆̃

𝜓

)︃− 1+𝜈
𝜈

𝜇𝑤𝐻̄−𝜈
(︂
𝑌

𝑍

)︂1+𝜔𝑦

,
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𝜛7,5 ≡ − 1

1− 𝛼𝛽

𝜓

1 + 𝜈

(︃
𝜆̃

Λ̃

)︃− 1+𝜈
𝜈

𝐻̄−𝜈
(︂
𝑌

𝑍

)︂1+𝜔𝑦

.

Use (2.62) to write

𝜙5 = Ω̄𝜛5,2𝜙1 +𝜛5,2𝜙2, (2.77)

with

𝜛5,2 ≡ − 𝜆̄𝑠

𝛿𝛽 (1 + 𝑟𝑑)
[︀
𝑏̄ (1 + 𝜔̄) + 𝜋𝑏𝑏̄𝑔

]︀ .
Use (2.70) to write

0 =
𝜆̄𝑏

1 + 𝜔̄
𝜙1 +

[︀
𝛿𝛽
(︀
1 + 𝑟𝑑

)︀
− 1
]︀
𝑏̄𝜙5 − 𝜙9,

and further use (2.77) to simplify to

𝜙9 = 𝜛9,1𝜙1 +𝜛9,2𝜙2, (2.78)

with

𝜛9,1 ≡

[︃
1

1 + 𝜔̄
−

[︀
𝛿𝛽
(︀
1 + 𝑟𝑑

)︀
− 1
]︀
𝑏̄

𝛿𝛽 (1 + 𝑟𝑑)
[︀
𝑏̄ (1 + 𝜔̄) + 𝜋𝑏𝑏̄𝑔

]︀]︃ 𝜆̄𝑏,
𝜛9,2 ≡ −

[︀
𝛿𝛽
(︀
1 + 𝑟𝑑

)︀
− 1
]︀
𝑏̄

𝛿𝛽 (1 + 𝑟𝑑)
[︀
𝑏̄ (1 + 𝜔̄) + 𝜋𝑏𝑏̄𝑔

]︀ 𝜆̄𝑠.
Use (2.69) to write

0 = 𝜛𝑏,5𝜙5 +𝜛𝑏,6𝜙6 +𝜛𝑏,9𝜙9,

⇔
𝜙6 = −𝜛𝑏,5

𝜛𝑏,6

𝜙5 −
𝜛𝑏,9

𝜛𝑏,6

𝜙9.

and using (2.77) and (2.78) we can write

𝜙6 = 𝜛6,1𝜙1 +𝜛6,2𝜙2, (2.79)

with

𝜛6,1 ≡ −𝜛𝑏,5𝜛5,2Ω̄ +𝜛𝑏,9𝜛9,1

𝜛𝑏,6

,

𝜛6,2 ≡ −𝜛𝑏,5𝜛5,2 +𝜛𝑏,9𝜛9,2

𝜛𝑏,6

.
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Use (2.66), (2.74), (2.75), (2.77) and (2.79) to write

𝜙8 = 𝜛8,0 +𝜛8,1𝜙1 +𝜛8,2𝜙2, (2.80)

with

𝜛8,0 ≡ −𝜛𝑌,0

𝜛𝑌,8

,

𝜛8,1 ≡
𝜛6,1 −𝜛𝑌,5𝜛5,1

𝜛𝑌,8

,

𝜛8,2 ≡
𝜛6,2 −𝜛𝑌,5𝜛5,2

𝜛𝑌,8

.

Use (2.67) and the above results to write:

𝜙1 = 𝜛1,0 +𝜛1,2𝜙2, (2.81)

with

𝜛1,0 ≡ −
𝜛𝜆𝑏,0 +

(︀
𝜛𝜆𝑏,3 −𝜛𝜆𝑏,4

)︀
𝜛3,8𝜛8,0

𝜛𝜆𝑏,1 +
(︀
𝜛𝜆𝑏,3 −𝜛𝜆𝑏,4

)︀
𝜛3,8𝜛8,1 +𝜛𝜆𝑏,5Ω̄𝜛5,2 +𝜛𝜆𝑏,6𝜛6,1

,

𝜛1,2 ≡ −
𝜛𝜆𝑏,2 +

(︀
𝜛𝜆𝑏,3 −𝜛𝜆𝑏,4

)︀
𝜛3,8𝜛8,2 +𝜛𝜆𝑏,5𝜛5,2 +𝜛𝜆𝑏,6𝜛6,2

𝜛𝜆𝑏,1 +
(︀
𝜛𝜆𝑏,3 −𝜛𝜆𝑏,4

)︀
𝜛3,8𝜛8,1 +𝜛𝜆𝑏,5Ω̄𝜛5,2 +𝜛𝜆𝑏,6𝜛6,1

.

Finally use (2.68) and the above results to write:

𝜙2 = −𝜛2,0 +𝜛2,1𝜛1,0

𝜛2,2 +𝜛2,1𝜛1,2

, (2.82)

with

𝜛2,0 ≡ 𝜛𝜆𝑠,0 + (𝜛𝜆𝑠,3 −𝜛𝜆𝑠,4)𝜛3,8𝜛8,0,

𝜛2,1 ≡
[︀
𝜛𝜆𝑠,1 + (𝜛𝜆𝑠,3 −𝜛𝜆𝑠,4)𝜛3,8𝜛8,1 +𝜛𝜆𝑠,5Ω̄𝜛5,2 +𝜛𝜆𝑠,6𝜛6,1

]︀
,

𝜛2,2 ≡ 𝜛𝜆𝑠,2 + (𝜛𝜆𝑠,3 −𝜛𝜆𝑠,4)𝜛3,8𝜛8,2 +𝜛𝜆𝑠,5𝜛5,2 +𝜛𝜆𝑠,6𝜛6,2.

Now we could use (2.82) to solve (2.81) for 𝜙1, and use both 𝜙2 and 𝜙1 to solve for 𝜙8,

𝜙6 and 𝜙5 and then use these to solve for the remaining ones.

C Log-linear equations

In this section we present all the log-linear relations of the model, in which we linearize

around the zero inflation steady state.
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C.1 Full system

The full system of log-linear equation is given by:

𝜆̂𝑏𝑡 = 𝚤̂𝑑𝑡 + 𝜔̂𝑡 − 𝐸𝑡𝜋𝑡+1 + 𝜒𝑏𝐸𝑡𝜆̂
𝑏
𝑡+1 + (1− 𝜒𝑏)𝐸𝑡𝜆̂

𝑠
𝑡+1, (3.1)

𝜆̂𝑠𝑡 = 𝚤̂𝑑𝑡 − 𝐸𝑡𝜋𝑡+1 + (1− 𝜒𝑠)𝐸𝑡𝜆̂
𝑏
𝑡+1 + 𝜒𝑠𝐸𝑡𝜆̂

𝑠
𝑡+1, (3.2)

𝐾̂𝑡 = (1− 𝛼𝛽)
[︁
Λ̂𝑡 − ̂̃︀𝜆𝑡 + 𝜇̂𝑤𝑡 − 𝜈ℎ̄𝑡 + (1 + 𝜔𝑦)

(︁
𝑌𝑡 − 𝑧𝑡

)︁]︁
(3.3)

+𝛼𝛽𝐸𝑡

[︁
𝜃 (1 + 𝜔𝑦) 𝜋𝑡+1 + 𝐾̂𝑡+1

]︁
,

𝐹𝑡 = (1− 𝛼𝛽)
[︁
Λ̂𝑡 − 𝜏𝑡 + 𝑌𝑡

]︁
+ 𝛼𝛽𝐸𝑡

[︁
(𝜃 − 1) 𝜋𝑡+1 + 𝐹𝑡+1

]︁
, (3.4)

(1 + 𝜋𝑏𝜔̄) 𝑏̂𝑡 = 𝜋𝑏 (1− 𝜋𝑏) 𝜌
−1
𝑏 𝐵̂𝑡 − 𝜋𝑏 (1 + 𝜔̄) 𝜔̂𝑡 (3.5)

+𝛿
(︀
1 + 𝑟𝑑

)︀
[(1 + 𝜔̄) + 𝜋𝑏𝜌

𝑔
𝑏/𝜌𝑏]

(︀
𝚤̂𝑑𝑡−1 − 𝜋𝑡

)︀
+𝛿
(︀
1 + 𝑟𝑑

)︀
(1 + 𝜔̄)

(︁
𝑏̂𝑡−1 + 𝜔̂𝑡−1

)︁
−𝜋𝑏𝜌−1

𝑏

[︁
𝑏̂𝑔𝑡 − 𝛿

(︀
1 + 𝑟𝑑

)︀
𝑏̂𝑔𝑡−1

]︁
,

𝑌𝑡 = 𝜋𝑏𝑠𝑏

(︁
𝑐𝑏𝑡 − 𝜎𝑏𝜆̂

𝑏
𝑡

)︁
+ (1− 𝜋𝑏) 𝑠𝑠

(︁
𝑐𝑠𝑡 − 𝜎𝑠𝜆̂

𝑠
𝑡

)︁
+ ̂̃︀Ξ𝑡 + 𝜂𝑠Ξ𝑏̂𝑡 + 𝐺̂𝑡, (3.6)

Δ̂𝑡 = 𝛼Δ̂𝑡−1, (3.7)

𝜋𝑡 =
1− 𝛼

𝛼

1

1 + 𝜔𝑦𝜃

(︁
𝐾̂𝑡 − 𝐹𝑡

)︁
, (3.8)

𝜔̂𝑡 =
(1 + κ) 𝜒̄𝑏̄κ

1 + 𝜔̄

(︂
𝜁𝜒
𝜒̄
̂︀𝜒𝑡 + κ𝑏̂𝑡

)︂
+
𝜂Ξ̄𝑏̄𝜂−1

1 + 𝜔̄

(︂
𝜁Ξ
Ξ̄
̂̃︀Ξ𝑡 + (𝜂 − 1) 𝑏̂𝑡

)︂
. (3.9)

Auxiliary equations:

𝐵̂𝑡 = 𝑠𝑏

(︁
𝑐𝑏𝑡 − 𝜎𝑏𝜆̂

𝑏
𝑡

)︁
− 𝑠𝑠

(︁
𝑐𝑠𝑡 − 𝜎𝑠𝜆̂

𝑠
𝑡

)︁
(3.10)

−𝜓𝜆̃
−1

𝜇̄𝑤𝐻̄−𝜈
(︂
𝑌

𝑍

)︂1+𝜔𝑦

𝑌 −1 1

𝜈

[︃(︂
𝜓

𝜓𝑏

𝜆̄𝑏

𝜆̃

)︂ 1
𝜈 (︁
𝜆̂𝑏𝑡 −

̂̃︀𝜆𝑡)︁− (︂ 𝜓

𝜓𝑠

𝜆̄𝑠

𝜆̃

)︂ 1
𝜈 (︁
𝜆̂𝑠𝑡 −

̂̃︀𝜆𝑡)︁]︃

−𝜓𝜆̃
−1

𝜇̄𝑤𝐻̄−𝜈
(︂
𝑌

𝑍

)︂1+𝜔𝑦

𝑌 −1

[︃(︂
𝜓

𝜓𝑏

𝜆̄𝑏

𝜆̃

)︂ 1
𝜈

−
(︂
𝜓

𝜓𝑠

𝜆̄𝑠

𝜆̃

)︂ 1
𝜈

]︃
×

×
[︁
𝜇̂𝑤𝑡 − 𝜈ℎ̄𝑡 − ̂̃︀𝜆𝑡 + (1 + 𝜔𝑦)

(︁
𝑌𝑡 − 𝑧𝑡

)︁
+ Δ̂𝑡

]︁
, (3.11)
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̂̃︀𝜆𝑡 = 𝜋𝑏

(︂
𝜓

𝜓𝑏

𝜆̄𝑏

𝜆̃

)︂ 1
𝜈

𝜆̂𝑏𝑡 + (1− 𝜋𝑏)

(︂
𝜓

𝜓𝑠

𝜆̄𝑠

𝜆̃

)︂ 1
𝜈

𝜆̂𝑠𝑡 , (3.12)

Λ̂𝑡 = 𝜋𝑏
𝜆̄𝑏

𝜆̄
𝜆̂𝑏𝑡 + (1− 𝜋𝑏)

𝜆̄𝑠

𝜆̄
𝜆̂𝑠𝑡 , (3.13)

̂̃︀Λ𝑡 = 𝜋𝑏
𝜓

− 1
𝜈

𝑏

(︀
𝜆̄𝑏
)︀ 1+𝜈

𝜈

𝜓− 1
𝜈 Λ̃

1+𝜈
𝜈

𝜆̂𝑏𝑡 + (1− 𝜋𝑏)
𝜓

− 1
𝜈

𝑠

(︀
𝜆̄𝑠
)︀ 1+𝜈

𝜈

𝜓− 1
𝜈 Λ̃

1+𝜈
𝜈

𝜆̂𝑠𝑡 , (3.14)

𝑐𝑏𝑡 = 𝑐𝑏𝑡 − 𝜎𝑏𝜆̂
𝑏
𝑡 , (3.15)

𝑐𝑠𝑡 = 𝑐𝑠𝑡 − 𝜎𝑠𝜆̂
𝑠
𝑡 . (3.16)

The exogenous variables all follow an AR(1) process as follows:

𝜉𝑡 = 𝜌𝜉𝜉𝑡−1 + 𝜀𝑡 (3.17)

In the above equations we consider the following definitions

𝚤̂𝜏𝑡 ≡ ln ((1 + 𝑖𝜏𝑡 ) / (1 + 𝚤̄𝜏𝑡 )) , (3.18)

𝜔̂𝑡 ≡ ln ((1 + 𝜔𝑡) / (1 + 𝜔̄)) , (3.19)

𝜋𝑡 ≡ lnΠ𝑡, (3.20)

𝜆̄𝜏𝑡 ≡ ln
(︀
𝜆𝜏𝑡 /𝜆̄

𝜏
)︀
, (3.21)

𝑌𝑡 ≡ ln
(︀
𝑌𝑡/𝑌

)︀
, (3.22)

𝐹𝑡 ≡ ln
(︀
𝐹𝑡/𝐹

)︀
, (3.23)

𝐾̂𝑡 ≡ ln
(︀
𝐾𝑡/𝐾̄

)︀
, (3.24)

𝑏̂𝑡 ≡ ln
(︀
𝑏𝑡/𝑏̄

)︀
, (3.25)

ℎ̄𝑡 ≡ ln
(︀
𝐻̄𝑡/𝐻̄

)︀
, (3.26)

𝑧𝑡 ≡ ln
(︀
𝑍𝑡/𝑍

)︀
, (3.27)

𝜏𝑡 ≡ − log ((1− 𝜏𝑡) / (1− 𝜏)) , (3.28)

𝑏̂𝑔𝑡 ≡
(︀
𝑏𝑔𝑡 − 𝑏̄

)︀
/𝑌 , (3.29)

𝑐𝜏𝑡 ≡ ln
(︀
𝐶𝜏
𝑡 /𝐶

𝜏
)︀
, (3.30)
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𝜇̂𝑤𝑡 ≡ ln (𝜇𝑤𝑡 /𝜇̄
𝑤) , (3.31)

𝐺̂𝑡 ≡
(︀
𝐺𝑡 − 𝐺̄

)︀
/𝑌 , (3.32)

̂̃︀Ξ𝑡 ≡ 𝑏̄𝜂

𝑌

(︁
Ξ̃𝑡 − Ξ̃

)︁
, (3.33)

̂︀𝜒𝑡 ≡ (1 + κ) 𝑏̄κ
(︀
𝜒̃𝑡 − 𝜒̃

)︀
, (3.34)

and

𝜒𝜏 ≡ 𝛽 (1 + 𝑟𝜏 ) [𝛿 + (1− 𝛿) 𝜋𝜏 ] . (3.35)

C.2 Simplified log-linear system

Aggregate demand

Define

Ω̂𝑡 ≡ 𝜆̂𝑏𝑡 − 𝜆̂𝑠𝑡 , (3.36)

𝜆̂𝑡 ≡ 𝜋𝑏𝜆̂
𝑏
𝑡 + (1− 𝜋𝑏) 𝜆̂

𝑠
𝑡 , (3.37)

𝚤̂𝑎𝑣𝑔𝑡 ≡ 𝜋𝑏
(︀
𝚤̂𝑑𝑡 + 𝜔̂𝑡

)︀
+ (1− 𝜋𝑏) 𝚤̂

𝑑
𝑡 = 𝚤̂𝑑𝑡 + 𝜋𝑏𝜔̂𝑡, (3.38)

so that we can combine the two Euler equations into

Ω̂𝑡 = 𝜔̂𝑡 + 𝛿𝐸𝑡Ω̂𝑡+1, (3.39)

𝜆̂𝑡 = 𝚤̂𝑎𝑣𝑔𝑡 − 𝐸𝑡𝜋𝑡+1 + 𝐸𝑡𝜆̂𝑡+1 − 𝜓Ω𝐸𝑡Ω̂𝑡+1, (3.40)

with

𝛿 ≡ 𝜒𝑏 + 𝜒𝑠 − 1, (3.41)

𝜓Ω ≡ 𝜋𝑏 (1− 𝜒𝑏)− (1− 𝜋𝑏) (1− 𝜒𝑠) . (3.42)

Define

𝑠𝑐𝑐𝑡 ≡ 𝜋𝑏𝑠𝑏𝑐
𝑏
𝑡 + (1− 𝜋𝑏) 𝑠𝑠𝑐

𝑠
𝑡 , (3.43)

𝑔𝑡 ≡ 𝑠𝑐𝑐𝑡 + 𝐺̂𝑡, (3.44)

so that we can write the AD as

𝑌𝑡 = 𝑔𝑡 + Ξ̂𝑡 − 𝜎̄
(︁
𝜆̂𝑡 + 𝑠ΩΩ̂𝑡

)︁
, (3.45)
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with

𝑠Ω ≡ 𝜋𝑏 (1− 𝜋𝑏)
𝑠𝑏𝜎𝑏 − 𝑠𝑠𝜎𝑠

𝜎̄
. (3.46)

We can thus solve for 𝜆̂𝑡

𝜆̂𝑡 = −𝜎̄−1
(︁
𝑌𝑡 − 𝑔𝑡 − Ξ̂𝑡

)︁
− 𝑠ΩΩ̂𝑡, (3.47)

and plug this into the average Euler to get the IS relation

𝑌𝑡 = 𝐸𝑡𝑌𝑡+1 − 𝜎̄ (̂𝚤𝑎𝑣𝑔𝑡 − 𝐸𝑡𝜋𝑡+1)− 𝐸𝑡Δ𝑔𝑡+1 − 𝐸𝑡ΔΞ̂𝑡+1 (3.48)

−𝜎̄𝑠ΩΩ̂𝑡 + 𝜎̄ (𝑠Ω + 𝜓Ω)𝐸𝑡Ω̂𝑡+1,

with

Δ𝑔𝑡 ≡ 𝑔𝑡 − 𝑔𝑡−1, (3.49)

ΔΞ̂𝑡 ≡ Ξ̂𝑡 − Ξ̂𝑡−1. (3.50)

Aggregate supply

Combine the equation defining inflation and those defining 𝐹𝑡 and 𝐾̂𝑡 to get

𝜋𝑡 = 𝛽𝐸𝑡𝜋𝑡+1 + 𝜉
[︁
𝜔𝑦𝑌𝑡 − ̂̃︀𝜆𝑡 + 𝜇̂𝑤𝑡 − 𝜈ℎ̄𝑡 + 𝜏𝑡 − (1 + 𝜔𝑦) 𝑧𝑡

]︁
, (3.51)

with

𝜉 ≡ 1− 𝛼

𝛼

1− 𝛼𝛽

1 + 𝜔𝑦𝜃
. (3.52)

Further notice that ̂̃︀𝜆𝑡 = (𝛾𝑏 − 𝜋𝑏) Ω̂𝑡 + 𝜆̂𝑡, (3.53)

with

𝛾𝑏 ≡ 𝜋𝑏

(︂
𝜓

𝜓𝑏

𝜆̄𝑏

𝜆̃

)︂ 1
𝜈

. (3.54)

Using (3.47) and (3.53), we can thus write the Phillips curve as

𝜋𝑡 = 𝛽𝐸𝑡𝜋𝑡+1 + 𝜉
[︁(︀
𝜔𝑦 + 𝜎̄−1

)︀
𝑌𝑡 − 𝜎̄−1

(︁
𝑔𝑡 + Ξ̂𝑡

)︁
+ 𝜇̂𝑤𝑡 − 𝜈ℎ̄𝑡 + 𝜏𝑡 − (1 + 𝜔𝑦) 𝑧𝑡

]︁
+𝜉 (𝑠Ω + 𝜋𝑏 − 𝛾𝑏) Ω̂𝑡,
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or, equivalently,

𝜋𝑡 = 𝛽𝐸𝑡𝜋𝑡+1 + 𝑢𝑡 + 𝜅
(︁
𝑌𝑡 − 𝑌 𝑛

𝑡

)︁
− 𝜉𝜎̄−1Ξ̂𝑡 + 𝜉 (𝑠Ω + 𝜋𝑏 − 𝛾𝑏) Ω̂𝑡, (3.55)

with

𝑌 𝑛
𝑡 ≡

(︀
𝜔𝑦 + 𝜎̄−1

)︀−1 [︀
𝜎̄−1𝑔𝑡 + 𝜈ℎ̄𝑡 + (1 + 𝜔𝑦) 𝑧𝑡

]︀
, (3.56)

𝑢𝑡 ≡ 𝜉 (𝜇̂𝑤𝑡 + 𝜏𝑡) , (3.57)

𝜅 ≡ 𝜉
(︀
𝜔𝑦 + 𝜎̄−1

)︀
. (3.58)

Law of motion of debt

Consider the equations determining 𝜔̂𝑡

𝜔̂𝑡 = 𝜔𝑏𝑏̂𝑡 + 𝜔𝜒̂︀𝜒𝑡 + 𝜔Ξ
̂̃︀Ξ𝑡, (3.59)

with

𝜔𝑏 ≡
κ𝜒̄′ (︀𝑏̄)︀+ 𝜂 (𝜂 − 1) 𝑠Ξ

𝜌𝑏

1 + 𝜔̄
, (3.60)

𝜔𝜒 ≡ 1

1 + 𝜔̄
, (3.61)

𝜔Ξ ≡ 1

1 + 𝜔̄

𝜂

𝜌𝑏
. (3.62)

We can now simplify the expression of 𝐵̂𝑡

𝐵̂𝑡 = 𝑠𝑐𝑐𝑡 +
𝐵Ω

𝜋𝑏 (1− 𝜋𝑏)
Ω̂𝑡 +

𝐵𝜆

𝜋𝑏 (1− 𝜋𝑏)
𝜆̂𝑡 (3.63)

− 𝐵̃𝑢

𝜋𝑏 (1− 𝜋𝑏)

[︁
𝜇̂𝑤𝑡 − 𝜈ℎ̄𝑡 + (1 + 𝜔𝑦)

(︁
𝑌𝑡 − 𝑧𝑡

)︁]︁
,

with

𝐵̃Ω ≡ 𝜓𝜆̃
−1

𝜇̄𝑤𝐻̄−𝜈
(︂
𝑌

𝑍

)︂1+𝜔𝑦

𝑌 −1 1

𝜈
𝛾𝑏 (1− 𝛾𝑏) , (3.64)

𝐵̃𝑢 ≡ 𝜓𝜆̃
−1

𝜇̄𝑤𝐻̄−𝜈
(︂
𝑌

𝑍

)︂1+𝜔𝑦

𝑌 −1 (𝛾𝑏 − 𝜋𝑏) , (3.65)

𝐵Ω ≡ 𝑠Ω𝜋𝑏 − 𝑠𝑏𝜎𝑏𝜋𝑏 (1− 𝜋𝑏)− 𝐵̃Ω + 𝐵̃𝑢 (𝛾𝑏 − 𝜋𝑏) , (3.66)

𝐵𝜆 ≡ 𝐵̃𝑢 − 𝑠Ω. (3.67)
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Now plug in the law of motion of 𝑏̂𝑡

𝑏̂𝑡 =
𝛿
(︀
1 + 𝑟𝑑

)︀
1 + 𝜋𝑏𝜔̄

[︂
(1 + 𝜔̄) + 𝜋𝑏

𝜌𝑔𝑏
𝜌𝑏

]︂ (︀
𝚤̂𝑑𝑡−1 − 𝜋𝑡

)︀
+𝜋𝑏 (1− 𝜋𝑏)

𝑠𝑐
𝜌𝑏 (1 + 𝜋𝑏𝜔̄)

𝑐𝑡 −
𝐵̃𝑢

𝜌𝑏 (1 + 𝜋𝑏𝜔̄)

[︁
𝜇̂𝑤𝑡 − 𝜈ℎ̄𝑡 + (1 + 𝜔𝑦)

(︁
𝑌𝑡 − 𝑧𝑡

)︁]︁
+

𝐵Ω

𝜌𝑏 (1 + 𝜋𝑏𝜔̄)
Ω̂𝑡 +

𝐵𝜆

𝜌𝑏 (1 + 𝜋𝑏𝜔̄)
𝜆̂𝑡 −

𝜋𝑏 (1 + 𝜔̄)

1 + 𝜋𝑏𝜔̄
𝜔̂𝑡

+
𝛿
(︀
1 + 𝑟𝑑

)︀
(1 + 𝜔̄)

1 + 𝜋𝑏𝜔̄

(︁
𝑏̂𝑡−1 + 𝜔̂𝑡−1

)︁
− 𝜋𝑏
𝜌𝑏 (1 + 𝜋𝑏𝜔̄)

[︁
𝑏̂𝑔𝑡 − 𝛿

(︀
1 + 𝑟𝑑

)︀
𝑏̂𝑔𝑡−1

]︁
,

and using (3.47) we can further write

𝑏̂𝑡 = 𝜚𝑟
(︀
𝚤̂𝑑𝑡−1 − 𝜋𝑡

)︀
+ 𝜚𝑌 𝑌𝑡 + 𝜚ΩΩ̂𝑡 + 𝜚𝜔𝜔̂𝑡 + 𝜚𝑏

(︁
𝑏̂𝑡−1 + 𝜔̂𝑡−1

)︁
(3.68)

+𝜚𝜉

[︁
𝜋𝑏 (1− 𝜋𝑏) 𝑠𝑐𝑐𝑡 +𝐵𝜆𝜎̄

−1
(︁
𝑔𝑡 + Ξ̂𝑡

)︁
− 𝐵̃𝑢

[︀
𝜇̂𝑤𝑡 − 𝜈ℎ̄𝑡 − (1 + 𝜔𝑦) 𝑧𝑡

]︀]︁
−𝜋𝑏𝜚𝜉

[︁
𝑏̂𝑔𝑡 − 𝛿

(︀
1 + 𝑟𝑑

)︀
𝑏̂𝑔𝑡−1

]︁
,

with

𝜚𝑟 ≡
𝛿
(︀
1 + 𝑟𝑑

)︀
1 + 𝜋𝑏𝜔̄

[︂
(1 + 𝜔̄) + 𝜋𝑏

𝜌𝑔𝑏
𝜌𝑏

]︂
, (3.69)

𝜚𝑌 ≡ −𝜚𝜉
(︁
𝐵̃𝑢 (1 + 𝜔𝑦) +𝐵𝜆𝜎̄

−1
)︁
, (3.70)

𝜚Ω ≡ 𝜚𝜉 (𝐵Ω −𝐵𝜆𝑠Ω) , (3.71)

𝜚𝜔 ≡ −𝜋𝑏 (1 + 𝜔̄)

1 + 𝜋𝑏𝜔̄
, (3.72)

𝜚𝜉 ≡
1

𝜌𝑏 (1 + 𝜋𝑏𝜔̄)
, (3.73)

𝜚𝑏 ≡
𝛿
(︀
1 + 𝑟𝑑

)︀
(1 + 𝜔̄)

1 + 𝜋𝑏𝜔̄
. (3.74)

C.3 Complete simplified system of log-linear equations

We can write the required equations as

𝚤̂𝑎𝑣𝑔𝑡 = 𝚤̂𝑑𝑡 + 𝜋𝑏𝜔̂𝑡, (3.75)

Ω̂𝑡 = 𝜔̂𝑡 + 𝛿𝐸𝑡Ω̂𝑡+1, (3.76)
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𝑌𝑡 = 𝐸𝑡𝑌𝑡+1 − 𝜎̄ (̂𝚤𝑎𝑣𝑔𝑡 − 𝐸𝑡𝜋𝑡+1)− 𝐸𝑡Δ𝑔𝑡+1 − 𝐸𝑡ΔΞ̂𝑡+1 (3.77)

−𝜎̄𝑠ΩΩ̂𝑡 + 𝜎̄ (𝑠Ω + 𝜓Ω)𝐸𝑡Ω̂𝑡+1,

𝜋𝑡 = 𝛽𝐸𝑡𝜋𝑡+1 + 𝑢𝑡 + 𝜅
(︁
𝑌𝑡 − 𝑌 𝑛

𝑡

)︁
− 𝜉𝜎̄−1Ξ̂𝑡 + 𝜉 (𝑠Ω + 𝜋𝑏 − 𝛾𝑏) Ω̂𝑡, (3.78)

𝜔̂𝑡 = 𝜔𝑏𝑏̂𝑡 + 𝜔𝜒̂︀𝜒𝑡 + 𝜔Ξ
̂̃︀Ξ𝑡, (3.79)

𝑏̂𝑡 = 𝜚𝑟
(︀
𝚤̂𝑑𝑡−1 − 𝜋𝑡

)︀
+ 𝜚𝑌 𝑌𝑡 + 𝜚ΩΩ̂𝑡 + 𝜚𝜔𝜔̂𝑡 + 𝜚𝑏

(︁
𝑏̂𝑡−1 + 𝜔̂𝑡−1

)︁
(3.80)

+𝜚𝜉

[︁
𝜋𝑏 (1− 𝜋𝑏) 𝑠𝑐𝑐𝑡 +𝐵𝜆𝜎̄

−1
(︁
𝑔𝑡 + Ξ̂𝑡

)︁
− 𝐵̃𝑢

[︀
𝜇̂𝑤𝑡 − 𝜈ℎ̄𝑡 − (1 + 𝜔𝑦) 𝑧𝑡

]︀]︁
−𝜋𝑏𝜚𝜉

[︁
𝑏̂𝑔𝑡 − 𝛿

(︀
1 + 𝑟𝑑

)︀
𝑏̂𝑔𝑡−1

]︁
,

with

𝑌 𝑛
𝑡 ≡

(︀
𝜔𝑦 + 𝜎̄−1

)︀−1 [︀
𝜎̄−1𝑔𝑡 + 𝜈ℎ̄𝑡 + (1 + 𝜔𝑦) 𝑧𝑡

]︀
, (3.81)

𝑠𝑐𝑐𝑡 = 𝜋𝑏𝑠𝑏𝑐
𝑏
𝑡 + (1− 𝜋𝑏) 𝑠𝑠𝑐

𝑠
𝑡 , (3.82)

𝑔𝑡 = 𝑠𝑐𝑐𝑡 + 𝐺̂𝑡, (3.83)

𝑢𝑡 ≡ 𝜉 (𝜇̂𝑤𝑡 + 𝜏𝑡) , (3.84)

Δ𝑔𝑡 ≡ 𝑔𝑡 − 𝑔𝑡−1, (3.85)

Δ̂̃︀Ξ𝑡 ≡ ̂̃︀Ξ𝑡 − ̂̃︀Ξ𝑡−1. (3.86)

𝜉𝑡 = 𝜌𝜉𝜉𝑡−1 + 𝜀𝑡 (3.87)

D Quadratic approximation of the welfare function

D.1 Welfare function

The loss function can be written as

𝑈̃𝑡 = 𝜋𝑏

(︀
𝐶𝑏
𝑡

)︀𝜎−1
𝑏
(︀
𝑐𝑏𝑡
)︀1−𝜎−1

𝑏

1− 𝜎−1
𝑏

+(1− 𝜋𝑏)

(︀
𝐶𝑠
𝑡

)︀𝜎−1
𝑠 (𝑐𝑠𝑡)

1−𝜎−1
𝑠

1− 𝜎−1
𝑠

− 𝜓

1 + 𝜈

(︃
𝜆̃𝑡

Λ̃𝑡

)︃− 1+𝜈
𝜈

𝐻̄−𝜈
𝑡

(︂
𝑌𝑡

𝐴𝑡

)︂1+𝜔𝑦

Δ𝑡,

where I used

𝜆𝑏𝑡 =
(︀
𝐶𝑏
𝑡

)︀𝜎−1
𝑏
(︀
𝑐𝑏𝑡
)︀−𝜎−1

𝑏 ,

𝜆𝑠𝑡 =
(︀
𝐶𝑠
𝑡

)︀𝜎−1
𝑠 (𝑐𝑠𝑡)

−𝜎−1
𝑠 .
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D.2 Quadratic approximation: efficient steady state and no spread

Efficient steady state implies that

Φ = 0,

and

(1− 𝜏) = 𝜇𝑝𝜇𝑤.

Zero spread implies

𝜆̄𝑏 = 𝜆̄𝑠 = Λ
(︀
𝜆̄𝑏, 𝜆̄𝑠

)︀
= 𝜆̃

(︀
𝜆̄𝑏, 𝜆̄𝑠

)︀
= Λ̃

(︀
𝜆̄𝑏, 𝜆̄𝑠

)︀
= 𝜆̄,

Ω̄ = 1,

0 = 𝜒̄′ (︀𝑏̄)︀+ Ξ̄′ (︀𝑏̄)︀ .
Further consider that 𝜒̄′ (︀𝑏̄)︀ = Ξ̄′ (︀𝑏̄)︀ = 0.

The first term of the objective is then

𝑈̃1
𝑡 = 𝜋𝑏

(︀
𝐶𝑏
)︀𝜎−1

𝑏
(︀
𝑐𝑏
)︀−𝜎−1

𝑏
(︀
𝑐𝑏𝑡 − 𝑐𝑏

)︀
−1

2
𝜋𝑏𝜎

−1
𝑏

(︀
𝐶𝑏
)︀𝜎−1

𝑏
(︀
𝑐𝑏
)︀−𝜎−1

𝑏 −1 (︀
𝑐𝑏𝑡 − 𝑐𝑏

)︀2
+ 𝜋𝑏𝜎

−1
𝑏

(︀
𝐶𝑏
)︀𝜎−1

𝑏 −1 (︀
𝑐𝑏
)︀−𝜎−1

𝑏
(︀
𝑐𝑏𝑡 − 𝑐𝑏

)︀ (︀
𝐶𝑏
𝑡 − 𝐶𝑏

)︀
+𝑡.𝑖.𝑝.+𝒪

(︀
‖𝜉‖3

)︀
⇔

𝑈̃1
𝑡 = 𝜋𝑏𝜆̄𝑐

𝑏

[︃
𝑐𝑏𝑡 − 𝑐𝑏

𝑐𝑏
− 1

2
𝜎−1
𝑏

(︂
𝑐𝑏𝑡 − 𝑐𝑏

𝑐𝑏

)︂2

+ 𝜎−1
𝑏

(︂
𝑐𝑏𝑡 − 𝑐𝑏

𝑐𝑏

)︂(︂
𝐶𝑏
𝑡 − 𝐶𝑏

𝐶𝑏

)︂]︃
+ 𝑡.𝑖.𝑝.+𝒪

(︀
‖𝜉‖3

)︀
⇔

𝑈̃1
𝑡 = 𝜋𝑏𝑐

𝑏𝜆̄

{︂
𝑐𝑏𝑡 +

1

2

(︀
1− 𝜎−1

𝑏

)︀ [︀
𝑐𝑏𝑡 + (𝜎𝑏 − 1) 𝑐𝑏𝑡

]︀2}︂
+ 𝑡.𝑖.𝑝.+𝒪

(︀
‖𝜉‖3

)︀
, (4.1)

where I used the fact that

𝑐𝑏𝑡 ≡ 𝑐𝑏 exp 𝑐𝑏𝑡 ⇒ 𝑐𝑏𝑡 − 𝑐𝑏

𝑐𝑏
= 𝑐𝑏𝑡 +

1

2

(︀
𝑐𝑏𝑡
)︀2

+𝒪
(︀
‖𝜉‖3

)︀
⇒

(︂
𝑐𝑏𝑡 − 𝑐𝑏

𝑐𝑏

)︂2

=
(︀
𝑐𝑏𝑡
)︀2

+𝒪
(︀
‖𝜉‖3

)︀
.
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The second term can equivalently be written as

𝑈̃2
𝑡 = (1− 𝜋𝑏) 𝑐

𝑠𝜆̄

{︂
𝑐𝑠𝑡 +

1

2

(︀
1− 𝜎−1

𝑠

)︀
[𝑐𝑠𝑡 + (𝜎𝑠 − 1) 𝑐𝑠𝑡 ]

2

}︂
+ 𝑡.𝑖.𝑝.+𝒪

(︀
‖𝜉‖3

)︀
. (4.2)

The third term is

𝑈̃3
𝑡 = − 𝜓

1 + 𝜈
𝐻̄−𝜈

(︂
𝑌

𝑍

)︂1+𝜔𝑦

(1 + 𝜔𝑦)

[︃
𝑌𝑡 − 𝑌

𝑌
+

1

2
𝜔𝑦

(︂
𝑌𝑡 − 𝑌

𝑌

)︂2
]︃

− 𝜓

1 + 𝜈
𝐻̄−𝜈

(︂
𝑌

𝑍

)︂1+𝜔𝑦

(1 + 𝜔𝑦)

[︂
− (1 + 𝜔𝑦)

𝑍𝑡 − 𝑍

𝑍
− 𝜈

𝐻̄𝑡 − 𝐻̄

𝐻̄

]︂
𝑌𝑡 − 𝑌

𝑌

− 𝜓

1 + 𝜈
𝐻̄−𝜈

(︂
𝑌

𝑍

)︂1+𝜔𝑦

(Δ𝑡 − 1)

− 𝜓

1 + 𝜈
𝐻̄−𝜈

(︂
𝑌

𝑍

)︂1+𝜔𝑦 1

2

1 + 𝜈

𝜈
𝜋𝑏 (1− 𝜋𝑏)

(︂
𝜓

𝜓𝑏

)︂ 1
𝜈
(︂
𝜓

𝜓𝑠

)︂ 1
𝜈
(︂
𝜆𝑏𝑡 − 𝜆̄

𝜆̄
− 𝜆𝑠𝑡 − 𝜆̄

𝜆̄

)︂2

+𝑡.𝑖.𝑝.+𝒪
(︀
‖𝜉‖3

)︀
,

and notice that the first derivatives w.r.t. 𝜆𝑏𝑡 and 𝜆
𝑠
𝑡 are zero in steady state. We can further

simplify it to:

𝑈̃3
𝑡 = −𝜆̄𝑌

{︂
𝑌𝑡 +

1

2
(1 + 𝜔𝑦)𝑌

2
𝑡 − 𝜔𝑦𝑞𝑡𝑌𝑡 + (1 + 𝜔𝑦)

−1 Δ̂𝑡

}︂
(4.3)

−1

2
𝜆̄𝑌

𝜋𝑏 (1− 𝜋𝑏)

𝜈 (1 + 𝜔𝑦)

(︂
𝜓

𝜓𝑏

)︂ 1
𝜈
(︂
𝜓

𝜓𝑠

)︂ 1
𝜈

Ω̂2
𝑡 ,

with

𝑞𝑡 ≡
(1 + 𝜔𝑦) 𝑧𝑡 + 𝜈ℎ̄𝑡

𝜔𝑦
. (4.4)

Now consider a second order approximation to the market clearing condition:

𝑌𝑡 = 𝜋𝑏𝑐
𝑏
𝑡 + (1− 𝜋𝑏) 𝑐

𝑠
𝑡 +𝐺𝑡 + Ξ𝑡 (𝑏𝑡) ,

hence

𝑌

(︂
𝑌𝑡 − 𝑌

𝑌

)︂
= 𝜋𝑏𝑐

𝑏 𝑐
𝑏
𝑡 − 𝑐𝑏

𝑐𝑏
+ (1− 𝜋𝑏) 𝑐

𝑠 𝑐
𝑠
𝑡 − 𝑐𝑠

𝑐𝑠
+ 𝑌

𝐺𝑡 − 𝐺̄

𝑌
+ 𝑌 ̂̃︀Ξ𝑡 (︁1 + 𝜂𝑏̂𝑡

)︁
+𝑡.𝑖.𝑝.+𝒪

(︀
‖𝜉‖3

)︀
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⇔

𝑌𝑡 +
1

2
𝑌 2
𝑡 = 𝜋𝑏𝑠𝑏

(︂
𝑐𝑏𝑡 +

1

2

(︀
𝑐𝑏𝑡
)︀2)︂

+ (1− 𝜋𝑏) 𝑠𝑠

(︂
𝑐𝑠𝑡 +

1

2
(𝑐𝑠𝑡)

2

)︂
+ 𝐺̂𝑡 +

̂̃︀Ξ𝑡 (︁1 + 𝜂𝑏̂𝑡

)︁
(4.5)

+𝑡.𝑖.𝑝.+𝒪
(︀
‖𝜉‖3

)︀
.

Further recall that

Ω̂𝑡 ≡ 𝜆̂𝑏𝑡 − 𝜆̂𝑠𝑡 = 𝜎−1
𝑠 (𝑐𝑠𝑡 − 𝑐𝑠𝑡)− 𝜎−1

𝑏

(︀
𝑐𝑏𝑡 − 𝑐𝑏𝑡

)︀
,

𝑐𝑏𝑡 = 𝑐𝑏𝑡 − 𝜎𝑏𝜆̂
𝑏
𝑡 ,

𝑐𝑠𝑡 = 𝑐𝑠𝑡 − 𝜎𝑠𝜆̂
𝑠
𝑡 .

The first order approximation to the resources constraint yields

𝑌𝑡 = 𝜋𝑏𝑠𝑏𝑐
𝑏
𝑡 + (1− 𝜋𝑏) 𝑠𝑠𝑐

𝑠
𝑡 + 𝐺̂𝑡 +

̂̃︀Ξ𝑡 +𝒪
(︀
‖𝜉‖2

)︀
, (4.6)

and using the definition of 𝑔𝑡, we can write

𝑌𝑡 − 𝑔𝑡 − ̂̃︀Ξ𝑡 = 𝜋𝑏𝑠𝑏
(︀
𝑐𝑏𝑡 − 𝑐𝑏𝑡

)︀
+ (1− 𝜋𝑏) 𝑠𝑠 (𝑐

𝑠
𝑡 − 𝑐𝑠𝑡) +𝒪

(︀
‖𝜉‖2

)︀
, (4.7)

and (︀
𝑐𝑏𝑡 − 𝑐𝑏𝑡

)︀
= 𝜎̄−1𝜎𝑏

[︁(︁
𝑌𝑡 − 𝑔𝑡 − ̂̃︀Ξ𝑡)︁− (1− 𝜋𝑏) 𝑠𝑠𝜎𝑠Ω̂𝑡

]︁
+𝒪

(︀
‖𝜉‖2

)︀
, (4.8)

(𝑐𝑠𝑡 − 𝑐𝑠𝑡) = 𝜎̄−1𝜎𝑠

[︁(︁
𝑌𝑡 − 𝑔𝑡 − ̂̃︀Ξ𝑡)︁+ 𝜋𝑏𝑠𝑏𝜎𝑏Ω̂𝑡

]︁
+𝒪

(︀
‖𝜉‖2

)︀
. (4.9)

Sum now the first two terms in the utility:

𝑈̃1
𝑡 + 𝑈̃2

𝑡 = 𝜆̄𝑌

{︂
𝜋𝑏𝑠𝑏

(︂
𝑐𝑏𝑡 +

1

2

(︀
𝑐𝑏𝑡
)︀2)︂

+ (1− 𝜋𝑏) 𝑠𝑠

(︂
𝑐𝑠𝑡 +

1

2
(𝑐𝑠𝑡)

2

)︂}︂
−1

2
𝜆̄𝑌
{︁
𝜋𝑏𝑠𝑏𝜎

−1
𝑏

(︀
𝑐𝑏𝑡 − 𝑐𝑏𝑡

)︀2
+ (1− 𝜋𝑏) 𝑠𝑠𝜎

−1
𝑠 (𝑐𝑠𝑡 − 𝑐𝑠𝑡)

2
}︁

+𝑡.𝑖.𝑝.+𝒪
(︀
‖𝜉‖3

)︀
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⇔

𝑈̃1
𝑡 + 𝑈̃2

𝑡 = 𝜆̄𝑌

{︂
𝑌𝑡 +

1

2
𝑌 2
𝑡 − ̂̃︀Ξ𝑡 (︁1 + 𝜂𝑏̂𝑡

)︁}︂
−1

2
𝜆̄𝑌

{︂
𝜋𝑏𝑠𝑏𝜎𝑏

[︁
𝜎̄−1

(︁
𝑌𝑡 − 𝑔𝑡 − ̂̃︀Ξ𝑡)︁− (1− 𝜋𝑏) 𝑠𝑠𝜎𝑠𝜎̄

−1Ω̂𝑡

]︁2}︂
−1

2
𝜆̄𝑌

{︂
(1− 𝜋𝑏) 𝑠𝑠𝜎𝑠

[︁
𝜎̄−1

(︁
𝑌𝑡 − 𝑔𝑡 − ̂̃︀Ξ𝑡)︁+ 𝜋𝑏𝑠𝑏𝜎𝑏𝜎̄

−1Ω̂𝑡

]︁2}︂
+𝑡.𝑖.𝑝.+𝒪

(︀
‖𝜉‖3

)︀
⇔

𝑈̃1
𝑡 + 𝑈̃2

𝑡 = 𝜆̄𝑌

{︂
𝑌𝑡 +

1

2
𝑌 2
𝑡 − ̂̃︀Ξ𝑡 (︁1 + 𝜂𝑏̂𝑡

)︁}︂
(4.10)

−1

2
𝜆̄𝑌

{︂
𝜎̄−1

(︁
𝑌𝑡 − 𝑔𝑡 − 𝑌 −1Ξ̂𝑡

)︁2
+

[𝜋𝑏𝑠𝑏𝜎𝑏] [(1− 𝜋𝑏) 𝑠𝑠𝜎𝑠]

𝜎̄
Ω̂2
𝑡

}︂
+𝑡.𝑖.𝑝.+𝒪

(︀
‖𝜉‖3

)︀
,

and combine with the third term to get:

𝑈̃𝑡 = 𝜆̄𝑌

{︂
𝑌𝑡 +

1

2
𝑌 2
𝑡 − ̂̃︀Ξ𝑡 (︁1 + 𝜂𝑏̂𝑡

)︁}︂
−1

2
𝜆̄𝑌

{︂
𝜎̄−1

(︁
𝑌𝑡 − 𝑔𝑡 − ̂̃︀Ξ𝑡)︁2 + [𝜋𝑏𝑠𝑏𝜎𝑏] [(1− 𝜋𝑏) 𝑠𝑠𝜎𝑠]

𝜎̄
Ω̂2
𝑡

}︂
−𝜆̄𝑌

{︂
𝑌𝑡 +

1

2
(1 + 𝜔𝑦)𝑌

2
𝑡 − 𝜔𝑦𝑞𝑡𝑌𝑡 + (1 + 𝜔𝑦)

−1 Δ̂𝑡

}︂
−1

2
𝜆̄𝑌

𝜋𝑏 (1− 𝜋𝑏)

𝜈 (1 + 𝜔𝑦)

(︂
𝜓

𝜓𝑏

)︂ 1
𝜈
(︂
𝜓

𝜓𝑠

)︂ 1
𝜈

Ω̂2
𝑡

+𝑡.𝑖.𝑝.+𝒪
(︀
‖𝜉‖3

)︀
⇔

𝑈̃𝑡 = − 𝜆̄𝑌
2

{︂
𝜔𝑦

(︁
𝑌𝑡 − 𝑞𝑡

)︁2
+ 𝜎̄−1

(︁
𝑌𝑡 − 𝑔𝑡 − ̂̃︀Ξ𝑡)︁2 + 𝜆̃ΩΩ̂

2
𝑡 +

2

1 + 𝜔𝑦
Δ̂𝑡

}︂
(4.11)

−𝜆̄Ξ𝑡 (𝑏𝑡) + 𝑡.𝑖.𝑝.+𝒪
(︀
‖𝜉‖3

)︀
,

with

𝜆̃Ω ≡ [𝜋𝑏𝑠𝑏𝜎𝑏] [(1− 𝜋𝑏) 𝑠𝑠𝜎𝑠]

𝜎̄
+
𝜋𝑏 (1− 𝜋𝑏)

𝜈 (1 + 𝜔𝑦)

(︂
𝜓

𝜓𝑏

)︂ 1
𝜈
(︂
𝜓

𝜓𝑠

)︂ 1
𝜈

.
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Further write

𝜔𝑦

(︁
𝑌𝑡 − 𝑞𝑡

)︁2
+ 𝜎̄−1

(︁
𝑌𝑡 − 𝑔𝑡 − ̂̃︀Ξ𝑡)︁2

=
(︀
𝜔𝑦 + 𝜎̄−1

)︀
𝑌 2
𝑡 − 2

[︁
𝜎̄−1

(︁
𝑔𝑡 +

̂̃︀Ξ𝑡)︁+ 𝜔𝑦𝑞𝑡

]︁
𝑌𝑡 + 𝑡.𝑖.𝑝.

=
(︀
𝜔𝑦 + 𝜎̄−1

)︀ (︁
𝑌𝑡 −

(︀
𝜔𝑦 + 𝜎̄−1

)︀−1
[︁
𝜎̄−1

(︁
𝑔𝑡 +

̂̃︀Ξ𝑡)︁+ 𝜔𝑦𝑞𝑡

]︁)︁2
=

(︀
𝜔𝑦 + 𝜎̄−1

)︀ (︁
𝑌𝑡 − 𝑌 𝑛

𝑡 −
(︀
𝜔𝑦 + 𝜎̄−1

)︀−1
𝜎̄−1 ̂̃︀Ξ𝑡)︁2 .

We can then write

𝑈̃𝑡 = − 𝜆̄𝑌
2

{︂(︀
𝜔𝑦 + 𝜎̄−1

)︀ (︁
𝑌𝑡 − 𝑌 *

𝑡

)︁2
+ 𝜆̃ΩΩ̂

2
𝑡 +

2

1 + 𝜔𝑦
Δ̂𝑡

}︂
− 𝜆̄𝑌 ̂̃︀Ξ𝑡 (︁1 + 𝜂𝑏̂𝑡

)︁
(4.12)

+𝑡.𝑖.𝑝.+𝒪
(︀
‖𝜉‖3

)︀
.

with

𝑌 *
𝑡 ≡ 𝑌 𝑛

𝑡 +
(︀
𝜔𝑦 + 𝜎̄−1

)︀−1
𝜎̄−1 ̂̃︀Ξ𝑡 (4.13)

Now we can get a second order approximation for Δ𝑡:

(Δ𝑡 − 1) = 𝛼 (Δ𝑡−1 − 1)

+𝛼𝜃 (1 + 𝜔𝑦) (Π𝑡 − 1) + 𝛼𝜃 (1 + 𝜔𝑦) [𝜃 (1 + 𝜔𝑦)− 1]
1

2
(Π𝑡 − 1)2

−𝛼𝜃 (1 + 𝜔𝑦) (Π𝑡 − 1)

−𝛼𝜃 (1 + 𝜔𝑦)

[︂
(𝜃 − 2)− 𝛼 (𝜃 − 1)

1− 𝛼

(︂
𝜃 (1 + 𝜔𝑦)

𝜃 − 1
− 1

)︂]︂
1

2
(Π𝑡 − 1)2

+𝒪
(︀
‖𝜉‖3

)︀
⇒

Δ̂𝑡 = 𝛼Δ̂𝑡−1 + 𝜃 (1 + 𝜔𝑦) (1 + 𝜃𝜔𝑦)
𝛼

1− 𝛼

1

2
𝜋̂2
𝑡 +𝒪

(︀
‖𝜉‖3

)︀
. (4.14)
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Further notice that

−𝜆̄𝑌
∞∑︁
𝑠=0

𝛽𝑠−𝑡
Δ̂𝑡+𝑠

1 + 𝜔𝑦

= −𝜆̄𝑌
∞∑︁
𝑠=0

𝛽𝑠−𝑡

[︃
𝛼Δ̂𝑡+𝑠−1

1 + 𝜔𝑦
+ 𝜃 (1 + 𝜃𝜔𝑦)

𝛼

1− 𝛼

1

2
𝜋̂2
𝑡+𝑠

]︃
+𝒪

(︀
‖𝜉‖3

)︀
= −𝜆̄𝑌

∞∑︁
𝑠=0

𝛽𝑠−𝑡𝜃 (1 + 𝜃𝜔𝑦)
𝛼

1− 𝛼

1

2
𝜋̂2
𝑡+𝑠 − 𝜆̄𝑌

∞∑︁
𝑠=1

𝛽𝑠−𝑡
𝛼Δ̂𝑡+𝑠−1

1 + 𝜔𝑦
− 𝜆̄𝑌

𝛼Δ̂𝑡−1

1 + 𝜔𝑦
+𝒪

(︀
‖𝜉‖3

)︀
= −𝜆̄𝑌

∞∑︁
𝑠=0

𝛽𝑠−𝑡𝜃 (1 + 𝜃𝜔𝑦)
𝛼

1− 𝛼

1

2
𝜋̂2
𝑡+𝑠 − 𝛼𝛽𝜆̄𝑌

∞∑︁
𝑠=0

𝛽𝑠−𝑡
Δ̂𝑡+𝑠

1 + 𝜔𝑦
+ 𝑡.𝑖.𝑝.+𝒪

(︀
‖𝜉‖3

)︀
⇒

− 𝜆̄𝑌
2

∞∑︁
𝑠=0

𝛽𝑠−𝑡
2

1 + 𝜔𝑦
Δ̂𝑡+𝑠 = − 𝜆̄𝑌

2

∞∑︁
𝑠=0

𝛽𝑠−𝑡
𝜃 (1 + 𝜃𝜔𝑦)

(1− 𝛼𝛽)

𝛼

1− 𝛼
𝜋̂2
𝑡+𝑠 + 𝑡.𝑖.𝑝.+𝒪

(︀
‖𝜉‖3

)︀
.

so that we can write the period welfare as

𝑈̃𝑡 = − 𝜆̄𝑌
2

{︂
𝜔𝑦

(︁
𝑌𝑡 − 𝑌 *

𝑡

)︁2
+ 𝜆̃ΩΩ̂

2
𝑡 +

𝜃

𝜉
𝜋̂2
𝑡+𝑠

}︂
− 𝜆̄𝑌 𝜂 ̂̃︀Ξ𝑡𝑏̂𝑡 (4.15)

+𝑡.𝑖.𝑝.+𝒪
(︀
‖𝜉‖3

)︀
.

with 𝑌 𝑛
𝑡 defined in (3.56).

We can then say that maximizing this welfare functional is equivalent to minimizing the

following loss function

𝐿𝑡 = 𝜋̂2
𝑡 + 𝜆𝑦

(︁
𝑌𝑡 − 𝑌 *

𝑡

)︁2
+ 𝜆ΩΩ̂

2
𝑡 + 𝜆Ξ

̂̃︀Ξ𝑡𝑏̂𝑡, (4.16)

with

𝑌 *
𝑡 ≡ 𝑌 𝑛

𝑡 +
𝜎̄−1

𝜔𝑦 + 𝜎̄−1

̂̃︀Ξ𝑡,
𝜆𝑦 ≡

𝜉

𝜃
𝜔𝑦,

𝜆Ω ≡ 𝜉

𝜃
𝜆̃Ω,

𝜆Ξ ≡ 2𝜂
𝜉

𝜃
,
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𝜆̃Ω ≡ [𝜋𝑏𝑠𝑏𝜎𝑏] [(1− 𝜋𝑏) 𝑠𝑠𝜎𝑠]

𝜎̄
+
𝜋𝑏 (1− 𝜋𝑏)

𝜈 (1 + 𝜔𝑦)

(︂
𝜓

𝜓𝑏

)︂ 1
𝜈
(︂
𝜓

𝜓𝑠

)︂ 1
𝜈

.

E Calibration

The paper discusses the strategy for the calibration. Here we present the exact values

for all the parameters.

Notice that unless otherwise mentioned, all exogenous disturbances follow an AR(1)

process with autocorrelation coefficient equal to 𝜌𝜉, which in the baseline calibration is set

to 0.9. The only expection to this is the autocorrelation coefficient of the monetary policy

shock, in the case of a Taylor rule, in which case we consider an autocorrelation coefficient

of 0.6.

Exogenous, takes resources The spread in the FF model is exogenous and consumes

resources, i. e. κ = 0, 𝜒̄ = 0, Ξ̄ = 𝜔̄ and 𝜂 = 1. The full list of parameters is:

𝜑−1 0.75 1 + 𝜔̄ (1.02)1/4 𝑠Ξ 0.0159 𝜎̄−1 0.16

𝛼 0.66 𝛿 0.975 𝜌𝑔𝑏 0 𝜎 8.9286

𝜔𝑦 0.473 𝜋𝑏 0.5 𝑠𝑐 0.7 𝜎𝑏 13.802

𝜈 0.1048 𝜌𝑏 3.2 𝑠𝑏 0.7821 𝜎𝑠 2.7604

(𝜃 − 1)−1 0.15 𝜂 1 𝑠𝑠 0.6179 𝜎𝑏/𝜎𝑠 5

𝜇𝑝 1.15 κ 0 𝑠𝑏/𝑠𝑠 1.2657 𝜆̄𝑏/𝜆̄𝑠 1.2175

𝑟𝑑 0.01 𝜇̄𝑤 1 𝜓𝑏 1.1492 𝑍 1

𝛽 0.9874 𝜏 0.2 𝜓𝑠 0.9439 𝐻̄ 1

𝑌 1 𝑠𝑔 0.2841 𝜓𝑏/𝜓𝑠 1.2175 𝜌𝜉 0.9

Endogenous, takes resources The spread in the FF model is endogenous and takes re-

sources, i.e. 𝜂 > 1 (such that the spread elasticity to debt is 1/4), κ = 0 and 𝜒̄ = 0.
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The full list of parameters is:

𝜑−1 0.75 1 + 𝜔̄ (1.02)1/4 𝑠Ξ 0.0003 𝜎̄−1 0.16

𝛼 0.66 𝛿 0.975 𝜌𝑔𝑏 0 𝜎 8.9286

𝜔𝑦 0.473 𝜋𝑏 0.5 𝑠𝑐 0.7 𝜎𝑏 13.8019

𝜈 0.1048 𝜌𝑏 3.2 𝑠𝑏 0.7821 𝜎𝑠 2.7604

(𝜃 − 1)−1 0.15 𝜂 51.623 𝑠𝑠 0.6179 𝜎𝑏/𝜎𝑠 5

𝜇𝑝 1.15 κ 0 𝑠𝑏/𝑠𝑠 1.2657 𝜆̄𝑏/𝜆̄𝑠 1.2175

𝑟𝑑 0.01 𝜇̄𝑤 1 𝜓𝑏 1.1492 𝑍 1

𝛽 0.9874 𝜏 0.2 𝜓𝑠 0.9439 𝐻̄ 1

𝑌 1 𝑠𝑔 0.2997 𝜓𝑏/𝜓𝑠 1.2175 𝜌𝜉 0.9

F Models and specifications

In all exercises we consider three versions of the model:

FF Full model with heterogeneous households and a spread between saving and borrowing

interest rates.

NoFF Model with heterogeneous households but no spread between saving and borrowing

interest rates.

Normal Model without heterogeneous households or spread between saving and borrowing

interest rates. This is equivalent to standard New-Keynesian model.

The parametrization differences are:

∙ in NoFF and RepHH we consider 𝛽 =
(︀
1 + 𝑟𝑑

)︀−1
,

∙ in RepHH we consider 𝐶𝑏 = 𝐶𝑠 = 𝐶 and 𝜎𝑏 = 𝜎𝑠 = 𝜎.

G Policy rules

In each case we consider the following alternative policies:8

Optimal This is the optimal policy.

8Any variable 𝑥̂𝑡 is defined as 𝑥̂𝑡 ≡ ln (𝑥𝑡/𝑥̄) except for the interest rates, which are defined as 𝚤̂𝑡 ≡
log ((1 + 𝑖𝑡) / (1 + 𝚤̄)) and the spread is given by 𝜔̂𝑡 ≡ log ((1 + 𝜔𝑡) / (1 + 𝜔̄)).

62



Technical Appendix

Taylor This is the basic Taylor rule

𝚤̂𝑑𝑡 = 𝜑𝜋𝜋𝑡 +
𝜑𝑦
4
𝑌𝑡 + 𝜉𝑖𝑡, (7.1)

where 𝜉𝑖𝑡 = 𝜌𝜉𝑖𝑡−1 + 𝜀𝑖𝑡, 𝜑𝜋 = 2, 𝜑𝑦 = 1 and 𝜌 = 0.75.

TaylorYn This is the Taylor rule with the output deviations from its natural level

𝑖̂𝑑𝑡 = 𝜑𝜋𝜋𝑡 +
𝜑𝑦
4

(︁
𝑌𝑡 − 𝑌 𝑛

𝑡

)︁
+ 𝜉𝑖𝑡, (7.2)

where 𝜉𝑖𝑡 = 𝜌𝜉𝑖𝑡−1 + 𝜀𝑖𝑡, 𝜑𝜋 = 2, 𝜑𝑦 = 1 and 𝜌 = 0.75.

PiStab Inflation stabilization:

𝜋𝑡 = 0. (7.3)

FlexTarget This is the optimal target criterion proposed in Benigno and Woodford (2005)

and discussed in the paper. It takes the form of

0 = 𝜋𝑡 + 𝜆𝑥 (𝑦𝑡 − 𝑦𝑡−1) , (7.4)

where 𝜆𝑥 the optimal weight is defined in Benigno and Woodford (2005), and 𝑦𝑡 is

the output gap measure relative to the optimal target defined as well in Benigno and

Woodford (2005), except that here we replace the autonomous spending disturbance

𝑔𝑡 with 𝑔𝑡 +
̂̃︀Ξ𝑡, to reflect the fact that exogenous increases in the intermediation costs

increase autonomous expenditures.
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H Responses with Linear Intermediation Technology

H.1 Shock: Monetary Policy
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Figure H.1: Impulse responses to a 1 percent (annualized) shock to 𝜖𝑚𝑡 , in three different
models with a linear intermediation technology.
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H.2 Shock: Productivity
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Figure H.2: Impulse responses to a 1 percent (annualized) shock to 𝑍𝑡, in three different
models with a linear intermediation technology.
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H.3 Shock: Type 𝑠 Expenditure
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Figure H.3: Impulse responses to a 1 percent shock to type 𝑠 expenditure, in three different
models with a linear intermediation technology.
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H.4 Shock: Type 𝑏 Expenditure
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Figure H.4: Impulse responses to a 1 percent shock to type 𝑏 expenditure, in three different
models with a linear intermediation technology.
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H.5 Shock: Government Expenditure

0 4 8 12 16
0

0.05

0.1

0.15

Y

0 4 8 12 16

−0.08

−0.06

−0.04

−0.02

0

π

0 4 8 12 16

−0.02

−0.01

0

0.01
id

0 4 8 12 16
−0.01

−0.005

0

0.005

0.01
ω

0 4 8 12 16
−0.6

−0.4

−0.2

0

b

 

 

FF
NoFF
RepHH

Figure H.5: Impulse responses to a shock to 𝐺𝑡 equal to 1 percent of steady-state output, in
three different models with a linear intermediation technology.
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H.6 Shock: Government Debt
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Figure H.6: Impulse responses to a shock to 𝑏𝑔𝑡 equal to 1 percent of steady-state output, in
three different models with a linear intermediation technology.
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H.7 Shock: Labor Supply
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Figure H.7: Impulse responses to a 1 percent shock to 𝐻̄𝑡, in three different models with a
linear intermediation technology.
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H.8 Shock: Wage Markup
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Figure H.8: Impulse responses to a 1 percent shock to 𝜇𝑤𝑡 , in three different models with a
linear intermediation technology.
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H.9 Shock: Tax Rate
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Figure H.9: Impulse responses to a 1 percent shock to 𝜏𝑡, in three different models with a
linear intermediation technology.
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I Responses with Convex Intermediation Technology

I.1 Shock: Monetary Policy
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Figure I.1: Impulse responses to a 1 percent (annualized) shock to 𝜖𝑚𝑡 , in three different
models with a convex intermediation technology.
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I.2 Shock: Productivity
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Figure I.2: Impulse responses to a 1 percent (annualized) shock to 𝑍𝑡, in three different
models with a convex intermediation technology.
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I.3 Shock: Type 𝑠 Expenditure
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Figure I.3: Impulse responses to a 1 percent shock to type 𝑠 expenditure, in three different
models with a convex intermediation technology.

75



Technical Appendix

I.4 Shock: Type 𝑏 Expenditure

0 4 8 12 16

0

0.02

0.04

0.06

Y

0 4 8 12 16

−0.03

−0.02

−0.01

0

0.01
π

0 4 8 12 16

−0.01

−0.005

0

0.005

0.01
id

0 4 8 12 16
−0.01

−0.005

0

0.005

0.01

ω

0 4 8 12 16
0

0.05

0.1

0.15

0.2

b

 

 

FF
NoFF
RepHH

Figure I.4: Impulse responses to a 1 percent shock to type 𝑏 expenditure, in three different
models with a convex intermediation technology.
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I.5 Shock: Government Expenditure
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Figure I.5: Impulse responses to a shock to 𝐺𝑡 equal to 1 percent of steady-state output, in
three different models with a convex intermediation technology.
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I.6 Shock: Government Debt
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Figure I.6: Impulse responses to a shock to 𝑏𝑔𝑡 equal to 1 percent of steady-state output, in
three different models with a convex intermediation technology.
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I.7 Shock: Labor Supply
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Figure I.7: Impulse responses to a 1 percent shock to 𝐻̄𝑡, in three different models with a
convex intermediation technology.
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I.8 Shock: Wage Markup

0 4 8 12 16

−0.6

−0.4

−0.2

0

Y

0 4 8 12 16
0

0.2

0.4

0.6

π

0 4 8 12 16
0

0.2

0.4

0.6

0.8

id

0 4 8 12 16

−0.1

−0.05

0

ω

0 4 8 12 16

−0.6

−0.4

−0.2

0

b

 

 

FF
NoFF
RepHH

Figure I.8: Impulse responses to a 1 percent shock to 𝜇𝑤𝑡 , in three different models with a
convex intermediation technology.
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I.9 Shock: Tax Rate
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Figure I.9: Impulse responses to a 1 percent shock to 𝜏𝑡, in three different models with a
convex intermediation technology.
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J Responses with small-𝜎𝑏 calibration

J.1 Shock: Monetary Policy

3 TAYLOR: ALL MODELS

3 Taylor: all models

3.1 Shock: xii

Figure 19: Responses to a 1% shock to ξit (inflation and interest rate annualized)
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Figure J.1: Impulse responses to a 1 percent (annualized) shock to 𝜖𝑚𝑡 , in three different
models with a convex intermediation technology and small-𝜎𝑏 calibration.
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J.2 Shock: Productivity
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Figure J.2: Impulse responses to a 1 percent (annualized) shock to 𝑍𝑡, in three different
models with a convex intermediation technology and small-𝜎𝑏 calibration.
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J.3 Shock: Type 𝑠 Expenditure
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Figure J.3: Impulse responses to a 1 percent shock to type 𝑠 expenditure, in three different
models with a convex intermediation technology and small-𝜎𝑏 calibration.
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J.4 Shock: Type 𝑏 Expenditure
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Figure J.4: Impulse responses to a 1 percent shock to type 𝑏 expenditure, in three different
models with a convex intermediation technology and small-𝜎𝑏 calibration.
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J.5 Shock: Government Expenditure

3 TAYLOR: ALL MODELS

3.5 Shock: hG

Figure 23: Responses to a shock to Gt equivalent to 1% of steady state output (inflation and
interest rate annualized)
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Figure J.5: Impulse responses to a shock to 𝐺𝑡 equal to 1 percent of steady-state output, in
three different models with a convex intermediation technology and small-𝜎𝑏 calibration.
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J.6 Shock: Government Debt
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Figure J.6: Impulse responses to a shock to 𝑏𝑔𝑡 equal to 1 percent of steady-state output, in
three different models with a convex intermediation technology and small-𝜎𝑏 calibration.
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J.7 Shock: Labor Supply
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Figure J.7: Impulse responses to a 1 percent shock to 𝐻̄𝑡, in three different models with a
convex intermediation technology and small-𝜎𝑏 calibration.
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J.8 Shock: Wage Markup
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Figure J.8: Impulse responses to a 1 percent shock to 𝜇𝑤𝑡 , in three different models with a
convex intermediation technology and small-𝜎𝑏 calibration.
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J.9 Shock: Tax Rate
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Figure J.9: Impulse responses to a 1 percent shock to 𝜏𝑡, in three different models with a
convex intermediation technology and small-𝜎𝑏 calibration.
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K Responses under Alternative Policies

K.1 Shock: Monetary Policy
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Figure K.1: Impulse responses to a 1 percent (annualized) shock to 𝜖𝑚𝑡 , under the five
alternative monetary policies described in section G.
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K.2 Shock: Productivity
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Figure K.2: Impulse responses to a 1 percent (annualized) shock to 𝑍𝑡, under the five
alternative monetary policies described in section G.
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K.3 Shock: Type s Expenditure
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Figure K.3: Impulse responses to a 1 percent shock to type 𝑠 expenditure, under the five
alternative monetary policies described in section G.
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K.4 Shock: Type b Expenditure
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Figure K.4: Impulse responses to a 1 percent shock to type 𝑏 expenditure, under the five
alternative monetary policies described in section G.
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K.5 Shock: Government Expenditure

0 4 8 12 16
0

0.1

0.2

0.3

Y

0 4 8 12 16

−0.1

−0.05

0

π

0 4 8 12 16

0

0.05

0.1

id

0 4 8 12 16

−0.03

−0.02

−0.01

0

0.01
ω

0 4 8 12 16

−0.03

−0.02

−0.01

0

0.01
b

 

 
Optimal
PiStab
Taylor
FlexTarget
TaylorYn

Figure K.5: Impulse responses to a shock to 𝐺𝑡 equal to 1 percent of steady-state output,
under the five alternative monetary policies described in section G.
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K.6 Shock: Government Debt

0 4 8 12 16

0

0.1

0.2

Y

0 4 8 12 16

0

0.02

0.04
π

0 4 8 12 16
0

0.1

0.2

0.3

0.4
id

0 4 8 12 16

−0.4

−0.3

−0.2

−0.1

0

ω

0 4 8 12 16

−0.4

−0.3

−0.2

−0.1

0

b

 

 
Optimal
PiStab
Taylor
FlexTarget
TaylorYn

Figure K.6: Impulse responses to a shock to 𝑏𝑔𝑡 equal to 1 percent of steady-state output,
under the five alternative monetary policies described in section G.
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K.7 Shock: Labor Supply
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Figure K.7: Impulse responses to a 1 percent shock to 𝐻̄𝑡, under the five alternative monetary
policies described in section G.
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K.8 Shock: Wage Markup
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Figure K.8: Impulse responses to a 1 percent shock to 𝜇𝑤𝑡 , under the five alternative monetary
policies described in section G.

98



Technical Appendix

K.9 Shock: Tax Rate
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Figure K.9: Impulse responses to a 1 percent shock to 𝜏𝑡, under the five alternative monetary
policies described in section G.
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K.10 Shock: Default Rate
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Figure K.10: Impulse responses to a shock to 𝜒̃𝑡 that increases 𝜔𝑡(𝑏) by 5 percentage points
(annualized) for each value of 𝑏, under the five alternative monetary policies described in
section G.
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K.11 Shock: Financial Cost
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Figure K.11: Impulse responses to a shock to Ξ̃𝑡 that increases 𝜔𝑡(𝑏) by 5 percentage points
(annualized) for each value of 𝑏, under the five alternative monetary policies described in
section G.
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