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Abstract

Today, all major central banks pay or collect interest on reserves, and stand ready
to use the interest rate as an instrument of monetary policy. We show that by paying
an appropriate rate on reserves, the central bank can pin the price level uniquely to a
target. The essential idea is to index payments on reserves to the price level and the
target price level in a way that creates a contractionary financial force if the price level
is above the target and an expansionary force if below. Our payment-on-reserves policy
process does not require terminal conditions like Taylor rules, exogenous fiscal surpluses
like the fiscal theory of the price level, liquidity preference as in quantity theories, or
local approximations as in new Keynesian models. The process accommodates liquidity
services from reserves, segmented financial markets where only some institutions can
hold reserves, and nominal rigidities. We believe it would be easy to implement.
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We focus on the process of monetary policy—the way the central bank controls interest

rates to stabilize the economy and achieve low and stable inflation. Before the 2008 financial

crisis, central banks for decades adjusted nominal interest rates in interbank markets by

changing a relatively small volume of reserves. This process for implementing monetary

policy worked well in advanced countries and many less advanced ones, and while it was

interrupted when nominal interest rates hit the zero lower bound, in principle, it could work

equally well as soon as economies escape from the bound. Post crisis, central banks adopted

a new process for monetary policy. Now, they maintain high reserves by paying close to

market interest on them, and set the interest rate on reserves. Changes in the reserve rate

quickly feed into changes in interbank and other short rates.

This new process of central banking comes with both challenges and opportunities. The

literature so far has mostly focussed on the implications of having large volumes of reserves

outstanding and the purchases of less liquid assets that they funded, generally longer-term

government and corporate bonds. Quantitative easing policies, as they are known, on the

one hand allowed central banks to respond to financial crises (Gertler and Karadi, 2013),

but on the other hand may jeopardize their financial stability because higher interest rates

lower portfolio values and increase the burden of interest payments (Hall and Reis, 2015).

Less thought has been put into how this new process affects the ability of the central bank

to control inflation (Reis, 2016a).

We study the use of payments on reserves to control inflation. Because the reserve

rate controls other short rates, a central bank could follow the prevailing central-banking

paradigm involving nominal interest rate rules, as laid out in Woodford (2003) and the

extensive literature on the Taylor rule. But that literature has some disturbing elements—in

particular, it raises the possibility of indeterminate equilibrium with a Taylor rule. This

paper re-considers the fundamentals of the process by which a central bank intervenes in the

economy to steer the price level. We propose a new process for setting the remuneration of

reserves that is robust and free from the possibility of indeterminacy. We call it the robust

reserve rate process.

Our proposal process combines two simple principles:

1. If the central bank ordains that the monetary unit is an asset, then this asset’s pur-

chasing power in terms of output is the inverse of the price level 1/p.

2. In an economy with real interest rate r, if a creditworthy entity issues an asset that

2



pays off 1 + r units of output next period, the current market price in terms of output

is one.

Reserves are such an asset: they are the unit of account in the economy and the central

bank remunerates them. The inevitable conclusion is that if the payment on reserves is 1+r

units next period, the price level today can only be 1. Thus, the central bank has achieved

its price level target with a monetary policy process that uses the payment on reserves as its

instrument. The process depends only on observable financial variables and pins down the

price level to its target uniquely and globally.

This result generalizes to any asset issued by the central bank as long as it is the monetary

unit and the central bank sets its remuneration. This applies to a variety of deposits by

financial institutions at the central banks around the world, including in the United States

bank reserves, balances in overnight reverse repurchase agreements, and term deposits at the

Federal Reserve. A generalization of the payment promised on reserves yields a policy that

makes the price level or inflation rate variable over time, not necessarily a price level fixed

at 1 with zero inflation.

This paper probes the foundations of this new process of inflation stabilization. We

start by writing a minimal model that involves only a valuation operator and a no-arbitrage

condition for reserves. This setup is at the heart of the vast majority of more involved models

in modern monetary and financial economics. We use it to show three equivalent ways of

formulating the payment on reserves process, and prove that they deliver a globally unique

price level.

Next, we deal with implementation issues. We show that mis-measurement of targets and

economic conditions does not affect the determinacy of the price level, though it makes it

harder for the central bank to hit its precise target. We also show that as long as the central

bank every period pays its net income as dividends to the fiscal authority, then its financial

stability is guaranteed. A commitment by the fiscal authority to respect this arrangement,

together with the usual commitment to a fiscal policy that satisfies the government intertem-

poral budget constraint under all possible realizations of random events, is all that is needed

as fiscal backup to the central bank.

The following three sections consider three separate issues in our theory of the price level.

First, we show that our conclusions follow through in an economy with firms that choose

prices subject to nominal rigidities. Second, we show that the price level continues to be
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determined by our process if reserves are a special asset in the sense of providing liquidity

services. Third, we show that if the holders of reserves are subject to some financial fric-

tions that break the no-arbitrage relation between reserves and other short-term government

liabilities, a modified version of our process can be used to target inflation.

We postpone a thorough discussion of the literature to the end of the paper. The determi-

nacy of the price level under interest-rate rules has generated an enormous and controversial

literature. We propose a way to solve these problems. We show that our proposal avoids the

issues of stability and determinacy that have arisen in studies of the Taylor rule. Moreover,

unlike fiscal and monetarist theories of the price level, our approach does not rely on the

government budget constraint or on a downward-sloping demand for liquidity, but rather

follows from the use of arbitrage in financial markets. Our proposal has its roots in Irving

Fisher’s suggestion that the price level could be stabilized by defining the dollar as enough

gold to buy the cost of living bundle, as discussed in Hall (1997). Here, we link that idea to

the payment of interest on reserves, which expands its generality and implications.

The overall conclusion is twofold. Having large amounts of outstanding reserves and

paying interest on them makes price-level stabilization easier. And a payment on reserves

process provides an effective solution to the central problem of keeping the price level or

inflation on target.

Throughout the paper, we make a terminological distinction between the process of mon-

etary policy—the way the central bank intervenes to set the price level—and the monetary

policy rule—the way the central bank chooses the price-level target. The paper is almost

entirely about the process and deals only tangentially with the rule.

1 The Robust Payment-on-Reserves Process

The idea behind a payment-on-reserves process is straightforward, and its workings rely on

a minimal set of assumptions. This section lays those out and explains how the process can

be implemented in operationally different but theoretically equivalent ways.

The central bank maintains accounts, called reserves, for its customers, denominated in

a monetary unit, which we will call the drachma. All prices in the economy are quoted in

drachmas: one unit of output costs pt drachmas.

The object of policy is to set the current price level pt to a target p∗t . This target varies

over time because the central bank’s mandate may dictate that it should balance a target
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rate of increase in prices against other economic variables, like the levels of real activity or an

exchange rate. The problem of the central bank that this paper addresses is: Can it choose

a process for payments on reserves that puts the drachma price level pt on a target path p∗t ?

1.1 A minimal model

We make two assumptions. First, that there are reserves, which are one-period debt claims

on the central bank held by financial institutions. Reserves are the unit of value in every

modern economy that we know of. By government declaration, their price is 1 drachma. The

real value of a unit of reserves is therefore 1/pt. Moreover, the central bank can choose how

to remunerate the holders of the reserves. Most central banks have long held the authority to

make payments on reserves, including the ECB and the central banks of Australia, Britain,

Canada, Japan, New Zealand, Norway, and Sweden, and, since October of 2008, the United

States as well.

For now, we also assume that the central bank is always able to honor the promised

payment on reserves, and that reserves are provided in sufficient quantity that their market

is saturated in the sense that they carry no liquidity premium. We will later show that the

results are not sensitive to these assumptions. Reserves are then priced in the market like

other financial assets. This leads to the second assumption.

We make the assumption at bedrock in most modern financial economics: there is no

arbitrage in financial markets in the sense that any asset’s price is equal to the value of its

payoff. This value is based on a universal stochastic discounter mt,t+1 that gives the value

of each future real payoff in future states of the world:

Vt(yt+1) ≡ Et(mt,t+1yt+1). (1)

Here: Vt(·) is the valuation operator, a functional that is defined in terms of the stochastic

discount factor, the random real payoff, yt+1. Et(·) is an expectations operator that weights

each future state by its probability.

We let qt be the drachma price of a generic asset in period t that returns a stochastic

payoff in drachmas, zt+1, one period in the future. The principle of no arbitrage dictates

that:

qt = ptVt

(
zt+1

pt+1

)
. (2)

The valuation operator applies to real payoffs, so the nominal counterpart must be divided

by the future price level. In turn, the operator returns a real value that must be converted
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back into drachmas today. Strictly speaking, for our purposes, we only need no-arbitrage

between reserves and other safe real and nominal bills.

The presence of the stochastic future payoff may give the impression that the valuation

has no practical value, but in fact its expected future value is, in principle, readily observable.

Consider a safe nominal bill paying one drachma one period later. Its price today is equal

to the inverse of its gross return: 1/(1 + it), where it is the one-period nominal interest rate.

The valuation assumption implies that:

1

(1 + it)pt
= Vt

(
1

pt+1

)
, (3)

where the left-hand side is observable.

Now consider an asset that pays off one unit of output tomorrow in all states. The real

interest rate rt is defined by:
1

1 + rt
= Vt(1). (4)

If there is no asset that is indexed to the price level and whose price can be read off in real

time, the real interest rate is only a shadow concept. For now, we assume that the central

bank can, even if only indirectly, find the value of rt.

1.2 A real-payment-on-reserves process

The central bank chooses how much to pay banks for holding reserves. It uses this payment

as the instrument of monetary policy. We consider a time-varying process specifying the

payment of output next period:

Definition 1 A real payment-on-reserves monetary-policy process pays the holder of a unit

of reserves 1 + xt units of output next period; 1 + xt is set in period t.

The no-arbitrage condition for reserves equates their unit price to the value of the real

payoff they give:

1 = ptVt(1 + xt). (5)

Using the definition of the real return in equation (4), we get a solution for the price level

as a function of the policy instrument of the central bank:

pt =
1 + rt
1 + xt

. (6)

That is, the price level is the ratio of the gross real return ratio in financial markets in

general, 1 + rt, to the gross real return on one unit of reserves, 1 + xt. The price level is in
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financial equilibrium when the gross real return ratio, (1 + xt)pt, equals the market return

ratio, 1 + rt.

The foregoing results lead to a key result:

Proposition 1 If the central bank sets the real payment on reserves to

1 + xt =
1 + rt
p∗t

, (7)

the unique price level is pt = p∗t .

The central bank’s monetary policy rule specifies the price level p∗t to be achieved by the

process of making indexed payments on reserves.

The real-payment-on-reserves process pins down the price level because the market equal-

izes the return on reserves to the real interest rate. Crucially, note that 1 + xt is not the

return ratio on reserves. It is a payment amount, not a return ratio. The same payment is

made in the future to a holder of a drachma of reserves regardless of the current purchasing

power of that unit. Providing a stated payoff to the holder of one nominal unit of reserves is

the basic idea of this approach to price stabilization. It ensures that the forces of arbitrage

lead to changes in the real value of the reserves, which must come through changes in the

price level.

Also crucial is the difference between this process and one in which the central bank has

a policy of exchanging one unit of reserves for a stated number of units of a commodity.

Under that kind of process, such as the gold standard, the central bank stands ready to

exchange reserves for gold in both directions. The economic logic for why a gold standard

stabilizes prices in Goodfriend (1988) is different from the logic behind our proposition. With

a payment-on-reserves process, the economic force at play is no arbitrage among financial

assets, not the forces that keep relative prices of physical products at equilibrium levels. It

is the financial market forces of equating the value of identical claims on future payoffs that

stabilize the price level, not forces in goods market.

Manipulating the payment on reserves gives the central bank immediate, total control of

the price level. This result is simple, yet remarkable in its implications. A skeptical reader

may question how the proposition may depend on the two assumptions we made, on whether

it can credibly be implemented, and on whether this idea is a complicated reworking of a

simpler one already in the literature. We address these concerns in the remainder of the

paper. Before doing so, we re-express our central result in two alternative ways.
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1.3 An indexed payment-on-reserves process

The process in definition 1 requires delivering commodities to holders of reserves. If the

delivery is specified in units of a commodity, like gold, then it is the price of gold that is

stabilized, not the price of the cost-of-living bundle as desired. It would be impractical to

deliver the entire bundle, which contains thousands of goods and services. Fortunately, there

is an easy alternative:

Definition 2 An indexed payment-on-reserves monetary-policy process pays the holder of a

unit of reserves 1 + xt times the value of the price index pt+1 next period.

Under this process, the central bank issues price-level-indexed reserves in the same way

that the treasury issues price-level-indexed bills. It promises a payment in drachmas, so there

are no complexities or legal obstacles. The practice of indexing a payment on a government-

issued asset to a public cost-of-living statistic is already common in many countries, where

fiscal authorities issue inflation-indexed bonds.

Proposition 2 If the central bank sets the indexed nominal payment on reserves to(
1 + rt
p∗t

)
pt+1, (8)

the unique price level is pt = p∗t .

The real payoff to the holder of a drachma is the same as in the first case, so the proof above

applies.

In equilibrium, the central bank pays a real amount on reserves equal to the economy’s

observed real interest rate. We emphasize again that, although the payment is equal to the

real interest rate, a policy of paying the real interest rate on reserves would not stabilize the

price level at all. It is the policy of paying above the interest rate if the price level is below

1 and below the interest rate if the price level is above 1 that pegs the price level at 1. Any

other price level creates a valuation anomaly, where two financially identical claims on the

government have different returns. Only the target price level avoids that anomaly.

1.4 A nominal payment-on-reserves process

A third alternative process for making payments on reserves involves only nominal quantities:
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Definition 3 A nominal payment-on-reserves monetary-policy process pays the holder of a

unit of reserves a nominal amount of drachmas next period; the amount is fixed today.

Proposition 3 If the central bank sets the nominal payment on reserves to

(1 + it)pt
p∗t

, (9)

the unique price level is pt = p∗t .

With the process in equation (9), the no-arbitrage condition for reserves now is:

1 = ptVt

(
(1 + it)pt
p∗tpt+1

)
=
pt
p∗t
. (10)

The second equality follows from the financial pricing condition in equation (3). It proves

the proposition.

The central bank can choose this policy because it can always readily observe the current

values of the price level and short-term government bonds. This formulation also makes it

clear that a zero (or effective) lower bound on nominal interest rates translates into a lower

bound on the payment that can be offered by a payment-on-reserves process.

1.5 Summary and interest-rate spreads

The three processes equivalently pin down today’s price at p∗t , but they differ in the form

their payment is arranged. The following table summarizes their properties. The second

column shows the payment the reserve-holder receives in period t+1, the third column gives

the units of that payment, either output (real) or drachmas (nominal), and the fourth column

is clear about when the payment is determined. The fifth column restates the payment in

real terms by dividing by pt+1. The sixth and final column states the value of that payment

as of date t, by applying the valuation operator to the payoffs in the previous column. All

three entries in that column are the same and equal to 1/p∗t . Because the asset with these

payoffs is the unit of account, with a fixed real value 1/pt, it follows that pt = p∗t .

Process Payment Units Known at Real Value

Real 1+rt
p∗t

Output t 1+rt
p∗t

1
p∗t

Indexed 1+rt
p∗t
pt+1 Drachmas t+ 1 1+rt

p∗t

1
p∗t

Nominal 1+it
p∗t
pt Drachmas t 1+it

p∗t

pt
pt+1

1
p∗t
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One way of thinking about the three processes is in terms of the spread between the

interest rate that reserves earn and the market rate. For the first two processes, the relevant

spread is between the real return on reserves and the market real rate. It is equal to:

(1 + rt)
pt
p∗t
− (1 + rt) = (1 + rt)

(
pt
p∗t
− 1

)
. (11)

For the third process, the spread between the nominal return offered by the central bank on

reserves and the market nominal rate is:

1 + it
p∗t

pt − (1 + it) = (1 + it)

(
pt
p∗t
− 1

)
, (12)

In all cases, unless the spread is zero, meaning that pt = p∗t , the basic financial no-arbitrage

condition fails.

These spreads are hypothetical—they describe what would happen in an economy that

did not obey the no-arbitrage condition. That condition requires that the spreads are zero.

But, as we have stressed earlier, a process of paying an interest rate on reserves equal to the

market rate would have no power to control the price level. It would satisfy the no-arbitrage

condition for all price levels, not just the target level.

2 Implementing the Process

Operationally, central banks set the rate paid on reserves and the rate charged to banks on

loans from the central bank. A market among commercial banks determines an interbank

rate. Because banks can deposit funds at the central bank, the rate on reserves puts a

floor on the interbank rate. Because they can borrow from the central bank, that rate puts

a ceiling on the interbank rate. In most countries, these two rates therefore establish a

corridor in which the interbank rate fluctuates. In the past, most central banks in advanced

countries operated under this corridor system for years. Following the crisis, many central

banks moved to a floor policy where the economy is saturated with reserves so the interbank

rate equals the rate on reserves—see Reis (2016a). This configuration allows the central

bank to control the volume of reserves in the system independently from the policy rate.

Our reserve payment-on-reserves process is robust to whether central banks in the future

stay with a floor, or move back to a corridor. In the former case, our process also pins down

the interbank rate. In the latter, then liquidity in the system will determine the position of

the interbank rate within the corridor, but the payment-on-reserves process still pins down
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inflation to the level dictated by the monetary policy rule (section 4 will expand on the effect

of liquidity).

Our general process is also robust to idiosyncratic features of money markets and central

banks in advanced countries. In particular, the specific properties of deposits at the central

bank are different across countries, but as long as these deposits are the unit of account and

as long as the central bank can choose how to remunerate them, our analysis applies. For

instance, in the United States, the interest rate the Federal Reserve pays on reserves does not

set a floor on the interbank rate, but a second type of borrowing from financial institutions

in the repo market at the policy rate performs that role. Our process can be applied to the

payment in these repo market deposits.

Another operational detail is that the market interest rates, real or nominal, to which

the payment on reserves should be indexed, often are only well measured in liquid financial

markets of 90-day maturities, while the deposits at the central bank are overnight. Of

course nothing prevents the central bank from accepting term deposits of 90 days or other

maturities. More generally, this raises the issue of mis-measurement of interest rates to which

we now turn.

2.1 Measurement of interest rates

The instrument of policy to keep the price level on target considered in this paper rewards

a drachma of reserves with a payment indexed positively to the future or current price and

negatively to the desired price. The processes are easy to implement because they are simple,

verifiable, and require little information. The real and indexed versions require observing

the current return on a one-period treasury indexed bill. In addition, the indexed version

requires the central bank and the treasury to observe the price level next period to implement

payments. The nominal version requires observing the current return on a nominal treasury

bill and the current price level.

In advanced countries, continuous trading of large volumes of both indexed and nominal

government debt essentially eliminates measurement errors in the corresponding returns.

However, in the United States, indexed government debt is not indexed to reduce nominal

payoffs if the price level is lower at maturity than at issue, so inferring the safe real rate

from the market price of indexed debt is tricky. Further, there are suspicions that indexed

debt may have a general tendency toward higher realized returns than nominal debt, and
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little doubt that this was true in late 2008. At the same time, there are suspicions that,

even when the amounts outstanding are huge, nominal treasury bills have realized real risk-

adjusted returns below those of other instruments (Fleckenstein, Longstaff and Lustig, 2014).

For both the real and nominal processes, biases in inferring returns result in biases in the

price level relative to target. To see this more formally, assume that the central bank only

has an estimate ret of the value of the real interest rate today. The actual value is:

1 + rt = (1 + ret )(1 + εt). (13)

where εt is a measurement error. In this case, implementing the policy process in proposition

1 leads to the equilibrium outcome:

pt = p∗t (1 + εt). (14)

These measurement errors are not due to the fundamental difficulty in estimating an un-

observable quantity like the Wicksellian or “equilibrium” real rate of interest—see Cúrdia,

Ferrero, Ng and Tambalotti (2015) and Holston, Laubach and Williams (2016). Rather, they

refer to errors in reporting the actual prices in financial markets.

2.2 The price level and its target

Similar to interest rates, for both the indexed and nominal processes, errors in measuring

the price level in real time will induce deviations of the resulting price from a target for the

true price level. For the indexed version, the resulting price level is sensitive to errors in

measuring the rate of price change but unaffected by errors in measuring the price level that

are common to the beginning and ending prices. For the nominal version, the price level

inherits measurement errors. To put it differently, the nominal process pegs the measured,

not the true, price to p∗.

Some of this discrepancy between true and measured price level may be systematic.

For instance, in the case of the United States, implementation would likely be based on the

consumer price index, which is available in real time and is already used to index government

bonds and many social benefits. But the Federal Reserve defines its mandate in terms of the

price index for personal consumption expenditures. A good deal is already known about the

(close) relationship between the two. Making the adjustment between the two should pose

no great challenge.
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Finally, although we have focused on a price target, p∗t , we do not have in mind a single-

minded devotion to strict price stability. Most practical macroeconomists, together with

the governors of central banks, believe in price-level non-neutrality—the principle that a

perturbation in a price-level target has important effects on real activity. In consequence,

no central bank would follow a policy of setting the price level to a predetermined path

p∗t . Instead, the bank, following the principle that upward deviations of the price level are

acceptable if deficient real activity accompanies them, would formulate a flexible price target

in terms of:

log(p∗t ) = kt + α(ut − u∗t ), (15)

where ut is unemployment expressed as a decimal, u∗t a target or natural rate, α is a param-

eter, and kt is the long-run mandate of the central bank, for instance 2% price level increase

on average, in which case kt = 0.02t . Hall (1984) called this approach to central-bank policy

an “elastic price standard” and Ball, Mankiw and Reis (2005) showed it was optimal in new

Keynesian models. Woodford (2003) provides a comprehensive treatment of how monetary

policy can pursue a dual mandate of price and economic stability. Central banks tend to

set targets for the inflation rate rather than the price level, despite the case that price-level

targeting is superior. That is, they set kt = 0.02 + pt−1.

Advocates of price-level or inflation targeting start with the assumption that the central

bank can reliably achieve the desired target. The complementary analysis in this paper

describes a robust process linking the central bank’s logical instrument, its payment on

reserves, to the price level. In practice, we foresee that central-bank policy would set a real

payment on reserves at a level intended to produce the right combination of price level and

unemployment, then adjust the payment quite frequently to make up for any departures in

the resulting combination of price level and unemployment. In effect, the central bank would

use the real payment on reserves as a high-frequency policy instrument to peg the price level

and unemployment rate to the desired relation to one another.

2.3 Central bank financial stability and fiscal backing

The propositions assumed no default premium, because the monetary policy process promises

a payment on reserves is always honored. No central bank has yet defaulted in an advanced

country. However, with trillions outstanding in reserves, the central bank may not have the

resources to stick to a process that promises to make payments on those reserves. Hall and
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Reis (2015) discuss at length the financial stability of a central bank, and how interest-paying

reserves may put it at risk or not. Here, we apply that analysis to the case of a central bank

that follows a payment-on-reserves process.

For simplicity, assume that the central bank buys only short-term nominal government

bonds and that these never default, so they return 1 drachma next period for all states of the

world. Then, their price is 1/(1 + it). With vt denoting the outstanding amount of reserves

and bt denoting the bonds held today that are due next period, the central bank’s resource

constraint is:

vt+1 = pt+1[(1 + xt)vt − st+1 + dt+1]− bt +

(
1

1 + it+1

)
bt+1. (16)

Real seignorage earned from printing currency minus the expenses of running the central

bank are denoted by the net flow of revenue st in units of output. The flow of real dividends

from the central bank to the fiscal authority is denoted dt.

Most central banks are obligated to rebate to the fiscal authorities their net income

periodically. Hall and Reis (2015) show that this implies that the net worth of the central

bank is constant. The central bank is always financially stable because its net liabilities

are not exploding or violating a no-Ponzi scheme condition. We let ntpt = bt/(1 + it) − vt
denote net worth, which is constant at n. Under a payment on reserves process that delivers

a price level on target, the appendix shows that the law of motion for reserves implies that

the dividend is equal to:

dt+1 = st+1 + rtn+
bt
pt

(
pt
pt+1

− 1 + rt
1 + it

)
(17)

The return on the initial net worth of most central banks usually more than offsets the

rare years in which there is a contraction in the demand for banknotes; therefore, the first two

terms on the right-hand side almost always provide a positive net income. In turn, the last

term is zero in risk-adjusted expected terms: just apply the Vt(·) operator to the expression

in parentheses. Therefore, on average the central bank can return a positive dividend to the

fiscal authority. Only in periods where the central bank’s price level target next period turns

out to involve an unexpectedly large inflation relative to the one that was priced into real and

nominal bonds may the central bank require a flow of funds from the fiscal authorities. These

instances should be rare, and can be dealt with no recapitalization by maintaining a cushion

from past income or withholding future dividends. Moreover, they can be avoided altogether

if the central bank holds real bonds as opposed to nominal bonds as assets, in which case

14



dividends would be given by the expression above without the last term on the right-hand

side. The reason behind this term is the mismatch between the promised real payment on

reserves and the nominal-paying assets that we assumed the central bank chooses to hold.

A separate issue is whether the central bank’s monetary policy rule accords with the

support of fiscal policy in the way it pays for its deficits. It is well known that any monetary

policy is only consistent with a particular path for prices if the fiscal authority is committed

to raising fiscal surpluses to pay for increases in the nominal public debt without relying

on inflationary finance from the central bank—see Sims (2013). Throughout this paper, we

assume that the government is committed to a fiscal policy that satisfies the intertemporal

budget constraint. The payment on reserves does not modify this requirement for monetary

dominance in any significant way relative to standard treatments.

3 Price-Setting and Nominal Rigidities

So far, we have discussed the determination of the price level without any mention of who

sets prices. The price level was determined by financial markets where the values of assets

were pinned down by the forces of arbitrage. While this approach is common in the study

of price level determinacy using interest rates, such as Woodford (2003), it is worth spelling

out how it comes about in an economy with firms, workers, and goods.

3.1 Flexible prices

A widely used model with firms that set prices has firms that are monopolistically competitive

and choose their nominal price to be a constant markup over their nominal marginal costs,

which in the simple cases is equal to the nominal wage rate. On the other side of the market

are households. They supply labor to the firms up to the point where the real wage rate is

equal to the marginal rate of substitution between consumption and leisure. They consume

what is produced, as there are no savings in equilibrium, but their portfolio choices dictate

that the stochastic discount factor is equal to the intertemporal marginal rate of substitution.

Finally, they allocate spending across firms according to the relative price of their goods. If

prices are fully flexible, in this world, because all firms set the same markup in their nominal

prices over the wage rate, then real wages are just equal to the inverse of this exogenous

markup. With real wages pinned down, so is aggregate labor supply, which in turn pins

down output using the aggregate production function, and finally consumption from market
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clearing in the goods market. All of these choices and real outcomes are unaffected by the

level of prices—the economy satisfies the classical dichotomy.

A payment-on-reserves process would work as follows in this economy. Consider the case

where the payment is indexed to the real interest rate. The central bank announces its

target for the price level, and promises a corresponding payment to the holders of reserves.

In a given period, if the candidate price level is higher than the target, a positive spread

between reserves and other real returns occurs. Investors and consumers attempt to switch

to reserves, and away from present consumption. This lowers product demand, and firms

respond by cutting prices. The price level falls and the economy finds its equilibrium at the

target price level. All this takes place in a flash of pseudo-time. The only visible price level

is equal to the price target.

3.2 Nominal rigidities

Our process is robust to different assumptions about the effects of monetary policy on real

activity. Price-level non-neutrality implies, among other things, that the economy’s real

interest rate depends on the current price level, so it is rt(pt). The dependence of the

function on time permits the history, possibly summarized by a state variable, to play a role.

The mechanisms behind rt(pt) are imperfectly understood and intensely controversial.

But the payment-on-reserves process stated in the proposition is robust to this function.

Propositions 1 to 3 in section 1 are unchanged. As long as the central bank realizes that

now rt depends on its target for the price level and adjusts the process accordingly, then it

can still implement the process in proposition 1 and achieve the price level target. Its real

payment on reserves becomes
1 + rt(p

∗
t )

p∗t
. (18)

The logic for the global determinacy of the price level remains the same.

Things change only if agents perceive that the central bank may deviate from this real

payment by some exogenous amount. Suppose that the public believes that the central bank

uses the payment-on-reserves process with a value of the real interest rate zt that may not

equal the actual market value. In this case, the price level is:

pt =
1 + rt(pt)

1 + zt
p∗t . (19)

Uniqueness now depends on the shape of the function rt(pt). More than one value of pt may

exist that solve this equation. Seemingly irrelevant sunspot shocks may shift the equilibrium
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from one of these values to another, without changing zt. At this level of generality, one

cannot say more without writing a specific model of the Phillips curve. We therefore turn

to three leading models of price adjustment.

3.3 Sticky information

The sticky information model posits that firms set their prices based on stale information, as

a result of episodic updating arising from costs of updating information. In the formulation

of Mankiw and Reis (2002), every period a fraction λ ∈ (0, 1) of firms randomly drawn from

the population updates their information sets and makes plans for their future prices. The

resulting dynamic model is:

p̂t = λ
∞∑
j=0

(1− λ)jEt−j(p̂t + αŷt) (20)

ŷt = Et(ŷt+1)−
1

σ
r̂t (21)

p̂t − p̂∗t = r̂t − ẑt (22)

Hats over variables reflect their log-linear deviations from the steady state. The first equation

is the Phillips curve (or AS equation) with α > 0 where ŷ is the output gap. The second

equation is the log-linearized version of the valuation operator in equation (1) (or IS or Euler

equation), with σ > 0, while the third equation is the log-linearized version of the payment-

on-reserves process in equation (19). The usual shocks in the equations of the model, to the

natural rate of interest or markups, do not affect determinacy so they can be left out.

If there are no exogenous shocks to policy, so ẑt = r̂t, the price level is pinned to the

target by the third equation. The Phillips curve then delivers the equilibrium for ŷt, and

the IS curve determines r̂t. The equilibrium is locally determinate, naturally since it was

globally unique.

In the presence of a sunspot shock, the determinacy of the price level requires an explosive

dynamic response of the system to the shock. Otherwise, there would be a continuum of

equilibria indexed by the shock. That is, letting tildes over the variables represent the

impulse responses to a sunspot shock t periods after, there is a sunspot equilibrium if p̃t 6= 0

and the price level remains finite as time goes to infinity.
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The system above implies that the responses to a sunspot shock would be given by:

ỹt+1 = ỹt + (1/σ)p̃t (23)

(1− λ)t+1p̃t = α
[
1− (1− λ)t+1

]
ỹt (24)

Rearranging gives a single linear difference equation for the price level:

p̃t =

 (1−λ)t
α[1−(1−λ)t] + 1

σ

(1−λ)t+1

α[1−(1−λ)t+1]


︸ ︷︷ ︸

≡At

p̃t−1 (25)

It is easy to see that At is bounded uniformly above 1 for all t, so the system explodes.

Thus, the payment-on-reserves process delivers a unique solution for the price level with

sticky-information nominal rigidities.

3.4 Sticky prices

Calvo’s (1983) model remains popular as a tractable account of inflation. It posits that a

fraction λ of firms change their prices each period, and are then stuck with that price until

the next time they can adjust. The Phillips curve in the dynamic system is:

π̃t = βEt(π̃t+1) + κỹt (26)

where β ∈ (0, 1) is the discount factor, and κ > 0 is the slope of the Phillips curve.

As before, we can analyze the determinacy of this dynamic system by looking at the

response to a exogenous shock. The system is:π̃t+1

ỹt+1

p̃t

 =

 1
β
−κ
β

0
1
σ

1 1
σ

1 0 1


︸ ︷︷ ︸

≡A

 π̃t
ỹt
p̃t−1

 (27)

The system has two jump variables, inflation and output, and one pre-determined variable.

Therefore, saddle-path stability requires that two eigenvalues of the A matrix are outside

of the unit circle and one is inside. A simple condition for this to be the case is that the

characteristic polynomial for the A matrix, P (x) has the properties P (1) < 0 and P (−1) > 0.

The appendix shows that these two conditions hold for this system. The payment-on-reserves

process leads to a determinate price level with the baseline sticky price model.
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3.5 Adaptive price-setting

The older accelerationist model of the Phillips curve is:

π̃t = π̃t−1 + κỹt. (28)

It portrays firms as setting price increases that adapt gradually to changes in output.

The analysis is similar to that of the sticky price model, so we relegate it to the appendix.

Again, the dynamic system can be written as a 3-equation system, but because now only

output is forward-looking, the condition for determinacy is that one eigenvalue is larger than

one, and the others are smaller. It is straightforward to prove that, again, the system is

determinate for any parameter values, just as in the previous two cases.

Finally, a popular model of inflation dynamics in DSGE models is a hybrid of sticky

prices and backward-looking behavior:

π̃t = φπ̃t−1 + (1− φ)Et(π̃t+1) + κỹt, (29)

where φ ∈ [0, 1]. The appendix again shows that for any value of φ, the payment-on-reserves

process leads to price-level determinacy.

4 Reserves that Provide Liquidity Services

Our propositions rely on the equality of the real cost of holding a reserve to the real present

value of its cash payoff. Reserves are priced in the same way as other financial assets, so

that from the perspective of an investor, reserves should be no different from, say, short-term

government bonds. With trillions of dollars of reserves currently outstanding, it seems rea-

sonable to assume that whatever liquidity demand for reserves is satiated, and Reis (2016a)

presents several pieces of evidence consistent with this view.

As time passes, central banks may eventually return to lean balance sheets where reserves

are scarce and earn a significant liquidity premium over other assets. And, in a financial

crisis, the demand for liquidity services provided by reserves increases so the premium may

re-emerge. This subsection studies how a payment-for-reserves process works in a world in

which the market for reserves is no longer saturated.
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4.1 A general result

To take account of the liquidity services provided by reserves, we make one re-interpretation

and one modification of our general model. The re-interpretation comes from noting that

the valuation operator may depend on the real amount of reserves outstanding. We make

this dependence explicit by writing Vt(yt+1; vt/pt). Recall that vt is the quantity of reserves

outstanding. We show that the reserves process is robust to this modification, so our results

apply even with substantial dependence of real reserves.

Our modification adds the value of the liquidity services to the cash payoff from holding

reserves. Letting φt denote this service in drachmas, which may be random and depend on

the quantity and return on reserves, the pricing condition for reserves is now:

1 = ptVt (1 + xt; vt/pt) + φt. (30)

On the left hand side, as before, is the price of reserves, which is equal to one since they are

the unit of account. On the right-hand side is the sum of their purely financial value and

their provision of liquidity services.

With this modification, the price level is still globally uniquely determined for an exoge-

nous choice of xt. The process that delivers prices on target is modified as follows:

Proposition 4 With a liquidity premium, if the central bank sets the real payment on re-

serves to

1 + xt =
(1 + rt)(1− φt)

p∗t
, (31)

the unique price level is pt = p∗t .

Two lessons emerge from this proposition. The first is that, even if reserves earn a

premium return over other financial assets, as long as this premium is independent of the

price level, the payment-on-reserves process still pins down the price level uniquely. In this

case, the price level will deviate from the target in response to changes in that premium if the

policymaker does not take fluctuations in this premium into account when setting the process.

If instead the premium depends on the price level, as in the case of a non-vertical Phillips

curve discussed in the previous section, as long as the policymaker takes this dependence

into account, the payment-on-reserves process keeps the price level on target.

The second lesson is that the process is affected by the amount of reserves only via

the liquidity premium. The size of the central bank’s balance sheet may have an effect on
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financial stability or on financial repression in the overall economy, and so endogenously

affects real outcomes, as in Greenwood, Hanson and Stein (2016). In our model this shows

up as the dependence of the valuation operator on the amount of reserves. But as proposition

4 shows, and all the other propositions confirmed, this does not matter for the payment-on-

reserves process. All of these effects are summarized in a sufficient statistic for price-level

determination: the real interest rate. Any effect of issuing more or less reserves on the

process would instead show up only directly through its effect on the size of φt.

The remainder of this section shows that the proposition above, and the lessons that fol-

low from it, are quite general: three separate standard models of these liquidity services all fit

into the formulation above. They differ only in that they provide different microfoundations

for which factors affect φt and rt.

4.2 Two old monetarist models

The most common model of the liquidity services provided by different forms of money is

the money-in-the-utility function model. It assumes that investors derive direct utility from

holding reserves as in Sidrauski’s (1967). A representative agent solves:

max
ct,

vt
pt
,bt
E0

∞∑
t=0

βtU

(
ct,
vt
pt

)
s.t. ptct +

bt
1 + it

+ vt ≤ ptyt + bt−1 + vt−1(1 + xt−1)pt,

ct is consumption, bt bond holdings, and β < 1 is a parameter. A no-Ponzi-scheme constraint

also applies. Marginal utility with respect to reserves is strictly positive until a satiation

point after which it becomes zero.

Another popular model of liquidity assumes that a liquid asset, like reserves, provides

a means of exchange by lowering the effective costs of consumption. The problem of the

representative agent now is:

max
ct,

vt
pt
,bt
E0

∞∑
t=0

βtU(ct)

s.t. ptct(1− τ(vt/pt)) +
bt

1 + it
+ vt ≤ bt−1 + vt−1(1 + xt−1)pt,

where the function τ(·) is again strictly increasing until a satiation level and constant and

equal to 1 after that.
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Both of these models are frequently used to generate a demand for liquidity. The opti-

mality conditions show that both fit into our setup above.

Lemma 1 The model of money in the utility function setup fits into our general setup with

valuation operator and liquidity premium given by:

mt+1 = βUc(ct+1, vt+1/pt+1)/Uc(ct, vt/pt) (32)

φt = Uv(ct, vt/pt)/Uc(ct, vt/pt) (33)

The transactions-cost model implies a valuation operator and liquidity premium given by:

mt+1 = βUc(ct+1, vt+1/pt+1)(1− τ(vt+1/pt+1))/Uc(ct, vt/pt)(1− τ(vt/pt) (34)

φt = ctτ
′(vt/pt) (35)

Therefore, the conclusions of proposition 4 hold.

In both models, if the central bank issues enough reserves, so that the market is saturated,

φt = 0 and we are back in the analysis of section 1. Further quantitative easing policies then

have no effect on inflation. If instead the central bank chooses to make reserves scarce,

then expansions and contractions in the size of its balance sheet will affect the liquidity

premium. If the utility function is non-separable in consumption and reserves, as in the

Sidrauski model, reserve balances may also affect the stochastic discount factor and the real

interest rate. In this case, quantitative easing will create shocks that interest-rate policy has

to counteract to keep the price level on target.

4.3 A new-monetarist model

The new-monetarist model launched by Lagos and Wright (2005) posits that agents trade

in a decentralized market using the liquid asset through one-to-one bargaining, followed by

trade in a centralized market where they can trade other assets free from transaction costs.

We assume that reserves can serve the role of the liquid asset in the decentralized market.

Interest is paid on these reserves in the centralized market as is the case with the return on

other bonds.

The model involves extensive notation that is not crucial for our point, so we relegate it

to the appendix. Important ingredients are that: (i) agents obtain utility from consumption

in the centralized market U(ct) discounted by a factor β and linear disutility from working
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ht hours at a wage wt, (ii) they get utility from consumption in the decentralized market

u(ct) where production of quantity qt leads to an effort cost of e(qt), (iii) they are matched

with others to trade in the decentralized market with probability σ, (iv) Nash bargaining in

the decentralized market is such that the reserve balances entering the centralized market

are given by an increasing function of what is produced g(q). With these four ingredients in

mind, the appendix proves the following result:

Lemma 2 The new monetarist model of liquidity fits into our general setup with valuation

operator and liquidity premium given by:

mt+1 = βU ′(ct+1)/U
′(ct) (36)

φt =

(
σβ

U ′(ct)

)
Et
(
u′(qt+1)− e′(qt+1)

g′(qt+1)

)
(37)

Therefore, the conclusions of proposition 4 hold.

The liquidity premium in this model arises from the effect that carrying reserves has

on the terms of trade in the decentralized market on the incentives facing consumers and

producers. The central bank could drive this term to zero by saturating the market with

reserves. The payment-on-reserves process delivers a unique price level.

5 Segmented Financial Markets

Reserves are a special asset. They are the unit of account, they never default, and the central

bank controls both their quantity as well as their remuneration. These special properties

enable the payment-on-reserves process to control the price level.

One other special feature of reserves in most advanced economics is that only financial in-

stitutions can hold them. In the United States, only banks can hold reserves, but since 2014,

a broader set of financial institutions can also lend to the Fed in the overnight repurchase

agreement market on terms that the Fed sets. The new asset, called an RRP, is effectively

a reserve, and implementing our payment-on-reserves process in the United States would be

done by having an equivalent payment on RRPs.

As long as these financial institutions compete for arbitraging away differences in returns

between reserves and safe short-term bonds, then our results apply. This section studies the

unlikely, but possible, case where this may not happen because of financial frictions in the

financial sector that lead to a segmentation between the markets for bonds and for reserves.
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5.1 A general setup

Segmented markets between two assets lead to positive or negative premiums in their returns.

One way to model segmentation is to posit that the valuation operator that applies to reserves

is different from the one that applies to bonds. With segmentation, the two separate values

can co-exist because there are no agents able to arbitrage the valuation disparity. Another

way to interpret segmentation posits that the financial institutions that can hold reserves

have a valuation operator different from the agents that bonds. We do not think this is

likely, but this section serves as a robustness check, and lets us discuss segmentation using

some of the models of banks and financial frictions in the literature.

We introduce a new valuation operator Vb
t(·) for banks, the holders of reserves. The

equilibrium condition for reserves with a payment-on-reserves process becomes:

1 = ptVb
t(1 + xt). (38)

Because this valuation operator differs from the one for indexed bonds. it is no longer the

case that Vb
t(1) is equal to the inverse of the gross real interest rate. Instead, we define the

value premium of reserves as:

1 + χt ≡ Vb
t(1)(1 + rt). (39)

This may be positive or negative and it may even vary over time, as the inability of agents

to arbitrage this premium away may depend on the evolution of the economy.

Combining the two expressions above leads to a simple modification of our main result:

Proposition 5 With a reserves value premium, if the central bank sets the real payment on

reserves to

1 + xt =
(1 + rt)

(1 + χt)p∗t
, (40)

the unique price level is pt = p∗t .

Again, this modification poses no theoretical constraint on the ability of the central bank to

determine the price level. If the central bank has difficulties measuring the value premium,

then these estimation errors will lead to some discrepancy between target and actual prices.

These discrepancies are likely of the same order as those arising from mismeasuring the

natural rate of interest in the conventional application of the Taylor rule. Moreover, with the

wealth of data on interbank markets and on spreads between interest rates in those markets

and in treasury bills, repo, and other money markets, there is no lack of real time data with

which to measure χt and to adjust the payment-on-reserves process to these spreads.
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5.2 Three micro-founded models of banks and reserves

Many standard models of banking fit into the general setup we just described. This sub-

section briefly describes three of them, each leading to different measurements of χt in the

data.

5.2.1 Banks and costly state verification

The costly state-verification assumption, as employed by Bernanke, Gertler and Gilchrist

(1999), is an element of many models of credit frictions. In this model, an entrepreneur

has limited net worth to finance its capital investment, which has a random payoff that is

private information of the entrepreneur. At some cost, the state can be revealed to financiers.

The optimal contract involves such a disclosure for a limited set of states. Bernanke and

coauthors’ tractable formulation shows that overall investment will increase proportionally

with net worth, while the aggregate supply of external finance increases with the external-

finance spread between the return on capital and the return earned by the financier.

Reserves held by banks need no such monitoring, since they are always honored by the

central bank. There are then two ways to think of banks in this setup. One is to view the

bank as the financier, collecting deposits from households and lending them to entrepreneurs.

In that case, with a banking sector that is competitive, the return on deposits is the same as

the return on reserves. Because households can deposit funds with banks or buy government

bonds, the return on deposits is the same as the return on bonds. In this case, there is no

value premium: χt = 0. A second way is to think of banks as the entrepreneurs, who are

being monitored by depositors. In that case, the return on reserves is equated to the return

on capital. It exceeds the return on bonds by the external-finance spread. In that case, χt

is equal to this external-finance spread.

5.2.2 Banks and limited commitment

A more recent model of banks focuses on the inability of banks to commit not to divert a

share of the funds given to them by depositors. Gertler and Kiyotaki (2010) is a prominent

example of this approach, which has also been incorporated in many models of monetary

policy and inflation. In this model, bankers only repay the depositor if the value of staying

in business is at least as large as the value from running away with a fraction of the current

assets. A bank is able to collect more deposits if it has higher net worth, since a fraction of
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that net worth would be lost in case of default. At the same time, leverage is constrained

by the limited amount of skin in the game that banks can pledge given their limited capital.

This constraint gives rise to a positive spread between the return the bank can earn on its

projects and the return it pays to depositors. This spread captures the marginal unit value

of having extra net worth to the bank by relaxing its leverage constraint.

Again, there are two ways to view reserves in this setup, depending on whether the

defaulting banker can run away with reserves or not. Of course deposits at the central bank

could be seized by creditors, but a bank can instantly convert reserves to cash at the central

bank and cash is anonymous and easier to abscond with. So, which case one takes depends

on view on how quickly the bank could convert reserves into banknotes and escape with

them. In the case where reserves can be fully seized by creditors, then their return will be

equated to the return paid to depositors, in which case χt = 0. In the case where reserves

can only be partially seized, then their return will be equated to the return on the other

assets of the bank, and like them earns a premium χt, which now reflects the inability of

banks to scale up their investments because of the limited commitment problem.

5.2.3 Banks and fiscal default

Reis (2016b) notes that reserves and government bonds behave differently in a fiscal crisis.

While governments often default on the government bonds they issue, central banks almost

never default on reserves. Because reserves are the unit of account, defaulting on them

requires a reform of the currency and monetary system in the country. Of course, unexpected

inflation is a way to equally reduce the payments on both reserves and government bonds.

Because banks can hold reserves, they have access to a safe asset in a fiscal crisis that

other agents in the economy do not. A recent literature has emphasized the scarcity of safe

assets in modern economies, which are needed for instance to use as collateral in financial

transactions—see Gorton, Lewellen and Metrick (2012) and Caballero, Farhi and Gourinchas

(2016). Banks will value their ability to hold reserves to relax their financial constraints.

In this case, the value premium χt has two origins. First, it is a sovereign default pre-

mium that government bonds must pay but reserves do not. Second, it captures the marginal

relaxation of banks’ financial constraints that reserves provide during a fiscal crisis. In the

case of the United States, both are likely small, so χt = 0 for the Federal Reserve. For the

ECB instead, there is significant cross-country variation in χt, which can be approximately

measured in different ways using sovereign spread, credit default swaps and many other fi-
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nancial prices, for example, Krishnamurthy, Nagel and Vissing-Jorgensen (2014). Measuring

this premium and adjusting monetary policy to it has already for the past few years been a

source of focus and research by the ECB in managing the monetary transmission mechanisms

in the Euro area.

6 Relation to the Literature

Hall (1997) appears to be the first statement of the idea that the price level can be controlled

by a security whose purchasing power is designed to be constant, although he noted that

Irving Fisher proposed that the monetary unit could be a quantity of gold that is adjusted

continuously. Hall observes that, in continuous time, a floating-rate note paying the current

real interest rate always has a purchasing power of one, so letting that note be the monetary

unit would result in a price level of one at all times.

Relative to Hall, we have shown in discrete time that promising a payment on reserves,

which are one-period assets, can accomplish any desired price level p∗. The economic logic

of why this works is that if the price level deviates from p∗, a valuation anomaly occurs. The

payment-on-reserves process is a more natural policy within the new-style of central banking,

it is easier to implement, and it flexibly allows for an elastic price or inflation standard.

Hall (2002) also discusses the Chilean Unidad de Fomento, which is a parallel monetary

unit with strictly constant purchasing power. It is defined as enough pesos to buy the cost

of living bundle. Our process stabilizes the purchasing power of the transactional monetary

unit, not a parallel unit. Moreover, our process makes clearer that the economic logic behind

it is different from that of the gold standard, or any other commodity standard. In effect,

we provide an affirmative answer to a question that has been raised about the UF—is there

some way that the UF could become the single monetary unit of Chile?

6.1 Relation to interest-rate rules

A huge literature examines the conditions for determinacy of the price level, a surprisingly

subtle issue. Cochrane (2011) contains a recent lengthy discussion, while Woodford (2003)

is the classic reference. With a payment-on-reserves process, the price level is pinned exactly

on target each period. Unlike the Taylor rule, it does not generate a difference equation

describing potential equilibrium price trajectories that must be iterated over time to infinity

and paired with some controversial boundary condition. Finally, while the payment on
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reserves must still satisfy the constraint that nominal interests are positive, once the zero

lower bound no longer binds the determinacy of the price level is ensured globally without

having to move forward beyond that date. Our process rules out some of the peculiar

equilibria that plague Taylor rules in a liquidity trap—see the discussion in Cochrane (2016).

The literature on interest-rate rules also relies on the no-arbitrage condition between

reserves and government bonds. But, in our case, only no-arbitrage between two successive

periods is needed, not across an infinite number of them. Therefore, concerns about how

agents form expectations far into the future, which are crucial for determinacy with interest-

rate rules, do not apply to our process—see Garcia-Schmidt and Woodford (2015) and Gabaix

(2016). Our process also does not rely on linearizations, but they play an important role

with interest-rate rules, as discussed by Benhabib, Schmitt-Grohe and Uribe (2002) and

Christiano, Eichenbaum and Johannsen (2016). Finally, as we showed in section 4, the precise

way in which reserves affect liquidity does not affect determinacy, unlike what happens with

interest-rate rules (Schmitt-Grohe, Benhabib and Uribe, 2001).

Two papers in the Wicksell- and Taylor-rule tradition are closer to our process. Adao,

Correia and Teles (2011) consider an interest-rate process where the central bank follows the

log-linearized rule:

it = rt + Et(pt+1)− p∗t . (41)

They pair this rule with a log-linearized Fisher equation relating nominal and real interest

rates,

it = rt + Et(pt+1)− pt. (42)

The only possible outcome is p = p∗. Loisel (2009) discusses a similar monetary policy rule

in the context of a broader treatment of policy rules.

As these authors showed, these rules are fragile: If the policy interest rate responds

to Et(pt+1) with a coefficient that even slightly deviates from one, then there are multiple

explosive solutions for the price level. With a payment-on-reserves process instead, the price

level is robustly pinned to the target and depends only on the easy-to-observe market interest

rate. Expectations of future prices are already included in the nominal rate, so the central

bank does not need to form or observe any forecasts.
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6.2 Relation to fiscal and monetary theories

The fiscal theory of the price level also has some similarities with our approach as well as

important differences. In that theory, the treasury issues nominal liabilities, which, via the

government budget constraint, have a fixed real payoff in terms of expected present fiscal

surpluses. In our setup, it is the central bank that issues a nominal liability, and it chooses

the real payoff using the payment-on-reserves process. As Cochrane (1998) emphasizes, the

fiscal theory of the price level can also be interpreted in terms of a no-arbitrage principle, like

with our process, in the valuation of government bonds as claims on the finite stream of fiscal

surpluses. But our process does not have to appeal to the government budget constraint as

an equilibrium object; the central bank controls the real payment on reserves directly.

With the payment-on-reserves process, control of the price level remains with the mone-

tary authority, so there is monetary dominance. Our process does not rely on non-Ricardian

behavior by the fiscal authorities. The process can co-exist with concerns about fiscal backing

of the central bank and coordination between fiscal and monetary policy—see Sims (2013).

Finally, relative to an older monetarist tradition dating back to Cagan (1956), our ap-

proach does not rely on there being a stable demand for money. It is perfectly consistent

with the existence of a demand for liquidity, but it relies on a different mechanism to pin

down the price level.

7 Conclusion

This paper proposes a new approach for central banks to control the price level. As in all

theories of the price level, ours relies on the properties of a nominal government liability.

Our novelty is to focus on reserves, which are the unit of account, default-free, voluntarily

held by banks, and with remuneration set by the central bank as its policy instrument.

Within the class of theories of price-level determination focusing on the central bank’s

control of an interest rate, the key economic force at play is an arbitrage condition in financial

markets. Our novelty is to observe that by setting a payment on those reserves, arbitrage

between one period and the next will pin down the price level, without needing to consider

arbitrage into the infinite future. As in post financial-crisis work in macroeconomics, but

almost absent from the price-level determination literature, we consider the role played by

liquidity and credit frictions in financial markets. Together with mis-measurement of prices
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and returns, we show that it is easy to adapt our policy process to their presence.

This approach provides three equivalent policy proposals for a central bank. They all

consist in announcing a payment on reserves, but differ only on whether that payment is

stated in units of output, is indexed to the price level, or is stated in nominal terms. For each

of them there is an easy-to-implement policy process that delivers a unique price level. We

showed that this uniqueness is global. Moreover, the control errors in hitting the target can

be linked to measurement errors on actual prices and interest rates, instead of theoretical

objects such as the natural real interest rate. Therefore, we believe that our approach has

practical policy advantages relative to the existing practices of central banks.

As almost all of the literature on determination of the price level, we have not provided

a full account of how the price level gets from some arbitrary initial value to the equilibrium

p∗. Our process is therefore subject to the “unsophisticated implementation” critique of

Atkeson, Chari and Kehoe (2010), because we have not described how the economy behaves

when the price level deviates from p∗. We leave for future work a rigorous modeling of this

process using modern tools, for instance following Bassetto (2002).
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Appendixes

A Financial Stability with a Constant-Net-Worth Rule

If the central bank’s independence mandate requires it to choose dividends dt such that the

net worth of the central bank is constant, then nt = nt+1 implies that:

−vt+1

pt+1

+
bt+1

(1 + it+1)pt+1

= nt.

The law of motion for reserves in equation equation (16) can be rearranged as follows:

vt+1

pt+1

− bt+1

pt+1(1 + it+1)
= (1 + xt)vt − st+1 + dt+1 −

bt
pt+1

.

Adding both sides of these equations gives the solution for dividends:

dt+1 = st+1 + rtnt − (1 + rt)nt − (1 + xt)vt +
bt
pt+1

.

Recalling the definition of nt in terms of assets and liabilities and rearranging gives:

dt+1 = st+1 + rtnt −
bt
pt

(
1 + rt
1 + it

− pt
pt+1

)
+ [1 + rt − (1 + xt)pt]

(
vt
pt

)
.

Finally, note that the last term is zero under the payment-on-reserves process for monetary

policy. This gives the desired result in equation (17).

B Determinacy Proofs

For the Calvo sticky price model, the characteristic polynomial is:

P (x) = x3 −
(

2 +
1

β

)
x2 + [1 +

2

β
+

κ

βσ
]x− 1

β
.

It is easy to see that P (1) = −κ/(σβ) < 0 while P (−1) = 4 + 4/β + κ/(βσ) > 0. Therefore,

the system has two eigenvalues outside the unit circle, and one inside: the condition for

saddle path stability.

Turn next to the accelerationist model. In matrix notation, the system is: ỹt+1

π̃t
p̃t

 =

 1 + κ/σ 1/σ 1/σ
κ 1 0
κ 1 1


︸ ︷︷ ︸

A

 ỹt
π̃t−1
p̃t−1
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There is one non-predetermined variable, ỹt, and two endogenous predetermined variables,

π̃t and p̃t−1. Thus, for the system to have a unique solution it is required that the matrix A

has one eigenvalue outside the unit circle and two inside.

The characteristic polynomial of the matrix is:

P (x) = x3 + [−(2 + β)− κ

σ
]x2 + (1 + 2β)x− β

and we need to check that one of its roots is above 1, and the other two are below one in

absolute value. Make the transformation: x = (1 + s)/(1− s). The polynomial becomes:

P (s) = s3 +

(
4(1− β) + κ

σ

4(1 + β) + κ
σ

)
s2 −

(
κ

(4(1 + β) + κ
σ
)σ

)
s−

(
κ

(4(1 + β) + κ
σ
)σ

)
and determinacy is now equivalent to this polynomial having one positive and two negative

roots. Descartes’s rule of sign shows that this is the case independently of parameters because

the coefficient signs of P (s) are + + −−, so there is one positive root, and the coefficient

signs of P (−s) are = −+ +− implying two negative roots.

The case for the hybrid Phillips curve is almost identical, so we state only the A matrix:

A ≡ 1

(1− φ)σβ


σ −σκ −φσ 0

(1− φ)β (1− φ)σβ 0 (1− φ)β
0 0 (1− φ)σβ 0

(1− φ)σβ 0 0 (1− φ)σβ

 .
The characteristic polynomial after the x = (1 + s)/(1− s) transformation is:

P (s) =

(
4 +

4(1 + φ)

β(1− φ)
+

κ

βσ(1− φ)

)
s4 + 8

(
β(1− φ)− φ
β(1− φ)

)
s3

−
(
κ+ 2σ(1− φ)(1− β)

βσ(1− φ)

)
s2 +

κ

βσ(1− φ)

Because there are two forward-looking variables, and two perdetermined ones, for determi-

nacy there should be two positive and two negative roots. The signs of the coefficients for

P (s) are +?−+ so there are two positive roots according to Descartes’ sign rule. They are

+?−+ for P (−s) implying two negative roots.

C The New Monetarist Model

In the centralized market, the representative household solves:

V CM(v̂t, bt) = max
ct,ht,vt,bt

{
U(ct)− ht + β Et

[
V DM(vt+1, bt+1

]}
s.t. ptct +

bt
1 + it

+ vt ≤ ptwtht + bt−1 + pt(1 + xt−1)v̂t + Tt
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where v̂t are the outstanding reserve balance of an agent entering the centralized market.

This leads to the first-order conditions:

U ′(ct)− λtpt = 0

λtPtwt − A = 0

λt = β Et
[
V DM
v (vt+1, bt+1)

]
λt = β Et

[
V DM
b (vt+1, bt+1)

]
V CM
v (v̂t, bt) = pt(1 + xt−1)λt

V CM
b (v̂t, bt) = (1 + it−1)λt

In the decentralized market, with probability σ a household is assigned to one side of the

decentralized market (i.e. buyer or seller) and with probability (1 − 2σ) it is inactive. The

value of entering the decentralized market then is:

V DM(vt, bt) = σ
[
χu(qt) + V CM(vt − dvt , bt)

]
+ σ

[
−e(qt) + V CM(dvt + vt, bt)

]
+ (1− 2σ)V CM(vt, bt)

The inverse production function is et = e(qt). From this it follows that:

V DM
v (vt, bt) = V CM

v (vt, bt) + σ

[
χu′(qt)

∂qt
∂vt
− V CM

v (vt, bt)
∂dv

∂vt

]
+ σ

[
−e′q(qt)

∂qt
∂vt

+ V CM
v (vt, bt)

∂dv

∂vt

]
V DM
b (vt, bt) = V CM

b (vt, bt)

Finally, when the representative buyer and the representative seller in the decentralized

market meet, they make a Nash bargain:

max
qt,dvt

[
χu(qt)− U ′(ct)

dvt
pt

]θ [
U ′(ct)

dvt
pt
− e(qt)

]1−θ
s.t. dvt ≤ vbt

Defining:

g(q) =
(1− θ)e′q(q)χu(q) + θχu′(q)e(q)

θχu′(q) + (1− θ)e′q(q)
the optimality condition from the Nash bargaining problem together with the equilibrium

condition that all the reserves are used for purchases becomes:

v = dv = g(q)pw.

From this it follows that ∂dv/∂v = 1 and ∂q/∂v = 1/wpg′q(q)
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Combining all three problems it is then just a matter of algebra to show that

Et
[
βU ′(ct+1)pt
U ′(ct)pt+1

(1 + it)

]
= 1

Et
[
βU ′(ct+1)pt
U ′(ct)pt+1

(1 + xt)pt+1

]
= 1− σβ

λt
Et
[
χu′(qt+1)− e′q(qt+1)

wt+1pt+1g′q(qt+1)

]
The result in lemma 2 then follows immediately.
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