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1 Introduction

Looking back over the past several decades, investors in government bond markets have faced
several major financial crises,1 unforeseen major changes in the operating procedures and
transparency policies of the Federal Reserve,2 and considerable lack of clarity about the future
path and impact of fiscal policies. Within these economic and informational environments, it
seems non-controversial to characterize bond-market participants as facing nontrivial learning
problems as they price bonds, assess required compensations for bearing relevant factor risks,
and forecast the future course of the term structure of interest rates.

This paper estimates an arbitrage-free dynamic term structure model (DTSM) in which the
marginal investor in U.S. Treasury bonds exhibits ex ante learning about the joint distribution
of the Treasury yield curve and the macroeconomy. The estimated learning rule has formal
roots in the literature on Bayesian learning, and it reveals which aspects of risk and the state
of the economy agents learn about and which aspects they (evidently) know from information
embedded in the current yield curve. Versions of our learning-based pricing model replicate
quite accurately the entire term structure of median survey forecasts of bond yields over
the past twenty-five years. Moreover, our learning model reveals interesting patterns in how
the “consensus investor” adjusted her forecasts of bond yields when (as we now know with
hindsight) the Federal Reserve changed its operating procedures and disclosure policies.

Learning is introduced through the updating of the parameters governing a bond-market-
specific stochastic discount factor M and the joint dynamics of the yield curve and other
conditioning variables as new information arrives. M is parameterized with low-order principal
components of yields (PCs) as the risk factors, thereby capturing the impact of the diverse
bond-market relevant shocks in an empirically reasonable and parsimonious way.3 In our most
flexible DTSMs the conditioning information Z is higher dimensional, encompassing aspects
of the macroeconomy and heterogeneity of investors’ views. Consistent with recent history,
the learning rule we posit accommodates unforeseen bond-market-relevant structural changes
that are not immediately fully understood by market participants.

We embark on our exploration of the nature of learning in bond markets in Section 4 by
endowing a consensus investor with the following learning rule: each month she computes
maximum likelihood estimates of a three-factor Gaussian affine term structure model, normal-
ized as in Joslin, Singleton, and Zhu (2011) (JSZ) with the first three PCs of yields (P) as
risk factors, and allowing for the possibility of down weighting of past data. Then forecasts
of future bond yields are computed presuming that the estimated parameters of this DTSM
are those of the true data-generating process and that these parameters will remain fixed
over the forecast horizon. This DTSM-based learning rule produces forecast errors for yields

1These include the Asian currency crisis, Russian default and nearly concurrent failure of Long-Term Capital
Management, the housing section collapse in the US, and the recent sovereign debt crisis in Europe.

2Beyond the policy experiment during the early 1980’s, the Federal Reserve has instituted several uncon-
ventional policies and these decisions have affected how market professionals forecast interest rates (see, e.g.,
Swanson (2006), Wright (2011), and Krishnamurthy and Vissing-Jorgensen (2011)).

3Our characterization of the priced risks in bond markets in terms of PCs goes back at least to Litterman
and Scheinkman (1991), and many subsequent studies have noted that their model-implied risk factors resemble
(linear combinations of) PCs. Recently Joslin, Singleton, and Zhu (2011) have formalized the idea that DTSMs
can be rotated so that the risk factors are PCs of yields.
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that are strikingly similar to the errors of the median forecaster for the Blue Chip Financial
Forecasters (BCFF) survey, across the entire yield curve and over the past twenty five years.
This is true even though our basic model with learning conditions only on the information
in the yield curve. Moreover, we show that forecasts that outperform the median BCFF
forecaster are obtained by a DTSM-based learner who down weights historical data with a
half-life of about five years. This down weighting, as we show formally, arises naturally in a
setting where the consensus agent is concerned about structural change.

If we expand the conditioning to allow risk premiums to also depend on unspanned inflation
and output risks as in Joslin, Priebsch, and Singleton (2013) (JPS), then DTSM-based rules
systematically give smaller out-of-sample, root-mean-square forecast errors than median survey
forecasts. The gain in forecasting performance of the JPS-based learning rule is especially large
during the early 2000’s in the run-up to the recent financial crisis. This learning rule also out
performs the median professional during the crisis, when professionals were systematically, and
incorrectly, expecting a rise in rates that was not realized. The discipline of the DTSM-based
learning rules kept forecasts closer in line with future realized yields.

Though these DTSM-based learning rules are sophisticated in their dependence on arbitrage-
free pricing models, they are also quite naive in their treatment of parameter drift.4 Specifically,
to determine the prices of bonds today using the fitted DTSM, the agent computes forecasts
of future values of M holding the parameters fixed (equivalently, holding the parameters
governing the risk-neutral distribution of P fixed). Additionally, with prices in hand, forecasts
under the historical distribution are also computed assuming fixed parameters. Both behaviors
are dynamically inconsistent in the face of parameter drift associated with learning.

Why then are the naive rules so accurate in matching the forecasts of the median pro-
fessional? The answer is that, given the historical behavior of U.S. Treasury bond yields,
DTSM-based learning is (along one key dimension) dynamically consistent after all. We show
in Section 4 that , even though the consensus investor is allowed to update all of the parameters
of her DTSM over time, there is very limited drift in the parameters (ΘQ) governing the
risk-neutral conditional mean of P. This implies that the loadings across maturities that
describe how bond yields are related to P are essentially time-invariant and, as a consequence,
the consensus investor is in fact computing the optimal risk-neutral forecasts for pricing
throughout our sample period. Only the forecasts under the historical distribution (P) are
inefficient. Moreover we show that, once ΘQ is fixed, our investor is effectively following an
adaptive least-squares learning algorithm.5

With these results as background, in Section 6 we explore the properties of risk premiums
and the nature of the parameter drifts implied by learning. Though the forecast errors from
the DTSM- and survey-based learning rules are quite similar, we find that the implications of
these rules for risk premiums–expected excess returns– in Treasury markets are very different.
The implied premia are most different shortly after NBER recessions when the slope of the
Treasury curve is near a peak steepness. We show that, during these periods, the discipline

4Nevertheless, because of the computational tractability of rules similar to this one, they are often adopted
in studies of learning (see Cogley and Sargent (2008)).

5As is shown subsequently, this result is distinct from the observation in JSZ that, in unconstrained Gaussian
DTSMs, maximum likelihood estimates of the historical P-mean of P are identical to the least-squares estimates.
In our setting there are constraints on the market prices of P risks.
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of our DTSM-based learning rules leads to substantially more accurate forecasts of excess
returns than those embedded in the professional surveys, particularly for long-term bonds.

The paper builds upon a growing literature that explores learning or survey expectations
within DTSMs. One of the first papers to introduce survey expectations into the estimation
of DTSMs was Kim and Orphanides (2012). Piazzesi, Salomao, and Schneider (2013) extend
their framework by having survey forecasts represent subjective views that are distinct from
those of the econometrician. Both of these studies presume that agents know the parameters
underlying their structure of beliefs– there is no learning. Furthermore, up to measurement
errors, their models presume that survey expectations are fully spanned by the first three
PCs of bond yields. In contrast, we focus on learning through the lens of DTSMs and use
these rules to characterize the learning implicit in the survey forecasts. For our data, large
portions of the variation in survey forecasts are unspanned by the yield PCs, and this has
material implications for interpreting risk premiums in the presence of learning.

Laubach, Tetlow, and Williams (2007) and Dewachter and Lyrio (2008) study learning
within three-factor Gaussian DTSMs in which the factors are inflation, a measure of real
activity, and the one-period bond yield. As documented in Joslin, Le, and Singleton (2013),
when the risk factors are measures of output growth, inflation, and a bond yield, DTSMs
tend to substantially misprice bonds, in their case mispricing of the ten-year bond exceeded
100 basis points for extended periods of time.6 For the same reasons, we suspect that similar
issues would arise with the vector-autoregression-based learning rules examined by Cieslak
and Povala (2014), where they to imbed their rule in a DTSM. Large pricing errors are avoided
in our learning environment by accommodating unspanned macroeconomic information that
has predictive power for bond risk premiums.

Section 2 introduces our formal learning environments and connects DTSM-based learning
to Bayesian learning. The data and DTSMs used in our empirical work are described in
Section 3. Full Bayesian learning is compared to the relatively naive DTSM-based rules in
Section 5. Section 7 takes up the role of information about dispersion of beliefs for estimating
bond market risk premiums. Finally, Section 8 presents concluding remarks.

2 Learning with Dynamic Term Structure Models

The standard learning environment within equilibrium, preference-based models of asset prices
specifies agents’ preferences and has them learning about the evolution of the state of the
economy (e.g., Cogley and Sargent (2008) and Collin-Dufresne, Johannes, and Lochstoer
(2013)). For several reasons, we depart from this literature and represent agents’ learning
problem in terms of a reduced-form pricing kernel. One reason is that estimated consumption-
based models of the term structure often lead to large pricing errors,7 whereas the volatilities

6Equally importantly, Dewachter and Lyrio (2008) assume constant market prices of risk in their Gaussian
DTSM, which has the counterfactual implication that the expectations hypothesis holds. Also, the forecasts
of yields from Laubach, Tetlow, and Williams (2007)’s DTSM are identical to those from a factor vector-
autoregression (see JSZ), so the no-arbitrage structure of their DTSM is irrelevant for their learning problem.

7While there is recent progress on the development of nonlinear equilibrium models of the term structure,
the evidence in Le, Singleton, and Dai (2010) and Joslin and Le (2013) suggests that equilibrium models within
the affine class cannot successfully match the first and second conditional moments of bond yields.
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of the pricing errors in reduced-form affine models are typically just a few basis points (Dai
and Singleton (2000), Duffee (2002)). Equally importantly, bond-market participants are well
known to use (often “affine”) reduced-form models for pricing and risk assessment of their
bond portfolios. Therefore, it seems at least as natural to explore learning within a framework
that closely resembles those used by candidates for the marginal investor in bonds.

In our no-arbitrage setting we consider the set of portfolios of U.S. Treasury bonds with
weights determined by the state-vector Zt. In the absence of arbitrage opportunities and
under weak regularity (closure) properties of the portfolio payoff space, there exists a unique
stochastic discount factor (SDF) M(Θ,Pt+1) that prices these Treasury portfolio payoffs
(Hansen and Richard (1987)). The SDF M is governed by the parameter vector Θ and the
pricing factors Pt+1, and it implicitly depends on Zt through the market prices of the risks
P. We assume that Zt, which includes Pt, follows a first-order Markov process. Under these
assumptions, and absent the need to learn, the price Dm

t of a zero-coupon bond issued at date
t and maturing at date m is the expected discounted payoff under the historical measure P:

Dm
t = EP

t

[∏m

s=1
M(Θ,Pt+s)

]
=

∫ ∏m

s=1
M(Θ,Pt+s) fPZ(Zt+m, . . . , Zt+1|Zt; Θ) dZ. (1)

We introduce learning into this arbitrage-free environment by working directly with the
bond-market-specific SDF M(Θt, Zt), consistent with the vast majority of arbitrage-free
DTSMs and the pricing strategies of many financial institutions. If instead one started with
an equilibrium settings with learning about parameters (Cogley and Sargent (2008)), then
an agent’s SDF K(γ, Zt+1) for pricing nominal securities would typically be taken as given
(γ is know to the agent) and this agent would be learning about the parameters governing
the evolution of the state Z, fPZ(Zt+1|Zt, β). A bond-specific M(Θ,Pt+1) implied by such a
model is derived as M(Θ,Pt+1) = E[K(γ, Zt+1)|Pt+1, Zt]. Viewed this way, the Θ governing
the reduced-form M is implicitly a confounding of γ and β. For this reason we assume that
the representative agent who prices with M is learning about the entire parameter set Θ.

More generally, agents could be learning about Θ or Zt. However, they certainly will have
known that setting the risk factors in their pricing models to the low-order PCs of yields would
allow them to capture the vast majority of the variation in bond yields, typically over 98% for
bonds with m greater than one year and as few as three factors. Equally importantly, PCs
are measured very accurately. Estimates of affine DTSMs (without learning) are virtually
identical when the PCs are filtered from current yields or they are treated as observed without
error (JSZ). Therefore, we focus on the problem of learning about Θ.

For our subsequent empirical analysis of learning we adopt a specific parametric form for
M and law of motion for Z. Consider a bond market in which N yields are determined by
three priced risks Pt, with 3 < N . We follow Joslin, Priebsch, and Singleton (2013) (JPS)
and (without loss of generality) normalize P to be the first three PCs of bond yields, allow
for an additional J variables Mt that influence the market prices of the risks P, and assume
that Z ′t ≡ (P ′t,M ′t) follows the Gaussian process[

Pt+1

Mt+1

]
=

[
KP
P0

KP
M0

]
+

[
KP
PP KP

PM
KP
MP KP

MM

] [
Pt
Mt

]
+ Σ

1/2
Z

[
ePP,t+1

ePM,t+1

]
. (2)
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By the same reasoning underlying our assumption that Zt is known to the consensus agent,
we assume that the portfolio of yields Pt is priced perfectly by her pricing model. The
relevant data for learning are then the history of Zt1 ≡ (Z1, . . . , Zt) and of the N − 3 linearly
independent combinations, say Ot1, of yields that are not priced perfectly by M.

The (logarithm of the) SDF M is assumed to take the form

logMt+1 = −rt − Λ′Pte
P
P,t+1 −

1

2
Λ′PtΛPt, (3)

where rt is the yield on a one-period bond. The market prices of Pt risks ΛPt,

ΛPt = Λ0 + Λ1Zt, (4)

depend on Zt (and not just Pt) since agents will in general look beyond the bond market
when assessing their willingness to bear risks indigenous to the bond market.

For future reference we note that, absent learning, the price of a zero-coupon bond with
maturity m can be computed as the risk-neutral (Q) expectation

Dm
t = EQ

t

[∏m−1

s=0
exp(−rt+s)

]
, (5)

with the parameters normalized so that (see JSZ and Appendix B)

rt = ρ0 + ρPPt, (6)

and Pt follows the autonomous Q-Gaussian process

Pt+1 = KQ
0P +KQ

PPPt + Σ
1/2
P eQP,t+1, (7)

where ρ0, ρP , KQ
0P , and KQ

PP are all known functions
(
rQ∞, λ

Q,ΣP
)
, with rQ∞ the risk-neutral

mean of rt, ΣP the upper K ×K block of ΣZ , and λQ the K-vector of eigenvalues of KQ
PP .

In this setting, bond yields take the affine form

ymt = Am

(
rQ∞, λ

Q,ΣP

)
+Bm

(
λQ
)
Pt. (8)

For ease of notation we partition Θ into the two subsets of parameters: those governing the drift
of Z in (2), ΘP ≡ (KP

0 ,K
P
Z); and those governing the pricing distribution, ΘQ ≡ (λQ, rQ∞,ΣZ),

with the understanding that ΣZ enters both the P and Q distributions.
The most general learning environment we consider captures real-time Bayesian learning

and internally consistent pricing by the consensus agent.8 Concretely, Bayesian learning has
the following features:

8This is to be contrasted with bond pricing in the presence of time varying parameters as studied in the
context of regime switching models (Ang and Bekaert (2002), Dai, Singleton, and Yang (2007)) with known
parameters where bond prices reflect possible future changes in regimes. Our framework is also different from
that of Feldhutter, Larsen, Munk, and Trolle (2012) who examine an optimal portfolio investment problem in
the face of parameter uncertainty evaluated from full-sample estimation of a fixed-parameter affine DTSM.
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• Unknown Parameters: the current value of Θt is unknown to the consensus agent, so
she revises her view about Θ based on the distribution fPΘ(Θt+m−1

t |Zt1,Ot1).

• Time Varying Parameters: the unknown parameters may vary randomly over time.

• No Compensation for Parameter Risk : though Θt may be drifting and unknown, we
assume that this risk is not priced in bond markets.

The absence of compensation for parameter risk is fairly standard in the literature on pricing
with Bayesian learning, and it greatly simplifies what is already a challenging modeling
problem. In particular, in our Bayesian learning models we take full account of learning about
Θt when pricing bonds and forecasting excess returns– agents recognize explicitly that Θt is
changing over time. This in contrast to the entire pricing literature that builds upon Cogley
and Sargent (2008)’s notion of anticipated utility.

At each point in time the risk-neutral dynamics of Pt and rt are assumed by the consensus
agent to follow (6) and (7). The learning-augmented version of (5) is therefore

Dm
t =

∫
EQ
[∏m

s=1
exp(−rt+s)|ΘQ,t+m−1

t

]
fQΘ

(
ΘQ,t+m−1
t |Zt1,Ot1

)
. (9)

Bond prices under learning are not described by an affine DTSM even when Z follows an
affine process. Nevertheless, we show in Appendix E that, conditional on a deterministic path
of the risk neutral coefficients ΘQ,t+m−1

t , bond yields will still be affine in Pt. This fact allows
us to compute model-implied bond yields by solving the conditionally affine models for each
path of ΘQ,t+m−1

t , and then integrating over the distribution of possible future Q paths.
To complete the asset pricing framework we assume that, given the agent’s views ΘP

t and
ΣZt at date t, the conditional P-distribution of Zt+1 is given by

fPZ(Zt+1|Zt1) = N
(
KP

0t +KP
ZtZt,ΣZt

)
; (10)

and we define the SDF as

logMt+1 = −rt − ΛPte
P
P,t+1 −

1

2
Λ′PtΛPt (11)

ΛPt = Λ0t(Θt) + Λ1t(Θt)Zt, (12)

where ΛPt depends on the entire vector Θ. Under the assumption of constant and known
parameters, this learning model simplifies to the standard Gaussian DTSM.

At date t the Bayesian agent, faced with new observations (Zt,Ot) and the past history
(Zt−1

1 ,Ot−1
1 ), evaluates the (approximate) likelihood function by updating her posterior view

on the unobserved parameters and then integrating over this posterior distribution:

f(Zt1, O
t
1) =

t∏
s=1

∫
f(Zs|Zs−1

1 ,Os−1
1 ,ΘP

s−1,ΣZ,s−1)f(Os|Zs1 , Os−1
1 ,ΘQ,s+m−1

s ,ΣO)

f(ΘP
s−1,ΣZ,s−1,Θ

Q,s+m−1
s ,ΣO|Zs−1

1 ,Os−1
1 )d(ΘP

s−1,Σs−1,Θ
Q,s+m−1
s ,ΣO), (13)
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where ΣO is the variance of the pricing errors on Ot which agents view as fixed but unknown.
Regarding the form of the posterior density of the parameters, (ΘP

s−1,ΣZ,s−1) govern the

P-distribution of Z and the vector ΘQ,s+m−1
s governs the pricing of the yield portfolios Os.

The specific form of this density depends on the nature of the learning problem. For instance,
if the consensus agent views rQ∞ and ΣPP as fixed (though still unknown) in the underlying
economy, then ΘQ,t+m−1

t is short-hand notation for the triple (λQ,t+m−1
t , rQt ,ΣPt), as only her

views about (rQ,ΣP) as of date t affect pricing.

2.1 Naive DTSM-Based Learning Rules

Relatively naive/myopic learning rules are easily derived from (13) by specializing the posterior
density of (ΘP

s−1,ΣZ,s−1,Θ
Q,s+m−1
s ,ΣO). We focus on two that we believe are practically

relevant and that, as we will see, turn out to match well with the learning behavior of
professionals. The first, which we will refer to simply as the naive rule, has the consensus
agent updating (Θ,ΣO) every month with the ML estimator (Θ̂t, Σ̂O) from a standard fixed-
parameter Gaussian DTSM using the then available history (Zt1,Ot1). That is, every month

Θ̂t is chosen to maximize

f(Zt1, O
t
1; Θ) =

t∏
s=1

f(Zs|Zs−1
1 ,Os−1

1 ; ΘP,ΣZ)f(Os|Zs1 , Os−1
1 ; ΘQ,ΣO). (14)

What this strategy amounts to is completely ignoring the uncertainty about Θ when
both updating one’s views about Θ and in pricing. As such it is naive for both forward-
and backward-looking reasons. Looking forward, bond prices implicitly depend on future Q-
forecasts through the standard affine pricing formulas (8) evaluated at Θ̂t, and the dependence
of these forecasts on future ΘQ is addressed by fixing future ΘQ

s , s > t, at Θ̂Q
t :

fQ
(

ΘQ,t+m−1
t |Zt1,Ot1

)
≡ fQ

(
ΘQ
t+m−1 = Θ̂Q

t , . . . ,Θ
Q
t+1 = Θ̂Q

t ,Θ
Q
t = Θ̂Q

t |Zt1,Ot1
)
. (15)

Similarly, P-forecasts of future bond yields, and hence risk premiums, are based on the fitted
vector-autoregression (VAR) (2) assuming that Θ is fixed at the current estimate Θ̂t even
though Θ̂t+1 will in fact change with the arrival of new information. This learning rule is also
naive looking backwards, because Θ̂t is updated by estimating a likelihood function over the
sample up to date t presuming that Θ is fixed and has never changed in the past even though
Θ̂t did change every month.

There is a revealing middle ground between this naive learning rule and that of the Bayesian
agent, one in which the learner is “semi-consistent” (SC) in updating and pricing. Starting
again from (13), we suppose that agent treats (ΘQ,ΣO) as known in updating and pricing,
but recognizes the need to learn about ΘP for the purpose of both pricing and forecasting.
For this agent the relevant likelihood function of the data becomes:

f(Zt1, O
t
1) =

t∏
s=1

f(Os|Zs1 , Os−1
1 ; ΘQ,ΣO)×∫

f(Zs|Zs−1
1 ,Os−1

1 ,ΘP
s−1; ΣZ)f(ΘP

s−1|Zs−1
1 ,Os−1

1 )d(ΘP
s−1). (16)
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This intermediate case is interesting for three reasons: (i) its structure can be reinterpreted as
a constrained case of the fully Bayesian rule; (ii) the presumption that ΘQ is fixed will turn out
to be close to being satisfied by our empirical learning rules; and (iii) because of this feature
of Θ̂Q, the rules for the (naive) ML-based and the (constrained Bayesian) semi-consistent
learners will turn out to be nearly identical empirically.

Elaborating for a concrete case, consider a SC agent who perceives herself as learning
about ΘP taking (ΘQ,ΣO) as known. Suppose that ΘP

t can be partitioned as (ψr, ψP
t ), where

ψP
t is the vectorized set of free parameters and ψr is the vectorized set of parameters that

are fixed conditional on ΘQ. The constraints we impose subsequently on the market prices of
P-risks admit this partition. Then (10) becomes (see Appendix C for details)

fPy (yt+1|Zt1) = N
(
xtψ

P
t ,Σy

)
, (17)

where yt = Zt −
(
I ⊗ [1, Z ′t−1]

)
ιrψ

r, and xt = (I ⊗ [1, Z ′t]) ιf , with ιr and ιf denoting the
matrices that select the columns of (I ⊗ [1, Z ′t−1]) corresponding to the restricted and free

parameters, respectively. Let ψ̂P
t denote an estimator of ψP

t in (17), viewed as a subvector of
the estimator Θ̂P

t .
For the purpose of comparing the SC and naive learning rules we focus on the case where

the agent believes that ψP
t evolves according to the process

ψP
t = ψP

t−1 + ηt, ηt
iid∼ N(0, Qt), (18)

where Qt denotes the (possibly) time-varying covariance matrix of ηt. We assume that ηt is
independent of all past and future ePZt . The construction of the semi-consistent learning rule
involves filtering on ψP conditional on (ΘQ, ψr). Adopting a Gaussian prior on ψP

0 leads to a
posterior distribution for ψP

t that is also Gaussian, ψP
t |Zt1 ∼ N(µt, Pt), with Pt is defined in

Appendix C and the posterior mean following the recursion

µt = µt−1 +R−1
t x′t−1Σ−1

Z (yt − xt−1µt−1), (19)

where R−1
t ≡ Pt −Qt and Rt satisfies the recursion (see Appendix C)

Rt =
(
I − P−1

t−1Qt−1

)
Rt−1 + x′t−1Σ−1

Z xt−1. (20)

Notably, this SC rule can interpreted within the class of adaptive least-squares estimators
(ALS) of ψP

t . We say that ψ̂P
t is an ALS estimator if there exists a sequence of scalars γt > 0

such that ψ̂P
t can be expressed recursively as

ψ̂P
t = ψ̂P

t−1 +R−1
t x′t−1Σ−1

Z (yt − xt−1ψ̂
P
t−1), (21)

Rt = γtRt−1 + x′t−1Σ−1
Z xt−1. (22)

It follows immediately from (19) - (20) that the posterior mean in the Kalman filter used
by the Bayesian learner to update ψP

t can be represented as a generalized ALS estimator.
Moreover, (20) reveals three special cases where the filtering underlying SC learning reduces
to an ALS estimator (that is, (20) reduces to (22)):9

B↓ALS: Setting P−1
t−1Qt−1 = (1− δt) · I10 for some sequence of scalars 0 < δt ≤ 1, µt becomes

9See McCulloch (2007), and the references therein, for discussions of similar issues in a setting of univariate
yt and econometrically exogenous xt.

10This condition can be obtained by recursively setting Qt = (δ−1
t+1 − 1)(Pt−1 − Pt−1x

′
t−1Ω−1

t xt−1Pt−1).
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an ALS estimator of ψP with γt = δt.

B↓CGLS: Specializing further by setting δt = δ to a constant leads to µt being a constant
gain least-squares (CGLS) estimator of ψP with γ = δ.

B↓RLS: If δt = γ = 1, then we recover the recursive least-squares (RLS) estimator of ψP.

Among the insights that emerge from this construction is that an SC agent whose learning
rule specializes to the RLS estimator is not adaptive in the following potentially important
sense. With γ = 1 it follows that Qt = 0, so an agent exhibiting RLS updating on ψP presumes
that these parameters are fixed over time. Learning is only about the unknown fixed value of
ψP. Consequently, sudden changes in market conditions that result in sharp movements in
recent values of Z may have an imperceptible effect on ψ̂P

t as updated by this agent. Indeed,
in environments where the ML estimator converges to a constant for large T , as is typically
presumed by regularity to ensure consistency of ML estimation in non-learning environments,
then after a very long training period we would expect this agent to be virtually non-adaptive
on ψ̂P to new information.

An SC rule that is more accommodating to changes in the underlying structure of the
economy (say to changes in monetary or other policies in response to changing business
conditions or in the face of financial crises) is obtained by giving less weight to values of
Z far in the past. Such down-weighting arises naturally when the SC learner specializes to
Case B↓CGLS of CGLS learning. The constant-gain coefficient γ determines the “half-life”
of the down weighting of the past history. While this might not be immediately apparent
from the likelihood function implied by SC learning with ALS updating in Appendix C, it
can be seen heuristically by noting that, conditional on ΘQ, the first-order conditions to this
likelihood function are identical to those of the scaled Gaussian likelihood of the naive learner
in which the quadratic form in ut ≡ yt − xt−1ψ

P
t−1 is weighted by γt; that is, the likelihood

involves terms of the form γtu′tΣ̂
−1
y ut.

Summarizing these observations, if there are no constraints on the market prices of risk
ΛP (ψr is empty) then, in each period, ML estimates of ΘP used by the naive learner are
identical to the ordinary least-squares estimator from the VAR for Zt (JPS). What the
preceding derivations show is that the naive learner behaves exactly as a SC learner under the
presumption that ΘP is fixed (but unknown). Put differently, the RLS updating of ΘP by the
naive learner is actually exactly how a Bayesian learner would update under the presumption
of known (ΘQ,ΣZ ,ΣO) and under the constraints on the posterior parameter distribution
that give rise to Case B↓RLS. Similarly, with ψr empty and under Case B↓CGLS, updating
by CGLS is exactly how a Bayesian with full knowledge of (ΘQ,ΣZ ,ΣO) would update her
views on ΘP

t .
Subtle differences across rules arise when there are constraints on ΛP (ψr is non-empty).

Most sophisticated is the Bayesian agent who recognizes that Θ is unknown and may be
changing over time and builds this knowledge into learning, pricing, and forecasting. Less
sophisticated is the SC agent who estimates ΘQ

t say by ML, but then treats the resulting Θ̂Q
t

as known and fixed when learning about (updating) Θ̂P
t according to one of the schemes nested

in Case B↓CGLS. Least sophisticated of all, in principle, is the agent who updates Θ̂t by
re-estimating the DTSM by ML every month as new data becomes available, either directly
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or (analogously to Case B↓CGLS) by down weighting the quadratic forms in the likelihood
function by γt as described above. Even though naive and SC learning schemes give similar
updates on ΘP, they are not identical because they imply different dependencies among ψ̂P

and Θ̂Q. Henceforth we focus on the SC formulation of the likelihood function, that emerges
as a constrained special case of the Bayesian learner’s estimation problem. In practice, we
obtain nearly identical fitted learning rules from implementing their naive counterparts.

2.2 Learning and Heterogeneity of Beliefs

Up to this point we have framed our discussion of learning in terms of the rule followed
by a consensus agent, unlike in most equilibrium models of bond prices (e.g., Xiong and
Yan (2009) and Buraschi and Whelan (2012)). While our learning environment is quite
rich, we have abstracted completely from the potentially rich heterogeneity across market
participants. In fact, there is considerable cross-sectional dispersion of the time-series of
forecasts of professionals in bond markets. Conceptually, the SDF M exists even in the
presence of such heterogeneity as an implication of the absence of arbitrage opportunities.
However we are adding the (strong) additional structure that, in the presence of heterogeneity,
bond prices are representable in terms of the reduced-form SDF of an investor who holds the
consensus beliefs of market professionals.

While, in general, the learning problems faced by market participants need not aggregate
up to a representation in terms of a consensus agent’s learning problem as in (9), when markets
are complete there typically exists a fictitious “aggregate agent” who holds consensus beliefs
and whose SDF prices the term structure of yields (Jouini and Napp (2007)). This result is
key to the tractability of prior equilibrium models with heterogeneous investors. However,
a major concern with this rationalization of our learning rules is that aggregation leads to
an SDF for the consensus agent that depends on a priced “aggregation bias” term related
to the differences in beliefs across the market participants. Typically (see, e.g., Buraschi
and Whelan (2012)) this bias term depends on the pairwise differences in agents’ beliefs
and, thereby, indirectly introduces a very high-dimensional set of priced risk factors. This
high dimensionality seems counterfactual in the light of the enormous empirical success of
low-dimensional factor models for bond yields.

This last point is material as including measures of forecaster disagreement directly as risk
factors in P would likely lead to over-parameterized models with detrimental consequences for
goodness-of-fit. DTSMs that keep dim(P) small and introduce macro variables as risk factors
typically do not accurately price bonds, whereas DTSMs with PCs as the risk factors have very
small pricing errors. Furthermore, Duffee (2010) shows that the over-fitting associated with a
large number of risk factors (four or five in his Gaussian DTSMs) results in model-implied
Sharpe ratios for bond portfolios that are implausibly large.

Moreover, our learning environment is agnostic as to the underlying economic sources
of variation in Pt. The PCs may already encompass the relevant (priced in bond markets)
aggregation bias that arises in equilibrium models. For a rough assessment of the extent to
which heterogeneity in beliefs is spanned by P , we constructed measures of the cross-sectional
dispersion in professionals’ forecasts of P , MAD(PCi), for i = 1, 2, 3. At each date t, and for
a given forecast horizon, we determined the cross-sectional median forecast of P, and then
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P (P,M)
1Q 2Q 3Q 4Q 1Q 2Q 3Q 4Q

MAD(PC1) 0.32 0.50 0.58 0.58 0.34 0.50 0.57 0.58
MAD(PC2) 0.54 0.61 0.62 0.61 0.66 0.67 0.68 0.69
MAD(PC3) 0.65 0.66 0.68 0.69 0.66 0.67 0.69 0.69
MAD(INF ) 0.04 0.04 0.13 0.27 0.40 0.30 0.28 0.32

Table 1: Adjusted R2’s from the projections of the cross-forecaster mean absolute errors in
forecasting the PCs onto P and onto (P,M) over the forecast horizons of one through four
quarters. The sample period is January, 1985 through March, 2012.

computed MAD(PCi) as the cross-sectional mean absolute deviations of individual forecasts
from the median. These dispersion measures MADF (PCi) were then projected onto the
contemporaneous values Pt and the broader state vector (Pt,Mt). An analogous calculation,
MAD(INF ), was done using the cross-section of inflation forecasts.

From Table 1 it is seen that the levels of the PC’s and the MAD(PCi) are highly
correlated, with P accounting for over half of the variation in the dispersion measures for
forecast horizons beyond two quarters (the only exception is the one-quarter ahead forecast of
PC1). Moreover, the percentages of variation in the MAD’s explained by P increase with the
order of the PC, with nearly seventy percent of the variation in the professional disagreement
about the future path of the curvature factor (PC3) being spanned by Pt. Interestingly, from
the right side of Table 1 one sees that adding in the conditioning information (INF,NAI)
adds little beyond the explanatory power of P for MAD(PC1) or MAD(PC3). In contrast,
Mt has incremental explanatory power for MAD(PC2), the dispersion in professional views
about the slope of the yield curve.

Ultimately, for addressing the issue of heterogeneity, we are interested in whether measures
such as MAD(PCi) embody incremental information beyond Zt about risk premiums in
bond markets. We defer this issue until Section 7 in part because the survey forecast data
is only available for the later portion of our sample. We prefer to explore learning with a
generous training period for initializing the learning rules. Additionally, we intentionally focus
on learning rules that do not condition on survey information with the goal of providing a
characterization of how the historical consensus survey forecasts are formed.

3 Learning Rules, Empirical Constructs, Historical Data

As references for exploring the properties of learning rules in bond markets we use the
survey forecasts of yields and inflation by market professionals from the Blue Chip Financial
Forecasters (BCFF) over the period January, 1985 through March, 2012. This survey is
typically released at the beginning of the month (usually the first business day), based on
information collected over a two-day period (usually between the 20th and the 26th of the
previous month). A total of 177 institutions provide forecasts during the period of our
study. These institutions are divided by the BCFF survey provider into different broad
sectors: Financial Services, Consulting, Business Associations, Manufacturing, Insurance
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Companies and Universities. In our sample there are 48 consulting companies, 111 financial
service companies, and the remaining 18 are from insurance companies, business associations,
manufacturers, and universities. Forecasts are averages over calendar quarters and cover
horizons out to five quarters ahead. For example, in January, 1999, the one-quarter ahead
forecast for a specific variable will be equal to its average value over February and March; the
two-quarters ahead forecast will be for the average value between April and June, and so on.

The survey forecasts are for U.S. Treasury 6-month bill yield and par yields on coupon
bonds with maturities of 1, 2, 3, 5, 7, and 10 years. One of our ultimate goals is to compare
the forecasts that emerge from our DTSMs with learning to the consensus forecasts of these
professionals. (We do not use the survey data directly in the estimation of our learning
models.) Accordingly, we use the survey-implied forecasts of averages of zero-coupon bond
yields computed by Le and Singleton (2012). This allows for direct comparisons of the zero
yield forecasts implied by a DTSM to their counterparts from survey data.11

For our empirical implementation, yields on zero-coupon bonds with maturities of 6 months
and 1, 2, 3, 5, 7, and 10 years were calculated from coupon-bond yields as reported in the
CRSP database using the Fama-Bliss methodology for the sample period June, 1961 through
March, 2012.12 For M , inflation is measured as the twelve-month moving average of monthly
CPI core inflation (INF), and real growth is measured by the three-month moving average
of a real activity index (NAI) that we construct in manner similar to the National Activity
Index reported by the Federal Reserve Bank of Chicago. Specifically, we use the first PC of
the monthly unemployment, industrial production, consumption of durable and non-durable
goods, and non-farm workers hourly income, obtained from the Bureau of Labour Statistics.13

Three classes of learning rules are examined. The first, denoted by `(RW ), constructs
forecasts of future zero yields according to the random walk model which conditions only on
the lagged value of the yield being forecasted. The second, SC and DTSM-based rule, denoted
`(JSZ), is based on the three-factor model developed in JSZ in which P is comprised of the
first three PC’s of the zero yields, measured without error, and the market prices ΛP of these
risks are affine functions of Pt. The third rule, denoted `(JPS), is based on the model in
JPS, which extends JSZ by allowing for macroeconomic information M to influence ΛP , and
in our setting M includes measures of inflation and real output growth (see below). These
DTSM-based rules enforce the constraint the market price of PC3 is zero, as in the preferred
model of JPS.14 Since KQ

Z is fully determined by λQ, constraints on ΛP effectively transfer a
priori knowledge of λQ to (some) knowledge about KP

Z .
These learning rules are initialized using estimates obtained for the sample period June,

1961 through June 1975. Then every month, up through March, 2011, as new data becomes

11Whereas forecasting zero-coupon yields in an affine DTSM is a linear forecasting problem (see below), par
yields are nonlinear functions of zero-coupon yields. We avoid this complexity by interpolating the forecasts of
par yields to obtain approximate forecasts of zero yields.

12See Le and Singleton (2012) for details and the reasons they constructed this data from the original
Treasury bond yields rather than use other widely available splined zero-coupon yields.

13We do not use the index from the Chicago Federal Reserve, because it does not extend as far back in time
as our yield data. For the overlapping sample period of March, 1967 through March, 2012, the correlation of
our index and the CFNAI is 0.8.

14JPS also impose a constraint on the eigenvalues of KQ
1 and KP

1 . The potential role of this constraint in our
learning rules is taken up in Section 4.
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available, the agent re-estimates the model and bases forecasts on the current month’s
estimates. Moving through this period, we envision the consensus agent implementing the JSZ
normalizations for the DTSM-based rules every month based on current information. Thus,
the portfolio weights for the first three PCs are recomputed each month from the estimated
variance-covariance matrix of yields.15

From the fitted DTSM at date t, an h-period ahead forecast of Z is given by

Ẑt+h = K̂P
0t +

(
K̂P
Zt

)
K̂P

0t + ...+
(
K̂P
Zt

)h−1
K̂P

0t +
(
K̂P
Zt

)h
Zt. (23)

This leads directly to the h-period ahead forecasts of yields:

ŷmt+h = Am

(
K̂Q

0t, K̂
Q
Zt, Σ̂PPt

)
+Bm

(
K̂Q
Zt

)
P̂t+h. (24)

If h is the last month in a quarter, then the average expected yield over the quarter is:

ŷmt+h:t+h−3 =
1

3

3∑
i=1

ŷmt+h−i. (25)

We compare these forecasts to the median of the forecasts reported by BCFF professionals.
One of our objectives is to characterize the implicit learning rule `(BCFF ) in terms of a

DTSM-based rule. Precisely how professionals forecast future yields is unknown, though it is
reasonable to presume that they condition on more information than what is encompassed
by Z. We do know that the forecasts that emerge from our DTSM-based learning rules are
inefficient in the sense that they ignore the forecaster’s knowledge that Θ̂t is being revised
every period. Comparisons are further challenged by the fact that the various learning rules
often differ in their forecasting accuracy depending on what aspect of yield-curve shape or
forecast horizon one is focused on. With this in mind we present results for various learning
rules, for both Cases B↓RLS and B↓CGLS. As noted previously, the latter is more adaptable
to structural change or parameter drift. A summary of the learning rules that are implemented
empirically is displayed in Table 2.

To replicate the implicit rule followed by BCFF professionals, we considered an SC agent
satisfying Case B↓CGLS and searched for the value of γ that gave the best match of `(JSZCG)
to `(BCFF ). Specifically, we examined γ’s in the range of [0.94, 1.00] and, for each γ, we
computed the RMSE’s of the differences in the errors in forecasting PC1 and individual bond
yields one year ahead from the BCFF- and JSZ-based rules. We found, both for the individual
bonds and PC1, that γ = 1 (RLS updating) produced the best replicating rule. This was
true for the entire sample between 1985 and 2011, and also for the subsamples of 1985-1999
and 2000-2011. The replicating rule is denoted by `(JSZ) in Table 2.

The finding that γ = 1 gives the best tracking rule for `(BCFF ) raises the question of
whether there is a rule `(JSZCG) with γ < 1 that systematically outperforms rule `(BCFF )
in terms of RMSE’s of forecasts. To assess this we examined the differences between the
RMSE’s for PC1 and individual yields and searched for the value of γ that gave the best

15This is in contrast to the more typical practice of of using full-sample estimates of the loadings for the
PCs when estimating and forecasting with DTSMs.
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Rule DTSM Information Restrictions γ

`(RW ) Random Walk Own Yield N/A N/A

`(JSZ) Joslin, Singleton, and Zhu (2011) P No-Arbitrage 1
PC3 unpriced

`(JSZCG) Joslin, Singleton, and Zhu (2011) P No-Arbitrage + 0.99
PC3 unpriced

`(JPS) Joslin, Priebsch, and Singleton (2013) (P,M) No-Arbitrage + 1
PC3 unpriced

Table 2: Description of models used as learning rules.
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Figure 1: Comparison of differences in RMSE’s for (a) forecasting PC1 and (b) individual
yields over a one-year horizon between the rules `(JSZCG) and `(BCFF ). The sample is
January, 1985 through March, 2012.

relative performance of (largest negative difference between the RMSE’s of) `(JSZCG) over
`(BCFF )). Figure 1 shows that, for PC1 and the yields on the bond with a maturity of
three years, the optimal choice of γ for CGLS learning is 0.99. Interestingly, the optimal γ
for the six-month yield was much smaller, roughly 0.97, while the optimal γ for the ten-year
yield was again 1.00. We infer from these results that optimal learning, at least within the
family `(JSZCG), varies by the maturity of the bond with a consensus SC learner preferring
to accommodate more drift in the fitted rules the shorter is the maturity of the bond, holding
fixed the forecast horizon of one year. Henceforth, `(JSZCG) refers to the rule with γ = 0.99.

4 Naive Learning Rules

We begin our empirical exploration of learning by assuming that the SC consensus agent
uses the naive DTSM-based rules introduced in Section 2.1 and summarized in Table 2. We
know from the large literature on Gaussian DTSMs without learning that in-sample pricing
is very accurate. In our learning environment agents have the added flexibility of updating Θ̂t

every month. If updates of Θ̂Q
t are large, then the naive learning rules could show notably
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Figure 2: Estimates from model `(JSZ) of the eigenvalues λQ of KQ
1 that govern the loadings

on Pt in the affine representations of bond yields. The estimates at date t are based on the
historical data up to observation t, over the period June, 1975 to March, 2012.

inferior pricing accuracy relative to professionals, who implicitly use richer information sets,
and Bayesian learners who formally accommodate the uncertain future paths of Θ̂t when
computing prices.

Delving deeper into pricing accuracy, note that agents can reasonably be modeled as
knowing λQ. This is because the Bm, which depend only on λQ, are pinned down very precisely
by the cross-section of yields;16 the historical time series information is largely irrelevant for
learning about λQ. Not only is it reasonable to presume that λQ is largely known, it turns out
that revising Θ̂t according to a DTSM-based rule leads one to hold λ̂Qt essentially fixed over
time. This can be seen from Figure 2 for the rule `(JSZ).17 Indeed, repeating our learning
exercise with λQ fixed from the initial training period onward has virtually no effect on the
properties of the rule-implied prices or forecasts.

Pursuing this insight, if λQ is known and fixed over time, then so are the loadings Bm on
P in the affine pricing expression (8). Combining this with the fact that Pt is measured with
negligible error, the state-dependent components of bond yields that emerge from (8) with
learning take the same form Bm

(
λQ
)
Pt, just as in a DTSM without learning. Furthermore,

agents will use fixed “hedge ratios” over time to manage the risks of their bond portfolios.18

16This is why the factor loadings Bm are reliably recovered from contemporaneous correlations among bond
yields ymt and Pt (Duffee (2011)). It also explains why, holding (K,N,Z,P) fixed, estimates of λQ is DTSMs
without learning are virtually invariant across specifications of the P distribution of Z.

17In all subsequent figures, light green shaded areas correspond to NBER recessions, and the period between
October, 1979 and October, 1982 represents the “Fed experiment” when the Federal Reserve focused on
monetary aggregates instead of following interest rate rules.

18The estimates of the weights that define P are also stable over time.
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This pattern in λ̂Qt is shared across all DTSM-based rules we examined.
Now yields also depend on the maturity-specific intercepts Am, which in turn depend on

agents’ views about both rQ∞ (the long-run Q-mean of r) and ΣPP . Though (as we will see)
our SC agent substantially revises her estimates of ΣPP over time, the impact of ΣPP on Am
is through a convexity adjustment that is typically very small (see Appendix A). Therefore,
by holding λQ fixed, our agent is effectively also fixing the Am’s. We conclude that our SC
learning rules– which presumed that ΘQ is fixed and known– are not as naive as they might
have seemed ex ante, as they produce pricing rules that are actually internally consistent.

Referring back to our comparative analysis of learning in Section 2.1, even with constant
λQ, SC learning under Case B↓RLS is not necessarily equivalent to full Bayesian learning for
two reasons. First, the constraints on Bayesian updating on ΘP that would place it within
Case B↓ALS may not hold. Second, with known λQ, learning is mostly about ΘP and ΣZ .
The Bayesian treats ΣZ explicitly as unknown, where as the SC agent computes her posterior
distribution presuming that ΣZ is known.

The relative accuracies of the rule-based forecasts, which depend primarily on Θ̂P
t , can

be assessed from the RMSE’s displayed in Table 3. The RMSE’s for forecasts of yields from
the rules `(BCFF ) and `(JSZ) (rule `(JSZCG) with γ = 1) are nearly the same for both
one-quarter and one-year horizons, computed over the period January, 1985 through March,
2012. Rule `(JSZ) out performs both of these rules for one-year forecasts for all maturities,
and also for all of the yields beyond the six-month maturity over a one-quarter horizon.
Below each RMSE are Diebold and Mariano (1995) (D-M) statistics for assessing whether
two RMSE’s are statistically the same, calculated as extended by Harvey, Leybourne, and
Newbold (1997).19 The first (in parentheses) tests against the `(RM) rule, and the second (in
brackets) tests against the rule implicit in `(BCFF ). The JSZ-based rules are not statistically
different from the one used by the consensus professional at the one-year horizon, but they are
statistically different over one-quarter horizons. By way of benchmarking, for the one-quarter
forecast horizon `(BCFF ) performed about the same as the simple rule `(RW ); for one-year
forecasts the RW model outperformed the consensus professional for longer maturity bonds.

A more nuanced view of relative forecast performance emerges from Figure 3 which com-
pares the errors in forecasting PC1 and PC2 one-year ahead for the pair `(BCFF )/`(JSZ).20

While the errors from t he JSZ-based rule does not track those from `(BCFF ) perfectly, the
tracking is remarkably close. The most challenging periods for matching `(BCFF ) by `(JSZ)
are the early 2000’s (for slope), and the beginning of the recovery from the global financial
crisis in 2011 (for level). Overall, the close match of rule `(JSZ) to `(BCFF ) suggests that

19 Consider two series of forecast errors e1t and e2t, t = {1, 2, ..., T}, define dt ≡ e21t − e22t, and let

µ̂d =
1

T

T∑
t=1

dt and V̂d =
T∑

t=1

(dt − µ̂d)2 + 2
h∑

j=1

k(j/h)

T−j∑
t=1

(dt − µ̂d) (dt+j − µ̂d) ,

where k(.) is a Bartlett kernel that down-weights past lags to ensure that the variance of the difference in mean
squared errors stays positive. The number of lags h is set to three for the one-quarter ahead forecasts and to
twelve for the four-quarters ahead forecasts. Then D-M =

√
T µ̂d/V̂

1/2
d .

20The loadings for these PCs are normalized so that the forecast errors are expressed in basis points.
Specifically, we scaled the loadings for PC1 to average out to unity, and the loadings for PC2 were scaled so
that the difference between the loadings for the ten-year and six-month yields summed to unity.
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Panel (a): RMSE’s (in basis points) for Quarterly Horizon
Rule 6m 1Y 2Y 3Y 5Y 7Y 10Y

`(RW ) 38.0 41.1 43.3 43.7 42.4 41.1 37.5

`(BCFF ) 51.4
()

[4.10]

51.6
()

[3.28]

52.4
()

[4.48]

54.3
()

[5.03]

49.5
()

[4.86]

47.9
()

[3.40]

44.8
()

[3.54]

`(JSZ) 39.7
(−4.03)
[1.96]

41.8
(−3.07)
[0.76]

45.2
(−3.92)
[2.85]

44.6
(−5.28)
[1.31]

43.0
(−4.39)
[0.65]

41.2
(−3.92)
[0.08]

37.7
(−3.33)
[0.27]

`(JSZCG) 38.5
(−4.36)
[0.50]

41.6
(−3.17)
[0.48]

45.2
(−3.80)
[3.05]

45.0
(−4.45)
[1.55]

43.4
(−4.10)
[1.20]

42.1
(−3.66)
[1.21]

38.8
(−2.96)
[2.01]

`(JPS) 36.2
(−3.96)
[−0.78]

41.2
(−2.74)
[0.04]

44.2
(−2.99)
[0.57]

43.9
(−3.86)
[0.13]

41.4
(−4.71)
[−1.20]

40.7
(−3.94)
[−0.41]

39.3
(−2.64)
[1.26]

Panel (b): RMSE’s (in basis points) for Annual Horizon
Rule 6m 1Y 2Y 3Y 5Y 7Y 10Y

`(RW ) 136.2 135.3 126.3 118.0 107.3 102.2 96.0

`(BCFF ) 148.2
()

[1.18]

144.6
()

[0.90]

140.1
()

[1.59]

136.2
()

[2.28]

119.6
()

[2.30]

113.9
()

[2.40]

106.0
()

[2.56]

`(JSZ) 141.7
(−1.07)
[0.75]

140.6
(−0.51)
[0.77]

134.7
(−0.84)
[1.26]

125.9
(−1.61)
[1.28]

111.7
(−1.22)
[0.81]

102.3
(−1.66)
[0.02]

92.9
(−1.63)
[−0.58]

`(JSZCG) 137.3
(−1.33)
[0.19]

136.6
(−0.92)
[0.26]

130.5
(−1.38)
[0.92]

122.5
(−1.93)
[1.01]

110.7
(−1.65)
[1.14]

104.1
(−1.85)
[0.72]

97.4
(−1.49)
[0.50]

`(JPS) 130.4
(−1.51)
[−0.47]

130.7
(−1.31)
[−0.42]

123.3
(−1.80)
[−0.43]

114.4
(−2.52)
[−0.72]

101.8
(−2.37)
[−1.44]

96.5
(−2.23)
[−1.12]

92.8
(−1.48)
[−0.51]

Table 3: RMSE’s for one-quarter (Panel (a)) and one-year (Panel (b)) ahead forecasts,
January, 1985 to March, 2012. The D-M statistics for the differences between the DTSM- and
BCFF-implied (DTSM- and RW -implied) forecasts are given in parentheses (brackets).

the consensus BCFF professional was effectively forecasting bond yields using a three-factor
model with recursive least-squares updating of ΘP.

The forecast errors are persistent, consistent with the long forecast horizon, and notably
they tend to be large during NBER recessions when the consensus professional and `(JSZ)
forecasted much higher levels and steeper yield curves than what were experienced in the US.
Also, after the Federal Reserve’s shift away from their experimental monetary rule in the early
1980s, professionals predicted much higher rates than were realized for several years . This
suggests that market participants were struggling with the credibility of the new monetary
policy rule up until around 1987. We will explore in more depth some of the cyclical features
of forecast errors in Section 6.1 where we take up the properties of risk premiums in the
presence of learning with conditioning on macroeconomic information.

The RMSE’s for rule `(JSZCG) which sets γ = 0.99 for down weighting the risk factors
P (see Table 3) show virtually no improvement over those for `(JSZ) over a quarterly
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Figure 3: Comparison of forecast errors (realization minus forecast) for PC1 and PC2 of
rule `(BCFF ) against rule `(JSZ) for the horizon of one year. The sample is January, 1985
through March, 2012.

forecast horizon. There is a larger gain for the one-year horizon (which was used to select
γ), particularly for bonds with maturities under three years. These RMSE’s are, however,
misleading summaries of the degree to which the forecasts from `(BCFF ) and `(JSZCG)
track each other. In fact, the tracking for both PC1 and PC2 is much inferior for `(JSZCG)
than for `(JSZ). This deterioration in tracking of BCFF forecasts comes with the benefit of
much more accurate forecasts by `(JSZCG) than by either `(BCFF ) or `(JSZ) during crisis,
especially from mid-2009 onwards.

5 Bayesian Learning with Consistent Pricing

Our Bayesian learning rules bring greater sophistication to the consensus agent, a conceptual
improvement over our naive learning rules, with some potential costs associated with added
structure on agents’ beliefs. The Bayesian agent specifies the joint distribution of her beliefs
for a high-dimensional Θ and consistently updates these beliefs as new information becomes
available. This requires specifying which parameters are known, which are unknown but
constant, and which are drifting or state dependent, and for the latter parameters she must
specify their laws of motion. With these beliefs in place, she then solves for prices that are
consistent with the assumptions on parameter uncertainty.

Two learning schemes are explored in depth. In the first, Θ is presumed fixed over time
and the consensus agent is learning its value. The second environment has the agent learning
about the parameters governing the conditional P-mean (ΘP) as ΘP drifts according to the
known law of motion (18)– a random walk reflecting permanent structural changes– presuming
that the remaining parameters are fixed (but still unknown). Our interest in the second case
is motivated in part by the debate in the macroeconomics literature about whether changes
in monetary policies in the U.S. had material effects on the dynamics of V AR models of the
macroeconomy (see, e.g., Cogley and Sargent (2005) and Sims and Zha (2006).)

Even for the simplest of these learning problems where all of the parameters are fixed there
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Panel (a): RMSE’s (in basis points) for Three Months Horizon
Model 6m 1Y 2Y 3Y 5Y 7Y 10Y

Fixed Param. 50.08 47.62 52.30 55.15 60.02 61.62 64.57
Drifting ΘP 41.49 42.59 45.96 46.00 48.08 48.87 49.44

Panel (b): RMSE’s (in basis points) for Twelve Months Horizon
Model 6m 1Y 2Y 3Y 5Y 7Y 10Y

Fixed Param. 195.82 187.55 181.59 176.48 169.00 162.97 158.22
Drifting ΘP 162.52 158.92 139.59 149.23 128.47 123.39 119.04

Table 4: RMSE’s for yield forecasts based Bayesian learning with the JSZ model over the
period June, 1985 through March, 2012.

is not a closed-form solution for the joint posterior distribution of the parameters. Therefore,
throughout we use the particle filter to approximate this distribution. We initialize parameter
beliefs using maximum likelihood estimates over the sample between June, 1961 and June,1974.
We then run the particle filter over the sample between June, 1974 and March, 2012. Owing
to the highly modular structure of the particle filter, the recursions involved in solving models
with drifting parameters are relatively straightforward extensions of the algorithm for the
fixed-parameter case. Details are given in Appendix D.

Table 4 reports RMSEs for one-quarter and one-year ahead forecasts produced by the two
learning algorithms set within the JSZ term structure setting (no conditioning on macroeco-
nomic information). The Bayesian learner obtains more accurate forecasts, particularly over
the one-year horizon, by adopting the prior that ΘP is drifting according to random walk. At
the same time, notice that these RMSE’s tend to be larger than the matching results for the
relatively naive SC `(JSZ) rules (Table 3).

A likely explanation for the less accurate performance of the Bayesian learner is that we
implemented these fully consistent learning rules under the assumption that the covariance
matrix Qt of the innovations in ψP (see (18)) is constant (not time dependent). In contrast,
the updating under Case B↓ALS (which covers both RLS and CGLS learning), arises as a
special case of Bayesian learning where Qt is state-dependent and satisfies the constraints
discussed in Section 2.1. The Bayesian agent formally accounts for the uncertain knowledge of
ΘQ but, as we have seen, in our setting λQ is effectively known and approximately constant.
This also diminishes the benefit of consistent pricing within the Bayesian rule, as the naive
rules come close to internal consistency. The findings in Table 4 suggest that forecasts would
be improved if we allowed the Bayesian agent to recognize state-dependence in Qt.

6 Learning About Macroeconomic Risks and Monetary Policy

In this section we return to the properties of the DTSM-based learning rules, with particular
emphasis on the evolution of the P-parameters and the implied risk premiums as the consensus
agent learns over time conditioning on both the shape of the Treasury curve and macroeconomic
activity. Our learning window begins in January, 1985 shortly after the return to an interest-
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rate policy rule by the Federal Reserve Board (FRB). In the early 1990’s the first Iraq war
led to a mild recession, and over this period the FRB progressively cut the policy rate from
8% at the beginning of the Gulf war to 6% in the spring of 1991. The federal funds rate was
again cut to 3% in 1992 and remained at this level until February, 1994. Since inflation was
close to 3% at the time, the short-term real rate was essentially zero.

There were two particularly relevant developments in the early 1990’s for our analysis
of learning. In 1994 the US economy was in a strong expansion and the FRB, in order to
preemptively counteract increases in nominal prices, tightened monetary policy resulting (by
February, 1995) in an increase in bond yields of 2.5% and a substantial steepening of the yield
curve. Additionally, starting in February, 1994 the FRB started announcing their federal funds
rate target immediately after each FOMC meeting, thereby making policy communication
more transparent. Similarly, in early 1999 the FRB started immediately communicating
major changes in its views on the direction of monetary policy. Wright (2011) and Bauer,
Rudebusch, and Wu (2013) attribute the declines in bond-market risk premiums in the 1990’s
to increased transparency and declining uncertainty about inflation.

For exploring the links between macroeconomic activity and learning rules, we focus on the
more flexible and informationally rich learning rule `(JPS). The RMSE’s for the `(JPS) rule
over our entire learning period from 1985 to 2012 (Table 3) reveal that professionals could have
improved their forecasts by incorporating information about inflation and output growth in the
manner it enters the JPS model. The gain in forecast accuracy over `(BCFF ) is statistically
significant for bonds of all maturities except the ten-year over the one-quarter horizon and
borderline significant for the intermediate maturity bonds when forecasting one-year ahead.21

Table 5 compares one-year-ahead RMSE’s for the three sub-periods January, 1985 through
December, 1999, roughly the first half of our learning period and ending about the time of
several major changes in FRB disclosure policies; January, 2000 through December, 2007,
the period of asset price inflation leading up to the global financial crisis; and January, 2008
through March, 2012 covering the crisis up to the end of our sample. Notably, the RMSE’s
for the first half of our sample tend to be much larger than those for the crisis period, and
they are more comparable to the full-sample results in Table 3 Panel (b). Apparently market
participants and the DTSM-based rules alike, when faced with selloffs in financial markets
and the aggressive non-standard policies implemented by the central banks globally during
the crisis, could relatively reliably predict the future paths of bond yields.

The most challenging period for predicting bond yields was during the early 2000’s, starting
with the dotcom bust and then leading up to the recent global crisis. The gain in forecasting
accuracy from conditioning on M is particularly large during this period, as rules `(BCFF )
and `(JPS) give very different RMSE’s. The difficulty in forecasting was particularly acute
for short maturity bonds (under five years to maturity). That conditioning on inflation and

21Throughout our analysis of the rule `(JPS) we do not enforce the constraint that the largest (most
persistent) eigenvalues of the feedback matrices KP

Z and KQ
Z being equal, as was done in JPS’s preferred model.

This constraint is interesting in our learning setting, because it effectively has the agent using the precise
knowledge of λQ from the cross-section to mitigate small-sample bias in estimating the parameters KP

Z from the
P-Markov process for f . For similar reasons Jardet, Monfort, and Pegoraro (2012) enforced near-cointegration
in their DTSMs. Nevertheless, we find that enforcing this constraint add little to improving out-of-sample
forecasts from our learning rules.
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RMSE’s by Bond Maturity
Rule 6m 1Y 2Y 3Y 5Y 7Y 10Y

January, 1985 – December, 1999
`(RW ) 124 127 127 123 117 117 115

`(BCFF ) 137 138 133 129 121 120 120
`((JSZ) 124 127 124 120 111 108 106
`((JSZCG) 130 134 131 127 119 117 114
`((JPS) 132 135 130 124 114 111 107

January, 2000 – December, 2007
`(RW ) 173 165 143 125 98 79 60

`(BCFF ) 178 165 156 144 116 98 79
`(JSZ) 181 176 163 145 118 97 75
`(JSZCG) 166 159 145 128 104 86 69
`(JPS) 141 138 125 109 86 71 64

January, 2008 – March, 2012
`(RW ) 75 75 67 67 76 78 69

`(BCFF ) 116 118 129 148 122 119 94
`(JSZ) 100 97 102 103 98 85 67
`(JSZCG) 78 76 76 79 82 79 71
`(JPS) 92 87 79 75 77 76 78

Table 5: RMSE’s in basis points for one-year-ahead forecasts over the indicated periods.

output growth is what substantially improved the performance of `(JPS) is apparent from
higher RMSE’s for `(JSZ) out to the seven-year segment of the Treasury curve. Even rule
`(JPSCG), which was optimized by choice of γ = 0.99 for the entire sample period, shows
much weaker forecasting accuracy relative to `(JPS) during this period. Additionally, `(JPS)
also substantially outperformed `(RW ) for the shorter maturity bonds.

It is our impression that during this period many central banks’ used DTSMs that
conditioned only on the shape of the yield curve when extracting estimates of market risk
premiums and, as such, they were using suboptimal forecasting models. Figure 4(a) shows
the systematic over-forecasting of the level of yields by both professionals and the yield-only
rule `(JSZ) (predicted yields much higher than those subsequently realized) for most of this
period. Starting in the depths of the 2001 recession, `(JPS) outperformed `(BCFF ) through
2004. Only during 2005 - 2006, when these learning rules systematically under-forecasted
yields, did `(BCFF ) outperform `(JPS).

Another period during which the professionals had a relatively difficult time forecasting
bond yields was post 2008, during the crisis. However, in this case it was not so much
conditioning on macroeconomic information that helped the DTSM-based rules, but rather the
smooth updating implicit in SC learning. At the beginning of the crisis `(JPS) systematically
out performs `(BCFF ), because the professionals were consistently, and incorrectly, predicting
that Treasury bond yields would rise. The gradual RLS (CGLS) updating within `(JPS)
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Figure 4: Comparison of forecast errors (realization minus forecast) for PC1 and PC2 of
rule `(BCFF ) against rule `(JPS) for the horizon of one year. The sample is January, 1985
through March, 2012.

(`(JSZCG)) was more consistent with what actually transpired. This is also apparent in
Figure 4(a) for rule `(JPS). This smooth updating also explains the spike for `(JPS) in
forecast errors for PC1 around the turn of the year 2010. Ten-year Treasuries reached a trough
of 2.4% in December, 2008. Rule `(JPS) extrapolated the low bond yields ahead to the end
of 2009. What happened in fact was that yields rose more rapidly, finally validating the earlier
(incorrect) views of `(BCFF ) and leading to substantial under prediction by `(JPS).

The three- to five-year segment of the Treasury curve was a particularly challenging
segment for professional forecasters during the crisis, strikingly so relative to either of the
earlier subperiods. This segment of the curve is intriguing because Fleming and Remolona
(1999) show that macroeconomic announcements had a relatively large impact on the shape
of the intermediate segment of the yield curve. Additionally, Piazzesi (2005)’s fitted monetary
policy rule suggests that the FRB reacted to information in the two-year segment of the
Treasury curve. These connections between changing shapes of the Treasury curve and
macroeconomic activity may have been more accurately captured in `(JSZ) and `(JPS)
than in `(BCFF ). A complementary explanation for the poor forecasting performance by
professionals relates to the roles of intermediate maturity bonds in hedging mortgage-related
securities (Duarte (2008)). The collapse of the MBS market may also have been a factor and,
if so, it seems to have affected professionals much more so than DTSM-based learners.

The best performing rule during the crisis (for this one-year horizon) is `(RW ), though
rule `(JSZCG) produces inconsequentially larger RMSE’s. That constant-gain learning absent
conditioning on macroeconomic information (slightly) outperforms least-squares learning with
conditioning on M serves to highlight the importance of an adaptable learning rule that was
responsive to major changes in policy during this period.

Of equal interest is how the various learning rules forecasted PC2. The slope of the yield
curve is often linked directly to the stance of monetary policy (e.g., Rudebusch and Wu (2008))
and PC2 has been found to have strong predictive power for risk premiums in Treasury
markets (e.g., Cochrane and Piazzesi (2005)). Recall from Figure 3(b) that forecasts of PC2
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from `(JSZ) tracked those of `(BCFF ) quite closely over our entire sample. In contrast,
from Figure 4(b) it is seen that forecasts of PC2 from `(JPS) deviate systematically from
those of `(BCFF ) throughout the sample.

Moreover, when there deviations are large, it is rule `(JPS) that is much more accurate.
Particularly during periods when forecasts of PC2 were well above the subsequently realized
slopes of the yield curve (the troughs in Figure 4(b)), `(JPS) outperformed `(BCFF ). It
turns out that these discrepancies happen around local turning points for PC2, when the
yield curve transitioned from steepening to flattening and vice versa.

6.1 Risk Premiums in the Presence of Learning

Within the literature on reduced-form DTSMs, risk premiums have typically be computed
under the presumption that market participants have full knowledge of the laws of motion of
the risk factors (Duffee (2001), Dai and Singleton (2002)). In the presence of learning, there
may be variation in the SC consensus agent’s expected excess returns induced by the learning
process per se as contrasted with variation induced by movement in the underlying quantities
or market prices of the risks Pt. In this section we quantify this learning component of risk
premiums, and relate its properties to the evolution of the macroeconomy.22

Figure 5 displays the expected excess returns over one-year holding periods for positions
in two- and ten-year bonds for three learning rules: `(BCFF ), `(JSZ), and `(JSZCG). We
focus on yields on individual bonds so as to avoid the rebalancing and approximations involved
in computing multi-period expected excess returns for the PC-mimicking portfolios. In the
case of the two-year bond the three rule-implied risk premiums track each other quite closely
for most of the sample. The relatively rapid adjustment inherent in the CGLS-based rule
`(JSZCG) induces large differences with the other two rules in the late 1980’s and after 2001.
The sensitivity to rule-based risk premiums to the choice of γ is also striking. While RMSE’s
for forecasts differed somewhat for `(JSZ) and `(JSZCG), those results did not foreshadow
the very distinctive patterns in Figure 5(a).

For most of our sample period the compensations for bearing two-year Treasury bond risk
were positive, with only occasional and short-lived dips below zero. The primary exception is
the period from the beginning of 2005 through 2007 when risk premiums were systematically
declining and turned negative. This is the period that Chairman Greenspan referred to as the
conundrum, because long-term bond yields remained largely unchanged while the FRB was
raising short-term policy rates.

Whereas risk premiums on positions in two-year bonds are broadly similar across the
learning rules, they are notably different for positions in ten-year bonds (Figure 5(b)). Rules
`(JSZ) and `(BCFF ) roughly track each other in the late 1980’s, the second half of the
1990’s, and during 2007-08, but otherwise they are very different. The risk premiums implied
by `(JSZCG) are distinctive for virtually the entire post-1994 period. Varying the down
weighting of past data through the choice of γ has huge effects on the risk premiums on

22Focusing on learning is complementary to, but distinct from variation induced by ambiguity aversion
(e.g., Barillas, Hansen, and Sargent (2009), Ulrich (2013)). An interesting question for future research is how
learning and ambiguity about the correct underlying model of factor risks interact within a term structure
setting. Hansen (2007) explores these interactions at a broad macroeconomic level.
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Figure 5: Average expected excess returns over holding periods of ten, eleven and twelve
months for the two- and ten-year bonds based on learning rules `(JSZ), `(JSZCG), and
`(BCFF ), January, 1985 to March, 2011.

long-term bonds implied by learning rules.
Pursuing the differences between `(JSZ) and `(BCFF ), notice that shortly after every

NBER recession in our sample the gaps between the risk premiums implied by these rules
become relatively large. As can be seen from Figure 6, a key factor underlying these differences
is the slope of the yield curve. The strong positive correlation between compensation for
bearing the risk of holding ten-year bonds and the steepness of the yield curve is evident.
Moreover, it is precisely when the Treasury curve is relatively very steep that the consensus
professional forecaster believed that risk compensation was much lower than what was implied
by our DTSM-based learning rule.

To translate these findings into implications for views on the shape of the Treasury curve,
consider the period from 2001 through 2005. The yield y10y reached a local peak of about
6.7% in early January, 2000, and it fell to a local low of about 3.7% at the beginning of
October, 2002. It then bounced around in a moderately narrow trading range and ended 2005
at about 4.4%. The y10y − y2y spread was inverted at the beginning of 2000 and it steepened
substantially through the middle of 2004. The difference between the expected excess returns
from `(JSZ) and `(BCFF ) arises entirely from different forecasts of the ten-year yield one
year ahead. As discussed above, the professional forecasters tended to expect a more rapid
rise in long-term Treasury yields relative to the forecasts implied by `(JSZ) in the periods
following recessions. It is these differences that underlie the relatively higher risk compensation
demanded by the agent following the learning rule `(JSZ).

Among the agents following `(JSZ) or `(BCFF ), which one had more accurate assessments
of realized excess returns? Over the entire sample period, the RMSE’s in forecasting the
realized excess returns for bearing (2y, 10y) bond risks were (1.55%, 9.68%) for `(BCFF ) and
(1.47%, 7.97%) for `(JSZ). For this specific episode over January, 2001 through January, 2006,
the corresponding RMSE’s were (1.34%, 7.62%) for `(BCFF ) and (1.40%, 4.34%) for `(JSZ).
The two rules had comparable forecast accuracy for risk compensation on the two-year bond.
On the other hand, particularly for the post-recession periods, the out-performance of `(JSZ)
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Figure 6: Average expected excess returns over holding periods of ten, eleven and twelve
months for the ten-year bond based on `(JSZ) and `(BCFF ) (left axis) and the slope of the
Treasury curve measured as y10y − y2y (right axis), January, 1985 to March, 2011.

in forecasting excess returns on the ten-year bond was enormous. We stress that rule `(JSZ)
is a fully ex ante learning rule that could have been well approximated throughout our sample
by a factor-VAR forecasting model, and rule `(JSZ) was available to market participants
during the recent crisis when it again substantially out performed `(BCFF ).

Providing an economic interpretation of these differences in challenging absent a model
that reveals whether the BCFF professionals were marginal traders in Treasury bonds. If these
professionals were marginal, then the prices of Treasuries would likely have been substantially
different had they been learning by `(JSZ). On the other hand, if they were not marginal
and were simply following inefficient learning rules, then a key message from our findings is
that disciplining DTSMs using survey data on long-term yields will likely lead to distorted
measures of required risk compensations.23

With this caveat in mind, it is of interest to examine the economic factors underlying
the discrepancies between the risk premiums implied by `(BCFF ) and `(JSZ). Table 6
displays the R2’s from the projections of rule-implied expected excess returns (ER) onto
various sets of conditioning variables. Note, first of all, that roughly 15% of the variation in
ER2[`(JSZ)] is unspanned by P ; the conventional DTSM without learning implies complete
(100%) spanning. It follows that roughly 15% of the variation in ER2[`(JSZ)] is a pure
learning effect. The learning effect is much weaker for ten-year bonds, as the corresponding
R2 is 94%. Second, adding M to the conditioning information has a negligible effect on the
R2, indicating that the learning effect is not linked directly to developments with inflation

23Gains in forecast performance may come from using information embedded in survey forecasts of short-term
rates and, indeed, Altavilla, Giacomini, and Ragusa (2014) present evidence consistent with this view.
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January, 1987 Through March, 2011
Excess Return 2 Year Bond

Rule P S000 S100 S101 S011 S001

`(JSZ) 84.0 89.7 91.1 91.1 89.8 89.8
`(BCFF ) 71.7 72.0 73.2 73.4 75.4 72.6
`(JSZ)− `(BCFF ) 28.9 36.7 46.9 47.3 46.5 39.4

Excess Return 10 Year Bond
Rule P S000 S100 S101 S011 S001

`(JSZ) 94.1 95.5 97.0 97.0 95.7 95.5
`(BCFF ) 22.3 37.0 41.0 51.6 54.9 50.8
`(JSZ)− `(BCFF ) 44.7 51.4 59.6 66.3 67.4 62.5

Table 6: R2’s from projections of learning rule-implied expected excess returns for the one-year
holding period. The conditioning sets Sijk indicate the combination of the yield PCs (P),
macroeconomic factors (M), the liquidity factor (LIQ), and i : MAD(INF ), j : MAD(PC1),
k : MAD(PC2).

or output growth. We also conditioned on the liquidity variable (LIQ) constructed for
Treasury markets by Hu, Pan, and Wang (2013), and it also added no explanatory power
for ER2[`(JSZ)]. Finally, returning to the theme of heterogeneity discussed in Section 2.2,
we examined whether variation in ER2[`(JSZ)] was correlated with the forecast dispersion
measures (MAD(INF ),MAD(PC1),MAD(PC2)) indicated by the indicators (i, j, k) on
Sijk. From the first row of Table 6 the answer appears to be no. The results for ER2[`(BCFF )]
are similar, though the corresponding R2’s are consistently a bit lower. Were one to view
ER2[`(BCFF )] as being generating by a DTSM, then it would follow that the learning effect
is more pronounced for the professional forecasters.

Of particular interest is whether any of these conditioning variables are significantly
correlated with the difference ER2[`(BCFF )] − ER2[`(JSZ)] which, as we have noted,
becomes especially large shortly after every economic downturn since 1985. This gap is highly
correlated with the PCs, LIQ and MAD(INF ), with comparable explanatory power being
achieved by replacing MAD(INF ) with (MAD(PC1),MAD(PC2).24 For the case of the
ten-year bond, the dispersion variables again have substantial incremental explanatory power
for the difference between the returns. Conditioning on either (MAD(INF ),MAD(PC2)) or
(MAD(PC1),MAD(PC2)) leads to projections that account for two-thirds of the variation
in ER10[`(BCFF )]− ER10[`(JSZ)].

Viewing these patterns together, it appears as though the consensus forecasts of bond
yields reflect the heterogeneous views among the professional forecasters about the future
course of inflation (or PC1) and the slope of the yield curve. To the extent we can connect
uncertainty about the slope of the Treasury curve to uncertainty about the future course of
monetary policy, it appears as though lack of agreement about inflation and monetary policy

24The forecast dispersion series are highly (though far from perfectly) correlated over our sample period.
They tended to start high in the late 1980’s, to mildly cycle during the 1990’s and 2000’s, and then MAD(INF )
spikes up during the crisis (much more so than MAD(PC1) or MAD(PC2)).
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sent the median professional off course from efficient forecasting relative to the DTSM-based
rule `(JSZ). Additionally, it seems notable that uncertainty about inflation (as measured by
MAD(INF )) has so much explanatory power for the under-performance of the professional
forecasters, even at the intermediate two-year point on the Treasury curve. The accounting
in Table 6 is conservative in the sense that P is also highly correlated with the MAD’s (see
Table 1) and the conditioning sets Sijk include P.

6.2 The Evolution of Beliefs About Parameters and Monetary Policies

Not surprisingly, within our sample period, the largest and most frequent revisions in (KP
Z ,ΣPP)

occurred during the Fed experiment between the falls of 1979 and 1982. During this period of
a monetary-base focused policy, there was a sharp rise in interest rates and flattening of the
Treasury curve. Figure 7 displays the consensus agent’s views– as implied by the learning
rule `(JSZR)– about the unconditional covariance matrix of the risk factors P and Figure 8
shows the revisions in KP

P .
There is a notable and sharp increase in the perceived innovation variances of the yield PCs

at the beginning of the FRB experiment. Interestingly, whereas the perceived risks of PC1
and PC3 started to gradually decline after the announced return to an interest-rate targeting
rule, the perceived risk of the slope factor PC2 remained high until 1985. Concurrently,
during the early 1980’s, there was considerable instability in the agent’s views about the
mean reversion parameters KP

P . We find it interesting that the consensus agent attempts to
match the perceived increases in the volatilities of bond yields at the beginning of the FRB
experiment by increasing both her perceived unconditional variance of Pt and the degrees
of persistence of these factors. This is particularly evident for the parameters governing the
dynamics of PC1, the first entry of P. In fact, the diagonal element of KP

P for PC2 actually
declines during most of the period of the Fed experiment.

From Figures 7 and 8 it appears these developments had imperceptible effects on the
one-month conditional covariance matrix of P . A more nuanced view emerges from the paths
of the conditional correlations among the P based on the rule `(JKPS) (see Figure 9).25 The
correlation between the level and slope factors spiked to 0.60 during the Fed experiment and
it remained high well into 1985, at which time it began a gradual return to near 1970’s levels.

25Recall that the loadings defining these PCs that emerge from our learning rules were virtually constant
over our sample period, so any changes in correlations were not induced by agents changing the measurement
of the PCs themselves.
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Figure 7: Estimates from `(JPS) of ΣP
PP , the innovation covariance matrix for Pt, over the

period June, 1975 to March, 2011.
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Figure 10: The conditional correlation between P1 and NAI, over the period June, 1975 to
March, 2011, based on the learning rule `(JSZ).
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Figure 9: The conditional correlation between P1 and P2, over the period June, 1975 to March,
2011, based on the learning rule `(JSZR).

7 Dispersion of Beliefs and Bond Market Risk Premiums

Of particular interest to us is whether the MAD(PCi) have explanatory power for expected
excess returns on bond portfolio positions beyond the information in the core risk factors
Pt. For, were this the case, then our learning framework based on a consensus agent and
the conditioning information Z = (P,M) would be omitting information that models with
heterogeneity suggest is important. Table 7 displays the projections of the realized excess
returns for one-year holding periods on bonds of various maturities onto Z and the MAD
dispersion measures for (P, INF ).

8 Conclusions and Further Work
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2Y 3Y 5Y 7Y 10Y

Const. −0.0056
(0.0055)

[−1.0171]

−0.0056
(0.0114)

[−0.4940]

−0.0069
(0.0207)

[−0.3338]

−0.0075
(0.0275)

[−0.2731]

−0.0115
(0.0388)

[−0.2966]

PC1 0.5962
(0.2156)
[2.7650]

1.1949
(0.4322)
[2.7647]

2.3288
(0.7888)
[2.9523]

3.8639
(1.0719)
[3.6046]

5.9045
(1.5576)
[3.7908]

PC2 0.0175
(0.0157)
[1.1203]

0.0501
(0.0288)
[1.7379]

0.1463
(0.0535)
[2.7365]

0.2761
(0.0719)
[3.8394]

0.4675
(0.1037)
[4.5079]

PC3 0.0375
(0.0269)
[1.3936]

0.0777
(0.0551)
[1.4100]

0.1854
(0.1035)
[1.7923]

0.3254
(0.1378)
[2.3615]

0.5204
(0.1975)
[2.6347]

Infl −0.5253
(0.4900)

[−1.0720]

−1.5187
(0.9728)

[−1.5612]

−4.0224
(1.7769)

[−2.2638]

−7.4737
(2.3944)

[−3.1213]

−12.6084
(3.3718)

[−3.7394]

NAI −0.0084
(0.0032)

[−2.6481]

−0.0158
(0.0059)

[−2.6651]

−0.0213
(0.0104)

[−2.0413]

−0.0274
(0.0130)

[−2.1006]

−0.0413
(0.0160)

[−2.5860]

MAD(PC1) −0.0071
(0.0024)

[−2.9452]

−0.0129
(0.0047)

[−2.7547]

−0.0223
(0.0090)

[−2.4751]

−0.0286
(0.0124)

[−2.3018]

−0.0325
(0.0179)

[−1.8139]

MAD(PC2) −0.0022
(0.0022)

[−1.0212]

−0.0029
(0.0042)

[−0.6804]

−0.0013
(0.0082)

[−0.1586]

0.0035
(0.0114)
[0.3083]

0.0118
(0.0168)
[0.7049]

MAD(PC3) 0.0079
(0.0024)
[3.3151]

0.0138
(0.0044)
[3.1523]

0.0207
(0.0077)
[2.7005]

0.0222
(0.0105)
[2.1157]

0.0203
(0.0149)
[1.3671]

MAD(Infl) −0.0010
(0.0019)

[−0.5542]

−0.0014
(0.0039)

[−0.3669]

0.0003
(0.0075)
[0.0464]

−0.0007
(0.0100)

[−0.0708]

−0.0009
(0.0135)

[−0.0682]

Adj. R2 0.3777 0.3187 0.2817 0.3185 0.3519

WALD 15.0426 13.0518 9.6068 7.1557 3.8941

Table 7: Predictive regressions for one year excess returns of bonds with maturities of 2, 3, 5,
7 and 10 years. Robust standard errors are in parentheses. WALD denotes the Wald statistic
for the null hypothesis that the coefficients on the three MAD variables are equal to zero. The
95th percentile from the distribution of the Wald statistic under the null is equal to 9.4877.
The sample period is January,1985 through March, 2012.

A Bond Pricing in GTSMs

The price of a zero coupon bond is given by:

Dt,m = eAm+BmPt

Where Am and Bm solve the first order difference equation:

Am+1 −Am =
(
KQ

0

)′
Bm +

1

2
B′mΣPBm − ρ0

Bm+1 − Bm =
(
KQ

1 − I
)′
Bm − ρ1

With initial conditions A0 = 0 and B0 = 0. The corresponding loadings for yields will be
Am = −Am/m and Bm = −Bm/m.
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B The Canonical Model

We devote this appendix to the derivation of the canonical model in JSZ 2011. We start from
the the equations for the dynamics of the factors and the short rate:

Xt+1 = J(λQ)Xt + Σ
1/2
X eX,t+1

rt = rQ∞ + 1 ·Xt

Note that also in this framework we can solve for bond prices using the recursion:

Dm+1,t = EQ
[
EQDm,t+1 exp(−rt)

]
We will obtain that:

ym,t = AX,m

(
rQ∞, λ

Q,ΣX

)
+BX,m

(
λQ
)
Xt

With Riccati equations:

AX,m+1 −AX,m =
1

2
B
′
X,mΣXBX,m − rQ∞

BX,m+1 −BX,m = J
(
λQ
)′
BX,m

We now assume that we can exactly rotate pricing factors into portfolios. Then:

Pt = WAy,X(rQ∞, λ
Q,ΣX) +WBy,X(λQ)Xt

Pt = C(rQ∞, λ
Q,ΣX) +D(λQ)Xt

Xt = D(λQ)−1
(
Pt − C(rQ∞, λ

Q,ΣX)
)

Where W is a matrix of eigenvectors obtained from the eigendecomposition of the variance-
covariance matrix of yields. We can now calculate the conditional Q expectations of the
principal components:

EQ
t [Pt+1] = C(rQ∞, λ

Q,ΣX) +D(λQ)EQ
t [Xt+1]

= C(rQ∞, λ
Q,ΣX) +D(λQ)J

(
λQ
)′
D(λQ)−1

(
Pt − C(rQ∞, λ

Q,ΣX)
)

= C(rQ∞, λ
Q,ΣX)−D(λQ)J

(
λQ
)′
D(λQ)−1C(rQ∞, λ

Q,ΣX) +D(λQ)J
(
λQ
)′
D(λQ)−1Pt

And their conditional variance as:

V arQt [Pt+1] = V arQt [Pt+1] = D(λQ)V arQt [Xt+1]D(λQ)

= D(λQ)ΣXD(λQ)

We can then finally rewrite the term structure model using the principal components as
the state variables:

Pt+1 = KQ
0 +KQ

1 Pt + Σ
1/2
P eP,t+1

rt = ρ0 + ρ1Pt
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Where:

KQ
0 = −D(λQ)J(λQ)D(λQ)−1C(rQ∞, λ

Q,ΣX)

KQ
1 = D(λQ)J(λQ)D(λQ)−1

ρ0 = rQ∞ − ρ1D(λQ)−1C(rQ∞, λ
Q,ΣX)

ρ1 =
(
D(λQt )−1

)′
1

ΣP = D(λQ)ΣXD(λQ)′

This rotation will preserve the affine structure of yields:

ym,t = AX

(
rQt,∞, λ

Q
t ,ΣX

)
+BX

(
λQt

)
Pt

The Riccati equations for the model with factor portfiolios will therefore be:

Am+1 −Am =
(
KQ

0

)′
Bm +

1

2
B
′
mΣPBm − ρ0

Bm+1 −Bm =
(
KQ

1

)′
Bm − ρ1

C Comparing Recursive and Bayesian Learning

This appendix derives the log likelihood function when assumed that ψP
t drifts according to

(18) taking (ΘQ,ΣO) as known and gives conditions under which the posterior mean µt will
satisfy the system of equations in (21) - (22). We begin by decomposing the log likelihood
into a P and Q part

−2 logL = −2 logLQ(θQ,Σ)− 2 logLP(Σ, {Qt})

where the notation {Qt} with abuse of notation indicates the set of free parameters in a
given specification of the covariance matrix of the instantaneous parameter state innovations.
logLQ denotes the part of the likelihood function associated with pricing errors and logLP

the likelihood function of the dynamic evolution of Zt. Conditional on (ΘQ,ΣZ) the solution
to the Kalman filter recursively updates the posterior mean, posterior variance, and forecast
variance according to

µt = µt−1 + Pt−1x
′
t−1Ω−1

t (yt − xt−1µt−1) (26)

Pt = Pt−1 +Qt − Pt−1x
′
t−1Ω−1

t xt−1Pt−1 (27)

Ωt = xt−1Pt−1x
′
t−1 + Σ (28)

with log likelihood function given by

− 2 logLP = TN log(2π) +

T∑
t=1

log |Ωt|+
T∑
t=1

(yt − xt−1µt−1)′Ω−1
t (yt − xt−1µt−1) (29)
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Reworking the first equation gives26

µt = µt−1 + (Pt −Qt)x′t−1Σ−1(yt − xt−1µt−1)

which is (21) for Rt = (Pt −Qt)−1. Equation (27) can then be rewritten into27

(Pt −Qt)−1 = P−1
t−1 + x′t−1Σ−1xt−1 (30)

which is (20). The condition for which equation (30) reduces to (22) and therefore is an ALS
estimator is P−1

t−1Qt−1 = (1− γt) · I for a sequence of scalars 0 < γt ≤ 1. By reworking (27) it
is seen that this condition can be satisfied by choosing

Qt = (
1

γt+1
− 1)(Pt−1 − Pt−1x

′
t−1Ω−1

t xt−1Pt−1)

We can summarize this case as

Rtµt = γtRt−1µt−1 + x′t−1Σ−1yt (31)

Rt = γtRt−1 + x′t−1Σ−1xt−1 (32)

Pt =
1

γt+1
R−1
t (33)

Ωt = xt−1Pt−1x
′
t−1 + Σ (34)

with log likelihood function given by (29).

D The Structure of the Particle Filtering Algorithms for the
Models with Bayesian Learning

We now turn to the discussion of estimation and results for each model separately. We start
from the model with fixed unknown parameters The box below illustrates the estimation
recursion for particle i.

If we fix parameter values, the DTSM presented in this model reduces to the full information
Gaussian DTSM. Thus, each particle corresponds to an affine term structure model that
can be solved using the standard recursions. The entire model is just a mixture of standard
GDTSM, where weights correspond to particle weights. This is a very attractive feature of
the model; since in each particle pricing is solved in closed form, the computational burden in
the algorithm is massively reduced and the entire recursion can be run extremely fast.

Particle Filtering Algorithm:

26Substitute (28) into (27) and the resulting equation into (26).
27By substituting (28) into (27), plugging the resulting equation back into (27), and multiplying by (Pt−Qt)

−1

from the left and P−1
t−1 from the right.
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1 Generate the index z(i, t − 1) ∼ MultiN

(
{wt−1,

(
ΣP ,Σu, θ

Q
t−1,KZ,t−1

)(i)
}Ni=1

)
,

where MultiN is a multinomial distribution.

2 Generate θ
(i),Q
t ∼ p

(
θQt |
(
θQ
)z(i,t−1)

,Pt, Y o
t

)
:

– We draw θ
(i),Q
t ∼ B

(
a(i), b(i)

)
for k ∈ {1, ...,K}.

– We set a(i) and b(i) so that the mean of the beta distribution is equal to a mix

of the weighted mean of θQt−1 and θ
z(i,t),Q
t−1 . Thus we calculate:

µ
(i),θ
t−1 = (1− α)

M∑
j=1

w
(j)
t−1θ

(j),Q
t−1 + αθ

z(i,t),Q
t−1

And set:

a(i) = µ
(i),θ
t−1 φ

b(i) =
(

1− µ(i),θ
t−1

)
(1 + φ)

The parameters α and φ is available for calibration purposes; we set φ = 1000
and α = 0.1.

– We can solve yields pricing equation and obtain A(i) and B(i).

3 Generate K
(i)
t ∼ p

(
Kt| (Kt−1,Pt,Pt−1,ΣP)z(i,t)

)
, which is a vectorized represen-

tation of the intercepts and the mean reversion matrix in the model. We can get
conditional means and covariance matrix of the parameters as:

– R = C
z(i,t−1),K
t−1

– Xt−1 = I ⊗ [1 Pt−1]

– µ
(i),K
t = µ

z(i,t−1),K
t−1 +RX

′
t−1

(
Xt−1RX

′
t−1 + I ⊗ SSz(i,t−1)

P

)−1 (
Pt − µz(i,t−1),K

t−1 Xt−1

)
– C

(i),K
t = R−RX ′t−1

(
Xt−1RX

′
t−1 + SS

z(i,t−1)
P

)−1
Xt−1R

′

– Draw: K
(i)
t ∼ N

(
µ

(i),K
t , C

(i),K
t

)
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4 Compute sample statistics st+1 = S
(
s
z(i,t)
t , θ

(i),Q
t+1 , Y

o
t+1,Pt+1

)
.

– eP,t = Pt −K(i)
t Pt−1

– SP,t = SP,t−1 + 1
2eP,te

′
P,t

– ut = Y o
t −A(i) −B(i)Pt

– Su,t = Su,t−1 + 1
2utu

′
t

5 Generate
(

Σ
(i)
P

)−1
∼ W (vP,t, SP,t), with vP,t = vP,t−1 + 1

2 .

6 Generate
(

Σ
(i)
u

)−1
∼ W (vu,t, Su,t), with vu,t = vu,t−1 + 1

2 .

7 Compute particle weights w
(i)
t =

p(Pt+1,Y o
t+1|Pt,Y o

t ,(ΣP ,Σu,θ
Q
t+1,Kt+1)(i))∑N

j=1 p(Pt+1,Y o
t+1|Pt,Y o

t ,(ΣP ,Σu,θ
Q
t+1,Kt+1)(j))

Particle Filtering Algorithm (Drifting Mean Parameters):

1 Generate the index z(i, t− 1) ∼MultiN

(
{wt−1,

(
ΣP ,Σu,Σw, θ

Q
t−1,Kt−1

)(i)
}Ni=1

)
,

where MultiN is a multinomial distribution.

2 Identical to step 2 in the basic algorithm.

3 Generate K
(i)
t ∼ p

(
Kt| (Kt−1,Σw)z(i,t)

)
, which consists of drawing K

(i)
t ∼

N
(
K
z(i,t)
t−1 ,Σ

z(i,t)
w

)
.

4 Compute sample statistics st+1 = S
(
s
z(i,t)
t , θ

(i),Q
t+1 , Y

o
t+1,Pt+1

)
.

– eP,t = Pt −K(i)
t Pt−1

– SP,t = SP,t−1 + 1
2eP,te

′
P,t

– ut = Y o
t −A(i) −B(i)Pt

– Su,t = Su,t−1 + 1
2utu

′
t
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– wt = K
(i)
t −K

z(i,t)
t−1

– Sw,t = Sw,t−1 + 1
2wtw

′
t

5 Generate
(

Σ
(i)
P

)−1
∼ W (vP,t, SP,t), with vP,t = vP,t−1 + 1

2 .

6 Generate
(

Σ
(i)
u

)−1
∼ W (vu,t, Su,t), with vu,t = vu,t−1 + 1

2 .

7 Generate
(

Σ
(i)
w

)−1
∼ W (vw,t, Sw,t), with vw,t = vw,t−1 + 1

2 .

8 Compute particle weights w
(i)
t =

p(Pt+1,Y o
t+1|Pt,Y o

t ,(ΣP ,Σu,Σw,θ
Q
t+1,Kt+1)(i))∑N

j=1 p(Pt+1,Y o
t+1|Pt,Y o

t ,(ΣP ,Σu,θ
Q
t+1,Kt+1)(j))

E Bond Pricing with Deterministically Drifting Coefficients

We now describe the particle filter algorithm that we use to solve the joint filtering and learning
problem. As discussed in the body of the article, in a model with drifting coefficients and
parameter uncertainty, it is not possible to preserve the affine structure of yields. Nonetheless,
the model is still affine conditionally on the realizations of the parameters. In particular,
consider the conditional zero coupon bond pricing recursion, for maturities between 1 and M
periods:

D1,t = EQ
[
exp(−rt)|λQt , rQ∞,t,ΣX,t

]
D2,t = EQ

[
D1,t+1 exp(−rt)|

(
λQt+i, r

Q
∞,t+i,ΣX,t+i

)1

i=0

]
...

DM,t = EQ
[
DM−1,t+1 exp(−rt)|

(
λQt+i, r

Q
∞,t+i,ΣX,t+i

)M−1

i=1

]

If we fix a deterministic path of the coefficients:
(
λQt+i, r

Q
∞,t+i,ΣP,t+i

)M
i=0

, we still find

that model implied yields are an affine function of the pricing factors:

yt,m = ÃX,m + B̃X,mXt

Where ÃX,m and B̃X,m are given by the recursions:

38



ÃX,m − ÃX,m−1 =
1

2
B̃
′
X,m−1ΣX,tB̃X,m−1 − rQ∞,t

B̃X,m − B̃X,m−1 = J
(
λQt

)′
B̃X,m−1

Thus, the coefficients in the Riccati equations will depend on the entire future path of the
coefficients determining the risk-adjusted dynamics of the factors. Then, we again assume
that pricing factors can be exactly rotated into portfolios. It follows that:

Pt = WAy,X +WBy,XXt

Pt = Ct +DtXt

Then, the conditional Q expectations of the factor portfolios can be obtained as:

EQ
[
Pt+1|

(
λQt+i, r

Q
∞,t+i,ΣP,t+i

)M+1

i=0

]
= C̃t+1 + D̃t+1E

Q
t

[
Xt+1|

(
λQt+i, r

Q
∞,t+i,ΣP,t+i

)M+1

i=0

]
= C̃t+1 + D̃t+1J

(
λQt

)
D̃−1
t

(
Pt − C̃t

)
While their conditional variances will be:

V arQ
[
Pt+1|

(
λQt+i, r

Q
∞,t+i,ΣP,t+i

)M+1

i=0

]
= D̃t+1V ar

Q
[
Xt+1|

(
λQt+i, r

Q
∞,t+i,ΣP,t+i

)M+1

i=0

]
D̃t+1

= D̃t+1ΣX,tD̃t+1

We can rewrite the model in term of the observable portfolios:

Pt+1 = KQ
0,t +KQ

1,tPt + Σ
1/2
P eP,t+1

rt = ρ0,t + ρ1,tPt
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