Financial Liberalization, Debt Mismatch, Allocative Efficiency and Growth
by Romain Ranciere & Aaron Tornell

Martin Schneider
Stanford & NBER

SF Fed, May 2015
Summary

- Model of growth & crises
 - Two sector AK structure: Tradables & Nontradables (capital intensive)
 - N sector firms face financial frictions → balance sheet effects

- Sunspot equilibria
 - Crisis = self-fulfilling drop in N price + many N sector defaults
 - Crisis risk if N sector issues enough T denominated debt

- Role of asset structure ("stages of financial liberalization")
 - If contracts allow more contingencies, get more leverage
 → more investment & growth, but also more crisis risk

- Cross country evidence
 - Compare output loss in crises & leverage through lens of model
 → Conclude that benefit of fast growth outweighs costs from crisis risk

- Discussion
 - Review model ingredients
 - Comment on connection to data
Benchmark 2 sector AK model

- Preferences (workers, entrepreneurs); world interest rate δ^{-1}
 \[\sum_t \delta^t c_t \]

- Technology
 \[\sum_i c_t^i = n_t^\alpha l_t^{1-\alpha} + \text{net foreign stuff} \quad (\text{tradables}) \]
 \[n_t + q_{t+1} = \theta q_t \quad (\text{nontradables}) \]

- Planner problem
 - constant investment rate $q_{t+1} = \phi^* \theta q_t$
 - "capital deepening": N capital grows faster than T output

- Competitive equilibrium
 \[n(p_t) + \phi^* \theta q_t = \theta q_t \]
 - T sector input demand $n(.)$ decreasing in $p_t = \text{relative price of N goods}$
Mechanics: balance sheet effects & multiple equilibria

- Replace investment rate ϕ^* by $\phi(w_t) < \phi^*$

 $$n(p_t) + \phi(w_t)\theta q_t = \theta q_t$$

 - balance sheet effect: ϕ increasing in $w_t = \text{N sector net worth}$

- N sector net worth increasing in price

 $$w_t = w(w_{t-1}, p_t)$$

 - strong balance sheet effect \rightarrow backward bending demand for N goods

- Areas of state space with multiple market clearing prices

 - hi or lo price, net worth w_t, investment, demand

- Rational expectations equilibria driven by binary sunspot s_t

 - price process $p(w_{t-1}, s_t)$: sunspot selects hi or lo price

- Hard work in paper

 - set up "credit market game" with explicit financial frictions
 - derive $w(\cdot)$ as optimal strategy of N sector firms
 - obtain further predictions on risk taking & role of asset structure
Mechanics: balance sheet effects & multiple equilibria

- Replace investment rate ϕ^* by $\phi(w_t) < \phi^*$

$$n(p_t) + \phi(w_t)\theta q_t = \theta q_t$$

- balance sheet effect: ϕ increasing in $w_t = N$ sector net worth

- N sector net worth increasing in price

$$w_t = w(w_{t-1}, p_t)$$

- strong balance sheet effect \rightarrow backward bending demand for N goods

- Areas of state space with multiple market clearing prices
 - hi or lo price, net worth w_t, investment, demand

- Rational expectations equilibria driven by binary sunspot s_t
 - price process $p(w_{t-1}, s_t)$: sunspot selects hi or lo price

- Hard work in paper
 - set up "credit market game" with explicit financial frictions
 - derive $w(\cdot)$ as optimal strategy of N sector firms
 - obtain further predictions on risk taking & role of asset structure
Credit market game (played every period)

- N sector firms & risk neutral lenders (break even)
- Financial frictions faced by N sector
 1. firms cannot commit to repay debt
 - limited debt capacity; net worth matters for investment
 2. systemic bailout guarantee
 (lump sum taxes used to pay lenders if many defaults)
 - debt capacity still limited (no insurance against individual default)
 - debt capacity higher (present value of bailout = capital)
 - incentive to default when others default (price low!)
- Debt denomination: a tool to exploit bailout guarantees
 - denominate debt in T goods to default when N good price is low
 - if bailout expected, achieve higher debt capacity & ex ante investment
Equilibria under different asset structures

- Sunspot not relevant if
 - only N debt can be issued by N firms
 - N sector small (balance sheet effect not strong enough)

- Self-fulfilling creation of crisis risk if enough T debt issued
 - suppose sunspot can trigger crisis tomorrow
 - systemic bailout expected in bad equilibrium tomorrow
 - coordinated risk taking profitable today
 - all firms denominate debt in T goods today
 - sunspot can indeed trigger crisis

- Welfare comparisons: 2nd best world with competing distortions
 - underinvestment from commitment problem...
 - ... alleviated by use of T debt + bailouts
 - whether allowing T debt is better depends on parameters, taxation
Quantitative analysis of financial frictions

- Approach 1: "Summary statistics" for welfare effects
 - in stylized model, find number that captures welfare effects
 - e.g. wedges from frictionless FOC, or (here) leverage vs crisis loss
 - collect observable counterparts for many countries/industries/firms
 - interpret cross section as driven by differences in frictions

- "Summary statistics" approach
 - leans heavily on model structure to derive statistic
 - assumes model applies equally to all countries etc

- "Summary statistics" approach does not
 - provide evidence in favor of model structure
 - explicitly handle other sources of variation across countries etc

- Approach may uncover x-sectional patterns, but welfare conclusions?
Quantitative analysis of financial frictions

- **Approach 2: "Country studies" using DSGE models**
 - use country specific data to inform technology, financial structure
 - what are key N goods (capital intensity, durability – housing vs other)
 - how important is external finance in N sector
 - availability of different securities
 - arrive at joint distribution of financial & macro variables
 - compare to data over transition episode
 - do spreads on N sector firms reflect bailout guarantees?
 - does volatility vary across areas of state space?
 - investment vs employment over cycle

- "Country studies approach"
 - confronts model’s cross equation restrictions with data
 - failures & caveats more apparent
 - welfare conclusions easier to interpret