Discussion of “Hysteresis in Unemployment and Jobless Recoveries” by D. Plotnikov

Kevin J. Lansing1
Federal Reserve Bank of San Francisco

Multiple Equilibria and Financial Crises
May 15, 2015

1Any opinions expressed here do not necessarily reflect the views of the management of the Federal Reserve Bank of San Francisco or of the Board of Governors of the Federal Reserve System
What explains “jobless” recoveries?

Summary:

- Agents either work or search for work: Don’t care about leisure. Negative externality as firms search harder for workers.

- Model introduces a persistent “belief shock” to c_t/w_t ratio in place of labor-leisure tradeoff.

- Steady state does not pin down $c_t/w_t \Rightarrow$ continuum of steady state employment rates.

- Persistent belief shock \Rightarrow persistent shift in $c_t/w_t \Rightarrow$ persistent shift in employment.
Basic setup of model

Standard part:

\[
\frac{1}{c_t} = \beta E_t \left\{ \frac{1}{c_{t+1}} \left[r_{t+1} + 1 - \delta \right] \right\}
\]

\[
c_t + k_{t+1} - (1 - \delta) k_t = r_t k_t + w_t \ell_t, \quad r_t = \partial y_t / \partial k_t
\]

\[
w_t = \partial y_t / \partial \ell_t
\]

Non-standard part:

\[
c_t = \phi \left[\frac{y_t^p}{w_t} \right] w_t, \quad (\phi \equiv c_{ss} / y_{ss})
\]

\[
\left[\frac{y_t^p}{w_t} \right] = \left[\frac{y_{t-1}^p}{w_{t-1}} \right]^{0.95} \left[\frac{y_t}{w_t} \right]^{0.05} \exp \left(\varepsilon_t^b \right), \quad \text{persistent belief shock}
\]
Basic setup of model

Standard part:

\[
\frac{1}{c_t} = \beta E_t \left\{ \frac{1}{c_{t+1}} [r_{t+1} + 1 - \delta] \right\}
\]

\[
c_t + k_{t+1} - (1 - \delta) k_t = r_t k_t + w_t \ell_t, \quad r_t = \frac{\partial y_t}{\partial k_t}
\]

\[
w_t = \frac{\partial y_t}{\partial \ell_t}
\]

Non-standard part:

\[
c_t = \phi \begin{bmatrix} y_t^p \\ w_t \end{bmatrix} w_t, \quad (\phi \equiv \frac{c_{ss}}{y_{ss}})
\]

\[
\begin{bmatrix} y_t^p \\ w_t \end{bmatrix} = \begin{bmatrix} y_{t-1}^p \\ w_{t-1} \end{bmatrix}^{0.95} \begin{bmatrix} y_t \\ w_t \end{bmatrix}^{0.05} \exp \left(\varepsilon_t^b \right), \quad \text{persistent belief shock}
\]

Hansen (1985):

\[
c_t = \frac{1}{B} w_t, \quad B = \text{marginal disutility of labor}
\]
Aside from search externality,

Plotnikov (2015) \approx Hansen (1985) + Persistent shock to $\frac{1}{B}$.
Aside from search externality,

Simulations compare a two-shock model (Plotnikov) to a one-shock model (Hansen). Also, productivity shock is mean-reverting rather than a unit root, so there are no permanent shocks in Hansen model.
Aside from search externality, Plotnikov (2015) \(\simeq\) Hansen (1985) + Persistent shock to \(\frac{1}{B}\).

Simulations compare a two-shock model (Plotnikov) to a one-shock model (Hansen). Also, productivity shock is mean-reverting rather than a unit root, so there are no permanent shocks in Hansen model.

Is there some independent evidence (e.g., from Consumer Expenditure Survey) to support the belief shock formulation? Are consumption expenditures really a long moving average of past incomes?
Aside from search externality, Plotnikov (2015) \(\simeq\) Hansen (1985) + Persistent shock to \(\frac{1}{B}\).

Simulations compare a two-shock model (Plotnikov) to a one-shock model (Hansen). Also, productivity shock is mean-reverting rather than a unit root, so there are no permanent shocks in Hansen model.

Is there some independent evidence (e.g., from Consumer Expenditure Survey) to support the belief shock formulation? Are consumption expenditures really a long moving average of past incomes?

Other types of fundamental shocks could account for sluggish employment recoveries, e.g., distribution shocks.
Capital’s share of income is not constant
Capital share = 1 - employee compensation/gross value-added of corporate bus. sector.
Simple Two-Shock RBC Model

Capital Owners:

\[
\max E_0 \sum_{t=0}^{\infty} \beta^t \log (c^c_t) , \quad c^c_t + k_{t+1} - (1 - \delta) k_t = r_t k_t
\]

Workers:

\[
\max E_0 \sum_{t=0}^{\infty} \beta^t \log \left[c^w_t - B \exp (\bar{z}_t) \ell^\gamma_t \right] , \quad c^w_t = w_t \ell_t
\]

\[
\bar{z}_t = \bar{z}_t + \mu, \quad (\gamma - 1)^{-1} = 10.
\]

Production:

\[
y_t = A k^\theta_t [\exp (z_t) n \ell_t]^{1 - \theta_t} , \quad n = 4,
\]

\[
z_t = \text{productivity shock} \quad \text{(choose to match } y_t \text{ series in U.S. data)}.
\]

\[
\theta_t = \text{distribution shock} \quad \text{(take directly from U.S. data)}.
\]

\[
\ell_t = \left\{ \frac{A(1-\theta_t)}{B\gamma} \left[\frac{k_t}{\exp(z_t)n} \right]^{\theta_t} \exp (z_t - \bar{z}_t) \right\}^{\frac{1}{\gamma + \theta_t - 1}} \quad \text{(decision rule)}.
\]
Data vs. Model: Per Capita Labor Hours
Nonfarm Business Sector: Hours of All Persons/Population, Indexed to 1 in 1990.q1.

U.S. Per Capita Labor Hours

U.S. Data
Data vs. Model: Per Capita Labor Hours
Data vs. Model: Per Capita Labor Hours
Nonfarm Business Sector: Hours of All Persons/Population, Indexed to 1 in 1990.q1.

U.S. Per Capita Labor Hours

- **Model**
- **Model, $\Theta_t=\text{const.}$**
- **U.S. Data**
Model-Implied Productivity Shocks

Model-Implied Productivity Shocks, z_t

- Model, $\Theta_t=\text{const.}$
- Model
- Trend

Graph showing the model-implied productivity shocks from 1990 to 2015.