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1. Introduction – in the middle of a rewrite

Climate matters to the economy. Not in the way that classical thinkers such as Guan
Zhong, Hippocrates or Ibn Khaldun or modern thinkers such as Huntingdon or Diamond
argue it does. Climate is not destiny. Environmental determinism is inconsistent with the
observations. There are thriving economies in the desert, in the tropics, and in the polar
circle. There is destitution, too, in all these places.

The prevailing view among economists is that climate does not matter for economic de-
velopment, only institutions do. Some argue that climate and geography partly shaped
institutions in the past, but have become irrelevant since. Institutional determinism is in-
consistent with the observations too. The two halves of the Korean Peninsula and the island
of Hispaniola are a powerful reminder of the importance of institutions, but climate obvi-
ously matters for agriculture, for energy demand, for tourism, for labour productivity, and
for health.

First principles have that climate matters but it has been an empirical challenge to demon-
strate this. Climate changes only slowly over time, its signal is swamped by confounders,
many of which change more quickly. Climate varies substantially over space, but so do a
great many other things that we know are important for development.

Although the impact of climate is hard to identify, the impact of weather can be iden-
tified—or so people have argued. Identification rests on weather being random from the
perspective of the economy. The problem with this argument is that by now many different
economic activities have been found to be affected by the weather, and these activities of
course impact one another.

Weather matters too, but cannot readily be extrapolated.

Therefore, simultaneous model of climate and weather.

Empirical estimates of the impact of climate change are problematic. The literature on
climate and development suggests that climate may or may not be important, or that it
used to be important but not any longer. The literature on weather and growth, when
extrapolating to climate change, assumes that short-term elasticities are valid in the long-
term. I here propose a new way to simultaneously model the impact of climate and weather,
show that both matter and that previous work is misspecified. I report new evidence that
rich and poor countries respond differently to weather shocks, but not to climate.

It is easy to estimate the impact of weather on economic activity. Weather varies a lot,
and good data are plentiful. The impact of weather on the economy is identified, or so it
is argued, because it is like a random assignment to a treatment (Heal and Park, 2016).
However, weather has been found to affect many different economic activities (Deschenes
and Greenstone, 2007, Burke et al., 2015, Hsiang et al., 2017, Burke et al., 2018, Zhang et al.,
2018), which are known to affect each other. Identification is therefore not as clear-cut as
sometimes suggested.
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The impact of a weather shock is not the same as the impact of climate change (Dell et al.,
2014). Climate is what you expect, weather is what you get. Put differently, weather
outcomes are draws from an probability distribution. Climate is that distribution. Climate
change is best thought of as shifts in the moments of the weather distribution (Auffhammer,
2018b). Therefore, adaptation to weather shocks is limited to immediate responses—put
up an umbrella when it rains, close the flood gates when it pours. Adaptation to climate
change extends to changes in the capital stock—buy an umbrella, build flood gates—and to
updates of the expectations for weather. In other words, weather studies estimate the short-
run elasticity, whereas the long-run elasticity is needed to estimate the impact of climate
change. Hence, while climate impact estimates account for changes in the capital stock and
expectations, weather impact estimates do not. Extrapolating the impact of weather shocks
will therefore not lead to credible results for the impact of climate change.

We are not the first to note the difficulties in deriving the impact of climate change from
estimated weather effects (Dell et al., 2014, Kolstad and Moore, 2019). Lemoine (2017)
highlights the importance of expectations. Adaptation may anticipate future climate change.
Truly surprising weather would have a large impact. Bakkensen and Barrage (2018) estimate
the weather-sensitive parameters of a structural growth model, Costinot et al. (2016) of a
static computable general equilibrium one. Auffhammer (2018a), echoing earlier work by
Bigano et al. (2006), proposes the Climate Adaptive Response Estimation (CARE), which is
a two-level hierarchical model with the impact of weather at the bottom and its interaction
with climate at the top. Lemoine (2018) formally supports Auffhammer’s intuition, noting
that the average weather effect, rather than the marginal one, should be carried from the
bottom to the top level. This matters because Auffhammer advocates non-linear models.

Hsiang (2016) and Deryugina and Hsiang (2017) take a different route, arguing that the
marginal effect of a weather shock equals the marginal climate effect under assumptions
elaborated below. While climate change is not marginal, the total effect is of course an
integral of marginals. Their assumptions, however, are quite restrictive. Economic agents
need to be (1) rational and their adaptation investments (2) optimized. Adaptation needs
to be (3) private and adaptation options (4) continuous. The economy needs to be in a (5)
spatial equilibrium and (6) markets complete. Adaptation investments are often long-lived,
so it is not just spot markets that need to be complete; future markets should be too. Spatial
zoning and transport facilities distort the spatial equilibrium. Adaptation is often lumpy,
be it air conditioning or irrigation. Some adaptation options, such as coastal protection,
are public goods. Agents are not always rational, and decisions suboptimal. The result by
Deryugina and Hsiang is almost an impossibility theorem.

Agents have heterogeneous adaption rules at the intensive and extensive margin, in the
short- and long-run, and may base their actions on expected rather than historical climate
Auffhammer (2018b). Severen et al. (2016) find that ignoring expectations could bias the
effects of a climate change on the market for land by 36% to 66%. Academics construct
climate as the 30-year average weather. Economic agents may form their expectations
differently than analysts assume they do, and may well be influenced by the recent weather.
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If we cannot use weather data, it is hard to estimate the impact of climate and climate
change. Climate varies slowly over time, and not much at all in the short period for which
we have high-quality data. In empirical studies, the identification of the impact of climate
therefore comes from cross-sectional variation (see Mendelsohn et al., 1994, Sachs, 2003,
Schlenker et al., 2005, for studies of particular sectors), with few exceptions (Barrios et al.,
2010). Some studies find an effect (Nordhaus, 2006, Henderson et al., 2018), other studies
find no effect (Easterly and Levine, 2003, Rodrik et al., 2004, Andersen et al., 2016), and
yet others only an historical one (Acemoglu et al., 2001, Alsan, 2015). Cross-sections are
problematic as so many other things vary over space too. Panel data are no panacea as some
confounders do not change much over time. Furthermore, while the global climate responds
with a considerable delay to greenhouse gas emissions and can thus be considered exoge-
nous, the local climate responds rapidly to urbanisation, land cover change and emissions
of aerosols, and thus to economic activity. We do not solve these problems here.

To overcome the external validity gap, one of the more common empirical techniques is the
use of long differences. Long difference estimates allow to study the impacts of longer-term
(decadal or more) temperature trends on the economic outcome of interest and compare
the results with estimates from annual panels. Interesting examples of this approach can
be found in Dell et al. (2012), Burke and Emerick (2016) and Burke and Tanutama (2019).
While we agree with Auffhammer (2018b) that this is a promising route for further research,
the problem with long differences is that it gets rid of all the short-term variability, making
impossible to simultaneously investigate and disentangle the effects of weather and climate.

Instead, I focus on the interplay between climate and weather. Weather affects economic
activity, and so the measurement of the impact of climate on economic activity. Weather
can be seen as noise, but that noise may well be correlated with climate, the right-hand-side
variable of interest.

The impact of climate and weather should therefore be jointly estimated while control-
ling for the expectations/adaptation indirect channel. Our empirical strategy rests on the
following assumptions. Climate affects production possibilities. This is obvious for agri-
culture: Holstein cows do well in Denmark but jasmine rice does not; the reverse is true
in Thailand. Climate also affects energy and transport, and thus all other sectors of the
economy. Weather affects the realization of the production potential. Hot weather may slow
down workers, frost may damage crops, floods may disrupt transport and manufacturing.
Conceptualized thus, climate affects the production frontier, and weather the distance from
that frontier. The econometric specification is therefore a stochastic frontier analysis with
weather variables in the inefficiency parameter and climate variables in the frontier. The
inefficiency parameter not only reflects by inefficiency2 but also by production risk and risk
preferences. Disentangling inefficiency and risk is beyond the scope of the present work. The
issue is complicated by the need to make assumptions about the distribution of the error

2Applied to micro data, Stochastic Frontier Analysis measures productive inefficiency. Applied to aggre-
gate data, as we do here, SFA also measures allocative and cross inefficiency.
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term representing production risk and about attitudes toward risk in an utility function
(Kumbhakar, 2002).

Dell et al. (2012) and Letta and Tol (2018) find heterogeneity in the response of economic
growth to weather shocks, specifically that poorer countries are hit harder. Burke et al.
(2015) instead find that hotter countries are hit harder, a find adopted by Pretis et al.
(2018). Kahn et al. (2019) reject heterogeneity. Within sample, it is difficult to distinguish
between these two specifications as hotter countries tend to be poorer. However, out of
sample, a hotter, richer world would be more vulnerable to weather shocks according to
Burke, but less vulnerable according to Dell. Newell et al. (2018), in a cross-validation
study, conclude that temperature non-linearly affects the level of GDP, but not its growth
rate, and that that temperature disproportionately affects poor countries, with no significant
effects in richer ones. We here revisit the question of heterogeneity in the response to weather
and climate.

The paper proceeds as follows. Section 2 describes methods and data. Section 3 presents
the baseline results. Section 4 conducts the sensitivity analysis. Section ?? discusses the
implications for climate change. Section 5 concludes.

2. Methods and data

2.1. Methods

We assume a Cobb-Douglas production function:

Yc,t = Ac,tK
β
c,tL

1−β
c,t (1)

Total factor productivity Ac,t is the Solow residual in country c at time t: It captures
everything that affects output Yc,t that cannot be explained by capital Kc,t or labour Lc,t.

We concentrate Equation (1) by dividing K and L by labour force L, and denote the resulting
variables in lower case.

Taking natural logarithms, the standard reduced form equation to be estimated is:

ln yc,t = α0 + β ln kc,t (2)

We assume that total factor productivity is a function of moving averages of climatic vari-
ables (average temperature, T̄c,t, and precipitation, P̄c,t), whereas weather shocks affect the
variance of the stochastic component of permanent income. Hence, Equation (2) becomes:

ln yc,t = β0 + β1 ln kc,t + β2T̄c,t + β3T̄
2
c,t + β4P̄c,t + β5P̄

2
c,t + µc + t+ vc,t − uc,t (3)
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where T̄c,t and P̄c,t are the average temperature c.q. precipitation in country c in the thirty
years preceding year t, µc is a full set of country fixed effects, t is a linear time trend,
vc,t ∼ N (0, σ2

v) and

uc,t ∼ N+(0, σ2
c,t) = N+

(
0, γc + γ1

∣∣∣∣Tc,t − T̄c,tτc,t

∣∣∣∣+ γ2

∣∣∣∣Pc,t − P̄c,tπc,t

∣∣∣∣) (4)

where τ and π are the standard deviations of temperature and rainfall, respectively.

We use the True Fixed-Effect (TFE) model (Greene, 2005) to estimate a one-step stochastic
frontier model in a fixed-effect setting with explanatory variables in the inefficiency param-
eter. We use the sfmodel package for Stata, developed by Kumbhakar et al. (2015) to
estimate our model.

Equation (3) assumes that both error terms are stationary. This is a tall assumption as
all variables are either non-stationary or trend-stationary.3 We are not aware of any statis-
tical test for stationarity that applies to this particular estimator and these distributional
assumptions. We use three remedies. First, we include a time trend in Equations (3) and
(4). Second, we show robustness to different specifications choices and to an alternative
assumption (the exponential distribution) for the inefficiency parameter in Equation (4).
Third, we reformulate the model as an error-correction one:

∆ ln yc,t = σ1∆

∣∣∣∣Tc,t − T̄c,tτc,t

∣∣∣∣+ σ2∆

∣∣∣∣Pc,t − P̄c,tπc,t

∣∣∣∣+ µc + ηc,t + σ3Vc,t + wc,t (5)

where
Vc,t = ln yc,t − µc − θ1 ln kc,t − θ2T̄c,t − θ3T̄ 2

c,t − θ4P̄c,t − θ5P̄ 2
c,t (6)

and ηc,t are time dummies which act as a non-parametric time trend.4 We use this alternative
estimation strategy to show that our findings are robust to the inclusion of non-parametric
time trends and continuous interactions with per capita income. This alternative specifica-
tion is also better suited to explicitly model the path of convergence towards the long-term
equilibrium in a stochastic setting and provide empirical evidence for the speed of recovery
after weather perturbations. We of course also perform the usual stationarity tests on the
error-correction model.

We test for heterogeneity by interacting the variables of interest with dummies for poor
countries and hot countries. We define a country as “poor” if its GDP per capita was below

3Although taking first-differences of all variables would get rid of unit roots and directly address non-
stationarity, a stochastic frontier analysis in changes would require completely different assumptions and
identification choices. More importantly, we are not aware of any empirical work using growth rates to
estimate a production function.

4The use of a non-parametric time trend was not possible in the baseline SFA model because the inclusion
of so many time dummies caused convergence issues in an already computationally cumbersome maximum
likelihood estimation.
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the 25th percentile of the distribution in the year 1990.5 In the robustness checks, we also
adopt an alternative grouping in terms of affluence, and adopt the World Bank classification
of high-income vs low-and-middle-income economies.6 As a final test for heterogeneity with
respect to income, in the ECM estimates we drop fixed classifications between rich and poor
countries and directly interact our climate and weather variables with continuous GDP per
capita. As to heterogeneity with respect to heat, a “hot” country is defined as a country
whose average annual temperature is above the 75th percentile of the distribution.

2.2. Data

Our dataset is an unbalanced panel consisting of 160 countries over the period 1950-2014.
Data for this study come from two sources. Economic data on output, capital and labour
force are taken from the latest version of the Penn World Table (PWT), PWT 9.0 (Feenstra
et al., 2015). Weather data are from the University of Delaware’s Terrestrial air temperature
and precipitation: 1900-2014 gridded time series, (V 4.01) (Matsuura and Willmott, 2015).
These gridded data have a resolution of 0.5× 0.5 degrees, corresponding roughly to 55× 55
kilometers at the equator. Following previous literature (Dell et al., 2014, Burke et al., 2015,
Auffhammer et al., 2013), we aggregate these grid cells at the country-year level, weighting
them by population density in the year 2000 using population data from Version 4 of the
Gridded Population of the World.7, with the only exception of Singapore.8 We use these
weather data to construct both our climate and weather variables as defined in Section 2.1.
Table 1 presents descriptive statistics for the key variables.9

3. Results

Table 2 shows the results of the base specification outlined in Equations 3 and 4. Four
variants are presented. In Column 1, we report homogeneous effects in both the frontier
and the inefficiency. In the frontier, capital per worker has a significant and stable impact
on output per worker. The output elasticity is around 0.61, in line with previous estimates.

51990 is the first year for which we have complete data on PPP GDP per capita for all countries.
We choose the 25th percentile of the income distribution because, after testing the 25th, 50th and 75th
percentiles, the specification using the 25th percentile resulted the best one according to two criteria: 1) it
gives the highest Wald Test χ2 value (since we assume heteroskedasticity and use clustering, log-likelihoods
are actually log-pseudolikelihoods, so the Wald Test has to be used in place of the standard Likelihood-Ratio
test for model selection); 2) it maximizes (minimizes) the level of inefficiency (efficiency) according to the
(Battese and Coelli, 1988) efficiency index. In any case, qualitative results were unchanged and not driven
by this particular poverty threshold, as shown by the robustness tests below.

6The WB classification of high-income economies is available here.
7Available here.
8Singapore has a surface smaller than the size of the weather grids. Given it is one of the few countries

that are both rich and hot and thus increase the statistical power of the analysis, we kept it in the sample
by attributing to it the weather data of the grid cell in which it is situated.

9Cf. subsection A.3 in the Appendix for a complete list of countries and regions in our sample.
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Long-run temperature (i.e. climate) has a significant impact on the production frontier. The
temperature optimum, the place with the highest output ceteris paribus is around 17℃. The
effects of long-term rainfall are insignificant at the frontier. Short-term weather anomalies
(either temperature or precipitations) are not significant in determining inefficiency. The
Battese and Coelli (1988) Efficiency Index is around 81%, in this and all the other baseline
specifications.

Moving across the table, Columns 2-4 show heterogeneous impacts between rich and poor
countries. The underlying hypothesis is that very poor countries are disproportionately
affected by climate and weather, as economic activity is concentrated in agriculture and
public investment in protective measures is limited. In Column 2, we check heterogeneity
only in the production frontier. That is, we interact climate variables with the poor country
dummy defined in Subsection 2.1. Climate affects production potential in both rich and poor
countries. The relationship is concave and significant at the 1% level. However, climate has
a larger impact in poor countries.10 The optimum temperature for poor countries is much
higher, around 23℃, than for rich ones, where the optimum lies close to 16℃.11 This matters
when extrapolating with respect to climate change.

In Column 3, we test for heterogeneity in inefficiency too. Results for the production frontier
are almost unchanged. Impacts on inefficiency sharply differ among rich and poor countries:
the latter suffer from a positive, large and strongly significant effect of temperature and
rainfall anomalies on inefficiency levels, whereas the impact is negative, smaller and even
insignificant (for temperature) in rich countries. In short, temperature anomalies reduce
efficiency only in poor countries.

This could, at least partially, be due to the large overlap between poor countries and hot ones.
Therefore, in Column 4 we also check for heterogeneity in inefficiency by interacting weather
anomalies with the ’hot country’ dummy defined in Section 2.1. Previous conclusions (e.g.
Dell et al., 2012, Letta and Tol, 2018) remain: weather anomalies do not hit hot countries,
they hit poor ones.

Rainfall anomalies increase inefficiency in poor countries, as expected. Rainfall anomalies
decrease inefficiency in rich countries. This is harder to explain. This may reflect the
restoration effort after floods—recall that we use GDP rather than NDP—while droughts
have little effect as agriculture is such a small share of output.

The coefficients for inefficiency are hard to interpret as these are not marginal effects (Kumb-
hakar et al., 2015). First, inefficiency is multiplicative (as we took the natural logarithm of
per capita output) so that the marginal effect depends on the frontier. Second, we use a

half-normal distribution so that the expectation is σu

√
2
π
. The coefficients further affect the

10The total net effects of long-term rainfall in poor countries are not reported in this or the following
tables, with the exception of the specification using the exponential distribution of the inefficiency parameter.
Overall, however, there is no robust and statistically significant impact.

11Average long-run temperature is 23.7℃ in poor countries and 16.9℃ in rich countries.

8



variance of the technical inefficiency, σ2
u

(
1− 2

π

)
. Table 3 reports marginal effects of weather

variables on the mean and variance of the inefficiency, with bootstrapped standard errors
and p-values.12 Signs and significance are as in Table 2. Weather anomalies affect both the
mean and the variance of economic output in countries that are poor.

4. Robustness

We implement three different types of robustness checks: sensitivity to different specifications
and identification choices in the SFA model; an alternative distributional assumption for the
inefficiency parameter; and an error-correction model to formally test for non-stationarity.
For all these sensitivity tests, with the exception of the error-correction model, we only
report estimates of our preferred specification, column 3 of Table 2.

4.1. Alternative specifications

This first set of robustness checks implements the same baseline model described in Equa-
tions 3 and 4 but adopts a broad set of different specification choices for key variables and
interactions.

4.1.1. High-income vs other economies

First, we test whether our core findings are driven by the somewhat arbitrary discrimination
we introduce between rich countries and poor and middle-income ones. To do so, we replace
the distinction between rich and poor countries with a classification taken from the World
Bank13 and interact our climate and weather variables with dummy which takes value 0 if
a country is a ”High-Income Economy” and 1 otherwise. Results for this specification are
presented in columns 1 of Tables 4 and 5, respectively, for frontier and the inefficiency. For
the production frontier, results are qualitatively the same as in Table 2. Quantitatively,
the temperature effects have shifted: the quadratic temperature effect is more pronounced,
heterogeneity between rich and poor countries less pronounced. Temperature optima are
lower. As for the inefficiency, results for precipitation are qualitatively similar to the baseline
model. Coefficients are different but not significantly so. However, the impact of temperature
anomalies is now significant for richer countries as well. In Table 2, only rainfall anomalies
positively affect rich countries. In Table 4, both precipitation and temperature anomalies
positively affect rich countries (by reducing their average inefficiency towards the production
frontier). Finally, the log-pseudolikelihood is higher that in the corresponding baseline
specification.

12We implemented the bootstrapping procedure suggested by Kumbhakar et al. (2015) with 1000 replica-
tions; p-values assume normality per the central limit theorem.

13Available here.
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4.1.2. Squared anomalies

Second, we replace absolute weather anomalies in the inefficiency term with squared anoma-
lies. This place a heavier weight on larger anomalies, i.e., we check for non-linearity by
focusing on weather extremes. Columns 2 of Tables 4 and 5 report estimates for this alter-
native specification. The results for the production frontier are largely unaffected, and the
qualitative results for the inefficiency are as above. The log-pseudolikelihood is somewhat
higher for the absolute anomalies, so linearity is our preferred specification.

4.1.3. Linear anomalies

The weather anomalies in Equation 4 are absolute anomalies. Cold and hot weather, wet and
dry spells are assumed to equally increase technical inefficiency. We test this functional form,
replacing absolute anomalies with their original values, thus introducing both positive and
negative deviations. See column 3 of Tables 4 and 5. Estimates for the production frontier
are almost unaltered. Results for inefficiency are very different. Only the interaction between
temperature and poverty is weakly significant. Linear anomalies do not capture the impacts
of weather on technical inefficiency. Economies are affected by unusual weather, rather than
by the weather per se. Adaptation matters.

4.1.4. Asymmetric anomalies

Additionally, we also test for asymmetric anomalies, i.e., we disentangle negative and positive
weather shocks in the inefficiency parameter. Specifically, we split the weather anomalies into
two series, one (the other) positive if above (below) the mean and zero otherwise. Results
are in column 4 of Tables 4 and 5. The frontier is unaffected. Cold and drought reduce
efficiency in all countries. This removes the earlier puzzling effect of rainfall anomalies in
rich countries. Temperature and rainfall shocks, whether positive or negative, significantly
affect inefficiency in poor countries but the coefficients do not significantly differ from each
other or from those in Table 2. While there is some evidence for asymmetry between the
impact of wet and dry spells, cold and hot spells, the increase in the log-pseudolikelihood is
minimal (3 points) for the six additional parameters estimated.

4.1.5. Excluding rainfall

In the cross-validation exercise of Newell et al. (2018), the best-performing models only
include temperature, leaving precipitation out. In our baseline model, we include rainfall
in both the frontier and the inefficiency because we follow recommendations in previous
literature (Auffhammer et al., 2013, Dell et al., 2014) stressing the strong correlation between
temperature and precipitation and the consequent risk of omitted variable bias in case
of exclusion of one of the two. Rainfall is insignificant in the frontier but significant in
inefficiency. We re-estimate the baseline model excluding rainfall. See column 5 in Tables 4
and 5. The results for the production frontier are largely unaffected. However, temperature
shocks now significantly reduce technical inefficiency in rich countries. This could be because
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the exclusion of rainfall anomalies leads the model to ascribe to temperature anomalies the
negative impact of rainfall shocks on inefficiency.

4.1.6. Weather in the frontier

As a placebo test, we also look at weather effects on productivity. That is, we move weather
anomalies from the inefficiency parameter to the production frontier. Results are in column
6 of Table 4. As expected, coefficients of weather variables are individually insignificant, but
the aggregate effect of temperature anomalies on poor countries is significant and negative,
albeit an order of magnitude smaller than the impact of the average temperature. How-
ever, the log-pseudolikelihood is sharply lower than the baseline model. This specification,
variations of which are often used in literature, is not the preferred one.

4.1.7. Capital as a substitute for climate

Like previous papers (Sachs, 2003, Schlenker et al., 2005, Nordhaus, 2006, Henderson et al.,
2018), we find a significant association between climate and economic performance. In the
concentrated Cobb-Douglas production function, Equation (1), there are two determinants
of output per worker: climate and capital per worker. In this specificatin, capital is a de
facto substitute for climate, and with a constant elasticity. We test the latter assumption,
and so answer the question whether sufficient capital would make a country immune from the
influence of its climate. We therefore interact long-run temperature variables with capital
per worker in the production frontier. See Table 6, Column 1. Temperature is significant
and so are the interactions with capital. The interactions have the opposite signs. That is,
climate’s influence on output shrinks as capital deepens. See Figure 1. The marginal effects
of squared temperature turns to zero at a capital stock of $6.8 million dollar per worker.
In our sample, the United Arab Emirates in 1970 has the highest value: $0.8 million per
worker. Capital is a substitute for climate, but an imperfect one, and the impact of climate
will remain.

4.1.8. Institutions vs climate

In the debate on the long-run determinants of growth and development, some find that
climate plays a fundamental role in shaping long-run development (Sachs, 2003, Andersen
et al., 2016), whereas others argue that the impact of climate disappears when accounting
for institutions (Acemoglu et al., 2001, 2002, Easterly and Levine, 2003, Rodrik et al., 2004,
Alsan, 2015). We test this in Table 6. As a proxy for institutional quality, we use the
Polity 2 Score.14 This categorical variable is an aggregate score which ranges from -10
(hereditary monarchy) to 10 (consolidated democracy). While this is not the best indicator
for institutional quality, it is correlated with other indicators. Historical depth is the key
advantage of Polity 2 over other indicators, which are available only for recent years. We

14The Polity Project Database, annual national data for the period 1800-2017, can be downloaded here.
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interact it with long-run temperature and precipitation in the production frontier. See Table
6, Column 2.

The effect of temperature on the production frontier remains when controlling for institu-
tional quality, and actually becomes stronger. The interaction between the institutional
variable and squared temperature is positive and significant at the 1% level. Better insti-
tutions dampens the negative effect of high average temperatures. However, the effect is
small: The coefficient falls from -0.0068 for a country with the best Polity score to -0.0074
for the worst score. Figure 2 shows the marginal effects of long-run temperature at different
institutional quality levels. The slope is almost flat. There is no statistically significant
difference between countries, and even countries with the highest Polity 2 Score experience
significant effects of temperature shocks.

4.2. Exponential distribution of the inefficiency parameter

In Equation 4, we assume a half-normal distribution of the inefficiency parameter. We
could have assumed a truncated-normal distribution or an exponential distribution instead
(Greene, 2005, Kumbhakar et al., 2015, Belotti et al., 2013). Unfortunately, truncated-
normal models with fixed-effects are known to suffer severe convergence issues, and our
case was no exception. Columns 7 of Tables 4 and 5 show results for the exponential
distribution. The estimates for the frontier are similar as above, except that the interaction
between rainfall and poverty is significant. Poor economies in arid areas fare worse. The
temperature optimum in poor countries is much higher. The Battese and Coelli (1988)
Efficiency Index is similar to the baseline model. Poor countries are hit harder by weather
anomalies.

4.3. Results by decade

Non-stationarity is a key concern in any long panel of economic data. To the best of our
knowledge, there is no test for the stationary of the residuals of an SFA model. Figure
A.4 shows the residuals of the frontier, inefficiency, and the total error, all averaged across
countries. Although there is no trend, these residuals do not pass a stationarity test. Panel
stationarity tests require that the residuals of every country are stationary. Equation (3)
has a common trend for all countries. It should therefore not come as a surprise that the
model fails every test for panel cointegration.

We therefore perform two robustness checks. Below, we estimate an error-correction model.
Here, we split our sample into the 7 decades it covers. The model re-estimated for the
shorter periods is unlikely to suffer from non-stationarity and spurious results. The sample
split also allows us to test for parameter stability. Note that the panel is unbalanced.
Potential parameter instability is thus over time as well as over the countries for which data
is available at that time.

Table 7 shows the results, shrinking the decadal estimates to their average. The results for
the whole sample are shown too (repeating Table 2) as well as the differences between the
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two estimates. The estimates for the frontier are largely unaffected. The capital elasticity of
output is smaller if the sample if split, but although the difference is statistically significant
it is not economically: 0.62 v 0.59. There is a statistically significant difference for the
interaction between poverty and rainfall, but this is a difference between two insignificant
estimates.

With regard to the determinants of inefficiency, the interaction between poverty and tem-
perature loses significance. No parameter is significantly affected.

Although the stochastic frontier model does not pass stationarity tests, the results for the
variables of interest are not affected.

4.4. Error-correction model

As a further empirical test, we estimate the error-correction model (ECM) defined in Equa-
tions (5) and (6). We assume here that weather anomalies cause short-term deviations
from the long-run equilibrium, while climate affects the long-run equilibrium growth path of
the economy. The error-correction model is dynamic, unlike the stochastic frontier models
above, tracking the time needed to absorb the perturbation caused by weather anomalies.
The ECM specification allows to test for stationarity of the residuals, which is not possible
in the stochastic frontier model. It also allows us to relax the dichotomous approach—poor
vs rich countries—and test a continuous interactions with lagged GDP per capita levels.

Table 8 presents the results for the long-run co-integrating vector, Table 9 for the short-run
error-correction.15

The estimates of the co-integrating vector confirm that temperature is significantly asso-
ciated with output per worker. We find an optimal temperature, 15.6℃, that is close to
the one above, 16.3℃. The continuous interaction with lagged GDP per capita shows that
income dampens the negative effect of climate on GDP level. Figure 3 shows that the level
of income required to insulate countries from the impact of an adverse climate is by far out
of sample, just as in the case of the interaction with capital per worker. Long-term rainfall is
not significant, but its interaction with GDP per capita is. All else equal, more rain means
lower income; this effect tapers off at higher rainfall, but does not reverse in-sample; the
effect is stronger in richer countries.

In the stochastic frontier model, poorer countries are more prone to weather-induced inef-
ficiency. In the error-correction model, rainfall shocks reduce growth in poor countries and
temperature shocks in poor and hot countries. See Table 9.

Tables A1 and A2 report results of Fisher-type panel unit-root tests based on the Augmented
Dickey-Fuller tests. These stationarity tests strongly reject the null hypothesis that the panel

15In the short-run error-correction estimates, V is the residual of Table 8, Column 3, since this specification
is by far the best among the co-integrating vector models.
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contains unit roots, making us confident that we are not getting spurious results caused by
non-stationarity.

In conclusion, the error-correction model results suggest that, even when accounting for non-
stationarity concerns and including non-parametric time trends and continuous interactions,
our qualitative insights are confirmed: climate is a determinant of economic activity in all
countries; weather shocks affect growth rates predominantly in poor and hot countries.

The foregoing has established that the key findings of this paper are, by and large, robust
to alternative specification choices and identification strategies.

5. Conclusion

We use stochastic frontier analysis to jointly model the impacts of weather and climate on
economic activity in most countries over 65 years. A key feature is that we distinguish pro-
duction potential, affected by climate, and the realisation of economic output, affected by
weather. Weather shocks thus have a transient effect, climate change a permanent impact.
Temperature affects production potential in both rich and poor countries, but more so in
poor ones. This is not surprising since they are on average hotter and closer to biophysical
limits. Temperature and rainfall shocks induce inefficiency in poor countries only, espe-
cially hotter ones. These results are qualitatively and quantitatively robust to alternative
specifications, controls, and estimators.

We find that poor, rather than hot, countries are particularly sensitive to the weather. This
confirms Dell et al. (2012) and Letta and Tol (2018), but contradicts Burke et al. (2015). Hot
and poor countries overlap, and the empirical distinction between heat and poverty is fragile.
However, the cross-validation study of Newell et al. (2018) further confirms that it is poverty,
rather than heat, that raises vulnerability to weather variability. The implications are
different. We expect a hotter and richer future. In the Burke (Dell) specification, countries
would grow more (less) vulnerable to unusual weather. Reducing outdoor work, decreasing
the weight of the agricultural sector in national production and increasing adaptive capacity
(e.g. through the diffusion of air conditioning) would help poorer countries to dampen the
negative effects of weather shocks.

But we also find that neither higher income and capital nor better institutions insulate coun-
tries from the influence of their climate. This confirms some earlier studies, but contradicts
others. We explicitly model heteroskedasticity due to weather shocks, and show that this
heteroskedasticity systematically varies between rich and poor countries. Previous studies
did not do this and so may be biased. The discrepancies between Dell et al. (2012) and
Burke et al. (2015) may thus be due to an omitted variable bias with respect to climate,
rather than to a linear vs non-linear functional form of annual temperature. Finally, we find
that the weather effect is small compared to the climate effect, especially in the long-run.

The GDP-maximizing long-run temperature in our baseline specification is 17.26 degrees
Celsius. In the last year of our sample, 2014, the 30-year average temperature for the period
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1984-2013 is 18.68 ◦C. We are already well past the global temperature optimum. The
implication is that a permanently hotter climate will make most countries poorer than they
would be without climate change. Indeed, our simulations suggest that, in the worst case
scenario of unmitigated warming, climate change will reduce global output per worker by up
to 13 % by 2100, whereas in a 2◦C warming scenario consistent with a stabilization pathway
total economic losses would be considerably lower.

We do not include all impacts of climate change. We omit direct impacts on human welfare,
such as biodiversity and health. Our model does not capture the range of events which could
be triggered by climate change but lie outside the current range of historical experience, such
as thawing permafrost, a thermohaline circulation shutdown or unprecedented sea level rise
(Dell et al., 2014). Because of data availability, we use democracy as a proxy for high-quality
government. We limit our attention to aggregate economic activity. Adaptation and expec-
tations are implicit in our model. However, we do not explicitly model either production risk
or risk preferences. This prevents us to disentangle weather effects on efficiency from those
on production risk. In line with (Newell et al.), we find that the temperature peak, a key
parameter to quantify climate change damages, is very sensitive to specification. Finally,
our projections with respect to climate change are static, not dynamic.

Our numerical results are therefore far from final. The simulation results only illustrate
the effect size. The methodological advancement in this work is more important: the joint,
simultaneous estimation of the impact of two different, but often confused, phenomena:
weather and climate. We defer to future research the task of refining the theoretical and
empirical framework proposed here, and applying it to other macro contexts and, crucially,
household and firm data.
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Table 1: Descriptive statistics

Variable Unit Mean Var sd Min Max Obs

Output per worker ln($) 9.768 1.399 1.183 6.047 13.318 7753

Capital per worker ln($) 10.831 1.937 1.392 5.650 14.524 7753

Temp ℃ 18.505 52.839 7.269 -1.833 29.021 7753

Temp2 ℃2 395.257 60913.587 246.807 0.363 842.222 7753

Pre cm/month 9.375 32.199 5.674 0.299 32.710 7753

Pre2 (cm/month)2 120.084 21896.750 147.976 0.089 1069.974 7753

∆Temp ℃ 0.961 0.543 0.737 0.000 7.395 7753

∆Pre cm/month 0.876 0.502 0.709 0.001 6.717 7753
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Table 2: Baseline results

Dependent variable: output per worker
(1) (2) (3) (4)

Frontier

Capital per worker 0.613∗∗∗ 0.613∗∗∗ 0.616∗∗∗ 0.613∗∗∗

(0.00806) (0.00814) (0.00826) (0.00821)

Temp 0.189∗∗∗ 0.183∗∗∗ 0.181∗∗∗ 0.183∗∗∗

(0.0236) (0.0238) (0.0238) (0.0237)

Temp2 -0.00547∗∗∗ -0.00556∗∗∗ -0.00563∗∗∗ -0.00568∗∗∗

(0.000692) (0.000680) (0.000686) (0.000673)

Pre 0.000544 0.00725 0.00689 0.00987
(0.0112) (0.0113) (0.0113) (0.0113)

Pre2 -0.0000150 -0.000542 -0.000525 -0.000599
(0.000367) (0.000395) (0.000395) (0.000385)

Poor x Temp 0.329∗∗ 0.325∗∗ 0.371∗∗

(0.151) (0.147) (0.151)

Poor x Temp2 -0.00540∗ -0.00513∗ -0.00621∗∗

(0.00310) (0.00301) (0.00309)

Poor x Pre 0.0131 0.0244 0.0181
(0.0359) (0.0358) (0.0358)

Poor x Pre2 0.000803 0.000540 0.000638
(0.000972) (0.000965) (0.000958)

Usigma

∆Temp 0.0246 0.0226 -0.0531 -0.0622
(0.0329) (0.0331) (0.0358) (0.0382)

∆Pre 0.00243 0.00342 -0.0859∗∗ -0.109∗∗∗

(0.0360) (0.0361) (0.0409) (0.0399)

Poor x ∆Temp 0.193∗∗∗ 0.183∗∗∗

(0.0583) (0.0596)

Poor x ∆Pre 0.272∗∗∗ 0.257∗∗∗

(0.0657) (0.0682)

Hot x ∆Temp 0.0709
(0.0589)

Hot x ∆Pre 0.0981
(0.0716)

N 7753 7753 7753 7753
Log-pseudolikelihood 2041.7 2049.3 2106.0 2112.0
BC Efficiency Index 0.814 0.816 0.814 0.814
Opt.Temp. 17.26 16.49 16.12 16.11
Opt. Temp. in poor countries 23.39 23.56 23.28
Poor total Temp 0.512∗∗∗ 0.507∗∗∗ 0.554∗∗∗

(0.149) (0.145) (0.149)
Poor total Temp2 -0.0110∗∗∗ -0.0108∗∗∗ -0.0119∗∗∗

(0.00305) (0.00295) (0.00302)
Poor total ∆Temp 0.140∗∗∗ 0.121∗∗

(0.0505) (0.0570)
Poor total ∆Pre 0.186∗∗∗ 0.149∗∗

(0.0578) (0.0688)
Hot total ∆Temp 0.00867

(0.0581)
Hot total ∆Pre -0.0106

(0.0719)
Poor and hot total ∆Temp 0.191∗∗∗

(0.058)
Poor and hot total ∆Pre 0.247∗∗∗

(0.068)

Notes: all specifications include country fixed effects and a time trend. * p<0.1, ** p<0.05, *** p<0.01.
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Table 3: Marginal effects of the inefficiency variables - Baseline results

(1) (2) (3) (4)

Marginal effects on E(u)

∆Temp 0.00277 0.00276 -0.00601 -0.00722
(0.00387) (0.00395) (0.0358) (0.00457)

∆Pre 0.000525 0.000458 -0.00977** -0.0128***
(0.00429) (0.00432) (0.00482) (0.00486)

Poor x ∆Temp 0.0219∗∗∗ 0.0210∗∗∗

(0.00671) (0.00683)

Poor x ∆Pre 0.0308∗∗∗ 0.0299∗∗∗

(0.00767) (0.00780)

Hot x ∆Temp 0.00857
(0.00727)

Hot x ∆Pre 0.0110
(0.00862)

Marginal effects on V(u)

∆Temp 0.000701 0.000733 -0.00157 -0.00195
(0.000986) (0.00106) (0.00111) (0.00124)

∆Pre 0.000127 0.000117 -0.00258** -0.00348∗∗

(0.00109) (0.00115) (0.00129) (0.00139)

Poor x ∆Temp 0.00578∗∗∗ 0.00565∗∗∗

(0.00178) (0.00184)

Poor x ∆Pre 0.00812∗∗∗ 0.00808∗∗∗

(0.00210) (0.0217)

Hot x ∆Temp 0.00236
(0.00204)

Hot x ∆Pre 0.00305
(0.00242)

Notes: * p<0.1, ** p<0.05, *** p<0.01.
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Table 4: Alternative specifications - Frontier

Dependent variable: output per worker
(1) (2) (3) (4) (5) (6) (7)

WB classification Squared anomalies Linear anomalies Asymmetric anomalies No rainfall Weather in the frontier Exponential dist.

Frontier

Capital per worker 0.620∗∗∗ 0.614∗∗∗ 0.612∗∗∗ 0.616∗∗∗ 0.615∗∗∗ 0.613∗∗∗ 0.632∗∗∗

(0.00842) (0.00816) (0.00818) (0.00826) (0.00808) (0.00812) (0.00822)

Temp 0.172∗∗∗ 0.182∗∗∗ 0.183∗∗∗ 0.176∗∗∗ 0.181∗∗∗ 0.183∗∗∗ 0.151∗∗∗

(0.0309) (0.0238) (0.0241) (0.0239) (0.0234) (0.0238) (0.0236)

Temp2 -0.0102∗∗∗ -0.00556∗∗∗ -0.00564∗∗∗ -0.00565∗∗∗ -0.00542∗∗∗ -0.00553∗∗∗ -0.00453∗∗∗

(0.00173) (0.000681) (0.000683) (0.000686) (0.000653) (0.000681) (0.000662)

Pre 0.00310 0.00698 0.00766 0.00781 0.00698 0.0179
(0.0228) (0.0113) (0.0114) (0.0114) (0.0113) (0.0118)

Pre2 -0.000347 -0.000505 -0.000552 -0.000587 -0.000524 -0.000472
(0.00113) (0.000396) (0.000396) (0.000398) (0.000395) (0.000389)

Poor x Temp 0.135∗∗ 0.329∗∗ 0.342∗∗ 0.326∗∗ 0.324∗∗ 0.329∗∗ 0.352∗∗

(0.0583) (0.148) (0.151) (0.147) (0.148) (0.149) (0.157)

Poor x Temp2 0.00255 -0.00527∗ -0.00583∗ -0.00513∗ -0.00621∗∗ -0.00545∗ -0.00308
(0.00193) (0.00304) (0.00311) (0.00302) (0.00301) (0.00306) (0.00304)

Poor x Pre 0.0166 0.0191 0.00765 0.0266 0.00926 0.112∗∗∗

(0.0271) (0.0359) (0.0375) (0.0368) (0.0360) (0.0371)

Poor x Pre2 -0.00000697 0.000627 0.000908 0.000545 0.000866 -0.00154
(0.00120) (0.000970) (0.00100) (0.000986) (0.000961) (0.000939)

∆Temp -0.00200
(0.00298)

Poor x ∆Temp -0.00912
(0.00675)

∆Pre 0.00111
(0.00278)

Poor x ∆Pre -0.00331
(0.00773)

N 7753 7753 7753 7753 7753 7753 7753
Pseudo loglikelihood 2122.5 2087.3 2058.1 2109.3 2084.9 2051.5 2497.9
BC Efficiency Index 0.826 0.815 0.814 0.816 0.815 0.813 0.840
Opt. Temp. 8.424 16.37 16.20 15.57 16.69 16.51 16.63
Poor Opt. Temp. 19.97 23.61 22.85 23.29 21.71 23.27 33.03
Poor total Temp 0.307∗∗∗ 0.511∗∗∗ 0.524∗∗∗ 0.502∗∗∗ 0.505∗∗∗ 0.511∗∗∗ 0.503∗∗∗

(0.0495) (0.146) (0.149) (0.145) (0.146) (0.147) (0.154)
Poor total Temp2 -0.00769∗∗∗ -0.0108∗∗∗ -0.0115∗∗∗ -0.0108∗∗∗ -0.0116∗∗∗ -0.0110∗∗∗ -0.00761∗∗∗

(0.00120) (0.00298) (0.00306) (0.00296) (0.00296) (0.00301) (0.00296)
Poor total ∆Temp -0.0111∗

(0.00610)
Poor total ∆Pre -0.00220

(0.00722)

Notes: all specifications include country fixed effects and a time trend. In Column 1 ‘Poor’ stands for a ‘non-high-income’ country. In Column 3 absolute anomalies are replaced with their
original values. Standard errors are clustered at the country level. * p<0.1, ** p<0.05, *** p<0.01.
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Table 5: Alternative specifications - Inefficiency

Dependent variable: output per worker
(1) (2) (3) (4) (5) (6) (7)

WB classification Squared anomalies Linear anomalies Asymmetric anomalies No rainfall Weather in the frontier Exp. dist.

Inefficiency

∆Temp -0.208∗∗∗ 0.00122 -0.0928∗∗∗ -0.0313
(0.0671) (0.0256) (0.0358) (0.0395)

∆Pre -0.194∗∗ 0.00533 -0.0820∗

(0.0863) (0.0259) (0.0425)

Poor x ∆Temp 0.292∗∗∗ 0.0957∗ 0.321∗∗∗ 0.195∗∗∗

(0.0760) (0.0559) (0.0536) (0.0633)

Poor x ∆Pre 0.271∗∗∗ -0.0386 0.290∗∗∗

(0.0932) (0.0542) (0.0684)

(∆Temp)2 -0.0186
(0.0114)

Poor x (∆Temp)2 0.0675∗∗∗

(0.0179)

(∆Pre)2 -0.0334∗∗

(0.0141)

Poor x (∆Pre)2 0.0981∗∗∗

(0.0251)

∆Temp+ -0.0275
(0.0385)

Poor x ∆Temp+ 0.171∗∗∗

(0.0644)

∆Temp− 0.136∗∗

(0.0562)

Poor ∆Temp− -0.256∗∗∗

(0.0902)

∆Pre+ -0.0801
(0.0492)

Poor x ∆Pre+ 0.260∗∗∗

(0.0907)

∆Pre− 0.102∗∗

(0.0474)

Poor x ∆Pre− -0.289∗∗∗

(0.0782)
Poor total ∆Temp 0.0835∗∗ 0.0969∗ 0.228*** 0.164***

(0.0379) (0.0516) (0.0466) (0.0558)
Poor total ∆Pre 0.0767∗ -0.0333 0.208***

(0.0424) (0.0477) (0.0606)
Poor total (∆Temp)2 0.0489***

(0.0144)
Poor total (∆Pre)2 0.0647***

(0.0213)
Poor total Poor ∆Temp+ 0.143***

(0.0552)
Poor total Poor ∆Pre+ 0.180**

(0.0797)
Poor total Poor ∆Temp− -0.119

(0.0754)
Poor total Poor ∆Pre− -0.187***

(0.0683)

In Column 1 ‘Poor’ stands for a ‘non-high-income’ country. In Column 3 absolute anomalies are replaced with their original values. Standard errors are clustered at the country level. * p<0.1,
** p<0.05, *** p<0.01.
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Table 6: Capital and institutions

Dependent variable: output per worker
(1) (2)

Frontier

Capital per worker 0.883∗∗∗ 0.647∗∗∗

(0.0219) (0.00854)

Temp 0.666∗∗∗ 0.310∗∗∗

(0.0479) (0.0247)

Temp2 -0.0194∗∗∗ -0.00709∗∗∗

(0.00137) (0.000704)

Capital per worker x Temp -0.0405∗∗∗

(0.00320)

Capital per worker Temp2 0.00123∗∗∗

(0.000101)

Pre -0.0152 0.00483
(0.0112) (0.0118)

Pre2 0.000548 -0.0000469
(0.000355) (0.000350)

Polity2 x Temp -0.000489
(0.000343)

Polity2 x Temp2 0.0000296∗∗∗

(0.00000970)

Polity2 -0.00528∗

(0.00298)

Usigma

∆Temp 0.0277 0.0258
(0.0318) (0.0330)

∆Pre 0.00348 -0.00183
(0.0354) (0.0381)

N 7753 7753
Log-pseudolikelihood 2123.1 2123.3
BC Efficiency Index 0.811 0.798
Opt. Temp. 17.17 21.84

Notes: all specifications include country fixed effects and a linear time trend.
Standard errors are clustered at the country level. * p<0.1, ** p<0.05, *** p<0.01.
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Table 7: Split sample

Dependent variable: output per worker
(1) (2) (3)

whole sample split sample difference
Frontier
Capital per worker 0.616∗∗∗ 0.587∗∗∗ 0.029∗∗

(0.008) (0.012) (0.012)
Temp 0.181∗∗∗ 0.169∗∗∗ 0.012

(0.024) (0.036) (0.036)
Temp2 -0.00563∗∗∗ -0.00532∗∗∗ -0.00031

(0.00069) (0.00128) (0.00128)
Pre 0.00689 0.00264 0.00425

(0.01130) (0.01322) (0.01328)
Pre2 -0.000525 -0.000013 -0.000512

(0.000395) (0.000423) (0.000423)
Poor x Temp 0.325∗∗ 0.382∗∗ -0.057

(0.147) (0.122) (0.134)
Poor x Temp2 -0.00513 -0.00002 -0.00511

(0.00301) (0.00342) (0.00343)
Poor x Pre 0.0244 -0.1034 0.01278∗∗

(0.0358) (0.0549) (0.0553)
Poor x Pre2 0.000540 0.001603 -0.001063

(0.00965) (0.001634) (0.001634)
Inefficiency
∆Temp -0.0531 -0.0347 -0.0184

(0.0358) (0.0655) (0.0668)
∆Pre -0.0859∗∗ -0.1251∗∗ 0.0392

(0.0409) (0.0570) (0.0567)
Poor x ∆Temp 0.193∗∗∗ 0.101 0.092

(0.058) (0.092) (0.093)
Poor x ∆Pre 0.272∗∗∗ 0.429∗∗∗ -0.157

(0.066) (0.092) (0.094)
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Table 8: Error-correction model - Long-run co-integrating vector

Dependent variable: output per worker

(1) (2) (3)

Capital per worker 0.612∗∗∗ 0.597∗∗∗ 0.171∗∗∗

(0.0406) (0.0423) (0.0247)

Temp 0.158 0.133 0.295∗∗

(0.0343) (0.0921) (0.120)

Temp2 -0.00697∗∗∗ -0.00615∗∗∗ -0.00947∗∗∗

(0.00103) (0.00206) (0.00318)

Pre -0.023 0.00840 0.0287
(0.0298) (0.0523) (0.049)

Pre2 0.0000157 -0.00108 -0.000283
(0.00107) (0.00183) (0.00165)

Poor x Temp 0.197
(0.475)

Poor x Temp2 -0.00668
(0.00973)

Poor x Pre -0.205
(0.141)

Poor x Pre2 0.00618
(0.00381)

Lagged GDP per capita x Temp -0.0161∗

(0.00814)

Lagged GDP per capita x Temp2 0.000548∗∗

(0.000245)

Lagged GDP per capita x Pre -0.0147∗∗∗

(0.00597)

Lagged GDP per capita x Pre2 0.000296∗

(0.000165)

Lagged GDP per capita 0.940∗∗∗

(0.0689)
N 7753 7753 7753
Adjusted R2 0.791 0.792 0.939
Opt. Temp. 11.30 10.84 15.57
Opt. Temp. in poor countries 12.86

Poor total temp 0.330
(0.476)

Poor total Temp2 -0.0128
(0.00969)

Notes: all the specifications include country and time fixed effects. Standard errors are clustered at the country level.
* p<0.1, ** p<0.05, *** p<0.01.
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Table 9: Error-correction model - Short-run error-correction

Dependent variable: output per worker growth rate

(1) (2) (3) (4)

V 0.119∗∗∗ 0.118∗∗∗ 0.118∗∗∗ 0.369∗∗∗

(0.0196) (0.0196) (0.0195) (0.0334)

∆(∆Temp) -0.00111 -0.0000309 0.000266 -0.0084∗

(0.000717) (0.000586) (0.000692) (0.00502)

∆(∆Pre) -0.00122∗ -0.000660 -0.00130∗ -0.00297
(0.000689) (0.000713) (0.000683) (0.00414)

Poor x ∆(∆Temp) -0.00388∗ -0.00354
(0.00213) (0.00229)

Poor x ∆(∆Pre) -0.00225 -0.00283
(0.00189) (0.00198)

Hot x ∆(∆Temp) -0.00139
(0.00165)

Hot x ∆(∆Pre) 0.00291
(0.00190)

GDP per capita x ∆(∆Temp) 0.000862
(0.000537)

GDP per capita x ∆(∆Pre) 0.000230
(0.000458)

GDP per capita -0.0188∗∗∗

(0.00501)
N 7591 7591 7591 7591
Adjusted R2 0.0213 0.0220 0.0221 0.323

Poor total ∆(∆Temp) -0.00391∗ -0.00328
(0.00205) (0.00240)

Poor total ∆(∆Pre) -0.00291∗ -0.00413∗∗

(0.00175) (0.00199)
Hot total ∆(∆Temp) -0.00112

(0.00140)
Hot total ∆(∆Pre) 0.00161

(0.00188)
Poor and hot total ∆(∆Temp) -0.00466∗∗

(0.00193)
Poor and hot total ∆(∆Pre) -0.00122

(0.00185)

Notes: all the specifications include country fixed effects. Standard errors are clustered at the country level.
* p<0.1, ** p<0.05, *** p<0.01.
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Figure 1: Marginal effects of Temp2 at different capital levels

28



Figure 2: Marginal effects of Temp2 at different institutional quality levels
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Figure 3: Marginal effects of Temp2 at different lagged GDP per capita levels (Error-Correction Model,
Long-run cointegrating vector)
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Appendix A. Stationarity

Appendix A.1. Residuals

Appendix A.2. Panel unit-root tests for the residuals of the error-correction model

Table A1: Fisher-type unit-root test for Table 7, Column 3 residual

Test Statistic Value p-value

Inverse χ2 (320) P 1058.5419 0.0000

Inverse Normal Z -20.5569 0.0000

Inverse logit t(804) L∗ -21.9939 0.0000

Modified inv. χ2 Pm 29.1934 0.0000

Notes: Based on Augmented Dickey-Fuller tests. The null hy-
pothesis is that all panels contain unit roots, the alternative hy-
pothesis is that at least one panel is stationary. Cross-sectional
means removed and drift trend included. The ADF regressions
include 2 lags.
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Figure A.4: Annual average residuals of the frontier, average annual inefficiency, and total error term for
Column 3 in Table 2.
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Table A2: Fisher-type unit-root test for Table 8, Column 4 residual

Test Statistic Value p-value

Inverse χ2 (320) P 1461.6599 0.0000

Inverse Normal Z -27.4212 0.0000

Inverse logit t(804) L∗ -31.4722 0.0000

Modified inv. χ2 Pm 45.1281 0.0000

Notes: Based on Augmented Dickey-Fuller tests. The null hy-
pothesis is that all panels contain unit roots, the alternative hy-
pothesis is that at least one panel is stationary. Cross-sectional
means removed and drift trend included. The ADF regressions
include 2 lags.
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Appendix B. Additional tables

List of countries

Albania
Algeria
Angola
Argentina
Armenia
Australia
Austria
Azerbaijan
Bahamas
Bangladesh
Belarus
Belgium
Belize
Benin
Bhutan
Bolivia
Bosnia and Herzegovina
Botswana
Brazil
Brunei
Bulgaria
Burkina Faso
Burundi
Cabo Verde
Cambodia
Cameroon
Canada
Central African Republic
Chad
Chile
China
Colombia
Comoros
Congo
Costa Rica
Croatia
Cyprus
Czech Republic
D.R. of the Congo
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Denmark
Djibouti
Dominican Republic
Ecuador
Egypt
El Salvador
Equatorial Guinea
Estonia
Ethiopia
Fiji
Finland
France
Gabon
Gambia
Georgia
Germany
Ghana
Greece
Guatemala
Guinea
Guinea-Bissau
Haiti
Honduras
Hungary
Iceland
India
Indonesia
Iran
Iraq
Ireland
Israel
Italy
Ivory Coast
Jamaica
Japan
Jordan
Kazakhstan
Kenya
Kuwait
Kyrgyzstan
Lao People’s DR
Latvia
Lebanon
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Lesotho
Liberia
Lithuania
Luxembourg
Macedonia
Madagascar
Malawi
Malaysia
Mali
Mauritania
Mauritius
Mexico
Mongolia
Montenegro
Morocco
Mozambique
Myanmar
Namibia
Nepal
Netherlands
New Zealand
Nicaragua
Niger
Nigeria
Norway
Oman
Pakistan
Panama
Paraguay
Peru
Philippines
Poland
Portugal
Qatar
Republic of Korea
Republic of Moldova
Romania
Russian Federation
Rwanda
Sao Tome and Principe
Saudi Arabia
Senegal
Serbia
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Sierra Leone
Singapore
Slovakia
Slovenia
South Africa
Spain
Sri Lanka
St. Vincent and the Grenadines
Sudan (Former)
Suriname
Swaziland
Sweden
Switzerland
Syria
Taiwan
Tajikistan
Tanzania
Thailand
Togo
Trinidad and Tobago
Tunisia
Turkey
Turkmenistan
Uganda
Ukraine
United Arab Emirates
United Kingdom
United States
Uruguay
Uzbekistan
Venezuela
Vietnam
Yemen
Zambia
Zimbabwe

List of regions

Eastern Europe and Central Asia
Latin America and the Caribbean
Middle East and North Africa
South and East Asia and the Pacific
Sub-Saharan Africa
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Western Europe and offshoots
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