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5 Policy Rules for 
Inflation Targeting 
Glenn D. Rudebusch and Lars E. 0. Svensson 

5.1 Introduction 

In this paper, we use a small empirical model of the U S .  economy to exam- 
ine the performance of policy rules that are consistent with a monetary policy 
regime of inflation targeting. In the real world, explicit inflation targeting is 
currently pursued in New Zealand, Canada, the United Kingdom, Sweden, Aus- 
tralia, and the Czech Republic. Inflation targeting in these countries is char- 
acterized by (1) a publicly announced numerical inflation target (either in the 
form of a target range, a point target, or a point target with a tolerance inter- 
val), ( 2 )  a framework for policy decisions that involves comparing an inflation 
forecast to the announced target, thus providing an “inflation-forecast targeting” 
regime for policy, where the forecast serves as an intermediate target (cf. Hal- 
dane 1998; King 1994; Svensson 1997a), and (3) a higher than average degree 
of transparency and accountability.’ 

Glenn D. Rudebusch is research officer at the Federal Reserve Bank of San Francisco. Lars 
E. 0. Svensson is professor of international economics at the Institute for International Economic 
Studies, Stockholm University, and a research associate of the National Bureau of Economic Re- 
search. 

The authors thank James Stock, Frederic Mishkin, and other conference participants for com- 
ments. The paper was also presented at the Federal Reserve Bank of San Francisco-Center for 
Economic Policy Research, Stanford University, conference on Central Bank Inflation Targeting, 
6-7 March 1998. The authors thank Ben Bemanke, Carl Walsh, and other conference participants 
for comments. Part of the paper was written when Lars Svensson visited the Reserve Bank of New 
Zealand and Victoria University of Wellington. He thanks these institutions for their hospitality. 
The views expressed in the paper do not necessarily reflect the views of the Federal Reserve Bank 
of San Francisco, the Federal Reserve System, or the Reserve Bank of New Zealand. The authors 
thank Charlotta Groth and Heather Royer for research assistance, and Christina Liinnblad for sec- 
retarial and editorial assistance. 

1. The rapidly growing literature on inflation targeting includes the conference volumes Leider- 
man and Svensson (1995), Haldane (1995), Federal Reserve Bank of Kansas City (1996), and 
Lowe (1997). See also the survey by Bernanke and Mishkin (1997). 
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We model an inflation-targeting policy regime using loss functions over pol- 
icy goals. In our loss functions, inflation targeting always involves an attempt 
to minimize deviations of inflation from the explicit inflation target. In addi- 
tion, however, our inflation-targeting loss functions also allow concerns about 
real output (or more precisely about the variability of output because the natu- 
ral rate hypothesis is assumed). That is, we would argue there is no necessary 
connection between the specification of the loss function (other than that infla- 
tion variability must enter with a nonnegligible weight) and the specification 
of an inflation-targeting policy regime.* For support of this view, see, for ex- 
ample, the recent discussion by Fischer (1  996), King (1996), Taylor (1996), 
and Svensson (1996) in Federal Reserve Bank of Kansas City (1996).’ Thus 
we interpret inflation targeting as consistent with a conventional quadratic loss 
function, where in addition to the variability of inflation around the inflation 
target there is some weight on the variability of the output gap.4 

In examining policy rules that are consistent with inflation targeting, we 
consider two broad classes of rules: instrument rules and targeting rules. An 
explicit instrument rule expresses the monetary policy instrument as an ex- 
plicit function of available information. We examine both optimal unrestricted 
instrument rules (a tradition that goes back at least to Taylor 1979; recent con- 
tributions include Blake and Westaway 1996) as well as optimal simple or re- 
stricted instrument rules, which involve only a few parameters or arguments 
(e.g., current inflation and output as in Taylor’s 1993 rule). However, no central 
bank, whether inflation targeting or not, follows an explicit instrument rule 
(unrestricted or simple). Every central bank uses more information than the 
simple rules are based on, and no central bank would voluntarily restrict itself 
to react mechanically in a predescribed way to new information. The role of 
unrestricted or simple explicit instrument rules is at best to provide a baseline 
and comparison to the policy actually followed. 

A targeting rule may be closer to the actual decision framework under infla- 
tion targeting. It is represented by the assignment of a loss function over devia- 

2. One may argue, though, that the high degree of transparency and accountability serves to 
increase the commitment to minimizing the loss function, and to ensure that any concern about 
the real economy is consistent with the natural rate hypotheses and therefore reduces, or elimi- 
nates, any inflation bias. 

3. As discussed in Svensson (forthcoming b), concerns about the stability of the real economy, 
model uncertainty, and interest rate smoothing all have similar effects under inflation targeting, 
namely, a more gradualist policy. Thus, if inflation is away from the inflation target, it is brought 
back to target more gradually (under “flexible” rather than “strict” inflation targeting, the inflation 
forecast hits the target at a horizon that is longer than the shortest possible). Svensson (1997b) 
argues that all inflation-targeting central banks in practice behave in this way, possibly with dif- 
fering weights on the different reasons for doing so. 

4. Because inflation-targeting central banks, like other central hanks, also seem to smooth inter- 
est rates, our loss function also includes some weight on the variability of interest rate changes. 
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tions of a goal variable from a target level, or deviations of an intermediate 
target variable from an intermediate target level (cf. Rogoff 1985; Walsh 1998; 
Svensson 1997a, forthcoming b). A targeting rule, combined with a particular 
model, is only an implicit instrument rule; typically, the equivalent of a first- 
order condition has to be solved in order to find the corresponding explicit 
instrument rule. (For an intermediate target variable that the central bank has 
complete control over, the first-order condition is trivial: equality between the 
intermediate target variable and the target level.) As an example, note that one 
interpretation of “inflation-forecast targeting” is that the policy instrument is 
adjusted such that a conditional inflation forecast (the intermediate target vari- 
able) hits the inflation target at an appropriate horizon. Combined with a par- 
ticular model, the instrument then becomes an implicit function of current in- 
formation; when the corresponding system of equations is solved for the 
instrument, the explicit instrument rule results. We shall examine several such 
targeting rules below. 

Our analysis proceeds as follows. Section 5.2 presents the empirical model 
we use, which is a simple two-equation model of U.S. output and inflation, 
somewhat similar to the theoretical model in Svensson (19974. The model 
captures some realistic dynamics (e.g., monetary policy actions affect output 
before inflation) in a very simple but tractable form. Section 5.3 first attempts 
to reduce the confusion caused by the literature’s use of two different meanings 
of “targeting” and then presents the different instrument and targeting rules we 
examine. Section 5.4 reports our results, with focus on output and inflation 
variability under a large set of various policy rules. We find that some simple 
instrument and targeting rules involving inflation forecasts do remarkably well 
in minimizing the loss function (relative to the optimal rule). Other policy 
rules, some of which are frequently used in the literature as representing infla- 
tion targeting, do less well. Finally, section 5.5 concludes. 

5.2 An Empirical Model of U.S. Output and Inflation 

5.2.1 Motivation 

Our choice of an empirical model of output and inflation is motivated by 
three considerations. First, we choose a simple linear model (as well as qua- 
dratic preferences below), so our analysis will be tractable and our results 
transparent. Our model consists of an aggregate supply equation (or “Phillips 
curve”) that relates inflation to an output gap and an aggregate demand equa- 
tion (or “IS curve”) that relates output to a short-term interest rate. Obviously, 
our model glosses over many important and contentious features of the mone- 
tary transmission mechanism. Still, we feel that the model has enough rich- 
ness-for example, in dynamics-to be of interest, especially when judged 
relative to some of the models used in previous theoretical discussions. 
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Second, our model captures the spirit of many practical policy-oriented 
macroeconometric models. Some (e.g., McCallum 1988) have argued that be- 
cause there is no academic consensus on the structure of the economy, any 
proposed monetary policy rule should perform well in a variety of models. We 
are completely sympathetic to this argument. We believe that robustness to 
plausible model variation is a crucial issue and one that this conference vol- 
ume, taken as a whole, should provide some insight into. However, we also 
believe that monetary policy analysis will be most convincing to central bank- 
ers (who are, of course, among the most important ultimate consumers of this 
research) if it is conducted using models that are similar in structure to the 
ones actually employed by central bankers. Thus, for example, at this stage of 
analysis, we focus our attention on a model that (1) uses a short-term interest 
rate as the policy instrument with no direct role for monetary aggregates, ( 2 )  is 
specified in terms of output gaps from trend instead of output growth rates, 
and (3) includes a Phillips curve with adaptive or autoregressive expectations 
that is consistent with the natural rate hypothesis. Such a structure is typical 
of many central bank policy models (including, e.g., the 11 models described 
in the central bank model comparison project for the Bank for International 
Settlements 19951, and because our empirical analysis uses U.S. data, we will 
be keen to match the properties of the Federal Reserve’s venerable MPS macro- 
econometric model.5 Of course, the appropriate way to model expectations for 
policy analysis remains particularly contentious (see, e.g., the early discussion 
by Lucas 1976 and Sims 1982). We are persuaded that the importance of the 
Lucas critique is in large measure an empirical issue as in, for example, Oliner, 
Rudebusch, and Sichel (1996). In this regard, Fuhrer (1997) tests an autore- 
gressive Phillips curve like ours against a forward-looking version and cannot 
reject it. Moreover, many policymakers appear more comfortable with the 
backward-looking version, including Federal Reserve Governor Meyer ( 1997) 
and former vice-chairman Alan Blinder (1998). Finally, in this regard, it should 
be noted that our backward-looking expectations may be particularly appro- 
priate during the introduction of a new rule for inflation targeting. As stressed 
by Taylor (1993) and Bomfim and Rudebusch (1997), rational expectations 
may be unrealistic during the transition period when learning about the new 
policy rule is taking place. 

Our third consideration in model selection is empirical fit to the data. To 
judge whether our model is able to reproduce the salient features of the data, 
we compare its fit and dynamics to an unrestricted vector autoregression 

5. In 1996, the FRBAJS model replaced the MPS model as the Federal Reserve Boards main 
quarterly macroeconometric model. The major innovation of this model is its ability to explicitly 
model various types of expectations including model-consistent ones (see Brayton and Tinsley 
1996). Still, across a range of expectations processes, the properties of the new model are broadly 
similar to those of our model. E.g., the FRBRTS model exhibits an output sacrifice ratio of between 
2 and 5, which, as noted below, brackets our model’s sacrifice ratio of about 3. 
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(VAR). VARs have become a very popular tool recently for describing the dy- 
namics of monetary transmission, and they are a natural benchmark for model 
evaluation. Indeed, if one dislikes the structural interpretation that we attach 
to our model, one can simply consider it a reduced-form VAR and so our analy- 
sis is similar in spirit to Feldstein and Stock (1994) or Cecchetti (1995). 

5.2.2 Model Estimates 

The two equations of our model are 

(1) T,+I = %.IT,  + %*TTT,-, + ‘ y T 3 7 r - 2  + “ ? A T , - 3  + “ Y Y ,  + El+, 7 

where nI is quarterly inflation in the GDP chain-weighted price index (p , )  in 
percent at an annual rate, that is, 400(lnp, - lnp,-,); TI is four-quarter inflation 
in the GDP chain-weighted price index, that is, (1/4) C,3=o~Tft-j; i, is the quarterly 
average federal funds rate in percent at an annual rate; i, is the four-quarter 
average federal funds rate, that is, (1/4) C&i,-j; y ,  is the percentage gap be- 
tween actual real GDP (qr) and potential GDP (@), that is, 1OO(q, - q,*)/qT. 
These five variables were de-meaned prior to estimation, so no constants ap- 
pear in the equations. 

The first equation relates inflation to a lagged output gap and to lags of 
inflation.6 The lags of inflation are an autoregressive or adaptive representation 
of inflation expectations, which is consistent with the form of the Phillips curve 
in the MPS model described in Brayton and Mauskopf (1987). In our empirical 
analysis below, we will not reject the hypothesis that the coefficients of the 
four inflation lags sum to one; thus we will use an accelerationist form of the 
Phillips curve, which implies a long-run vertical Phillips curve. The second 
equation relates the output gap to its own lags and to the difference between 
the average funds rate and average inflation over the previous four quarters- 
an approximate ex post real rate. The third term is a simple representation of 
the monetary transmission mechanism, which, in the view of many central 
banks, likely involves nominal interest rates (e.g., mortgage rates), ex ante real 
short and long rates, exchange rates, and possibly direct credit quantities as 
well. Equation ( 2 )  appears to be a workable approximation of these various 
intermediate transmission mechanisms. 

The estimated equations, using the sample period 1961: 1-96:2, are shown 
below. (Coefficient standard errors are given in parentheses, and the standard 
error of the residuals and Durbin-Watson statistics also are reported.) 

6.  Our series on the output gap is essentially identical to those that have been used in a variety 
of Federal Reserve and other government studies including, e.g., Congressional Budget Office 
(1995) and Hallman, Porter, and Small (1991). Our estimation results were little changed by using 
a flexible trend for potential output such as a quadratic trend. 
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T,+~ = .7Orf - . lorr- ,  + .28rr_, + . 12~ ,_ ,  + .14yf + 
(.08) (.lo) (.lo) (.08) (.03) 

SE = 1.009, DW = 1.99, 

y,+, = 1 . 1 6 ~ ~  - .25~,_,  - .lo(;, - 5,) + qf+, 

(.08) (.08) (.03) 

SE = 0.819, DW = 2.05. 

The equations were estimated individually by ordinary least squares.’ The 
hypothesis that the sum of the lag coefficients of inflation equals one had a 
p-value of .42, so this restriction was imposed in estimation.8 

The subsample stability of our estimated equations is an important condition 
for drawing inferences from our model-whether it is given a structural or 
reduced-form (VAR) interpretation. In particular, because ours is a backward- 
looking model, the Lucas critique may apply with particular force. The histori- 
cal empirical importance of this critique can be gauged by econometric stabil- 
ity tests (again, see Oliner et al. 1996). Our estimated equations appear to eas- 
ily pass these tests. For example, consider a stability test from Andrews (1993): 
the maximum value of the likelihood ratio test statistic for structural stability 
over all possible breakpoints in the middle 70 percent of the sample. For our 
estimated inflation equation, the maximum likelihood ratio test statistic is 9.77 
(in 1972:3), while the 10 percent critical value is 14.31 (from table 1 in An- 
drews 1993). Similarly, for the output equation, the maximum statistic is 7.87 
(in 1982:4), while the 10 percent critical value is 12.27. 

5.2.3 Comparison to Other Empirical Estimates 

It is useful to compare our model with other empirical estimates in order 
to gauge its plausibility and its conformity to central bank models. From the 
perspective of monetary policy, two features are of particular interest: (1) the 
sensitivity of real activity to movements in the policy instrument and ( 2 )  the 
responsiveness of inflation to slack in the economy. Table 5.1 provides some 
evidence on both of these issues with a comparison of simulations from our 
model (1)-(2) and the MPS model, which was used regularly in the Federal 
Reserve’s forecasting process for over 25 years. The experiment considered (as 
outlined in Smets 1995 and Mauskopf 1995) assumes that the Federal Reserve 
raises the federal funds rate by 1 percentage point for two years and then re- 
turns the funds rate to its original level thereafter. Table 5.1 reports for output 
and inflation the average difference between this simulation and a constant 

7. Almost identical parameter estimates were obtained by the seemingly unrelated regressions 
and by system maximum likelihood methods because the cross-correlation of the errors is essen- 
tially zero. 

8. This p-value is obtained from the usual F-statistic. Of course, nonstandard near-unit distribu- 
tions may apply (see Rudebusch 1992), but these are likely to push thep-value even higher. 
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Table 5.1 Model Responses to a Funds Rate Increase (annual average 
difference from baseline in percentage points) 

Years after Funds Rate Increase 

1 2 3 

Output gap 
MPSa - .07 - .45 - .99 
Our model - .07 p.41 - .66 

Inflation 
MPS" .00 - .03 - .26 
Our model - .OO - .08 .25 

&From table 11.1 in Mauskopf (1 995) 

funds rate alternative in each of the first three years after the funds rate in- 
crease. The responses of the MPS model and our model to this temporary tight- 
ening of monetary policy are quite similar. In both models, output averages 
almost 0.5 percentage points lower in year 2 and between two-thirds and 1 
percentage point lower in year 3 ,  while inflation falls by about a quarter of a 
percentage point by year 3. Both models require about 3.3 years of a 1 percent- 
age point output gap in order to induce a 1 percentage point change in the 
inflation rate-that is, they exhibit an output sacrifice ratio of just over 3.9 
Most important, the magnitude of the link between the funds rate and inflation, 
which will be crucial for our inflation-targeting analysis, is essentially the same 
across the two models. lo  

Finally, it is also useful to compare the fit and impulse responses of our 
model to those of a VAR. While one may be deeply skeptical of the use of 
VARs for certain structural investigations (see Rudebusch 1998a), they can 
provide simple atheoretical summaries of the general dynamics of the data and 
thus can provide a useful benchmark for the overall fit of a model. Our model 
can be viewed as two restricted equations from a trivariate VAR with four lags. 
The VAR output equation regresses the gap on four lags of T, y, and i. The 
VAR inflation equation regresses inflation on the same lags as well as the con- 
temporaneous value of the gap." Table 5.2 compares the Schwarz and Akaike 
information criteria (SIC and AIC, respectively) for each VAR equation with 
those of our structural model. These two model selection criteria, which are 
functions of the residual sum of squares, are differentiated by their degrees-of- 

9. For comparison, with a rough back-of-the-envelope calculation Ball (1994) reports an output 
sacrifice ratio for the United States of 2.4. 

10. Our model estimates appear comparable to other recent small empirical structural models 
of the United States, including Fuhrer and Moore (1995), Clark, Laxton, and Rose (1996), and 
Fair and Howrey (1996). This is true even though the models use different interest rates in the IS 
curve: Fuhrer and Moore use an ex ante real long rate, Clark et al. use an ex ante real short rate, 
and Fair and Howrey use a nominal short rate. In fact, over the postwar historical sample, the four 
measured rates used appear to have moved together fairly closely. 

11. Thus our VAR has a Cholesky factorization with a causal order of output, inflation, and, 
finally, the funds rate. 
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Table 5.2 Model Selection Criteria 

SIC AIC 

Inflation equation 
VAR 736.8 698.8 
Our model 705.0 690.3 

VAR 652.2 617.1 
Our model 639.7 630.9 

Output equation 

Note: SIC = Schwarz information criterion: AIC = Akaike information criterion. 

freedom penalty for the number of parameters estimated. As shown in table 
5.2, the structural model’s inflation equation is favored over the VAR’s inflation 
equation by both the SIC and the AIC. For the output equation, there is a split 
decision. The SIC, which more heavily penalizes extra parameters, favors the 
structural model, while the AIC favors the VAR. Overall, the information crite- 
ria do not appear to view our structural model restrictions unfavorably. 

As a final comparison of our structural model to the VAR, figure 5.1 shows 
their responses to various shocks. This exercise completes the VAR with the 
usual VAR funds rate equation that regresses the funds rate on four lags of the 
three variables as well as contemporaneous values of the output gap and infla- 
tion. This VAR funds rate equation-with its interpretation as a Federal Re- 
serve reaction function-is also added as a third equation to our model. The 
impulse responses of this structural system are shown as solid lines in figure 
5.1, while the usual VAR impulse responses are shown as long-dashed lines 
along with their 95 percent confidence intervals as short-dashed lines. Because 
the funds rate reaction function equation is identical across the two systems, 
any differences in dynamics are attributable to the structural model restrictions 
on the output and inflation equations. 

Figure 5.1 suggests that these restrictions do not greatly alter the dynamics 
of the model relative to an unrestricted VAR. In response to a positive funds 
rate shock, output and inflation decline in a similar manner in each system.’* 
Also, a positive output shock persists over time and boosts inflation in a like 
fashion in both models. Only for an inflation shock (the left-hand column of 
fig. 5.1) do our model’s responses edge outside the VAR’s confidence intervals. 
This discrepancy reflects our model’s output sensitivity to the real interest rate, 
which falls after an inflation shock because the VAR funds rate reaction func- 
tion has such an extremely weak interest rate response to inflation. The implau- 
sibility of such VAR reaction functions, which mix several decades of very 
different Federal Reserve behavior, is highlighted in Rudebusch ( 1998a) and 
Judd and Rudebusch (1998). As shown below, with more plausible reaction 

12. There is a modest, insignificant “price puzzle” exhibited by the VAR but not the structural 
model. 
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functions where the Fed raises the funds rate by more than inflation shock (so 
the real rate rises, as in the Taylor rule), output will fall following an inflation 
shock in the structural model. 

5.3 Monetary Policy Rules 

5.3.1 Instrument Rules and Targeting Rules 

As noted in our introduction, by an (explicit) instrument rule, we mean that 
the monetary policy instrument is expressed as an explicit function of available 
information. Classic examples of instrument rules are the McCallum (1988) 
rule for the monetary base and the Taylor (1993) rule for the federal funds rate. 
By a targeting rule, we mean that the central bank is assigned to minimize a 
loss function that is increasing in the deviation between a target variable and 
the target level for this variable. The targeting rule will, as we shall see, imply 
an implicit instrument rule. 

In the literature, the expression “targeting variable x,,” or “having a target 
level x* for variable x,,” has two meanings. According to the first meaning, the 
expression above is used in the sense of “setting a target for variable x.” l 3  Thus 
“having a target” means “using all relevant available information to bring the 
target variable in line with the target,” or more precisely to minimize some loss 
function over expected future deviations of the target variable from the target 
level, for instance, the quadratic loss function 

minE,C 6T(x,+7 - x*)*, 
1 ,  7=0 

where 6,0 < 6 < 1, is a discount factor and E, denotes the expectations opera- 
tor conditional on information available in period t. We will use “targeting” 
according to this first meaning, following, for instance, Rogoff (1985), Walsh 
(1 998), and Svensson (1997a, forthcoming b). 

According to the second meaning, “targeting” and “targets” imply a particu- 
lar information restriction for the instrument rule, namely, that the instrument 
must only depend on the gap between the target variable and the target level 
(and lags of this gap or lags of itself, or both).I4 Thus the instrument rule is 
typically restricted to be 

A(L)i,  = B ( L ) ( x ,  - x*), 

13. This is in line with Websterk Ninth New Collegiate Dictionary: target vz (1837) 1: to 
make a target of; esp: to set as a goal 

14. See, e.g., Judd and Motley (1992), McCallum (1997), and Bernanke and Woodford (1997). 
Bernanke and Woodford‘s criticism of Svensson’s (1997a) use of the term “inflation-forecast tar- 
geting” seems to take the second meaning of “targeting” for granted and disregard the first mean- 
ing (which indeed is the one used in Svensson 1997aj. 

2: to direct or use toward a target. 
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where A(L) and B(L) are polynomials in the lag operator L. To convey the 
second meaning, “responding only to x, - x*” seems more precise. Note that 
“inflation targeting” according to this second meaning, but not according to 
the first meaning, might correspond to an instrument rule like 

i ,  = hi,-, + +(T, - n*) 

This instrument rule turns out to perform much worse than other instrument 
rules. Note also that “inflation-forecast targeting” according to the second 
meaning (as in, e.g., Haldane 1997), but generally not according to the first 
meaning, might be an instrument rule like 

where T , + ~ , ,  denotes some conditional inflation forecast of inflation T quarters 
ahead (more on this below). 

A targeting rule for a goaZ variable is hence equivalent to having an objective 
for this variable. Examples of such rules are “annual inflation shall fall within 
the interval 1-3 percent per year on average at least three years out of four” and 
“minimize the expected value of a discounted sum of future weighted squared 
deviations of annual inflation from 2 percent per year and squared output 
gaps.” We shall assume an objective of the latter kind. 

Similarly, a targeting rule for an intermediate target variable is equivalent 
to having a loss function for this intermediate target variable (an intermediate 
loss function), where the target level sometimes is not constant but depends on 
current information. The targeting rule can also be expressed as an equation 
that the target variable shall fulfill, for instance that the target level for the 
intermediate target is an explicit function of available information. The equa- 
tion for the intermediate target variable may be interpreted as a first-order con- 
dition of an explicit or implicit loss function for the goal variable (see Svensson 
1997a, forthcoming b, for examples). Thus a targeting rule in the end expresses 
the intermediate target level as a function of current information. Examples of 
intermediate target rules are “minimize the expected future deviation of M3 
growth from the sum of a given inflation target, a forecast of potential output 
growth, and a velocity trend,” “keep the exchange rate within a 22.25 percent 
band around a given central parity,” and “adjust the instrument such that the 
forecast for inflation four to eight quarters ahead, conditional on the current 
state of the economy and on holding the instrument at constant level for the 
next eight quarters, is 2 percent per year.” We shall consider some targeting 
rules of this last kind. 

A targeting rule in a given model implies a particular instrument rule, but 
this instrument rule is implicit rather than explicit. That is, the targeting rule 
has to be solved for the instrument rule in order to express it as a function of 
current information. 
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5.3.2 The Model 

Let the model be given by equations (1) and (2) ,  and let E, and q, be i.i.d. 
zero-mean disturbances with variances u: and u: and covariance uEq. The co- 
efficients of the lagged inflation terms in equation (1) are restricted to sum 
to one, 

4 

amj = 1. 
,=I 

In our analysis, we will interpret “inflation targeting” as having a loss func- 
tion for monetary policy where deviations of inflation from an explicit inflation 
target are always given some weight, but not necessarily all the weight. In 
particular, for a discount factor 6, 0 < 6 < 1, we consider the intertemporal 
loss function in quarter t ,  

m 

(3) 

where the period loss function is 

(4) L, = 5: + Ay: + u( i ,  - i,+,)* 

(IT, and 3, are now interpreted as the deviation from a constant given inflation 
target) and A 2 0 and v 2 0 are the weights on output stabilization and interest 
rate smoothing, respe~tive1y.l~ We will refer to the variables Z,, y,, and i, - 
as the goal variables. As defined in Svensson (forthcoming b), “strict” inflation 
targeting refers to the situation where only inflation enters the loss function 
(A = u = 0), while “flexible” inflation targeting allows other goal variables 
(nonzero A or u).  

When 6 -+ 1, the sum in equation (3) becomes unbounded. It consists of 
two components, however: one corresponding to the deterministic optimiza- 
tion problem when all shocks are zero and one proportional to the variances of 
the shocks. The former component converges for 6 = 1 (because the terms 
approach zero quickly enough), and the decision problem is actually well de- 
fined also for that case. For 6 -+ 1, the value of the intertemporal loss function 
approaches the infinite sum of unconditional means of the period loss function, 
E[L,I. Then the scaled loss function (1 - S)E,~;=oS’L,+, approaches the uncon- 
ditional mean E[L,]. It follows that we can also define the optimization problem 
for 6 = 1 and then interpret the intertemporal loss function as the unconditional 
mean of the period loss function, which equals the weighted sum of the uncon- 
ditional variances of the goal variables, 

15. Then i, can be interpreted as the deviation of the federal funds rate from the sum of the 
inflation target and the natural real interest rate (the unconditional mean of the real interest rate). 
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- 
0 
0 
0 
0 

0 
1 
0 
0 

-pr/4 

- 

~ 

We shall use equation (5) as our standard loss function, hence assuming the 
limiting case 6 = 1. 

5.3.3 State-Space Representation 

The model (1)-(2) has a convenient state-space representation, 

(6) XI+, = AX,  + Bi, + v, ,~.  

The 9 X 1 vector X I  of state variables, the 9 X 9 matrix A, the 9 X 1 column 
vector B, and the 9 X 1 column disturbance vector vl are given by 

, v1 = X I  = B =  

&I 

0 
0 
0 

r l l  

0 
0 
0 
0 

where e, ( j  = 0, 1, , . . , 9) denotes a 1 X 9 row vector, f o r j  = 0 with all 
elements equal to zero, fo r j  = 1, . . . , 9 with elementj equal to unity and all 
other elements equal to zero, and where e, ( j  < k )  denotes a 1 X 9 row vector 
with elementsj,j + 1, . . . , k equal to 114 and all other elements equal to zero. 

Furthermore, it is convenient to define the 3 X 1 vector Y, of goal variables. 
It fulfills 

(7) y = C,x, + qi,, 
where the vector Y,, the 3 X 9 matrix C,, and the 3 X 1 column vector C, are 
given by 

q =  , q =  

Then the period loss function can be written 

(8) L, = Y'KK, 

where the 3 X 3 matrix K has the diagonal (1, X, v) and all its off-diagonal 
elements are equal to zero. 
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5.3.4 Linear Feedback Instrument Rules 

We will consider the class of linear feedback instruments rules, that is, rules 
of the form 

(9) i, = f x , ,  
wherefis a 1 X 9 row vector. This class of rules includes the optimal instru- 
ment rule (see below). 

For any given instrument rule of the form (9), the dynamics of the model 
follows 

x+, = MX, + V,+I> 

y = cx,, 

where the matrices M and C are given by 

(10) M = A +  B f ,  

( 1  1 )  c = c, + Cf. 
For any given rule f that results in finite unconditional variances of the goal 

variables, the unconditional loss (5) fulfills16 

(12) E[L,] = E[y’KX] = trace(Kx,), 

where C, is the unconditional covariance matrix of the goal variables (see 
the appendix). 

5.3.5 The Optimal Instrument Rule 

With equations (6) and (8), the problem is written in a form convenient for 
the standard stochastic linear regulator problem (cf. Chow 1970, Sargent 
1987). Minimizing expression (3) in each quarter, subject to equation (6) and 
the current state of the economy, X,, results in a linear feedback rule for the 
instrument of the form (9). In the limit when 6 = 1, the optimal rule converges 
to the one minimizing expression (5) .  The expression for the optimal instru- 
ment rule is given in the appendix.17 

5.3.6 Inflation Forecasts 

Given the lags in the monetary transmission mechanism, inflation-targeting 
central banks focus on inflation forecasts. Indeed, several of these banks have 
started to publish inflation reports that are completely devoted to describing 
the recent history and future prospects for inflation. The actual inflation fore- 
casts that have been reported have fallen into two broad categories depending 

16. The trace of a matrix A,  trace(A), is the sum of the diagonal elements of A. 
17. Since there are no forward-looking variables, we need not distinguish between the commit- 

ment and discretion solutions because they are the same. 
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on how monetary policy is projected forward: constant-interest-rate inflation 
forecasts and rule-consistent inflation forecasts. 

Constant-Interest-Rate Injution Forecasts 

Inflation-targeting central banks often refer to, and report, inflation forecasts 
conditional on a given constant interest rate. We will call such forecasts “con- 
stant-interest-rate inflation forecasts.” Such inflation forecasts are frequently 
used in the following way. If a constant-interest-rate inflation forecast for the 
current interest rate is above (below) target for a given horizon, monetary pol- 
icy has to be tightened (eased) and the interest rate increased (decreased). If 
the inflation forecast is on target, the current interest rate setting is deemed 
appropriate (see, e.g., Mayes and Riches 1996; Svensson 1997a). Such fore- 
casts, based on a fixed nominal rate, may seem overly simplistic,’* but they 
have been widely used at central banks, perhaps most notably at the Bank of 
England, where (before operational independence in 1997) the Bank produced 
such forecasts because it could not presuppose policy changes by the gov- 
ernment.I9 

In an attempt to represent this, it is convenient to define the “T’quarter-ahead 
constant-interest-rate inflation forecast.” By this we mean a forecast of four- 
quarter inflation T 2 2 quarters ahead, conditional on a given constant current 
and future interest rate (and on the current state variables X,). Denote this con- 
ditional forecast by %t+Tlf( i ) ,  for the given constant current and future interest 
rate i. It is given by 

where M is a 9 X 9 matrix given by 

(14) 

(we note that e,Xr+, = i,). 
Consider also the 7’-quarter-ahead constant-interest-rate inflation forecast in 

quarter t ,  when the interest rate is held constant at a level equal to that of the 
previous quarter, it_ 1. This conditional inflation forecast, the “T’quarter-ahead 
unchanged-interest-rate inflation forecast,” %f+Tlr(ir- fulfills 

fi = A + Be, 

- 
= e, ,MrXt.  

18. Indeed, given a long enough forecast horizon, the forecasted inflation path will normally 
be explosive. 

19. However, even after operational independence, the Bank‘s forecasts have assumed un- 
changed short-term interest rates (see Britton, Fisher, and Whitley 1998). Similarly, it is our 
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Rule-Consistent InJEation Forecasts 

There are of course many other assumptions that one could make about 
monetary policy in order to produce inflation forecasts. For example, one could 
condition on a constant real interest rate, or one could set the rate in each future 
period according to a given reaction function for policy. Recently, the Reserve 
Bank of New Zealand (1997) has moved beyond constant-interest-rate fore- 
casts and started to report official inflation forecasts conditional on a particular 
reaction function. (This results in inflation forecasts always returning to the 
target.) Below, we shall also consider a rule that employs such forecasts. 

5.3.7 Simple Instrument Rules 

By a simple instrument rule we mean an instrument rule of the form (9), 
where the vector f is restricted in some way. We will distinguish no fewer than 
nine types of simple instrument rules by characterizing them in terms of three 
forms and three arguments.*O 

Three Forms 

We consider three forms: smoothing, level, and difference; the latter two are 
special cases of the first form. The smoothing form, denoted S, is given by 

where h is a coefficient and g is a 1 X 9 row vector of response coefficients. 
When the coefficient h fulfills 0 < h 5 1, this form of instrument rule is charac- 
terized by “partial adjustment,” or “smoothing,” of the instrument. The larger 
the coefficient h, the more smoothing (the more partial the adjustment). 

Recall that i, is the deviation from the average nominal interest rate, which 
in our model equals the sum of the inflation target (the average inflation rate) 
and the natural real interest rate (the average real interest rate). If we, temporar- 
ily in this paragraph, let all variables denote absolute levels and denote the 
average level of variable x, by xo, we can write form (16) as 

= hi,+l + (1 - h)io + g ( X ,  - X ” )  i ,  

(17) = hiz-, + (I - h)(r”  + T*) + g ( X ,  - X ” )  

= hil+, + (1  - h)(r” + 77,) + g ( X ,  - X ” ) ,  

impression that internal staff forecasts at the Federal Reserve Board are often conditioned on a 
constant federal funds path. Thus constant-interest-rate forecasts may have some general advan- 
tages-perhaps, in ease of communication, as noted by Rudebusch (1995). 

20. The theory and practice of simple policy rules is examined in Currie and Levine (1984). 
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where g = g - (1 - h)e,,,  and we have used io = ro + T*. Thus form (16) is 
equivalent to (17), which is a frequent way of writing instrument rules.*I 

The level form, denoted L, is the special case of the autoregressive form 
when h = 0, whereas the difference form, denoted D, is the special case when 
h = 1.** 

Three Arguments (Restrictions on g )  

We consider three combinations of arguments (variables that the instrument 
responds to). That is, we consider three different restrictions on the vector g of 
response coefficients. First, we consider a response to 5, and y,, denoted (v,, 
yr ) ,  which implies23 

where g, and g, are the two response coefficients. Second, we consider a re- 
sponse to the T-quarter-ahead unchanged-interest-rate inflation forecast only, 
denoted ~ l + T l r ( i r ~ , ) .  This implies 

gxr = gnTT,+Tlr(ir-l), 

g = gne, ,MT’,  
- 

where we have used equation (1 5). Finally, we consider a response to both the 
T-quarter-ahead unchanged-interest-rate inflation forecast and the output gap, 
denoted ( ~ l + T l l ( i l ~ l ) ,  y J ,  which implies 

gxi = gn’i+nr(ir-t) + g y Y i ,  

g = &e,4MT + S f , .  

A particular instrument rule is denoted Ta, with the type T = S, L, or D, and 
the argument a = (q,, y,), ;ii,+Tl,(i,-,), or ( ~ , + , , , ( i , ~ , ) ,  y,). By a Taylor-type rule 
we mean a simple instrument rule of the form L(%,, yJ ,  

i, = g,+, + &Y, 

21. Clarida, Gali, and Gertler (1997, 1998) model interest rate smoothing as 

i, = hi*-, + (1 - h)(%, + g X , ) ,  

which is obviously consistent with eq. (17) (as long as h # I )  since we can identify ( 1  - h)g above 
with g in eq. (1 7). 

22. Note that since i,-, = X,, = e,X,, we can always write i, =fX, as i, = i,-, + (f- e,)X,. Thus, 
unless g, is restricted to fulfill g, = 0, the difference form does not imply any restriction. 

23. Note that responding to Z, means responding to the discrepancy between inflation and the 
inflation target, since Z, is the deviation from the mean, and the mean coincides with the inflation 
target, since there is no inflation bias in our model. 
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The classic Taylor rule (Taylor 1993) is a Taylor-type rule with g, = 1.5 and 
g, = 0.5.24 

We do not include the case of a response to only T,, gX, = gT3,, since it 
consistently performed very badly. 

An Information Lag 

McCallum has in several papers, for instance McCallum (1997), argued that 
it is more realistic from an information point of view to restrict the instrument 
in quarter t to depend on the state variables in quarter t - 1, 

On the other hand, it can be argued that the central bank has much more infor- 
mation about the current state in the economy than captured by the few state 
variables in the model. Then, assuming that the state variables in quarter t are 
known in quarter t is an implicit way of acknowledging this extra informa- 
t i ~ n . ~ ~  This is the main reason why our baseline case has the instrument de- 
pending on the state variables in the same quarter. 

For comparability with results of other authors, we nevertheless would like 
to be able to restrict the instrument to depend on state variables one quarter 
earlier. Thus we consider the case when there is response to T j j t t - ,  and yr- , ,  de- 
noted (TI-,, y ,_ , ) ,  with and without interest rate smoothing, 

This requires some technical modifications in our state-space setup, which are 
detailed in the appendix. 

An Instrument Rule with Response to a Rule-Consistent InfZation Forecast 

Consider the following rule: 

where + > 0 and T , + ~ ~ ,  (T  2 2 )  is the rational expectation of  IT,,^, conditional 
on X,, equation (6), and equation (19). Thus  IT,+^^, is a rule-consistent inflation 
forecast as described above, although in this case the rule being conditioned 
on includes the forecast. This rule, where the instrument responds to a rule- 
consistent inflation forecast, is not an explicit instrument rule because it does 
not express the instrument as an explicit function of current information (or, in 
the context of our model, of predetermined variables). It is not a targeting rule, 

24. See McCallum (1988), Bryant, Hooper, and Mann (1993), Judd and Motley (1992), and 
Henderson and McKibbin (1993) for other examples of explicit instrument rules. 

25. In fact, obtaining a good description of the real-time information set of policymakers is a 
complicated assignment (see Rudebusch 1998a). E.g., simply lagging variables ignores data revi- 
sions (see Diebold and Rudebusch 1991). 
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in the sense we have used the term, since it is not explicitly related to some 
loss function. Nor does it express an intermediate target level as a function of 
current information. The rule is an equilibrium condition because the right- 
hand side of equation (19) is endogenous and depends on the rule itself. Hence, 
it is an implicit instrument rule. The self-referential, rational expectations na- 
ture of the rule complicates its analytical derivation in terms of an explicit 
instrument rule.26 However, the rule remains a simple instrument rule similar 
in form to the S(??,+,,,(i,-,)) rule described above, only the instrument responds 
to an endogenous variable rather than a predetermined one. We consequently 
denote the rule in equation (19) by S( IT ,+~, , ) .  

Like the S(??,+,,,(i,- ,)) rule, the  IT,,,,,) rule has considerable intuitive ap- 
peal, inasmuch as it implies that if new information makes the inflation fore- 
cast at the horizon T increase, the interest rate should be increased, and vice 
versa. Even better, however, the S(IT,+,,) rule uses an inflation forecast that can 
be conditional on a nonconstant interest rate path. The S(IT,+,,) rule is similar 
to the reaction function used in the Bank of Canada’s Quarterly Projection 
Model (see, e.g., Colletti et al. 1996) and the Reserve Bank of New Zealands 
Forecasting and Policy System (see Black et al. 1997), and identical to the rule 
considered by Batini and Haldane in chapter 4 of this Indeed, this 
rule appears to be a frequent reference rule among inflation-targeting central 
banks. It is (when h = 1) what Haldane (1997) calls “the generic form of the 
feedback rule under an inflation target,” which “encapsulates quite neatly the 
operational practice of most inflation targeters.” 

Nevertheless, the S ( I T , + ~ , ~ )  rule is not derived as a first-order condition of 
some loss function corresponding to inflation targetingz8 The question then 
arises: How efficient is this rule in achieving an inflation target? This question 
is particularly relevant because of its use in the inflation projections by two 
prominent inflation-targeting central banks, and because of its intuitive appeal 
to many as representing generic inflation targeting. Consequently, we examine 
the performance of this rule within the framework of our model. 

26. In equilibrium, the rational expectations inflation forecast becomes an endogenous linear 
function of the state variables (where the coefficients depend on the parameters T, 9, and h), which 
by eq. (19) results in eq. (9). For T = 2, the explicit instrument rule is easy to derive. For T 2 3, 
the derivation is more complex. The details are provided in the appendix. 

27. It is also used in Black, Macklem, and Rose (1997). 
28. Because the rule is not derived as a first-order condition, its precise form is not obvious. As 

alternatives to eq. (19) one can consider 

i, = hi,.) + (1 - h,.r, + +T,+T,,, 

or even 

where g, is unrestricted 
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Optimal Simple Instrument Rules 

In order to find the optimal simple instrument rule for a given type of rule 
and with a given combination of arguments, we optimize equation (5) over g, 
h, and + taking the corresponding restrictions into account. 

5.3.8 Targeting Rules 

The Optimal Targeting Rule 

Above we have noted the existence of an optimal instrument rule. Of course, 
the corresponding minimization problem defines an optimal targeting rule as 
well. Here, however, we show that the first-order condition for an optimum can 
be interpreted as an optimal intermediate targeting rule. 

Consider the first-order condition for minimizing expressions (3) and (8) 
subject to (6) and (7), 

where we have used that 

and let the discount factor fulfill 6 = 1. This is a linear relation between the 
current and conditionally forecasted future goal variables, Y,+,,,, T = 0, 1, 2,  
. . . , conditional on the current instrument and the future policy. The task of 
the monetary authority can be described as setting an instrument in the current 
quarter so as to achieve the relation (20). This relation can then be interpreted 
as an intermediate target path for the forecast of future goal variables. That is, 
the forecasts of future goal variables are considered intermediate target vari- 
ables. Then the task of the monetary authority is to choose, conditional on the 
current state variable X,, a current instrument i ,  and a plan i,,,,, (T = 1, 2, . . .) 
for future instruments, such that the resulting conditional forecasts of future 
goal variables Y,+Tl, fulfill the intermediate target (20), where 

T = CxX, + C,i,, 
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where T = 1, 2 ,  . . . and we have used that 

Xl+T+lll = Ax,+,,, + Bil+Tll 

= A"'X, + Ar-IBil+,,, 
1 4  

We note that the Yl+.T,l (T  = 0, I ,  2, . . .) that fulfill equation (20) can be seen 
as impulse responses of the goal variables for the optimal solution, for im- 
pulses that put the economy at its initial state. We can now imagine a governor 
or a board of governors pondering over a set of alternative current and future 
instrument settings and alternative forecasts for the goal variables that have 
been provided for consideration by the central bank staff, in order to decide on 
the current instrument setting. When the governor or board of governors ends 
up selecting one instrument path and corresponding goal variable forecasts that 
they believe are best, their behavior (if rational) can be seen as implicitly se- 
lecting forecasts that fulfill equation (20) for some implicit weight matrix Kin 
their loss function. 

In general, equation (20) involves a relation between all the goal variables. 
The case when inflation and the output gap are the only goal variables is exam- 
ined in Svensson (1997a, forthcoming b). Since, by the Phillips curve (I) ,  the 
forecast of output can be written as a linear function of the forecast of inflation, 
this linear function can then be substituted for the output forecast in equation 
(20), which results in a relation for the forecast of future inflation only. That 
relation can be interpreted as an intermediate target for the inflation forecast. 
In the special case examined in Svensson (1997~1, forthcoming b), these rela- 
tions for the inflation forecast are both simple and optimal. In the general case 
these relations need not be optimal. Here we will examine them as potential 
simple targeting rules, called inflation-forecast-targeting rules. 

Simple Targeting Rules 

Consider targeting rules for the T-quarter-ahead constant-interest-rate infla- 
tion forecast. These rules imply implicit instrument rules that are normally not 
"simple," since they normally depend on most state variables. We will consider 
four kinds of simple targeting rules, namely, strict and flexible inflation- 
forecast targeting, with and without smoothing. 

In Svensson (1997a), the following first-order condition for the inflation 
forecast is derived, for the case of flexible inflation targeting with some non- 
negative weight on output stabilization, A 2 0, but zero weight on interest rate 
smoothing, v = 0, 

T,,,,,(i,) - T* = c ( V ( r l + , , ,  - T*) .  

In the model in Svensson (1997a), r1+~,, is predetermined, r l+Zl,( i f)  is the infla- 
tion forecast for the earliest horizon that can be affected, and c(X) is an increas- 
ing function of A, fulfilling 0 5 c(A) < 1, c(0) = 0, and c(A) -+ 1 for A -+ 00. 
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In the present model, we can consider a generalization of this framework, 
- 

(21) T + T l , ( i , )  = CTT,+II, 

where c and T fulfill 0 5 c < 1 and T 2 2. This we refer to as jexible 
T-quarter-ahead injation-forecast targeting, denoted FIFT( T ) .  

The expression (21) denotes a targeting rule, where the corresponding in- 
strument rule is implicit. In order to solve for the instrument rule, we use equa- 
tion (13) to write equation (21) as 

e , , M ~ - ~ ( A X ,  + ~ i , )  = ce,,AX,. 

Then the implicit instrument rule can be written 

i, = g(c, T ) X , ,  

where the row vector g(c, T )  is a function of c and T given by 

where Z is the 9 X 9 identity matrix (note that e,:,A?PIB is a scalar and e,:,(cZ 
- fiT-')A is a 1 X 9 row vector). 

Strict T-quarter-ahead injation-forecast targeting, denoted SIFT( T ) ,  is the 
special case of equation (21) when c = 0, 

- 
(23) q + T , , ( i , >  = 0. 

(24) i, = g(0, nx,, 
The corresponding implicit instrument rule is 

where 

e,  , it T-IA 
g ( 0 , T )  _= - 

e 1.4 h '-I B 

Note that the numerator in equation (25) equals the constant-interest-rate 
inflation forecast corresponding to a zero interest rate, ~ , + T , , ( 0 ) .  The denomina- 
tor, e,,,&T'B, is the constant-interest-rate policy multiplier for the four- 
quarter inflation T quarters ahead, since by equation (1 3) 

Hence, very intuitively the instrument rule corresponding to strict inflation- 
forecast targeting can be written as 
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the negative of the zero-interest-rate inflation forecast divided by the constant- 
interest-rate policy multiplier. 

We can equivalently write this instrument rule in terms of changes in the 
interest rate. By equation (1 3) we have 

By equation (23) we can write 

Very intuitively, the interest rate adjustment equals the negative of the un- 
changed-interest-rate inflation forecast for the unchanged interest rate divided 
by the constant-interest-rate policy multiplier. 

Note that strict inflation-forecast targeting implies that the inflation forecast 
conditional on the future instrument rule (24), rather than conditional on a 
constant interest rate, deviates from zero, 

f 0, 

and in practice reaches zero later than T quarters ahead. This is apparent from 
the impulse responses for ?i,+,l, under strict inflation-forecast targeting. 

Note that strict T,-quarter inflation-forecast targeting may be approximately 
equal to flexible T,-quarter flexible inflation-forecast targeting, when the hori- 
zon for strict inflation targeting exceeds that of flexible inflation targeting, 
T, > T,. 

The above targeting rules can be considered under smoothing (partial adjust- 
ment) of the interest rate, 

i, = hir-, + (1 - h)g(c,  TIXI, 

f = he, + (1  - h)g(c,  TI, 

where it may be reasonable to restrict the smoothing coefficient h to fulfill 0 
5 h < 1. Note that under smoothing, h is not generally the “net” coefficient 
on i,_ I, since g,(c, T) is generally not zero. These targeting rules under smooth- 
ing are denoted FIFTS(T) and SIFTS(T), respectively. 

The optimal inflation-forecast-targeting rules are found by minimizing the 
loss function (5) over the parameters c, h, and T, taking into account the restric- 
tions on these and that T 2 2 is an integer. For instance, under strict inflation 
targeting without smoothing, we have c = h = 0, and the only free parame- 
ter is 7: 
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Table 5.3 Results on Volatility and Loss with Various Rules (A  = 1, Y = 0.5) 

Optimal 
L(.rr,, Y,)  

L(Tr+rl,(L J )  

L( %,+ ric( i,- i 1, Y,) 

w,, Y,)  

S(E,+rlr(i,-l)) 

S(E,+71,(i,-l), Y,) 

S ( T , +  7lJ 

g, = 2.72, g, = 1.57 

T = 8; g, = 2.55 

T = 8 ;  g, = 2.53, g, = 0.29 

g, = 2.37, g, = 1.44, h = 0.14 

T = 8; g, = 1.89, h = 0.46 

T = 8; g, = 1.54, g, = 0.45, h = 0.60 

T = 8; + = 2.62, h = 0.32 
T 12; + = 3.65, h = 0.38 
T = 16; @ = 5.52, h = 0.41 

SIFT(T) 
T = 8  
T =  12 
T =  16 

T = 8; c = 0.72 
T = 12; c = 0.39 
T = 16; c = 0.01 

T = 8; h = 0.59 
T = 12; h = 0.45 
T =  16;h = 0.31 

T = 8 ;  c = 0.66, h = 0.71 
T = 12; c = 0.35, h = 0.47 
T = 16; c = 0.00, h = 0.31 

FIFT(T) 

SIFTS(T) 

FIFTS(T) 

2.15 2.24 

2.18 2.24 

2.42 2.27 

2.44 2.15 

2.18 2.25 

2.15 2.47 

2.15 2.25 

2.15 2.45 
2.13 2.41 
2.13 2.40 

1.40 2.84 
1.81 2.44 
2.21 2.27 

2.24 1.82 
2.17 2.11 
2.22 2.26 

1.51 3.39 
1.87 2.60 
2.24 2.34 

2.15 2.26 

2.24 2.34 
2.18 2.28 

1.68 11.08 1 

1.74 11.27 5 

2.07 13.15 18 

2.20 13.01 17 

1.68 11.23 4 

1.53 11.89 12 

1.68 11.09 2 

1.53 11.77 11 
1.55 11.58 10 
1.57 11.51 7 

7.44 37.65 22 
3.15 14.17 19 
2.03 12.05 13 

5.31 22.41 21 

2.02 12.05 13 
2.72 12.86 16 

3.88 21.29 20 
1.94 12.16 15 
1.47 11.57 n 

1.86 11.42 6 
1.59 11.17 3 
1.47 11.57 8 

5.4 Results 

5.4.1 Optimized Rules 

In this subsection, we consider the performance of various rules for several 
illustrative cases of different preferences over goal variables. The rules we con- 
sider have been optimized in terms of their parameter settings for the given 
preferences and the given form of the rule assumed. 

Tables 5.3 through 5.7 provide results for five different sets of preferences 
over goals. In each table, the volatility of the goal variables (measured as the 
unconditional standard deviations), the minimized loss, and the relative rank- 
ing in terms of loss are shown for 22 different rules. Loss is calculated under 
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Table 5.4 Results on Volatility and Loss with Various Rules (A = 0.2, Y = 0.5) 
~ ~~ 

Rule Std[E,] Std[y,] Std[i, - i,-,] Loss Rank 

Optimal 

Lm,, Y,) 

L ( E , + T , , ( L , ) )  

L(.rr,+,,,(i,-,), Y,)  

sm,, Y,)  

S(.rr,+,,,(i,-,)) 

S(.rr,+ ,,,(L ,). Y,) 

S ( ~ , + , , , )  

g, = 3.17, g, = 1.22 

T = 8; g, = 2.65 

T = 8; g, = 2.69, g, = -0.25 

g, = 2.34, g, = 1.03, h = 0.30 

T = 8; g, = 1.63, h 

T = 8; g, = 1.42, g, = 0.16, h = 0.74 

T = 8; C$ = 2.35, h = 0.62 
T = 12; = 3.86, h = 0.71 
T = 16: C$ = 8.33, h = 0.47 

SIFT(T) 
T = 8  
T =  12 
T =  16 

T = 8; c = 0.69 
T = 12; c = 0.24 
T = 16: c = 0.00 

T = 8 ; h = 0 . 7 1  
T =  12: h = 0.60 
T = 16; h = 0.45 

T = 8; c = 0.53, h = 0.79 
T = 12; c = 0.08, h = 0.60 
T = 16: c = 0.00. h = 0.45 

0.69 

FIFT(T) 

SIFTS(T) 

FIFTS( T )  

1.97 

2.00 

2.37 

2.36 

2.00 

I .97 

1.97 

I .97 
1.97 
1.97 

1.40 
1.81 
2.21 

2.13 
1.99 
2.21 

1.62 
1.93 
2.28 

1.98 
1.98 
2.28 

2.64 

2.61 

2.28 

2.41 

2.64 

2.75 

2.64 

2.73 
2.69 
2.68 

2.84 
2.44 
2.27 

1.87 
2.24 
2.27 

3.84 
2.74 
2.39 

2.67 
2.65 
2.39 

1.55 

1.65 

2.17 

2.10 

1.56 

1.53 

1.55 

1.53 
1.54 
1.54 

7.44 
3.15 
2.03 

5.38 
2.88 
2.03 

3.34 
I .60 
1.25 

1.67 
1.52 
1.25 

6.47 

6.71 

9.00 

8.92 

6.60 

6.58 

6.48 

6.55 
6.50 
6.49 

31.21 
9.42 
7.95 

19.68 
9.10 
7.95 

11.16 
6.5 1 
7.11 

6.74 
6.48 
7.1 1 

1 

10 

17 

16 

9 

8 

2 

7 
5 
4 

22 
19 
14 

21 
18 
14 

20 
6 

12 

11 
2 

12 

the assumption that output and inflation variability are equally distasteful (A 
= 1) in table 5.3 and that output variability is much less costly (A = 0.2) in 
table 5.4 and much more costly (A = 5) in table 5.5. Variability of nominal 
interest rate changes are also costly in these three tables (v = 0.S).29 Variation 
in the costs of variability of interest rate changes are considered in tables 5.6 
(u = 0.1) and 5.7 (u = 1.0) (both assuming A = 1). The preferences in table 
5.3 imply a concern not only about inflation stabilization but also about out- 
put stabilization and interest rate smoothing, which we believe is realistic for 
many central banks, also inflation-targeting ones. Comparison with tables 5.4 

29. Such costs are suggested, in part, by the concern central banks display for financial market 
fragility (see, e.g., Rudebusch 1995). 
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Table 5.5 Results on Volatility and Loss with Various Rules (A = 5, v = 0.5) 

Optimal 
L(.rr,> Y , )  

L(Fc+,,,(i,-, 1) 

L(+,+rl,(it-,)> Y,)  

sm,, Y,) 

S(*,+,,( i,- , )) 

s(*,+rl,(il-,)l Y,) 

%T,+,I,) 

g, = 2.15, g, = 2.17 

T = 8; g, = 2.13 

T = 8; g, = 2.24, g, = 1.40 

g, = 1.26, g, = 2.35, h = -0.11 

T = 8; g, = 2.03, h = 0.06 

T = 8; g, = 1.78, g, = 1.27, h = 0.31 

T = 8; c$ = 2.62, h = -0.15 
T =  12; + = 3.16, h = -0.11 
T =  16; c$ = 3.91, h = -0.09 

SIFT(T) 
T = 8  
T =  12 
T =  16 

T = 8; c = 0.81 
T = 12; c = 0.64 
T = 16; c = 0.44 

T = 8; h = 0.35 
T = 12; h = 0.15 
T = 16; h = 0.02 

T = 8; c = 0.80, h = 0.52 
T = 12; c = 0.64, h = 0.22 
T = 16: c = 0.44, h = 0.03 

FIFT(T) 

SIFTS(T) 

FIFTS ( T )  

2.65 

2.69 

2.69 

2.80 

2.68 

2.67 

2.65 

2.65 
2.61 
2.59 

1.40 
1.81 
2.21 

2.64 
2.70 
2.79 

I .44 
1.82 
2.21 

2.63 
2.71 
2.79 

1.86 

1.89 

2.22 

1.83 

1.88 

2.23 

1.87 

2.21 
2.19 
2.18 

2.84 
2.44 
2.27 

1.70 
1.91 
2.02 

3.04 
2.47 
2.27 

1.87 
1.95 
2.03 

2.36 

2.16 

1.70 

2.69 

2.27 

1.59 

2.3 I 

1.62 
1.65 
1.67 

7.44 
3.15 
2.03 

5.15 
2.49 
1.78 

5.07 
2.69 
1.99 

2.52 
1.94 
1.71 

26.99 

27.46 

33.32 

28.17 

27.39 

33.29 

27.15 

32.81 
32.06 
31.78 

69.88 
37.89 
32.59 

34.71 
28.61 
29.86 

61.07 
37.50 
32.59 

27.48 
28.15 
29.85 

1 

4 

17 

7 

3 

16 

2 

15 
12 
11 

22 
20 
13 

18 
8 

10 

21 
19 
13 

5 
6 
9 

through 5.7 allows us to note the consequences of relatively more or less em- 
phasis on output stabilization and interest rate smoothing. 

The first rule at the top of each table is the unrestricted optimal control 
rule-the obvious benchmark. The optimal rule in table 5.3 produces volatility 
results not too far from our historical sample results, which are Std[*J = 2.33, 
Std[y,l = 2.80, and Std[i, - ir-,] = 1.09. The next four rows consider level 
rules with current inflation and output, L(;is,, y,>, future inflation L(T,+,,,(i,- ,)), 
and future inflation and current output L(’7T,+8,,(i,-l). y , )  as arguments (where 
the forecasts are the 8-quarter-ahead “unchanged-interest-rate’’ four-quarter 
inflation forecast). The next three rows consider smoothing instrument rules 
with the same arguments. The following three rows are for the interest- 



230 Glenn D. Rudebusch and Lars E. 0. Svensson 

Table 5.6 Results on Volatility and Loss with Various Rules (A = 1, u = 0.1) 

Std[F,] Std[y,l Std[i, - i,-J Loss Rank Rule 

Optimal 

L(.rr,, Y,)  

L(F,+7, , (L,))  

L(TT,+n,(i,-,). Y,) 

S(.rr,, Y,)  

S(F,+,,,Ci,-,)) 

SW,, I ,,( L, L Y J  

S ( T , + T , , )  

g, = 3.43, g, = 2.50 

T = 8; g, = 3.46 

T = 8; g, = 3.41, g, = 1.00 

g, = 2.80, g, = 2.80, h = -0.16 

T = 8; g, = 3.15, h = 0.31 

T = 8; g, = 2.79, g, = 1.06, h = 0.47 

T =  8; @ = 5.01, h = -0.01 
T = 12; @ = 7.99, h = 0.06 
T = 16; 4 = 13.66, h = 0.09 

SIFT(T) 
T = 8  
T =  12 
T =  16 

T = 8; c = 0.61 
T = 12; c = 0.27 
T = 16; c = 0.00 

T = 8; h = 0.34 
T = 12; h = 0.11 
T =  16;h = 0.06 

T = 8; c = 0.60, h = 0.45 
T = 12; c = 0.27, h = 0.13 
T = 16; c = 0.00. h = -0.06 

FIFT(T) 

SIFTS(T) 

FIFTS(T) 

1.96 

2.01 

2.11 

2.18 

2.00 

1.94 

1.96 

1.94 
1.92 
I .91 

1.40 
1.81 
2.21 

1.95 
2.02 
2.21 

1.43 
I .82 
2.20 

1.95 
2.03 
2.20 

2.12 

2.18 

2.35 

2.05 

2.15 

2.47 

2.14 

2.45 
2.41 
2.39 

2.84 
2.44 
2.27 

1.97 
2.21 
2.27 

3.03 
2.46 
2.26 

2.13 
2.23 
2.26 

3.02 

2.71 

2.99 

3.53 

2.90 

2.47 

2.98 

2.49 
2.55 
2.58 

7.44 
3.15 
2.03 

5.54 
2.84 
2.03 

5.14 
2.80 
2.15 

3.08 
2.46 
2.15 

9.25 

9.5 1 

10.86 

10.18 

9.46 

10.51 

9.29 

10.37 
10.13 
10.04 

15.54 
10.19 
10.41 

10.75 
9.78 

10.41 

13.86 
10.15 
10.41 

9.30 
9.73 

10.41 

1 

5 

20 

11 

4 

18 

2 

13 
9 
8 

22 
12 
14 

19 
7 

14 

21 
10 
14 

3 
6 

14 

rate-smoothing rule S ( T , + ~ , ) ,  using the 8-, 12-, and 16-quarter-ahead rule- 
consistent quarterly inflation forecasts. The final twelve rows of each table 
present various implicit inflation-forecast-targeting rules at horizons of 8, 12, 
and 16 quarters. For all of the rules (except the optimal one), the relevant opti- 
mal rule parameters are given in the tables as well. 

These tables suggest several conclusions: First, simple instrument rules ap- 
pear to be able to perform quite well in our model. Consistently across the 
tables, the top-performing rule is the S(;ii,+,,,(i,_,), y,) one, which reacts to the 
constant-interest-rate inflation forecast and the current output gap. Indeed, 
these simple “forward-looking’’ Taylor-type rules are always extremely close 
to matching the optimal rule in terms of overall loss. This result is somewhat 
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Table 5.7 Results on Volatility and Loss with Various Rules ( A  = 1, v = 1) 

Rule Std[*,] Std[y,] Std[i, - i,-,] Loss Rank 

Optimal 
UF,, Y,)  

L(7F,+7,,(i,- ,)I 

L(~,+rlz(i,-J3 Y,)  

Wr, Y J  

S(F,+7,,(i,-J) 

S@,+di,-,h Y,)  

~ ( T < + T , , )  

g, = 2.44, gy = 1.23 

T = 8; g, = 2.24 

T = 8; g, = 2.23, g, = 0.07 

g, = 1.12, g, = 1.04, h = 0.27 

T = 8; g, = 1.47, h = 0.54 

T = 8; g, = 1.18, gy = 0.30, h = 0.65 

T = 8; 4 = 1.92, h = 0.45 
T = 12: c$ = 2.52, h = 0.50 
T = 16; I$ = 3.63, h = 0.53 

SIFT(T) 
T = 8  
T =  12 
T =  16 

T = 8; c = 0.77 
T = 12; c = 0.47 
T = 16; c = 0.12 

T = 8; h = 0.66 
T = 12; h = 0.56 
T = 16; h = 0.45 

T = 8; c = 0.69, h = 0.79 
T = 12; c = 0.40, h = 0.59 
T = 16: c = 0.05, h = 0.45 

NFT(T) 

SIFTS(T) 

FIFTS(T) 

2.27 

2.29 

2.60 

2.61 

2.29 

2.27 

2.27 

2.26 
2.25 
2.25 

1.40 
1.81 
2.21 

2.45 
2.30 
2.32 

1.56 
1.91 
2.28 

2.28 
2.27 
2.32 

2.29 

2.28 

2.24 

2.20 

2.30 

2.47 

2.30 

2.45 
2.42 
2.41 

2.84 
2.44 
2.27 

1.75 
2.04 
2.20 

3.62 
2.70 
2.39 

2.33 
2.3 1 
2.36 

1.33 

1.42 

1.79 

1.82 

1.34 

1.24 

1.34 

1.25 
1.26 
1.27 

7.44 
3.15 
2.03 

5.21 
2.64 
1.95 

3.54 
1.68 
1.25 

1.47 
1.31 
1.23 

12.17 

12.49 

14.99 

14.97 

12.33 

12.82 

12.18 

12.71 
12.54 
12.48 

65.29 
19.13 
14.11 

36.19 
16.43 
14.02 

28.08 
13.77 
12.47 

12.77 
12.19 
12.46 

1 

8 

17 

16 

4 

12 

2 

10 
9 
7 

22 
19 
15 

21 
18 
14 

20 
13 
6 

11 
3 
5 

surprising given that the inflation forecast incorporated into these rules is sim- 
ply a single 8-quarter-ahead inflation projection conditioned on an unchanged 
interest rate path. 

Perhaps even more surprising, the current inflation and output Taylor-type 
rules-L(?f,,y,) and S(-t,yr)-are nearly as good. Particularly, in table 5.3 
(with X = l), these rules perform with output and inflation gap variances that 
are similar to those of the optimal rule. In order to understand the exceptional 
performance of these rules, it is instructive to compare the coefficients of these 
simple rules to those of the optimal rule. The optimal rule in table 5.3 (the 
optimal rules from the other tables have broadly similar parameterizations) has 
the form 
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i, = .881~, + .301~,_, + .381~-, + . 1 3 ~ , + ~  + 1.30y, - .33y,-, + .47i,-, 

- .06i,_, - .03i,-,. 

The L(51, y,) rule, for example, comes close to matching this by setting the first 
four parameters all equal to 0.68 (i.e., g,/4), the y ,  parameter equal to 1.57, 
and the other parameters equal to zero. Because the Taylor rule has received so 
much attention, it is also interesting to note that across all of the tables the 
parameters for our L(5,, y,) Taylor-type rules are fairly high. Instead of the 
original Taylor rule parameters of 1.5 on inflation (g,) and 0.5 on output (gy), 
our optimal L(?i,, y,) rules sets these parameters above 2 and 1, respectively, in 
all of the tables.30 

Second, in distinct contrast to the simple rules that include contemporaneous 
output gaps, the simple instrument rules that respond only to inflation forecasts 
do quite poorly-even when the weight on output stabilization is small, as in 
table 5.4. Of course, the optimal rule does include large coefficients on output, 
but presumably these reflect in large part the inflation-forecasting proper- 
ties of output (especially for low X). However, the simple instrument rules 
L(%,, Bif( i l - , ) )  and S(%,+,,,(i,- ,)) that incorporate only future inflation do not fare 
very well. One might conjecture that these rules do poorly because of the me- 
chanical nature of the forecasts used, which are simple projections assuming a 
constant nominal funds rate. However, the S ( T ~ + ~ ~ , )  rule, which conditions the 
inflation forecast on a time-varying, rule-consistent interest rate path, does lit- 
tle better than the S(?i,+,,,(i,~,)) rule. More likely, the restricted fashion in which 
the inflation forecasts enter the rule-the instrument responds only to the devi- 
ation between the forecast and the inflation target-is to blame. This illustrates 
what was emphasized in subsection 5.3.7, namely, that these rules are not first- 
order conditions to our loss function. However, note that these rules do better 
for a smaller A (table 5.4) and worse for a larger X (table 5.5). This indicates 
that they are closer to a first-order condition of a loss function that only in- 
volves inflation stabilization and interest rate smoothing.” 

Third, the inflation-forecast-targeting rules perform quite well given enough 
flexibility and interest-rate-smoothing ability. The FIFTS rule (flexible 
inflation-forecast targeting with smoothing) is essentially able to match the 
performance of the S(3?r+81c(i,-l), y,) rule-and hence the optimal rule-in all 
cases except when there is a very high weight on output stabilization (table 
5.5). Across all of the tables, the best inflation-forecast horizon to use with this 
rule is usually 12 quarters but sometimes 8 quarters. The IFT rules without 

30. Ball (1997), in a simple, calibrated theoretical model similar to our own, argues that the 
optimal Taylor-type rule should have higher coefficients than the original Taylor rule. However, 
Ball also argues that in the optimal rule the output parameter should be larger than the inflation 
parameter, which is generally contrary to our results. 

31. The length of the forecast horizon ( T )  in the S(n,+,,,) rule makes only a modest contribution. 
1.e.. the targeting horizon trade-off discussed in Haldane (1997) is relatively modest in our model 
with this rule. 
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interest rate smoothing are heavily penalized by the cost of large changes in 
the nominal interest rate instrument. Note that this is true even in table 5.6 
when the cost of variability of interest rate change is quite low. 

To augment the tables, figure 5.2 shows the trade-offs between inflation var- 
iability and output gap variability that result for varying the weight on out- 
put stabilization (A) from 0 to 10 and assuming v = 0.5.32 The trade-off re- 
sulting from the optimal rule is shown as a solid line. For increasing A, the 
optimal rule corresponds to points further southeast on the curve. The dashed 
lines correspond to the smoothing rules S(%l, y,), S(*z+,,,(i,-,)), S(n,+81f), and 
S(%,+,,,(i,-,), y,). Only the last of these is consistently close to the optimal rule. 
Note that S(T,+~~,)  is close to the optimal rule for small A. 

Also, the triangle shows the sample (1960: 1-96:2) standard deviations of 
inflation and the output gap. The circle shows the standard deviations that re- 
sult from an estimated Taylor-type rule for the sample 1985: 1-96:2 (with g, = 

1.76 and g, = 0.74). The square shows the standard deviations that result from 
the Taylor rule (with g, = 1.5 and g, = 0.5). 

The trade-offs from flexible inflation-forecast targeting with smoothing 
(FIFTS) at 8-, 12-, and 16-quarter horizons are shown as the dashed-dotted 
lines. For T = 8 quarters, the trade-off is consistently close to that of the opti- 
mal rule. 

The trade-offs from flexible inflation-forecast targeting without smoothing 
(FIFT) are shown as the dotted lines. A shorter horizon T is associated more 
with less output variability than with less inflation variability (cf. table 5.3). 

Finally, figures 5.3 and 5.4 give the dynamic impulse responses of the model 
under various optimal simple smoothing rules and targeting rules, respectively. 
All of the rules have broadly similar features, especially a large, quick interest 
rate rise in response to a positive inflation or output There are, how- 
ever, some subtle but telling differences among the rules. In figure 5.3, the 
S ( T ~ + ~ ~ ~ )  rule, which considers only the inflation forecast, has the mildest re- 
sponse to an output shock, which allows inflation (through the Phillips curve) 
to get a bit more out of control and requires a slightly longer slowdown in out- 
put to compensate. In figure 5.4, the inflation-targeting rules without smooth- 
ing show large initial interest rate spikes in response to the shocks. With 
smoothing, however, the FIFTS rule is able to mimic the hump-shaped pattern 
of interest rates of the smoothing instrument rules. 

5.4.2 Common Conference Rules 

In this subsection, we consider the five rules that are to be common across 
all of the investigations at this conference. These rules and our results on vola- 
tility and loss (assuming A = 1 and v = 0.5) are summarized in table 5.8. The 

32. Although plots of such trade-offs are common in the literature, they sweep interest-rate- 

33. Note the great contrast between figs. 5.3 and 5.4 and the left two columns of fig. 5.1. Again, 
smoothing considerations under the rug, so we have some preference for the tabular results. 

the poor results in fig. 5.1 can be traced to the misspecification of the VAR interest rate equation. 
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Response of Inflation to an Inflation Shock Response of Inflation to an Output Shock 
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Fig. 5.3 
Note: Solid, S(Ft, yJ; dashes, S(F,+8,,(i,-tJ, y,J; dors, S(T,+~,J .  

Impulse responses for smoothing rules (h = 1, v = 0.5) 

results with lagged information, which are shown in the lower half of table 5.8, 
are qualitatively the same as those with contemporaneous information, so we 
concentrate on the latter. 

First, consider the two level rules (in our terminology) that are common. 
Rules III( 1) and IV( 1) have much weaker inflation and output response coeffi- 
cients than our optimal L(?ff,y,) rule (in table 5.3), and inflation variability 
under the common rules is much larger than with the optimal ones, while out- 
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Response of Inflation to an Inflation Shock 
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Fig. 5.4 Impulse responses for inflation-targeting rules (A = 1, u = 0.5) 
Note: Solid, SIFT (12); dashes, FIFT (1 2); dots, FIFTS (12). 

put variability is slightly lower and variability of interest rate changes is about 
the same. The parameters of the common conference rules could only be opti- 
mal for a very large X (much greater than 10). 

Second, the set of common conference rules included two difference rules 
and one smoothing rule with h = 1.3. None of these rules provided dynami- 
cally stable solutions in our model. Note that the optimal value of h for rule 
S(?i,, y,) equals 0.14 in table 5.3 and is hence not close to one. The optimal 
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Table 5.8 Results for Conference Rules ( A  = 1, u = 0.5) 

With contemporaneous information; i, = hi,-, + g,Ft + gyy, 
Rule I(1); W*,, y,) 

g, = 3.00, gy = 0.80, h = 1.00 

g, = 1.20, gy = 1.00, h = 1.00 

g ,  = 1.50, g, = 0.50, h = 0.00 3.46 2.25 0.71 

g, = 1.50, g, = 1.00, h = 0.00 3.52 1.98 1.03 

g, = 1.20, g, = 0.06, h = 1.30 

Dynamically unstable 

Dynamically unstable 
Rule II(1); D(?,, y,) 

Rule III(1); L(F,, y,) 

Rule IV(1); L(?,, y,) 

Rule V(1); X?,, y,) 

Optimal L(?,, y,) 

Optimal D(Z,, y,) 

With lagged information; i, = hi,-, + gv?,-l + g,y,-, 
Rule I(2); D(T,-l, y,-J 

Rule II(2); D(%,-I, y,-J 

Rule III(2); L(F,-I, y,-J 

Rule IV(2); L(?,-l, y,-J 

Rule V(2); S(F,-I, Y,-J  

Optimal L(?,-,, y ,  I) 

Optimal D(?, I, Y , + ~ )  

Dynamically unstable 

g, = 2.72, g, = 1.57, h = 0.00 2.18 2.24 1.74 

g, = 0.07, g, = 0.27, h = 1.00 3.85 3.80 1.07 

g, = 3.00, g ,  = 0.80, h = 1.00 

g, = 1.20, g, = 1.00, h = 1.00 

g, = 1.50, gy = 0.50, h = 0.00 3.62 2.40 0.72 

Dynamically unstable 

Dynamically unstable 

g, = 1.50, gy = 1.00. h = 0.00 3.63 2.14 1.04 

g, = 1.20, gy  = 0.06, h = 1.30 

g, = 2.50, g, = 1.50, h = 0.00 2.38 2.44 1.69 

g, = 0.04, g, = 0.21, h = 1.00 4.96 4.21 0.87 

Dynamically unstable 

4.94 

4.97 

5.11 

7.80 

5.20 

5.19 

5.42 

8.58 

17.25 

16.86 

11.27 

30.42 

19.07 

18.29 

13.03 

42.75 

difference rule D(Fr,, y,) that is shown in table 5.8 requires very low coefficients 
in order to ensure stability. Even so its performance is quite poor.34 

5.4.3 A Nonnegative Nominal Interest Rate Constraint 

In this subsection, we consider the occurrence of negative nominal interest 
rates. Negative nominal interest rates, although highly implausible in practice, 
are almost never excluded in policy rule analyses and our study is no exception. 
As noted in section 5.2, our model has many much-debated simplifications; 
however, one of its least debated approximations is its completely linear nature 
with its symmetry with respect to zero for all quantities including nominal 

34. In rational expectations models, difference rules appear to perform much better, e.g., Fuhrer 
and Moore (1995) and Williams (1997). 
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interest rates. Indeed, it is straightforward to calculate the unconditional proba- 
bility of obtaining a negative nominal funds rate for any given rule. For ex- 
ample, assuming an inflation target of 2 percent and an equilibrium real funds 
rate of 2.5 percent (which is obtained from the estimated constant term in the 
IS curve regression without de-meaned data), most of the optimized rules in 
table 5.3 give about a 20 percent probability of a negative interest rate. Clearly, 
these rules assume that nominal interest rates would be negative a nonnegli- 
gible proportion of the time. 

Still, for policy rule analysis, we view the simple imposition of an interest 
rate nonnegativity constraint as unsatisfactory in several respects. Technically, 
such a nonlinear constraint renders our analytical methods difficult if not infea- 
sible, though simulation methods are available; see Fuhrer and Madigan (1997) 
and Fair and Howrey (1996). More important, however, such a constraint, by 
limiting the degree to which the central bank can conduct expansionary mone- 
tary policy at low inflation rates, almost ensures dynamic instability in an oth- 
erwise linear We do not view such instability as plausible. We think 
that there are always mechanisms by which the central bank can stimulate the 
economy even if short-term rates are near zero. Expansionary monetary policy 
could always be conducted by the injection of reserves through purchases of 
Treasury securities at all maturities (flattening the entire yield curve), or pur- 
chases of foreign exchange (unsterilized intervention), or even purchases (or 
financing) of corporate debentures and equity.36 That is, our model, although 
not strictly true, may give a fairly accurate picture of the potential power of 
central banks. However, it must be admitted that there is little empirical basis 
for judging the performance of very low inflation economies in our sample. 

5.5 Conclusions 

An early working title of this paper was “Practical Inflation Targeting,” by 
which we meant an exploration of plausible policy rules using a model of a 
form common at central banks. In this spirit, our examination of policy rules 
has been in part descriptive, and closely linked to what inflation-targeting cen- 
tral banks actually seem to be doing, as well as partly prescriptive, involving 
sifting and judging among various rules. From the latter perspective, our re- 
sults suggest that certain simple forward-looking rules are able to perform 
quite well. 

Of course, our prescriptive results about particular simple rules are condi- 
tional on our particular model, and there is much room for extensions and 
improvements. Questions regarding parameter uncertainty and structural sta- 
bility are crucial before the results can be taken too seriously; however, judging 

35. Intuitively, with an estimated equilibrium real funds rate of 2.5 percent, if inflation ever falls 
to, say, -3 percent, then with a zero nominal funds rate, the real funds rate is still restrictive, so 
the output gap decreases and inflation falls even more. 

36. See the related discussion in Lehow (1993). 
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from the results of this conference (and the analysis of Rudebusch 1998b), 
questions about model uncertainty are likely an order of magnitude larger. 
Plausible model variation may strengthen our conclusions. For example, our 
model is backward looking and has no explicit role for expectations and no 
“credibility effect” in the Phillips curve. An expectations channel for monetary 
policy through the Phillips curve would most likely make inflation easier to 
control and more self-stabilizing under inflation targeting.37 In this sense, rela- 
tive to some of the other papers at this conference, we are stacking the cards 
against inflation targeting. Nonetheless, there can be no substitute to actually 
investigating the robustness of our results across model specifications. 

However, we would like to emphasize that a forward-looking decision 
framework for inflation targeting can exhibit robustness to model variation. 
For example, as mentioned above, one implementation of inflation-forecast 
targeting is to choose from the set of conditional inflation forecasts (each based 
on a particular path for the instrument) the one that is most consistent with the 
inflation target-that is, approaches the inflation target at an appropriate rate, 
hits the inflation target at an appropriate horizon, and, more generally, mini- 
mizes the loss function-and then follow the corresponding instrument path. 
The construction of conditional forecasts of course depends on the model used, 
but the procedure itself is robust to known model variation.38 Put differently, 
targeting rules allow the coefficients of the implied instrument rules to change 
with structural shifts in the model. It is this decision framework that we have 
tried to capture in the optimal targeting rule and in the simple inflation- 
forecast-targeting rules in subsection 5.3.8. In contrast, any given optimal ex- 
plicit instrument rule depends on the precise model assumed and may be rather 
imperfect for a different model; any given reasonably robust explicit instru- 
ment rule may still be rather imperfect for a specific model. 

Appendix 
Unconditional Variances 

The covariance matrix C, for the goal variables is given by 

where C, is the unconditional covariance matrix of the state variables. The 
latter fulfills the matrix equation 

37. The analysis in Svensson (forthcoming c) of inflation targeting in an open economy with 
forward-looking aggregate demand and supply confirms this. 

38. In a forward-looking model, constructing conditional inflation forecasts for arbitrary instru- 
ment paths implies some problems that are not present in a backward-looking model. Svensson 
(forthcoming a) provides a solution. 
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(A21 C, = E[X,X:] = m , M '  + Zv, , .  

We can use the relations vec(A + B )  = vec(A) + vec(B) and vec(ABC) = 

(C' @A) vec(B) on equation (A2) (where vec(A) denotes the vector of stacked 
column vectors of the matrix A and @ denotes the Kronecker product), which 
results in 

vec(2,) = vec(M2,M') + vec(C,,) 

= ( M  0 M)vec(2,) + vec(C,,). 

Solving for vec(2,) we get 

(A31 vec(C,) = [ I  - ( M  0 M)]-lvec(CVv). 

The Optimal Instrument Rule 

The optimal instrument rule is the vector f in equation (9) that fulfills 

f = - ( R  + SB'VB)-'(V' + PB'VA), 

where the 9 X 9 matrix V fulfills the Riccati equation 

V = Q + V f  + f'U' + f ' R f  + SM'VM,  

where M is the transition matrix given by equation (10) and Q, U, and R are 
given by 

Q = CiKC,, U = CiKC,, R = C,'KC,. 

Furthermore, the optimal value of expression (3) is 

where Z,,, = E[v,v,'] is the covariance matrix of the disturbance vector. 
For 6 = 1 the optimal value of equation (5) is 

(A.5) E[ L, 1 = trace ( VC ,," 

An Information Lag 

With our state-space setup, the information lag in equation (18) requires 
inserting T ~ - ~  as a tenth state variable and forming the extended 1 X 10 state- 
variable vector 

Then the restriction can be written 
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where S and f a re  1 X 10 row vectors and I?) and if, are defined as e, and e, k ,  

except that they are 10 X 1 vectors. 

An Instrument Rule That Responds 
to a Rule-Consistent Inflation Forecast 

Suppose T 3 3 (we deal with T = 2 below.) Then we have to write the model 
in state-space form with forward-looking variables. We first note that, since in 
our model the first element in B is zero, the first equation in (6) is 

('46) T,+I = A 1 4  + V , i + l  

where A ,  is the row vector (a,,);=,. Then T,+, and = A, Xi are predeter- 
mined. In order to write the system in state-space form, we now define the 
(T - 2) X 1 column vector of forward-looking variables, x, = (x,Jr:;', where 

(A71 X I ,  = =i+i+lll 

for 1 = 1, . . . , T - 2. Observe that for 1 = 1, . . . , T - 3,  by the law of 
iterated expectations, 

- 648) XIt+lli - Xl+l t 1 

whereas for 1 = T - 2 we have 
- (A91 x 7 - 2 r + l l i  - T ~ + T l ~ .  

Equation (AS) gives us T - 3 equations for the first T - 3 forward-looking 
variables xlr, 1 = 1, . . . , T - 3. We also need an equation for x ~ - ~ ~ .  Lead 
equation (A6) by one period, and take expectations in period t ,  

(A10) 
x,, r , + Z l i  = Al.Xi+l,, = A,.[AX, + &hi,-, - +ri+Tli)l 

= A,.(AX/ + + B X T 2 f + l , i ) '  

where 

('41 1) 

where we have used equations (6), (19), and (A9). Solve for x ~ ~ ~ , , + , , ~ ,  

2 = A + hBe,, 
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which gives us the remaining equation (note that A,.B is a scalar). 
Thus equations (A8) and (A12) give us T - 2 equations for the T - 2 

forward-looking variables. With regard to the predetermined variables, we use 
equations (6),  (19), (A9), (All) ,  and (A12) to write, 

XI+, = + +BXT-2,,+llt 

By combining equations (A13), (A8), and (A12), we can now write the sys- 
tem in state-space form, 

where the ( n  + T - 2) X (n  + T - 2) matrix D is given by 

where u,, k = 1, . . . , n + T - 2, is an 1 X ( n  + T - 2) row vector with 
element k equal to unity and all other elements equal to zero and where the 
(T  - 2) X n matrix D,, and the (T - 2) X (T - 2)  matrix D,, are given by 

where O,,, is a k X m matrix of zeros and I ,  is an m X m identity matrix. 
The system (A14) can then be solved with the help of known algorithms, 

for instance the one in Klein (1997). The solution results in a (T  - 2)  X n 
matrix H ,  expressing the forward-looking variables as a linear function of the 
state-variables, 

( A 1 3  x, = HX,. 

The dynamics of the predetermined variable are then given by 
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where D,, and D,, are the obvious submatrices of D. It furthermore follows that 

Xl+Ilt  = DZIX, + D22xr = (D21 + D*,H)X,. 

From equations (19) and (A9) follows that the equilibrium instrument rule can 
be written 

i, = f X , ,  

f = he, + +%+T-z(DZl + D2,H). 

Then we can usefin equations (10) and (1 1) and proceed as in the other cases. 
The matrix M in equation (10) will of course equal the matrix D,,  + DI2H in 
equation (A16). 

For T = 2, by equations (19) and (AlO), we directly get 

T t + Z l t  = A l . ( k l  + +B~,+21,) 

A,.AX, ; 
1 

1 - +A,.B 
- - 

hence, 

it = hi,+, + ' A , . k , ,  

f = he, + ' A,.A.  

1 - +A, .B 

1 - +A, .B  
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Comment Frederic S. Mishkin 

It is a pleasure to comment on this excellent paper by Glenn Rudebusch and 
Lars Svensson. In doing so, I first want to clarify what the paper is really about 
because its title might limit its audience, particularly among central bankers. 
Second, I will highlight some nice features of the analysis. Finally, I will dis- 
cuss some of the major results in the paper and suggest why they are so impor- 
tant to practicing policymakers and then will make some concluding remarks. 

What the Paper Is Really About 

The paper is clearly targeted at central bankers, who, as Rudebusch and 
Svensson put it, “are among the most important ultimate consumers of this 
research.” However, the paper’s title, “Policy Rules for Inflation Targeting,” 
suggests that the paper might only be of interest to central banks that are en- 
gaged in, or are contemplating engaging in, inflation targeting. This character- 
ization of the paper would be incorrect because it is just as useful to central 
banks that have no intentions of engaging in inflation targeting as to those 
that do. 

The authors state that they interpret inflation targeting as “implying a con- 
ventional quadratic loss function, where in addition to the variability of infla- 
tion around the inflation target there is some weight on the variability of the 
output gap.” Although I agree with them that inflation targeting as practiced by 
central banks does display a concern for output variability as well as inflation 
variability in the loss function (e.g., see the case studies in Mishkin and Posen 
1997 and Bernanke et al. 1999), I believe that this is also true for almost any 
central banker whom I encountered when I was among their ranks. 

Inflation targeting involves (1) an institutional commitment to inflation con- 
trol as the primary goal of monetary policy, (2) a publicly announced explicit 
inflation goal, with a focus on inflation forecasts using all available information 
to guide policy rather than one specific intermediate target such as a monetary 
aggregate, ( 3 )  a stress on transparency and communication with the public 
about the strategy of monetary policy, and (4) accountability of the central 
bank for achieving its stated inflation goals (see, e.g., King 1994; Leiderman 
and Svensson 1995; Bernanke and Mishkin 1997; Bernanke et al. 1999). Al- 
though many countries have adopted inflation targeting, such as New Zealand, 
Canada, the United Kingdom, Sweden, Spain, and Australia, other countries 
such as the United States have not. Nevertheless, because non-inflation target- 
ers also care about inflation variability in their loss functions (as well as the 
other elements in the loss function used in this paper), the results in the paper 
are highly relevant to how they should conduct monetary policy. The title of 

Frederic S. Mishkin is the A. Barton Hepbum Professor of Economics at the Graduate School 
of Business, Columbia University, and a research associate of the National Bureau of Economic 
Research. 
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the paper should not deter those who are not advocates of inflation targeting 
from reading this paper with great interest. 

The second semantic problem with the title of this paper is that it refers to 
rules. In the dichotomy between rules and discretion that comes out of the 
rules-versus-discretion debate, a rule is seen as a precise, written description 
of how policy is to be conducted that helps to reduce the time-inconsistency 
problem. The classic example is Milton Friedman's constant money growth 
rate rule, in which a specific monetary aggregate is stipulated to grow at the 
same rate every year. Central bankers, in general, are very hostile to these types 
of rules because they stress the inability of written rules to deal with unfore- 
seen shocks or changes in the structure of the economy and thus see the need 
for some discretion. Thus central bankers may be inclined to ignore this paper 
because of their hostility to rules. This would also be a mistake. 

The authors clearly do not advocate that the rules they study in this paper 
be written down and followed slavishly by central banks. They emphasize that 
the optimal rules they derive are optimal only in the context of the specific 
model they study, and they acknowledge that there is substantial uncertainty 
about what is the appropriate model of the economy. They also acknowledge 
the possibility of a Lucas critique of their analysis in which adherence to their 
rules might affect expectations and hence the estimated parameters of their 
model, thus making the simulation results with their rules somewhat suspect. 
Thus the paper does not intend to suggest that central bankers should announce 
a rule of the type they study and then be obliged to follow it. Rather they see 
the analysis in the paper as providing guidance to central banks as to how they 
should conduct monetary policy and react to new information if they have 
sensible objectives. For example, one strong implication of the analysis is that 
good monetary policy should always react to increases in either the output gap 
or the deviation of inflation from the target level by increasing short-term real 
interest rates. This is an important prescription for monetary policy and one 
that has not always been followed in the past (Clarida, Gali, and Gertler 1998). 
It applies even if a central bank is exercising some discretion and is unwilling 
to commit to an explicit rule. 

The basic point I am making here applies to all the papers in this conference 
volume. They focus on explicit rules because this is the only way we can scien- 
tifically analyze different approaches to the conduct of monetary policy. How- 
ever, even if the monetary authorities are exercising some discretion, which is 
the case not only for non-inflation targeters but also for those engaging in in- 
flation targeting,' they still need the guidance supplied by the analysis in these 
papers as to how the setting of policy instruments should respond to informa- 
tion as it comes in to the central bank. 

1. As is made clear in Bernanke and Mishkin (1997), Mishkin and Posen (1997), and Bernanke 
et al. (1999), inflation targeting is a framework, not a rule, in which there is discretion, but the 
discretion is constrained by the transparency and accountability of the inflation-targeting frame- 
work. 
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Nice Features of the Analysis 

The paper conducts its analysis of policy rules in the context of a small, 
simple macromodel. The use of such a simple model is necessary for tractabil- 
ity in the analysis, and I find the model to be very sensible. (I am clearly some- 
what biased here because the model used in this paper is very similar to the 
one Arturo Estrella and I use in chap. 9 of this volume.) Some might criticize 
the model because of both its simplicity and the fact that implicitly it assumes 
that expectations formation is backward looking. One very nice feature of the 
paper is subsection 5.2.3, which spends some time justifying the use of this 
model by showing that it fits the data well, has sensible implications for sacri- 
fice ratios, and has reasonable dynamics. In addition, this subsection shows 
that the authors’ small model captures the key essentials of more complex mod- 
els that monetary policymakers actually use, particularly those at the Board of 
Governors of the Federal Reserve System. Although not everyone would agree 
with their model, Rudebusch and Svensson’s careful discussion of its key fea- 
tures shows that the analysis in their paper is highly relevant to policymakers 
who may have a more complicated view of the world. 

Another nice feature of this paper and many others in the volume is that they 
allow for an interest-rate-smoothing objective of the monetary authorities in 
discussing policy rules by including interest rate variability in the loss func- 
tion, something that has rarely been done in previous literature. From my expe- 
rience, l can tell you that central bankers are indeed very concerned about in- 
terest rate smoothing, and by focusing on it, the papers in this volume will be 
more relevant to these monetary policymakers. 

Why is it that interest rate stability and smoothing is of such concern to 
central bankers? I see two reasons. First is that central bankers are very averse 
to reversing course frequently on interest rates because they are concerned that 
it may reduce public confidence in central bank competence. When central 
banks that have recently been raising interest rates suddenly lower them (or 
vice versa), it may look like an admission of a previous policy mistake. Be- 
cause central bankers, like most of us, do not like to admit publicly that they 
have been wrong, it is natural that they should want to avoid quick interest rate 
reversals. They can avoid this by moving interest rates in short steps in the 
same direction over a period of time, rather than moving interest rates by a 
large amount. The resulting interest rate smoothing is exactly what you would 
get if interest rate variability is penalized in the policymakers’ objective func- 
tion, and this is why it is so sensible to include interest rate variability in the 
loss function. 

The second reason for worrying about interest rate variability in the loss 
function is that central bankers are concerned not only about inflation and out- 
put variability but also about financial stability. Indeed, on a day-to-day basis 
central bankers probably spend more time concerning themselves with finan- 
cial stability objectives than with price stability, although you wouldn’t always 
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know this from their speeches. Interest rate instability can be a source of fi- 
nancial fragility because rises in interest rates can directly hurt the balance 
sheets of banks that engage in the asset transformation activity of borrowing 
short and lending long. Also, high interest rates can directly hurt business 
firms’ cash flows, which also causes a deterioration in their balance sheets. The 
deterioration in both banks’ and nonbank firms balance sheets can decrease 
financial stability and make moral hazard and adverse selection problems more 
severe in credit markets, thereby making it harder for financial markets to 
achieve their intended purpose of getting funds to people and firms with pro- 
ductive investment opportunities (e.g., see Mishkin 1997).2 Thus interest rate 
variability can also harm the economy and rightfully belongs in the policymak- 
ers’ loss function. 

Because there are good reasons to include interest rate variability in the pol- 
icymakers’ loss function and because central bankers clearly worry about in- 
terest rate smoothing, analyzing the effects on optimal policy of interest- 
rate-smoothing objectives makes the results in this and the other papers in the 
conference that much more relevant and interesting to their targeted audience 
in the central banking community. 

Major Results and Their Importance to Policymakers 

One important finding of the paper is that rules that respond solely to infla- 
tion, particularly current inflation rather than forecasts of future inflation, do 
very badly, even if the objective of the central bank focuses solely on inflation 
stabilization and is not concerned with output stabilization. Rules that include 
a response to output gaps, such as Taylor-type rules do far better. In the context 
of the authors’ macromodel, the output gap contains information about future 
inflation, and so this conclusion can be restated as saying that monetary policy 
should be very preemptive. 

Some economists have argued that as long as the Federal Reserve strongly 
tightens monetary policy when inflation actually rises in order to squash it, 
inflation will be unlikely to appear because of the Fed‘s credibility and mone- 
tary policy will be successful at stabilizing both output and inflation. In other 
words, monetary policy can take a Bunker Hill stance and wait until it sees 
the whites of inflation’s eyes before reacting. The Rudebusch-Svensson results 
suggest that a nonpreemptive monetary policy of this type will not be success- 
ful and will lead to much poorer monetary policy outcomes. 

Rudebusch and Svensson’s results on the need for preemptive monetary pol- 
icy rely heavily on the feature of their Phillips-curve-type equation that infla- 
tion expectations are backward looking. In macromodels in which inflation 
expectations are forward looking, for example in several of the papers in this 
volume, “whites of their eyes” monetary policy, in which monetary policy re- 

2. Mishkin (1997) also suggests that there are direct effects of interest rate increases on adverse 
selection because higher interest rates lead to more adverse selection in credit markets. 
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acts almost entirely to current inflation and hardly at all to output gaps, works 
quite well. The intuition is straightforward. Because expectations are forward 
looking, a strong reaction to inflation only when it appears is nevertheless 
taken into account in price-setting behavior and so inflation is far less likely 
rear its ugly head. With backward-looking expectations, monetary policy must 
be preemptive in order to head off inflation ahead of time because inflation 
expectations are slow to change. This and other papers in this volume therefore 
suggest a very important conclusion that at first sounds counterintuitive but is 
actually quite intuitive once you think about it: the more backward looking are 
inflation expectations, the more preemptive monetary policy needs to be. 

Although I believe that inflation expectations reflect some element of 
forward-looking behavior, credibility for central banks is hard to come by and 
takes a long time to develop. Thus inflation expectations are likely to be more 
backward looking than forward looking. Indeed, this is what the evidence in 
papers such as Fuhrer (1997) suggests-backward-looking models seem to fit 
the data better-and this is one reason why a model like that used by Rude- 
busch and Svensson is taken more seriously by policymakers than models that 
rely on forward-looking expectations. Thus I lean toward Rudebusch and 
Svensson’s view that their macromodel is more realistic than ones relying on 
forward-looking expectations, and so successful monetary policy must have a 
strong preemptive component. 

Another striking result in this paper is that simple rules of the Taylor type 
perform quite well and are not far off in their performance from the optimal 
rule. Part of the reason might stem from the simplicity of the authors’ macro- 
model, but I suspect that another factor is at work. If the monetary authority 
has the right basic approach to monetary policy-that is, it raises nominal 
interest rates by more than any increase in actual or expected inflation, so that 
inflation never spins out of control-then monetary policy will do pretty well. 
(Symmetrically, policy must lower nominal interest rates by more than any 
decline in inflation when it occurs.) This is also the implication of John Taylor’s 
paper (chap. 7 of this volume), which suggests that the episodes in which mon- 
etary policy made its biggest mistakes occurred when it did not follow the 
basic prescription outlined above. 

The conclusions from the Rudebusch-Svensson and Taylor papers are thus 
encouraging. Even if monetary policymakers don’t get things perfect, they can 
still do pretty well by making sure that they do not make the mistakes of the 
past (see Clarida et al. 1998) by thinking that they have tightened monetary 
policy enough when they raise interest rates in the face of inflation increases, 
but by an amount less than the inflation increase. 

Another important conclusion from this paper is that central banks and par- 
ticularly inflation targeters should not be what Mervyn King calls “inflation 
nutters,” that is, fanatics on controlling inflation at any cost. Central bank rhet- 
oric about monetary policy often focuses almost solely on price stability, but 
as Taylor (1993) has emphasized there is a trade-off between inflation variabil- 
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ity and output variability. Taking account of this trade-off does have important 
implications for monetary policy and indicates that inflation fanaticism is un- 
wise. Two basic results in Rudebusch and Svensson’s paper support this posi- 
tion. First, putting some weight on output gaps as well as on deviations from 
inflation in formulating monetary policy leads to a substantially lower value of 
the loss function. Second, policy settings that lead to a more gradual approach 
to the target level of inflation also produce lower values of the loss function. 
These results imply that even if the primary goal of monetary policy is price 
(inflation) stability, it is important for central banks to be flexible. 

The need for flexibility is recognized by central banks, even those that have 
explicitly committed to inflation targeting. As discussed in Mishkin and Posen 
(1997) and in our book Bernanke et al. (1999), both the Bundesbank and 
inflation-targeting central banks in their disinflationary phases have lowered 
their inflation targets gradually toward their long-run goals. Furthermore, these 
central banks have expressed their concerns about the trade-off between infla- 
tion variability and output variability. Thus central banks with a strong commit- 
ment to fighting inflation cannot be characterized as “inflation nutters,” and the 
findings in this paper provide a further rationale for the degree of flexibility 
that they have been exercising. 

Concluding Remarks 

Despite the title of the paper, which might limit its audience, this paper 
should be required reading for central bankers. Although it makes use of a 
simple macromodel, which not everyone would accept, it provides some basic 
insights that I believe would continue to hold up in more complex frameworks. 
Most important, this paper suggests that if central banks focus on the right 
basic strategy, they do not have to be perfect to do quite well. 
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Comment James H. stock 

Glenn Rudebusch and Lars Svensson have provided a clear and interesting 
treatment of a large number of policy rules within a bivariate vector autoregres- 
sion (VAR). They model the interest rate (the federal funds rate) as an exoge- 
nous variable under the perfect control of the Fed. Changes in the interest rate 
affect the deviation of real output from potential, which in turn affects inflation 
through an output-based Phillips curve. Control rules are evaluated in terms of 
their expected loss, which is a function of the variances of inflation, potential 
GDP, and the interest rate. 

Their paper is clearly and precisely written and the results are well pre- 
sented. Their discussion of loss functions and targets is lucid and compelling. 
The modeling decisions they made are sensible and permit the evaluation of a 
large number of rules. In future work along these lines, it would be of interest 
to consider a larger VAR that includes an additional interest rate (so that the 
Fed is not implicitly given control over the entire term structure in the simula- 
tions). Similarly, most methods for constructing potential GDP are question- 
able, and theirs is no exception. The pitfalls of estimating potential GDP could 
be sidestepped by specifying the Phillips curve in terms of unemployment 
rather than potential GDP. It would be useful to see whether their findings, 
particularly the importance of large coefficients in Taylor-type rules, hold up 
under these extensions. These comments are relatively minor, however, and in 
general their paper constitutes an excellent contribution to the literature on 
monetary policy rules. 

Because Rudebusch and Svensson’s paper is so clean and self-contained, in 
the remainder of these comments I will turn to the broader question that is one 
of the motivations for this conference, the construction and evaluation of con- 
trol rules in the presence of model uncertainty. A policy rule that performs well 
under reasonable perturbations of a model, or under different plausible models, 
is robust to that model uncertainty. Although policy robustness is an underlying 
theme of this conference, it is important to emphasize two limitations of the 
robustness results reported in this volume. 
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First, the “conference rules” have been evaluated by various authors using 
their estimated models, but each of the estimated models contains considerable 
model uncertainty arising from the estimation of the model parameters. It is 
possible that a rule is robust across point estimates of models, which might be 
similar in important dynamic respects (after all, the models are estimated using 
the same data), but that the rule is not robust to 1 standard error changes in 
the parameters of the models. Robustness to sampling uncertainty needs to be 
investigated more carefully before any conclusions can be drawn about the 
robustness of the policy rules considered in this volume (I return to this point 
below). 

Second, a theme of several papers is that inflation-forecast-targeting rules 
(in which the monetary authority adjusts the interest rate to move an inflation 
forecast toward a target) perform well in many of the models considered here. 
However, this conclusion is drawn by evaluating the performance of the 
inflation-targeting rule using the same model that is used to compute the infla- 
tion forecast. In contrast, the essence of policy robustness is whether a specific 
quantitative rule performs well under a model other than that used to develop 
the policy. Rudebusch and Svensson find that inflation-forecast-targeting rules, 
based on conditional inflation forecasts produced by their models, work well 
when evaluated using their model. The proper check of robustness, however, 
is whether inflation-forecast-targeting rules based on, say, the Rudebusch- 
Svensson model forecasts work well when the true model is something else. 

To illustrate this point, suppose the Fed hires Rudebusch and Svensson to 
make their conditional forecasts: the Fed provides them a trial value of the 
interest rate, Rudebusch and Svensson compute inflation forecasts, and they 
iterate until the inflation forecasts from their model satisfy the Fed policymak- 
ers. Now suppose, however, that Rudebusch and Svensson’s research assistant 
mistakenly feeds the conditional U.S. interest rate into a model of the Swedish 
economy rather than their U S .  model, so that Rudebusch and Svensson report 
back Swedish rather than U.S. inflation. One would expect this inflation- 
forecast-targeting rule, thus implemented, to produce outcomes for the U.S. 
that are badly wrong: the model used to generate the inflation forecasts differs 
sharply from the true model. While one would hope that such a gross mistake 
would not happen in practice, the essential point is that evaluating the ro- 
bustness of inflation-targeting rules requires the evaluation of the model’s con- 
ditional forecasts when that model is false. I know of no research on monetary 
policy rules that undertakes that evaluation. 

The remainder of these comments take up this problem in the form of par- 
ametric model uncertainty, by which I mean uncertainty that can be summar- 
ized as uncertainty about the value of a finite-dimensional parameter. This 
complements Sargent’s comments on Ball’s paper (chap. 3 of this volume), in 
which Sargent considers the case of uncertainty that is nonparametric in the 
sense that the uncertainty can be formalized as over elements of an infinite- 
dimensional space. In particular, I will consider two approaches to parametric 
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uncertainty. The first is a Bayesian approach that grows out of Brainard's 
(1967) early work on parameter uncertainty. I will argue that while this ap- 
proach is appealing from the perspective of decision theory, and while it can 
yield intuitive results, in practice it places informational demands on policy- 
makers that are wholly unrealistic and therefore fails to provide a useful frame- 
work for constructing practical policies. In its place, I propose using minimax 
methods to construct optimal robust policies and implement these methods 
quantitatively in the Rudebusch-Svensson model. 

Bayesian Approaches to Model Uncertainty 

The Bayesian decision analytic approach to control under parametric uncer- 
tainty posits a loss function that is a function of future macroeconomic vari- 
ables. The decision maker is assumed to have priors over all parameters in the 
model. Optimal policy is then solved by finding the policy that minimizes the 
expected loss, integrating over the parameters with respect to the prior density. 
This is conventionally done in the context of a single model. However, in this 
volume several distinct models are presented, so it is of interest to consider the 
result of this procedure when there is uncertainty over the class of models as 
well. In particular, consider two stylized single-equation models of inflation: 

(1) n1 = PX,-, + E l ,  

( 2 )  ITTT, = anTT,+, + YX*_, + q,> 

where  IT^ is inflation and x, is the control variable. Evidently, the two models 
differ only in whether lagged inflation has an effect on future inflation. Sup- 
pose that the decision maker has Gaussian priors over f3 in the first model, 
so that f3 - N ( p ,  u2p). For the second model, the decision maker has the priors 
Y - N(7. a;). 

Suppose the decision maker has quadratic loss, (nl -  IT*)^, where IT* is the 
target rate of inflation. If the decision maker were sure that model (1) is correct, 
then the optimal policy would be 

( 3 )  x * , I  1-1 = [p/(p' + 0;>1n*. 

On the other hand, if the decision maker were sure that model ( 2 )  is correct, 
the optimal policy would be 

(4) 

Now suppose that the decision maker does not know which model is correct 
but is sure that one of them is; he or she assigns prior probability X to the event 
that model (1) is the true model. In this case, the optimal policy is 
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The noteworthy feature of this result here is that when there is uncertainty 
over classes of models rather than just (smooth) uncertainty over the parame- 
ters in a model, the optimal policy is a linear combination of the two optimal 
policies in the individual models. At least in this simple example, then, one 
could imagine giving a board of policymakers the optimal policies resulting 
from the individual models and letting each policymaker compute his or her 
individual weighted average of these model-based policies, based on each indi- 
vidual’s views of how likely a particular model is to be correct. 

Although this result has intuitive appeal, there are reasons to doubt that its 
simple lessons can be made general enough to be useful for practical policy 
making. First, on a technical level, dynamic models with learning imply very 
different rules, in which there can be experimentation to learn about the param- 
eters of the model (cf. Wieland 1996, 1998). It is not clear how this would 
generalize to the multimodel setting. 

Second and more fundamentally, the calculations here require an unrealistic 
amount of information. Key to these calculations are the existence of prior 
distributions, which for nonlinear models need to be joint priors over all the 
parameters. While it is plausible that policymakers might have opinions about 
the value of the NAIRU or the slope of the Phillips curve, it is not plausible 
that they would have opinions about, say, the covariance between (Y,~ and p,, 
in equations (1) and ( 2 )  in Rudebusch and Svensson’s paper. Indeed, there has 
been great debate about how to construct priors for large autoregressive roots 
in univariate autoregressive models (see, e.g., the special issue of Econometric 
Theory, August/October 1994); I believe that a fair summary of this debate is 
that various Bayesians have agreed to disagree over how to construct their pri- 
ors. If experts cannot construct priors for univariate autoregressions, it is en- 
tirely unrealistic for noneconometrician policymakers to construct priors for 
multiequation nonlinear dynamic models. Unfortunately, such priors are a ne- 
cessity for the foregoing calculations, so the conventional decision analytic 
approach does not seem to be a promising direction for developing practical 
policy rules that address model uncertainty. It is therefore useful to explore an 
alternative approach based on minimax approaches to model uncertainty. 

Minimax Approaches to Model Uncertainty 

An alternative approach is to evaluate policies by their worst-case perfor- 
mance across the various models under consideration. The best policy from 
this perspective is the minimax policy that has the lowest maximum risk. Be- 
cause Rudebusch and Svensson do not consider parameter uncertainty, as an 
illustration I will consider the effect of parameter uncertainty on policy choice 
using the Rudebusch-Svensson model. 

Specifically, I consider their model (1)-(2), with their point estimates, and 
focus on the effects of uncertainty in two of the parameters, ay and p,. These 
are the two most interesting parameters of their model from an economic per- 
spective: aY is the slope of the (potential GDP) Phillips curve, and p, is the 
impact effect on the GDP gap of a change in the interest rate. 
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Fig. 5C.1 
Svensson model for 0.04 I p, 5 0.16 and ay = 0.20 

Risk functions for various policy rules, evaluated in the Rudebusch- 

The loss function considered here is the one of the Rudebusch-Svensson 
loss functions, 

(6) Loss = var(nr)  + var(y,) + )4 var(Ai,> 

in their notation. To capture model uncertainty, values of parameters ay and p, 
within 2 standard errors of their point estimates were considered; that is, the 
parameters were varied in the ranges 0.08 5 aY i 0.20 and 0.04 9 p, 9 0.16. 

The policy rules considered here are two-parameter modified Taylor rules of 
the type considered by Rudebusch and Svensson, specifically, 

(7) i t  == gm'r + gyyr. 

Three types of policy rules were considered: the Taylor rule (8, = 1.5, g, = 

0.5) and a modified Taylor rule with somewhat more response to output fluc- 
tuations (g, = 1.5, gy = 1.0); model-specific optimal rules of the type (7), in 
which the parameters are optimal for particular values of ay and p,; and the 
minimax rule that minimizes expected loss over all parameter values. 

Slices of the risk function surface are presented in figure 5C.1 for these 
various policy rules; the slices present risk as a function of p, for ay = 0.20. 
The upper lines are the risks of the two conference rules, the Taylor rule (short 
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Svensson model for 0.04 5 p, 5 0.16 and my = 0.14 

clashes) and the rule with g, = 1.5 and gy = 1 .O (long dushes). Each of the 
light solid lines is the risk function for a policy that is optimal for a particular 
value of (a4, pr ) ;  the lower envelope of these dotted lines constitutes an en- 
velope of the lowest possible risk, across these parameter values. The heavy 
solid line is the risk of the policy that is minimax over 0.08 5 a, 5 0.20 and 
0.04 5 p, 5 0.16. (The model-optimal and minimax policies were computed 
by a simulated annealing algorithm with 1,000 random trials.) 

Several observations are apparent. First, the Taylor rule has very large maxi- 
mum risk. The risk is greatest when p, is lowest. When monetary policy has 
little effect (p, is small), the Taylor rule produces movements in interest rates 
that are too small to stabilize output and inflation as quantified by the loss 
function (6). It turns out that the minimax rule has a risk function that is tan- 
gent to the risk envelope, with the point of tangency corresponding to the 
model in which monetary policy has the smallest direct impact on the GDP 
gap and the Phillips curve is flattest (p, = 0.04 and a, = 0.08). In the 
Rudebusch-Svensson model, this corresponds to the case in which monetary 
policy is least effective. Here the minimax policy is obtained by producing the 
optimal rule in the least favorable case for monetary control of inflation and 
output. 

The model-specific optimal parameter values are plotted in figure 5C.2 for 

Optimal parameter values for Taylor-type rules in the Rudebusch- 
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a) = 0.14. Evidently, when the impact effect of monetary policy is small, the 
optimal response of monetary policy to inflation (solid line) and the output gap 
(dashed line) is large. This is the case for the minimax policy, in which g, = 
3.86 and g, = 1.48. The minimax risk across all models for this policy is 15.61. 
For the Rudebusch-Svensson model with this parametric uncertainty, the 
minimax-optimal Taylor-type rule exhibits very strong reactions to inflation 
and the output gap to guard against the possibility that the true response of the 
economy to monetary policy is weak. 

These results are only illustrative, but they indicate that quite different con- 
clusions can be reached once we admit that there is parameter uncertainty in 
our models. In the Rudebusch-Svensson model, recognizing parameter uncer- 
tainty leads to “conservative” policies that exhibit more aggressive responses 
than are optimal for the point estimates of the model. It would be interesting 
to see this sort of analysis undertaken for some of the other models presented 
in this volume. 
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Discussion Summary 

Arturo Estrella asked whether the good performance of smoothing rules in the 
paper is related to the fact that the IS curve depends on the difference between 
the short-term nominal interest rate and recent inflation. Changes in the nomi- 
nal rate reflected in the smoothing rules could be proxying for the difference 
between the nominal rate and recent inflation. Svensson replied that the reason 
for the bad performance of difference rules was not clear. There is a tendency 
to get an eigenvalue equal to one or above because the coefficients sum to one 
in the Phillips curve. 

Andrew Haldune noted that most inflation-targeting countries seem to be 
small open economies. It would therefore be interesting to see how the results 
of the paper change in an open economy setting. Svensson’s work and the Bat- 
ini and Haldane paper presented at the conference suggest that the change in 
results would be substantial. Consider the example of simple rules. The two 
simple rules that perform well in the paper are the Taylor rule and a constant- 
interest-rate inflation forecast rule. In a model with only two equations, aggre- 
gate demand and aggregate supply, these rules, which condition on just two 
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variables, come not surprisingly close to being fully optimal. In a setting with 
an important role for exchange rates, Svensson’s work on inflation targeting in 
small open economies indicates that the Taylor rule might not do very well. 
The second rule holds interest rates constant, which is not admissible with a 
no-arbitrage condition in a forward-looking open economy setting. Regarding 
the latter point, Rudebusch replied that one of the reasons for the paper to 
look at constant-interest-rate inflation forecast rules is that inflation-targeting 
central banks, such as the Bank of England, produce these forecasts in their 
inflation reports. Therefore, these forecasts seem to be of interest for policy. 
Svensson agreed that simple rules work well because the model is simple 
enough for inflation and output to be sufficient statistics. With more variables, 
for example, fiscal policy, simple rules would work less well. 

Volker Wieland noted that in the presence of uncertainty about multiplicative 
parameters, such as the effectiveness of monetary policy, in a linear model, 
the optimal rule exhibits a more cautious policy response. However, additive 
uncertainty, such as uncertainty about the natural rate, does not matter in a 
linear-quadratic framework. In a nonlinear model, additive uncertainty begins 
to matter. Nonlinearities could, for example, be in the preferences or in the 
constraints, such as zero-bound constraints on nominal interest rates or nonlin- 
ear Phillips curves. John Williams mentioned that in his own work on parame- 
ter uncertainty using the U.S. model (Williams 1997), the value of the loss 
function and the implicit optimal rule vary greatly with the parameter govern- 
ing the slope of the Phillips curve. While this parameter is thus a key parameter 
for monetary policy, it is unfortunately also the least precisely estimated pa- 
rameter of the model. 

Frederic Mishkin made two points justifying rules based on constant- 
interest-rate inflation forecasts in the context of a closed economy. First, these 
rules help central banks communicate with the public. Second, these rules help 
guide discussions about monetary policy in central bank meetings. Svensson 
illustrated these points by noting that in the case of a strict inflation-forecast- 
targeting rule, the warranted change in interest rates can be expressed as the 
difference between the unchanged-interest-rate inflation forecast and the infla- 
tion target, divided by the policy multiplier, which is easy to communicate. In 
practice, inflation reports show such constant-interest-rate inflation forecasts. 

William Poole stressed that to understand rules for the federal funds rate, it 
is essential to have two interest rates in the model because of the following 
reasoning. One of the attractive features of money growth rules is that the econ- 
omy has a built-in stabilizing mechanism: with constant money growth, shocks 
to aggregate demand change interest rates, thus keeping the economy from 
“running off.” Something similar happened in recent years with the Federal 
Reserve’s federal funds rate targeting: long interest rates have changed in re- 
sponse to anticipated future federal funds rate moves, even when the Federal 
Reserve did not change the federal funds rate much. So the fact that bond 
markets are forward looking is a built-in stabilizing mechanism. 
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Ben McCullum approved of the emphasis on terminology in the paper. The 
distinction between targeting a variable and responding to a variable warrants 
consideration. However, the notion of inflation targeting is odd in the context 
of high X-values, that is, when the weight on output variability is much higher 
than the weight on inflation. Svensson agreed with McCallum that to use the 
term “inflation targeting,” the weight on inflation should be significant. 

Robert King remarked that the term “interest rate smoothing” is usually used 
to denote inertia in the level of interest rates, represented by a large response 
coefficient on the lagged interest rate and small coefficients on contemporane- 
ous output and inflation. From both the Rotemberg and Woodford and the Bat- 
ini and Haldane papers it seems as if forward-looking models could rationalize 
that pattern of response. How does such a rule perform in the Rudebusch- 
Svensson model? Rudebusch replied that these rules are not desirable in their 
model. Moreover, Rudebusch disagreed with King’s characterization of interest 
rate smoothing. Whether a rule smooths the interest rate depends on how per- 
sistent the arguments of the rule are. John Taylor’s original rule has small re- 
sponse coefficients with no lagged term, and yet, it produces a path for the 
funds rate that is as smooth as the historical series. In a model with persistence 
in the output gap and inflation, it is not clear whether a large coefficient on the 
lagged interest rate is needed to smooth the funds rate. 

Ben Friedman noted that the point about Brainard-type uncertainty rules 
driving the policymaker toward more conservatism depends not only on the 
model but also on the policy rule and the policy instrument. In the context of 
this discussion, the policy instrument is the interest rate, and therefore conser- 
vatism presumably means less variation in interest rates. In a world with 
money demand shocks, conservative policy thus leads to higher variability in 
monetary quantities. However, with a policy rule based on the monetary base, 
conservatism means that the money base grows more closely along a fixed 
growth path, which, for the same reasons but now played in reverse, means 
more interest rate volatility. Friedman asked whether this tension is handled 
conceptually in the approach presented in Stock‘s comment. Stock replied that 
in the example used in his discussion, the policy rule was based on interest 
rates. In a comparison of different instruments, it is not obvious that the op- 
timal combination rule is going to be spanned by the submodels. Stock also 
remarked that conservatism does not necessarily mean gradualism. In his sim- 
ulations, the Taylor rule was the most conservative rule in the sense that the 
response coefficients were smallest. However, the Taylor rule generated large 
losses and was far away from a minimax or optimal solution. Bob Hall re- 
marked that the same question arises in prison sentences because of the un- 
known deterrent effect. Is it conservative to give felons short sentences? 

Tom Surgent questioned the conclusion drawn in Stock‘s comment regarding 
the averaging of rules. If the analysis suggested by Stock is pursued with the 
model at hand, a dynamic model, the posterior over models becomes part of 
the state of the control problem, such as in Volker Wieland’s thesis, implying 
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that decision rules in this problem become functions of this distribution. Fur- 
thermore, the control problem is going to unleash an experimentation motive. 
If a decision maker is confronted with more than one possible model and a 
prior over those models, he wants to manipulate the data to learn more. The 
minimax caution characterization is a static problem, which will not survive 
the dynamics. 
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