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Abstract

Many recent advances in the term structure literature have focused on model speci�ca-

tion and estimation. Forecasting the yield curve is critically important, but it has thus far

not been explicitly taken into account at the estimation stage. We propose to estimate term

structure models by aligning the loss functions for in-sample estimation and out-of-sample

forecast evaluation. We document the resulting di¤erences in forecasting performance using

three-factor a¢ ne term structure models with and without stochastic volatility. We con�rm

that aligning loss functions provides substantial improvements in out-of-sample forecasting

performance, especially for long forecast horizons. We document the trade-o¤ between in-

sample and out-of-sample �t. The resulting parameter estimates imply factors that di¤er

from the traditional term structure factors, especially in the case of the third (curvature)

factor. This suggests that the improvement in out-of-sample �t results from identi�cation

of the third factor, which captures information otherwise hidden to conventional in-sample

loss functions.

JEL Classi�cation: G12, E43

Keywords: term structure; forecasting; loss function; state variables; identi�cation; hidden

factor.
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1 Introduction

Modeling and predicting government bond yields is a topic of great practical importance for

both investors and monetary policy makers. It is therefore not surprising that the literature

on forecasting Treasury yields is very extensive, but existing studies focus almost exclusively on

comparisons of the forecasting performance for alternative speci�cations of the term structure

model itself.1 The forecasting exercise is not explicitly taken into account at the estimation

stage. We take a di¤erent perspective and analyze how the choice of loss function a¤ects a

given model�s out-of-sample forecasting performance. We investigate if it is possible to improve

out-of-sample forecasting performance by aligning the loss function at the estimation stage with

the out-of-sample evaluation measure. We analyze this question using the class of A¢ ne Term

Structure Models (ATSMs). These models are popular tools for term structure modeling because

they deliver essentially closed-form expressions for bond prices and yields.2

It is well known in the statistics literature that the speci�cation of the loss function is crit-

ical for model estimation and evaluation. Indeed, the speci�cation of a loss function implicitly

amounts to the speci�cation of a statistical model, because the loss function determines how

di¤erent forecast errors are valued (see Engle, 1993; Granger, 1993; Weiss, 1996; Elliott and

Timmermann, 2008). The loss function is an important element in the process of delivering

a forecast, and is therefore an integral part of model speci�cation. Estimating a model under

one loss function and evaluating it under another amounts to changing the model speci�cation

without allowing the parameter estimates to adjust. If a particular criterion is used to evaluate

forecasts, it should also be used at the estimation stage.3

Motivated by these insights, we align the loss functions for in-sample estimation and out-

of-sample evaluation of ATSMs. We propose to estimate the model by minimizing the squared

forecasting errors for a given forecast horizon, and we refer to these estimates as based on the

forecasting loss function. We compare the out-of-sample performance of these estimates with the

performance of estimates obtained by minimizing the mean-squared error loss function based on

1See Du¤ee (2002), Ang and Piazzesi (2003), Diebold and Li (2006), Bowsher and Meeks (2008), and Chris-
tensen, Diebold, and Rudebusch (2011) for examples of studies that focus on point forecasts. See Hong, Li, and
Zhao (2004), Egorov, Hong, and Li (2006), and Shin and Zhong (2013) for studies that focus on density forecasts.

2The empirical literature on ATSMs is very extensive. See Vasicek (1977), Cox, Ingersoll, and Ross (1985),
Chen and Scott (1992), Longsta¤ and Schwartz (1992), Du¢ e and Kan (1996), and Dai and Singleton (2000) for
important contributions.

3An extensive literature studies the theoretical properties of optimal forecasts under asymmetric loss functions
and documents that forecast errors have di¤erent properties under di¤erent loss functions. See for example
Patton and Timmermann (2007a, 2007b), Elliott, Komunjer, and Timmermann (2005, 2008), and Christo¤ersen
and Diebold (1996, 1997). Christo¤ersen and Jacobs (2004) highlight the importance of aligning the loss function
for the purpose of option valuation, using the Dumas, Fleming, and Whaley (1998) implied volatility model.
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current yields, which we refer to as the standard loss function.

We focus on three-factor ATSMs because of their importance in the existing literature and

their tractability. Despite the popularity of this class of models, it is well-known that the presence

of latent state variables gives rise to identi�cation problems that may complicate comparisons

of out-of-sample performance. We therefore provide an additional analysis of the Gaussian

three-factor model. Identi�cation in Gaussian ATSMs is facilitated by the new canonical form

proposed by Joslin, Singleton, and Zhu (2011, henceforth referred to as JSZ), in which the state

variables are restricted to be the �rst three principal components. The JSZ normalization is also

particularly well suited for out-of-sample model evaluation with recursive estimation, because it

provides substantial computational advantages.

We compare the out-of-sample forecasting performance using the forecasting loss function

with the performance using the standard loss function. We �rst compare the performance using

Gaussian and stochastic volatility models with three latent factors, which we implement using the

Kalman �lter. We then repeat the exercise for the Gaussian model using the JSZ canonical form.

JSZ restrict the state variables to be the �rst three principal components, because for in-sample

estimation the weights corresponding to the principal components provide the best possible �t.

We con�rm this result, but we also �nd that for out-of-sample forecasting, these weights are

not optimal. We therefore provide an alternative implementation of the JSZ canonical form in

which we allow the portfolio weights to be free parameters. We specify the state variables as

weighted averages of the yields, but rather let the data determine the best possible weights from a

forecasting perspective. This approach is motivated by the literature on predicting bond returns.

Cochrane and Piazzesi (2005) and Du¤ee (2011a), among others, argue that a hidden factor not

captured by the traditional level, slope, and curvature factors helps in predicting excess bond

returns.

We �nd substantial improvements in the out-of sample forecasting performance of all three-

factor models we studied when using the forecasting loss function in estimation, especially for

longer forecast horizons and shorter maturities. For example, using the JSZ canonical speci�ca-

tion for the Gaussian model, the improvement in the root mean square error (RMSE) for short

maturity yields is about 11% on average across di¤erent forecast horizons, which corresponds to

an out-of-sample R-square of 23%. For the six-month forecast horizon, the improvement is about

7% on average across maturities, which corresponds to an out-of-sample R-square of 15%. The

improvements obtained using the Gaussian latent factor model are similar in magnitude. We

also �nd substantial improvements in the out-of sample forecasting performance of the stochastic

volatility models with three latent factors, especially for longer forecast horizons. For example,

in the A1(3) model, for the six-month forecast horizon, the improvement in the forecasting RM-
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SEs is approximately 15% on average across maturities, which corresponds to an out-of-sample

R-square of 28%.

These results con�rm the insights of Granger (1993) and Engle (1993) that aligning the

estimation loss function with the loss function used for out-of-sample model evaluation improves

out-of-sample forecasting performance. Based on these insights, we also expect the parameters

estimated using the forecasting loss function not to improve on the in-sample �t based on the

parameters obtained using the standard loss function. We con�rm that this is the case using the

estimates for the JSZ canonical speci�cation. The di¤erences in in-sample �t are relatively small

but show up at longer maturities.

We compare the state variables implied by the forecasting loss function with the state variables

based on a standard loss function in the JSZ canonical form. The forecasting loss function implies

a di¤erent linear combination of yields compared to the traditional level, slope, and curvature

factors, especially for the curvature (third) factor. The changes in the portfolio weights capture

the information hidden from the term structure, which is uncovered in the forecasting exercise.

Our paper contributes to the literature on the estimation of ATSMs. Much of the recent

literature on these models focuses on innovative estimation approaches to address the well-

known identi�cation problems inherent in the estimation of ATSMs.4 We do not focus on new

estimation techniques, and we do not directly focus on identi�cation problems. Our contribution

is therefore complementary to most of the recent literature on ATSMs, because the insight that

estimation using the forecasting loss function will lead to better out-of-sample performance is

valid regardless of the estimation method. The closest related work is by Adrian, Crump, and

Moench (2013) and Sarno, Schneider, and Wagner (2014), who estimate model parameters in

ATSMs using an objective function that takes into account excess returns for di¤erent horizons.

This approach is similar to ours in the sense that the implied loss function is di¤erent from the

standard loss function based on yields. However, their implied loss function is di¤erent from

ours, and therefore not necessarily optimal from a forecasting perspective.

The paper proceeds as follows. Section 2 compares the forecasting loss function with the

standard loss function based on yields. Section 3 presents the data. Section 4 compares the

forecasting performance of di¤erent loss functions based on the estimation of Gaussian and

stochastic volatility models with latent factors. Section 5 repeats this exercise for the Gaussian

model using the JSZ canonical speci�cation. Section 6 documents the trade-o¤between in-sample

and out-of-sample �t, and discusses the di¤erences in implied state variables and parameter

4On identi�cation problems in these models, see for example Du¤ee (2011b), Du¤ee and Stanton (2012),
and Hamilton and Wu (2012). For examples of methods that help address these identi�cation problems, see JSZ
(2011), Hamilton and Wu (2012), Adrian, Crump, and Moench (2013), Diez de los Rios (2014), Bauer, Rudebusch,
and Wu (2012), and Creal and Wu (2015).
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estimates. Section 7 concludes.

2 Loss Functions for Term Structure Estimation

Given term structure data for months t = 1; :::; T on maturities n = 1; :::; N , the parameters � of

a term structure model are typically estimated using a loss function that minimizes a well-de�ned

distance between the observed yields ynt and the model yield, which we denote here by byntjt(�)
to emphasize that the model yield is computed using the state variables at time t. In general,

the notation bynt+kjt indicates a model-implied yield at time t+ k computed using information up
to time t. We use this type of loss function as a benchmark. Several such loss functions can in

principle be used, but we limit ourselves to loss functions that are based on the di¤erence between

observed and model yields.5 We estimate the term structure parameters � by minimizing the

root-mean-squared-error based on observed and model yields:6

RMSE(�) =

vuut 1

NT

NX
n=1

TX
t=1

(byntjt(�)� ynt )2: (2.1)

Estimating the model parameters by optimizing the log likelihood or the root-mean-squared-error

provides the best possible in-sample �t. Our focus is not on in-sample �t but rather on forecasting.

To improve forecasting performance, we deviate from the benchmark implementation by aligning

the loss functions for in-sample and out-of-sample evaluation, as suggested by Granger (1993)

and Weiss (1996). The choice of loss function at the estimation stage should therefore re�ect that

out-of-sample forecasting is the objective of the empirical exercise. The out-of-sample forecasting

performance for the n-maturity yield with forecast horizon k is evaluated using

RMSE_OSn;k =

vuut 1

T � k

T�kX
t=1

(bynt+kjt(�)� ynt+k)2; (2.2)

where ynt+k is the observed n-maturity yield at time t + k and bynt+kjt(�) is the model-predicted
k-period ahead n-maturity yield based on the parameter set �, which is estimated at time t.

To align the loss function at the estimation stage with the out-of-sample loss function, we

5Alternatively, loss functions based on relative errors or other transformations of yields can be studied, but in
the term structure literature this is less critical than for other applications, such as derivative securities.

6In-sample estimation of term structure models usually maximizes the log likelihood. We use the root-mean-
squared error instead to facilitate the comparison with the forecasting loss function. If the measurement errors
are normally distributed and constant across maturities, the likelihood simply scales the mean-squared error. For
other cases, optimizing the likelihood and the mean squared error gives very similar results.

5



therefore estimate the models for a given forecast horizon k by minimizing the following loss

function:

OS_RMSEk(�) =

vuut 1

N(T � k)

NX
n=1

TX
t=k+1

(byntjt�k(�)� ynt )2: (2.3)

3 Data

We use monthly data on continuously compounded zero-coupon bond yields with maturities of

three and six months, and one, two, three, four, �ve, ten and twenty years, for the period April

1953 to December 2012. The three- and six-months yields are obtained from the Fama CRSP

Treasury Bill �les, and the one- to �ve-year bond yields are obtained from the Fama CRSP zero

coupon �les. The ten- and twenty-year maturity zero-coupon yields are obtained from the H.15

data release of the Federal Reserve Board of Governors.7

Table 1 shows that, on average, the yield curve is upward sloping, and the volatility of yields

is relatively lower for longer maturities. The yields for all maturities are highly persistent, with

slightly higher autocorrelation for long-term yields than for short-term yields. Yields exhibit

mild excess kurtosis and positive skewness for all maturities.

4 Results for Models with Latent Factors

We compare the forecasting performance of estimation based on the benchmark loss function

equation (2.1) and the forecasting loss function in equation (2.3). Our argument about the

choice of loss function applies in principle to all term structure models, but we limit ourselves

to a comparison based on three-factor a¢ ne term structure models with and without stochastic

volatility. This choice is mainly motivated on the one hand by the popularity of a¢ ne term

structure models, as well as by their tractability.

It is always important to be mindful of identi�cation problems, but it is especially critical

for our analysis, because these problems can easily a¤ect the comparison of the loss functions.

Recently, important advances have been made in the estimation of the Gaussian three-factor

model A0(3) that facilitate a meaningful comparison of loss functions for this choice of model

(JSZ, 2011). For the A0(3) model, we can therefore investigate the implications of the loss

7The Federal Reserve database provides constant maturity treasury (CMT) rates for di¤erent maturities. The
ten- and twenty-year CMT rates are converted into zero-coupon yields using the piecewise cubic polynomial. Data
on 20-year yields are not available from January 1987 through September 1993. We �ll this gap by computing
the 20-year CMT forward yield using 10-year and 30-year CMT yields.
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function using a traditional implementation of this model with latent factors, but also using the

canonical speci�cation proposed by JSZ (2011).

In this section we report on the loss function comparison based on the Gaussian and the

stochastic volatility models with latent factors. In the next section we investigate the robustness

of our �ndings using the canonical speci�cation by JSZ (2011) for the Gaussian model, which

addresses the identi�cation problems by mapping these latent variables into observables.

4.1 Three-factor A¢ ne Models

In the term structure literature, a¢ ne term structure models (ATSMs) have received signi�cant

attention because of their rich structure and tractability. The existing literature has concluded

that at least three factors are needed to explain term structure dynamics (see for example Lit-

terman and Scheinkman, 1991; Knez, Litterman, and Scheinkman, 1994). Accordingly, we use

an ATSM with three state variables.

Using the classi�cation of Dai and Singleton (2000), we focus on Aj(3) models with j = 0; 1; 2

or 3 factors driving the conditional variance of the state variables, which are given by

dXt = (K
P
0� +K

P
1�Xt)dt+ �

p
StdW

P
t+1; (4.1)

dXt = (K
Q
0� +K

Q
1�Xt)dt+ �

p
StdW

Q
t+1; (4.2)

rt = �0 + �1Xt; (4.3)

where W P
t+1 and W

Q
t+1 are three-dimensional independent standard Brownian motions under

physical measure P and risk-neutral measure Q respectively, rt is the instantaneous spot interest

rate, and �St�0 is the conditional covariance matrix of Xt. St is a 3 � 3 diagonal matrix with
the ith diagonal element given by

[St]ii = �i + �
0

iXt; (4.4)

where �i is a scalar, and �i is a 3 � 1 vector. � = [�1; �2; �3]
0
is a 3 � 1 vector. � = [�1; �2; �3]

is a 3� 3 matrix. We follow the Dai and Singleton identi�cation scheme to ensure the [St]ii are
strictly positive for all i. Under this identi�cation scheme, � is an identity matrix.8 In the A0(3)

model, � is a vector of ones and �i is a vector of zeros for all i. In the A1(3) model, �i is a vector

of zeros for i = 2 and i = 3, and in the A2(3) model, �i is a vector of zeros for i = 3.

The model-implied continuously compounded yields byt are given by (see Du¢ e and Kan,
8The identi�cation constraints can be applied either on P - or Q- parameters, see Dai and Singleton (2000)

and Singleton (2006).
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1996) byt = A(�Q) +B(�Q)Xt; (4.5)

where theN�1 vector A(�Q), and theN�3matrix B(�Q) are functions of the parameters under
the Q-dynamics, �Q = fKQ

0�; K
Q
1�; �0; �1;�; �; �g, through a set of Ricatti ordinary di¤erential

equations. Recall that N denotes the number of available yields in the term structure. We adopt

the essentially a¢ ne speci�cation for the price of risk, as in Du¤ee (2002).

We use monthly data on continuously compounded zero-coupon bond yields with nine di¤er-

ent maturities for the period April 1953 to December 2012 to estimate the models. The a¢ ne

dynamic for Xt in equation (4.1) implies that the one-period ahead conditional expectation of

Xt under the P measure; bXt+�jt = constant+�eK
P
1�Xt; where � = 1=12. Thus Xt follows a �rst

order VAR when sampled monthly. Similarly, the a¢ ne dynamic in equation (4.2) under the

Q measure implies a �rst order VAR for Xt sampled at the monthly frequency. For estimation

based on the forecasting loss function in equation (2.3), we need the model�s prediction of the

k-period ahead n-maturity yield, based on parameter estimates at time t. This is given by

bynt+kjt(�) = An(�
Q) +Bn(�

Q) bXt+kjt (4.6)

= An(�
Q) +Bn(�

Q)f(Xt; k;K
P
0 ; K

P
1 );

where An(�Q) is the nth element of A(�Q), Bn(�Q) is the nth row of B(�Q), and f is given by

f(Xt; k;K
P
0 ; K

P
1 ) = K

P
0 (I3 +K

P
1 + :::+ (K

P
1 )

k�1) + (KP
1 )

kXt:

where KP
0 and KP

1 are the parameters for the VAR(1) process of Xt under the P measure,

which can be mapped to KP
0� and KP

1� respectively in equation (4.1) through the nonlinear

relations KP
1 = e

�KP
1� and KP

0 = K
P
0�

R �
0
esK

P
1�ds. In particular, for small �, KP

0 � �KP
0� and

KP
1 � I3 +�KP

1�. We can view K
P
0 and K

P
0�, and K

P
1 and K

P
1� interchangeably. Similarly, K

Q
0

and KQ
0�, and K

Q
1 and K

Q
1� are interchangeable.

9

A three factor latent model can be expressed using a state-space representation. Using equa-

tion (4.1) and an Euler discretization, the state equation can be written as Xt+1 = K
P
0 +K

P
1 Xt+

"Pt+1, where "
P
t+1jt is assumed to be distributedN(0; �St�

0). The observed yield curve yt = byt+et is
the measurement equation, where byt is the model-implied yield as speci�ed in equation (4.5), and
et is a vector of measurement errors that is assumed to be i:i:d: normal with diagonal covariance

matrix R. The estimates of the P -parameters, �P = fKP
0 ; K

P
1 g are related to the Q-parameters,

9Since our data frequency is monthly, it is more convenient to focus on KP
0 , K

P
1 , K

Q
0 and K

Q
1 in the empirical

analysis.
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since the pricing model is required to �lter the latent factors Xt. We therefore need to esti-

mate the P - and Q-parameters simultaneously. We do this by applying the Kalman �lter to the

state-space representation.10 We estimate the parameters � = fKP
0 ; K

P
1 ; K

Q
0 ; K

Q
1 ; �0; �1;�; �; �g

and �lter the state variables Xt by minimizing the forecasting loss function, equation (2.3). We

compare the results obtained from the forecasting loss function with the estimation of the fully

latent models based on the standard loss function equation (2.1).

When estimating these models with latent factors, the numerical implementation is important

because of the existence of identi�cation problems. We discuss our implementation in Appendix

A.

4.2 The Forecasting Performance of the Latent Gaussian Model

We compare the out-of-sample forecasting performance of the latent A0(3) model with forecast-

ing loss function equation (2.3) relative to the latent A0(3) model with standard loss function

equation (2.1) by computing the out-of-sample forecast RMSEs for the one-month to six-month

forecast horizons, for all nine maturities used in estimation.

Our procedure for examining the out-of-sample forecasts of the model with forecasting loss

function is as follows. We proceed recursively with estimation and forecasting, each time adding

one month to the estimation sample. At each time t and for each forecast horizon k, we estimate

the speci�cation using data up to and including t. Our �rst estimation uses the �rst half of

the data, up to December 1982. The estimation is based on the forecasting loss function as

expressed in equation (2.3). We estimate the parameters �kt = fKP
0 ; K

P
1 ; K

Q
0 ; K

Q
1 ; �0; �1;�g

by minimizing the k-period ahead squared forecasting errors, applying the Kalman �lter to the

state-space representation of the A0(3) model with latent factors, and �ltering the state variables

Xt. Subsequently, we forecast the k-period ahead yields bynt+kjt(�kt ), n = 1; :::; N .
The recursion then proceeds: we add one month of data, re-estimate the parameters and

re-�lter the latent factors using information up to and including time t + 1, and forecast the

k-period ahead yields bynt+1+kjt+1(�kt+1). We continue to update the sample in this way until time
T � k, where T is the end of the sample, December 2012. Note that the estimation based on
the forecasting loss function is forecast-horizon speci�c. At each time t, we have a di¤erent

parameter set �kt for each k.

The procedure for the latent model with the standard loss function equation (2.1) follows

the same recursion, but this procedure is by de�nition not horizon-speci�c, instead, one set of

10See Du¤ee and Stanton (2012) and Christo¤ersen, Dorion, Jacobs and Karoui (2014) for estimation using
Kalman �lter.
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parameters is estimated that is used to generate forecasts for di¤erent horizons.

Panels A and B of Table 2 present the RMSEs for the forecasting loss function equation (2.3)

and the standard loss function equation (2.1). Panel C presents the RMSE ratios. The RMSE

ratios are de�ned as the ratio of the RMSE obtained using the forecasting loss function and

the RMSE obtained using the standard loss function. An RMSE ratio less than one indicates

that the forecasting loss function provides improvements in forecasting relative to the benchmark

standard loss function.

The improvements in forecast performance are greatest for longer forecast horizons and

shorter maturities. For the six-month forecast horizon, the improvement in the forecasting RM-

SEs from using the forecasting loss function equation (2.3) is on average across maturities approx-

imately 12%. In the forecasting literature, the out-of-sample R-square is often considered, which

is de�ned as 1 � (MSEFL=MSESL), where SL refers to the benchmark model with standard
loss function and FL to the alternative model with forecasting loss function. For the six-month

forecasting horizon in Table 2, this gives 1� (1� 0:12)2 = 0:22. The improvement in forecasting
RMSE therefore corresponds to an out-of-sample R-square of 22%. For the three-month yield,

the improvement in RMSE is approximately 10% on average across forecast horizons, which

corresponds to an out-of-sample R-square of 19%.

4.3 The Forecasting Performance of the Latent Stochastic Volatility

Models

The procedure for examining the out-of-sample forecasts of the models with stochastic volatility

is the same as that of the A0(3)model. At each time t and for each forecast horizon k, we estimate

the parameters �kt = fKP
0 ; K

P
1 ; K

Q
0 ; K

Q
1 ; �0; �1;�; �; �g by minimizing the forecasting loss func-

tion as expressed in equation (2.3), applying the Kalman �lter to the state-space representation

of the Aj(3) models with latent factors, and �ltering the state variables Xt. Subsequently, we

forecast the k-period ahead yields bynt+kjt(�kt ), n = 1; :::; N . We report the out-of-sample forecast
RMSEs of the A1(3) model in Table 3, the A2(3) model in Table 4, and the A3(3) model in Table

5. In each table, Panels A and B present the RMSEs for the forecasting loss function equation

(2.3) and the standard loss function equation (2.1). Panels C present the RMSE ratios.

The results based on the stochastic volatility models are consistent with the results from

the Gaussian model. Aligning loss functions for in-sample estimation and out-of-sample forecast

evaluation provides improvements in out-of-sample forecasting performance. The improvements

are more pronounced for long forecast horizons in the stochastic volatility models. In the A1(3)

model, for the six-month forecast horizon, the improvement in the forecasting RMSEs from using

10



the forecasting loss function equation (2.3) is on average across maturities approximately 15%,

which corresponds to an out-of-sample R-square of 28%. The improvements of the A2(3) model

and the A3(3) model are very similar to that of the A1(3) model. The out-of-sample R-square is

on average across maturities approximatly 28% for both the A2(3) model and the A3(3) model

at six-month forecast horizon.

5 Results Based on the JSZ Canonical Speci�cation

The estimation of ATSMs is challenging due to the high level of nonlinearity in the parame-

ters (Du¤ee, 2011b; Du¤ee and Stanton, 2012). Dai and Singleton (2000) argue that not all

parameters are well identi�ed, and that rotation and normalization restrictions need to be im-

posed. Even with the Dai-Singleton normalization, it is possible to end up within a parameter

space that is locally unidenti�ed. See for instance the discussions in Hamilton and Wu (2012),

Collin-Dufresne, Goldstein, and Jones (2008) and Aït-Sahalia and Kimmel (2010).

This implies that we need to be careful about the interpretation of the results in Section 4.

Most critically, if the estimation using the standard loss function equation (2.1) does not lead

to the global optimum, we may overestimate the advantages provided by the forecasting loss

function equation (2.3). The opposite is of course also possible.

In recent work, JSZ (2011) developed a canonical representation that allows for stable and

tractable estimation of the A0(3) model and addresses these identi�cation problems. In this

section we repeat the analysis using their representation of the model. We �rst provide the main

aspects of the A0(3) canonical representation in JSZ. Subsequently, we present the empirical

results.

5.1 The JSZ Canonical Form

We now provide the main aspects of theA0(3) canonical representation in JSZ. For further details,

we refer to Appendix B and JSZ (2011). The state variables under the JSZ normalization are

the perfectly priced portfolios of yields, POt = Wyt. W denotes the portfolio weights, a 3 �N
matrix. POt is governed by the same dynamics as the latent state variable Xt, as speci�ed in

equations (4.1)-(4.3).11 The model-implied continuously compounded yields byt are given by
byt = A(�Q) +B(�Q)POt: (5.1)

11Note that the A0(3) canonical representation in JSZ (2011) is presented in discrete time. In our setup, the
continuous-time a¢ ne dynamics in equations (4.1)-(4.2) imply a �rst order VAR for POt at the monthly frequency.
The parameters for the VAR(1) process of POt can be mapped to the continuous-time parameters.
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JSZ show that A(�Q) and B(�Q) are ultimately functions of �Q = frQ1; �Q;�g, where rQ1 is a

scalar related to the long-run mean of the short rate under risk neutral measure and �Q, a 3� 1
vector, represents the ordered eigenvalues of KQ

1 . Appendix B provides further details about this

transformation.

Note that the state variables under the JSZ normalization are observable, and thus the

parameters governing the P -dynamics �P = fKP
0 ; K

P
1 g can be estimated separately from the

parameters governing the Q-dynamics. JSZ demonstrate that the ordinary least squares (OLS)

estimates of KP
0 and K

P
1 from the observed factors POt nearly recover the maximum likelihood

(ML) estimates of KP
0 and K

P
1 from the P - and Q-dynamics jointly, to the extent that Wyt �

W byt. As noted by JSZ, the best approximation is obtained by choosingW0 such thatW0yt = PCt,

the �rst three principal components of the observed term structure of yields.12

The JSZ normalization results in substantial computational advantages, which arise because

of the smaller number of Q-parameters to be estimated through maximum likelihood. For a

three-factor model, there are in total 1 + 3 + 6 +N = 10 +N parameters to be estimated (1 for

rQ1, 3 for �
Q, 6 for �, and N for the variance-covariance matrix of the measurement errors).

The model-predicted k-period ahead n-maturity yield given the estimated parameter set �

at time t can be de�ned as follows

bynt+kjt(�) = An(�
Q) +Bn(�

Q)dPCt+kjt (5.2)

= An(�
Q) +Bn(�

Q)f(PCt; k;K
P
0 ; K

P
1 );

where An(�Q) is the nth element of A(�Q), Bn(�Q) is the nth row of B(�Q), and f is given by

f(PCt; k;K
P
0 ; K

P
1 ) = K

P
0 (I3 +K

P
1 + :::+ (K

P
1 )

k�1) + (KP
1 )

kPCt:

When implementing the JSZ canonical form using the forecasting loss function, we estimate the

parameters � = f�P ;�Qg by minimizing the forecasting loss function, equation (2.3). The P -
parameters determine the properties of the state variables, which are important for forecasting

yields, as seen in equation (5.2). In contrast, these parameters do not play a role in the standard

loss function equation (2.1) under the JSZ normalization.13 This is a critical di¤erence between

the loss functions. The forecasting loss function takes into account the properties of the state

12Strictly speaking, the OLS estimates are exactly the ML estimates only if one assumes that the yields are
measured without errors. Empirically, JSZ show that the use of the principal components ensures that the OLS
estimates and ML estimates are nearly identical.
13Note that JSZ do not minimize the mean-squared error but instead use maximum likelihood. However,

the same argument applies: these parameters play no role in the standard likelihood function under the JSZ
normalization.
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variables. When using the forecasting loss function, we therefore cannot determine KP
0 and

KP
1 from the OLS estimates, because the forecasting loss function depends on all parameters

simultaneously.

5.2 The Role of the Loss Function with Fixed Portfolio Weights

We now provide an empirical comparison of the forecasting performance of the forecasting loss

function equation (2.3) and the standard loss function equation (2.1). Both loss functions are

based on the JSZ canonical form of the A0(3) speci�cation with observed factors. As mentioned

above, the JSZ canonical form provides important computational advantages, because it allows

the estimation to be performed directly on the principal components of the observed yields, which

in turn allows factorization of the likelihood and isolates the subset of parameters governing the

Q-dynamics. This canonical form therefore dramatically reduces the di¢ culties that typically

arise in the search for the global optimum. Note that in the JSZ canonical form, the portfolio

weights W in POt = Wyt are given by W0 such that W0yt = PCt.

With �xed weights W0, it is straightforward to use the method proposed by JSZ to estimate

the parameters under both the standard loss function equation and the forecasting loss function.

For the standard loss function, we perform a recursive estimation that uses all yields. In the

case of the forecasting loss function, for each month t and each forecast horizon k, we estimate

the JSZ using data up to and including t. By minimizing the k-period ahead squared forecasting

errors, we get the estimated parameter sets �P and �Q for forecast horizon k, and we forecast

the k-period ahead yields based on equation (5.2). Table 6 reports the RMSEs in Panels A and

B and the RMSE ratios in Panel C.

Note that a comparison of Panel B of Table 6 with Panel B of Table 2 indicates that the

JSZ canonical form provides important computational advantages. The RMSE for the JSZ

speci�cation in Table 6 is smaller than the RMSE for the latent Gaussian model in Table 2 for

almost all maturities and forecast horizons. This con�rms that the �ndings in JSZ (2011) also

hold in an out-of-sample setting.

Panel C of Table 6 indicates that the improvement in out-of-sample forecasting performance

when using the forecasting loss function is smaller than in the case of the latent model in Table 2.

For example, for the six-month forecast horizon, the improvement in the RMSEs is approximately

3% on average across di¤erent maturities. This corresponds to an out-of-sample R-square of 5%.

One possible interpretation of these results is that the �ndings in Table 2, obtained in a

model with latent factors, are due to identi�cation problems. Once we adopt the more robust

JSZ canonical form, the advantages from aligning loss functions seem to be much more modest.
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However, the exercise in Table 6 imposes a very important restriction. We use �xed portfolio

weights W0, which means that we are restricted to using the �rst three principal components as

the state variables at each recursion. We now investigate the importance of this restriction.

5.3 The Role of the Loss Function with Variable Portfolio Weights

The forecasting loss function does not help much in improving the forecasting performance of the

JSZ normalization with �xed portfolio weights W0, as documented in Section 5.2. However, this

implementation implicitly assumes that the state variables are equal to the �rst three principal

components at each recursion. JSZ show that this restriction does not a¤ect the results of in-

sample estimation much.14 However, from a forecasting perspective, imposing these restrictions

may mean that the parameters governing the dynamics of the state variables, KP
0 andK

P
1 , do not

have a strong incentive to move away from the OLS estimates, even though the OLS estimates

may not be optimal in terms of the out-of-sample forecasting performance.

This insight is motivated by the literature on forecasting bond returns. Cochrane and Piazzesi

(2005) suggest that the fourth principal component of the yield curve explains a large portion of

bond return predictability. Moreover, the literature on the predictability of bond excess return

shows that other variables, such as forward rates (Cochrane and Piazzesi (2005)), macroeconomic

variables (Ludvigson and Ng (2009), Cooper and Priestley (2009), Cieslak and Povala, (2015),

Joslin, Priebsch, and Singleton (2014)), and a hidden factor (Du¤ee (2011a)) also help predict

bond excess returns. By allowing the weights to be free parameters, the estimation based on the

forecasting loss function has more �exibility to search for the best possible state variables for the

purpose of forecasting. This parameterization thus provides more �exibility to the forecasting

loss function to determine the state variables that are best suited for out-of-sample forecasting.

The resulting econometric problem is somewhat more complex, and it is worth outlining

it in more detail. First, consider the model-predicted k-period ahead n-maturity yield given

parameter estimates � at time t; which can be written as follows

bynt+kjt(�) = An(�
Q) +Bn(�

Q)dPOt+kjt (5.3)

= An(�
Q) +Bn(�

Q)f(yt; k;K
P
0 ; K

P
1 ;W );

14We con�rm this by performing a full sample one-time estimation of the JSZ with standard loss function and
variable weights. The portfolio weights W converge to W0. The �rst three principal components provide the best
in-sample �t.
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where An(�Q) is the nth element of A(�Q), Bn(�Q) is the nth row of B(�Q), and f is given by

f(yt; k;K
P
0 ; K

P
1 ;W ) = K

P
0 (I3 +K

P
1 + :::+ (K

P
1 )

k�1) + (KP
1 )

kWyt:

We estimate the JSZ representation with variable portfolio weights for each forecast horizon k by

minimizing the forecasting loss function, equation (2.3), with respect to � = f�P ;�Q;Wg. By
varyingW , we construct the state variables as linear combinations of the observed term structure

of yields, but they are not restricted to be the �rst three principal components of the observed

yields.

We implement this estimation using a two-step procedure, taking full advantage of the es-

timation method proposed by JSZ, which typically converges in a few seconds. We start our

estimation based on the forecasting loss function in equation (2.3) by using the converged JSZ

estimates from the standard loss function in equation (2.1) as initial values. Given these initial

�P and �Q, the estimation is performed using the following steps.

1. For a given �P and �Q, we search for the best possible weights W among the linear

combinations of yields that provide the lowest squared forecasting error in equation (2.3).

2. Once we obtain a W in step 1, we �x it and solve for the parameter set �P and �Q by

minimizing the squared forecasting error.

3. Once we obtain the converged �P and �Q from the previous step, we go back to the �rst

step, and the optimization goes back and forth between the two steps until it converges.

Table 7 provides the empirical results. Panel A of Table 7 provides the RMSEs resulting

from the JSZ canonical speci�cation with forecasting loss function equation (2.3) and variable

portfolio weights. Panel B presents RMSEs from the JSZ empirical implementation with �xed

portfolio weights and the standard loss function equation (2.1). Panel B of Table 7 is therefore

identical to Panel B of Table 6.

One might argue that the benchmark speci�cation should also allow the portfolio weights

to be free parameters. However, we know from JSZ that this is irrelevant under the standard

loss function, since W0 gives the optimal results for in-sample �t.15 This suggests that allowing

the portfolio weights to be free parameters under the standard loss function yields the same

parameter estimates as the JSZ model with �xed weights, and therefore also the same out-of-

sample performance. We veri�ed that this is indeed the case.

15Hamilton and Wu (2014) also �nd that the �rst three pricncipal components lead to a better �t than any
other linear combination of yields.
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Panel C of Table 7 presents the ratio of the out-of-sample RMSEs. The improvements in

forecasting RMSE are substantial for three-month to six-month forecast horizons. The improve-

ment in the RMSEs is about 7% on average across di¤erent maturities for the six-month forecast

horizon. This corresponds to an out-of-sample R-square of 15%. For short maturity yields (3-

month, 6-month and 1-year yields), the forecasting loss function outperforms the standard loss

function at all forecast horizons. The improvement in the RMSEs is about 11% on average,

which corresponds to an out-of-sample R-square of 23% .

These results are di¤erent from the results in Table 6, which are based on �xed portfolio

weights. This suggests that when using the JSZ canonical form, the time-series properties of the

state variables are critically important to achieve better out-of-sample forecasting performance,

which can be achieved using the forecasting loss function. It is imperative to free the portfolio

weights to give the forecasting loss function more power to search for the best possible state

variables for the purpose of out-of-sample forecasting. This contrasts with in-sample estimation,

where �xing the portfolio weights is optimal, as demonstrated by JSZ.

Most importantly, we conclude that the results in Table 7 con�rm the results from Table 2,

obtained using the latent three-factor A0(3) model. Aligning the loss functions for in-sample

estimation and out-of-sample evaluation allows us to determine the best possible state variables

and model parameters for the purpose of out-of-sample forecasting.

6 In-Sample and Out-of-Sample Fit

We �nd that out-of-sample forecasting can be substantially improved by aligning the loss func-

tions for in-sample and out-of-sample evaluation, as suggested by Granger (1993) and Weiss

(1996). Presumably this �nding results from di¤erences in parameter estimates and implied state

variables. In this section we document and discuss these di¤erences. It is also to be expected

that the parameter estimates based on the forecasting loss function give rise to an in-sample �t

that is worse than that for the standard loss-function, because the latter loss function selects

the parameters to provide the best possible in-sample �t. We document this trade-o¤ between

in-sample and out-of-sample �t. In this section, we illustrate these issues using the estimates

for the JSZ canonical speci�cation, because these estimates are arguably more reliable than the

estimates obtained using the model with latent factors.16

16We �nd similar results for the A1(3), A2(3) and A3(3) stochastic volatility models with latent factors. Because
of space constraints, we report these results in Table A1 and Figures A1-A3 in the Appendix.

16



6.1 In-Sample Fit

Table 8 reports the in-sample RMSEs for the JSZ model with forecasting loss function and

variable weights, the JSZ model with forecasting loss function and �xed weights, and the JSZ

model with standard loss function.17 To be consistent with the out-of-sample experiment, we

recursively estimate these speci�cations each month using data up to and including time t and

compute the model error at time t. We compute the in-sample RMSE from the resulting time

series. Recall that the resulting estimates for the two speci�cations with forecasting loss function

are forecast-horizon speci�c. For these models, we therefore report RMSEs for each forecast

horizon.

The results in Panels A and C of Table 8 indicate a clear trade-o¤ between in-sample and

out-of-sample �t. While the JSZ model with forecasting loss function and variable weights (in

Panel A) provides a better in-sample �t than the model with standard loss function for short

maturities, it provides a higher RMSE for medium and long maturities (in Panel C). Overall,

the RMSEs in Panel C are on average smaller than those in Panel A. This result is of course not

surprising, since the parameters for the JSZ model with forecasting loss function and variable

weights are chosen to optimally �t yields k periods ahead. These results therefore simply re�ect

a trade-o¤ between in-sample and out-of-sample �tting. Interestingly, the in-sample �t in Panel

A is rather similar for di¤erent forecast horizons.

The in-sample RMSE for the JSZ model with forecasting loss function and �xed weights in

Panel B of Table 8 is similar to that of the model with standard loss function in Panel C. The

�t in Panel B is also similar across forecast horizons.

These �ndings are consistent with the out-of-sample results in Table 6. Both in-and out-of-

sample, the JSZ model with forecasting loss function and �xed weights performs similarly to the

model with standard loss function. When using variable portfolio weights and the forecasting loss

function however, results strongly di¤er both in-and out-of-sample. Presumably these di¤erences

are due to di¤erences in estimated parameters and implied state variables. We now investigate

these di¤erences in more detail.

6.2 Loss Functions and State Variables

We examine the time-series properties of the state variables for the models with standard and

forecasting loss functions. Figure 1 is based on the JSZ with standard loss function. Panel A

shows the time series of the �rst three principal components PC, level, slope and curvature.

17The JSZ model with standard loss function can also be implemented with �xed and variable weights. As
mentioned before, the results are nearly identical, and we therefore only report results for �xed weights.
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Panel B presents the factor loadings B(�Q) on the yield curve. Panel C shows the portfolio

weights W0 that ensure W0yt = PCt. For the JSZ with standard loss function, we obtain the

customary level, slope and curvature factors.

Figures 2-4 are based on the JSZ with forecasting loss function and variable weights. To

emphasize the di¤erences resulting from the use of di¤erent loss functions, we present the resulting

di¤erences between the state variables, factor loadings, and portfolio weights, rather than the

levels. Because the estimation is forecast-horizon speci�c, each �gure has six panels, one for each

forecast horizon k.

Figure 2 shows the di¤erences in the time series of the state variables, Wyt � PCt, where
W is estimated using the forecasting loss function. Note that the magnitude of the third factor

is on average smaller than that of the curvature factor in the JSZ with standard loss function,

regardless of the forecast horizon. The magnitudes of the �rst two factors on average are larger

than the level and slope factors in the JSZ with standard loss function, especially for longer

forecast horizons.

Figure 3 plots the di¤erences between the estimated factor loadings B(�Q) from the JSZ

with forecasting loss function and variable weights and the loadings from JSZ with standard

loss function. For the �rst factor, the loadings are exactly the same for all forecast horizon

estimations. For the second factor, the estimated factor loadings are very similar, except for long

maturity yields for longer forecast horizons. The most pronounced di¤erences are observed for

the third factor. For all forecast horizons, the estimated loadings for the JSZ with forecasting

loss function and variable weights are smaller than those for the JSZ with standard loss function

for intermediate maturity yields, but larger for short- and long-maturity yields.

Figure 4 shows the di¤erences in portfolio weights, W �W0. The di¤erences between the

weights are similar across forecast horizons. The JSZ with forecasting loss function and variable

weights implies a di¤erent linear combination of yields, and the resulting time series of the state

variables di¤ers from the traditional level, slope and curvature factors. Di¤erences are especially

pronounced for the third factor. We �nd that the third factor in the JSZ with forecasting

loss function and variable weights is correlated with the fourth principal component of the yield

curve. This result is in line with Cochrane and Piazzesi (2005), who �nd that the fourth principal

component explains a large part of the bond return predictability, even though it explains only

a small part of in-sample variability. The third factor in the JSZ with forecasting loss function

and variable weights captures information that is hidden from the current yield curve, and this

results in gains in out-of-sample forecasting performance.
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6.3 Loss Functions and Parameter Estimates

We now compare the parameter estimates from the JSZ model with forecasting loss function and

variable weights with those from the JSZ model with standard loss function. Table 9 presents

the estimates of the parameters governing the state variables under the P - and Q-measures (KP
0 ,

KP
1 , K

Q
0 , K

Q
1 ) for both speci�cations. Panel A of Table 9 reports the estimates for the JSZ model

with forecasting loss function and variable portfolio weights, which are di¤erent for each forecast

horizon k. In the JSZ model with standard loss function, KP
0 and K

P
1 are the OLS estimates, as

shown in Panel B of Table 9.

The most interesting observations are related to the dynamic properties of the model. Re-

gardless of the model and the forecast horizon, under both measures the �rst factor is the most

persistent and the third factor is the least persistent. To assess the persistence properties of

the model, we need to inspect the eigenvalues rather than the diagonal elements of K1. The

eigenvalues are generally higher under the Q-measure than under the P -measure, in both Panels

A and B. However, in Panel B the dominant eigenvalue under the Q-measure is equal to one,

whereas under the P -measure it is slightly smaller than one. In Panel A it is slightly smaller

than one under both the P - and Q-measures.

Another di¤erence between Panels A and B is the (1; 3) entry of the feedback matrix, which

governs how the third factor this period forecasts the �rst factor next period. The relative impact

of the third factor on the �rst factor is higher in the model with forecasting loss function. A

similar �nding obtains for the (2; 3) entry of the feedback matrix.18 These results are consistent

with the results in Figure 2: the third factor behaves di¤erently under the two loss functions.

Panel A of Table 10 reports the same parameters for the JSZ model with forecasting loss

function and �xed weights. Panel B again reports the estimates from the JSZ with standard

loss function. The di¤erences between Panels A and B are much smaller than in Table 9, but

once again the largest eigenvalue under the Q-measure in Panel B is one, in contrast with the

estimate in Panel A.

We conclude that the analysis of the state variables and the parameter estimates con�rms

that the improvement in forecasting performance is driven by both the variable weights and the

use of the forecasting loss function. The di¤erences between Panels A and B are much more

signi�cant in Table 9, because the use of variable weights allows the forecasting loss function

to play a more important role. The most important observation in Tables 9 and 10 is that the

dominant eigenvalue under the Q-measure di¤ers in a qualitative sense between Panels A and B.

18Joslin and Le (2013) discuss estimation of the feedback matrix in ATSMs with stochastic volatility. They
show that the implicit restriction on the relation betwee KP

1 and KQ
1 causes the estimates of KP

1 to di¤er from
the OLS estimates.

19



A plausible explanation for this �nding is that when computing yields, the dominant eigenvalue

can be larger than one under Q if it is not too high. For in-sample �tting, it may be worthwhile

for the model to have a dominant eigenvalue of one to �t yields better. When the yield forecast

is explicitly considered in the loss function, the loss function constrains the dominant eigenvalue

to be smaller than one.

7 Conclusion

We propose estimating term structure parameters by aligning the loss functions for in-sample

estimation and out-of-sample evaluation, instead of the traditional optimization of the likelihood

criterion or the mean-squared error based on yields. We compare the resulting forecasting per-

formance using three-factor a¢ ne term structure models. Aligning the loss functions provides

substantial improvements in out-of-sample forecasting performance, especially for long forecast

horizons. We document a trade-o¤ between in-sample and out-of-sample �t.

Our approach amounts to letting the data determine the state variables that are best suited

for out-of-sample forecasting. The resulting parameter estimates based on the JSZ canonical

form imply factors that di¤er from the traditional level, slope, and curvature factors, especially

for curvature. This suggests that the improvement in out-of-sample �t results from identi�cation

of the third factor, which captures information hidden from the current term structure of yields.

Our results may be extended in several ways. Most importantly, the question arises if our

results generalize to other a¢ ne and non-a¢ ne term structure models. It may be challenging to

address this issue because of the presence of identi�cation problems. Using currently available

estimation techniques, addressing these identi�cation problems is harder than in the case of

the a¢ ne model. Development of improved estimation methods for these models is therefore

critically important.
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Appendix A: Estimation of Models with Latent Factors:

Numerical Implementation

We follow the implementation of Hamilton and Wu (2012). We extract the �rst three principal

components from the observed term structure of yields, and normalize each principal component

to have zero mean and unit variance. We estimate the dynamics of the normalized �rst three

principal components through OLS, and use the OLS estimates of KP
0 and K

P
1 as initial values.

We obtain the initial values for �0 and �1 by regressing one-month yields on the normalized

principal components. To get the initial value for Q parameters, we regress the observed term

structure of yields on the normalized principal components to get estimated loadings bA and bB.
The Q parameters enter the loadings A(�Q) and B(�Q) through recursive equation. Subse-

quently we obtain an initial guess for the Q parameters by minimizing the distances from A(�Q)

and B(�Q) to the estimated loadings bA and bB.
With this set of initial values, we �nd � by optimizing the standard log likelihood function

using the fminsearch algorithm in MATLAB. We compute the 99% con�dence interval, [��;��],

for the converged values of �. Then we generate another 100 di¤erent sets of � from the uniform

distributions U [��;��]. We rank these di¤erent sets of � by the implied likelihood, and use the

top 10 ranked sets of � as initial values for another round of numerical search. We choose the

converged sets of � based on the likelihood, and form the new range of the parameter set using

the chosen sets of �. We continue generating di¤erent sets of initial values until they converge

to very similar values.
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Appendix B: The JSZ Canonical Form

Given the dynamics in equations (4.1)-(4.3), the model-implied continuously compounded yieldsbyt are given by byt = A(�Q) +B(�Q)POt:
Now consider M linear combinations of N yields, POt = Wyt, that are priced without error.

We focus on a simple case where the eigenvalues of KQ
1 are real, distinct, and nonzero. This

follows Joslin, Singleton and Zhu (2011), who demonstrate the result for all cases including zero,

repeated and complex eigenvalues.

There exists a matrix C such that KQ
1 = Cdiag(�

Q)C�1 + IM . De�ne D = Cdiag(�1)C
�1,

D�1 = Cdiag(�1)
�1C�1 and

Lt = D(POt + (K
Q
1 � IM)�1K

Q
0 );

) POt = D
�1Lt � (KQ

1 � IM)�1K
Q
0 :

Then we have the dynamic of Lt under the Q-measure

�Lt+1 = D�POt+1 (B.1)

= D[KQ
0 + (K

Q
1 � IM)(D�1Lt � (KQ

1 � IM)�1K
Q
0 ) + �"

P
t+1]

= diag(�Q)Lt +D�"
P
t+1;

and the dynamic of Lt under the P -measure

�Lt+1 = D�POt+1 (B.2)

= D[KP
0 + (K

P
1 � IM)(D�1Lt � (KQ

1 � IM)�1K
Q
0 ) + �"

P
t+1]

= DKP
0 +D(K

P
1 � IM)D�1Lt �D(KP

1 � IM)(K
Q
1 � IM)�1K

Q
0 +D�"

P
t+1;

The dynamic of the short rate is

rt = �0 + �1POt (B.3)

= �0 + �1(D
�1Lt � (KQ

1 � IM)�1K
Q
0 )

= �0 � �1(K
Q
1 � IM)�1K

Q
0 + �1D

�1Lt

= rQ1 + �Lt;

where rQ1 = �0� �1(K
Q
1 � IM)�1K

Q
0 , and � is a row of M ones. Given the dynamics in equations
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(B.1)-(B.3), the model-implied continuously compounded yields byt is given by
byt = A(�QL ) +B(�QL )Lt;

where �QL = frQ1; �Q;�g. The M linear combinations of N yields are perfectly priced and can

be written as

POt = Wyt

= W (A(�QL ) +B(�
Q
L )Lt)

If the model is non-redundant, WB(�QL ) is invertible, and we have

Lt = (WB(�
Q
L ))

�1POt � (WB(�QL ))�1WA(�
Q
L ):

Then we can rewrite the dynamic of POt under the Q-measure as follows

�POt+1 = WB(�QL )�Lt+1 (B.4)

= WB(�QL )(diag(�
Q)Lt +D�"

P
t+1)

= WB(�QL )fdiag(�Q)[(WB(�
Q
L ))

�1POt � (WB(�QL ))�1WA(�
Q
L )] +D�"

P
t+1g:

Comparing the coe¢ cients in equations (B.4) and (4.2), we have

KQ
1 = WB(�QL )diag(�

Q)(WB(�QL ))
�1 + IM ; (B.5)

KQ
0 = �WB(�QL )diag(�Q)(WB(�

Q
L ))

�1WA(�QL ):

We can also rewrite the dynamic of the short rate as follows

rt = rQ1 + �Lt (B.6)

= rQ1 + � [(WB(�
Q
L ))

�1POt � (WB(�QL ))�1WA(�
Q
L )]

= rQ1 � �(WB(�
Q
L ))

�1WA(�QL ) + �(WB(�
Q
L ))

�1POt:

Comparing the coe¢ cients in equations (B.6) and (4.3), we have

�0 = rQ1 � �(WB(�
Q
L ))

�1WA(�QL ); (B.7)

�1 = �(WB(�QL ))
�1:
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Figure 1: State Variables for the JSZ Canonical Form with Standard Loss Function.
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Notes to Figure: This figure is based on the in-sample estimation of the JSZ canonical form
with standard loss function. Panel A shows the time series of the first three principal compo-
nents PC. Panel B shows the factor loadings B(ΘQ) on the yield curve. Panel C shows the
portfolio weights W0.



Figure 2: Differences Between State Variables Using Forecasting and Standard Loss Functions.
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Notes to Figure: This figure presents the differences between the state variables from the
JSZ canonical form with forecasting loss function and variable portfolio weights and the state
variables from the JSZ canonical form with standard loss function. The state variables are
obtained from in-sample estimation. These results are forecast-horizon specific, i.e. each panel
represents the differences in the estimates for a given forecast horizon.



Figure 3: Differences Between Factor Loadings Using Forecasting and Standard Loss Functions.
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Notes to Figure: This figure presents the differences between the factor loadings from the JSZ
canonical form with forecasting loss function and variable portfolio weights and the factor
loadings from the JSZ canonical form with standard loss function. The factor loadings are
obtained from in-sample estimation. These results are forecast-horizon specific, i.e. each panel
represents the differences in the estimates for a given forecast horizon.



Figure 4: Differences Between Portfolio Weights Using Forecasting and Standard Loss Functions.

3 6 12 24 36 48 60 120 240
−0.5

0

0.5
1 Month Horizon

3 6 12 24 36 48 60 120 240
−0.5

0

0.5
2 Month Horizon

3 6 12 24 36 48 60 120 240
−0.5

0

0.5
3 Month Horizon

3 6 12 24 36 48 60 120 240
−0.5

0

0.5
4 Month Horizon

3 6 12 24 36 48 60 120 240
−0.5

0

0.5
5 Month Horizon

Yield Maturity
3 6 12 24 36 48 60 120 240

−0.5

0

0.5
6 Month Horizon

Yield Maturity

 

 

Factor1 Factor2 Factor3

Notes to Figure: This figure presents the differences between the variable portfolio weights
from the JSZ canonical form with forecasting loss function and the fixed portfolio weights from
the JSZ canonical form with standard loss function. The portfolio weights are obtained from
in-sample estimation. These results are forecast-horizon specific, i.e. each panel represents
the differences in the estimates for a given forecast horizon.



Table 1: Summary Statistics

Central Moments Autocorrelation
Mean St.Dev Skewness Kurtosis Lag 1 Lag 12 Lag 30

3 month yield 0.0450 0.0290 0.8938 4.3247 0.9773 0.7944 0.5197
6 month yield 0.0479 0.0305 0.8717 4.2283 0.9850 0.8126 0.5359
1 year yield 0.0516 0.0306 0.6980 3.6594 0.9857 0.8317 0.5891
2 year yield 0.0536 0.0301 0.6734 3.4957 0.9878 0.8509 0.6485
3 year yield 0.0554 0.0294 0.6703 3.4460 0.9884 0.8611 0.6782
4 year yield 0.0569 0.0288 0.6903 3.4142 0.9882 0.8655 0.7000
5 year yield 0.0579 0.0282 0.7270 3.3717 0.9890 0.8739 0.7183
10 year yield 0.0617 0.0275 0.9148 3.5853 0.9890 0.8739 0.7183
20 year yield 0.0638 0.0265 0.9158 3.5373 0.9930 0.8936 0.7724

Notes to Table: We present summary statistics for the data used in estimation. We
present the sample mean, standard deviation, skewness, kurtosis, and autocorrelations for
each of the yields. The yields are continuously compounded monthly zero-coupon bond
yields. The sample period is from 1953:04 to 2012:12.



Table 2: Out-of-Sample RMSEs:
A0(3) with Latent Factors

Panel A: Forecasting Loss Function
Forecast Horizon k 1 month 2 month 3 month 4 month 5 month 6 month

3 month yield 38.47 55.53 68.99 78.78 88.97 99.65
6 month yield 33.51 53.37 69.85 83.52 96.27 108.70

1 year yield 37.84 59.81 78.28 92.96 105.82 117.62
2 year yield 40.41 63.36 81.95 95.63 107.89 118.75
3 year yield 37.65 59.22 76.23 88.29 99.70 109.44
4 year yield 33.77 54.00 69.40 79.79 90.30 99.13
5 year yield 30.76 50.19 66.65 78.61 87.65 96.97

10 year yield 32.10 49.40 63.15 76.06 82.02 91.09
20 year yield 28.54 44.51 52.71 61.85 70.89 80.07

Panel B: Standard Loss Function
Forecast Horizon k 1 month 2 month 3 month 4 month 5 month 6 month

3 month yield 42.22 57.51 73.06 87.73 103.87 120.70
6 month yield 36.79 55.87 70.27 85.84 101.77 119.88

1 year yield 38.75 60.28 80.46 95.58 108.62 121.45
2 year yield 41.07 65.36 82.99 96.92 110.11 127.41
3 year yield 38.60 59.48 76.86 92.61 109.65 125.54
4 year yield 35.22 58.49 72.90 88.85 104.24 118.98
5 year yield 33.92 52.85 70.46 85.83 100.68 114.68

10 year yield 33.24 50.40 63.15 77.06 89.02 101.09
20 year yield 28.44 44.51 58.71 71.85 84.89 97.07

Panel C: RMSE Ratio
Forecast Horizon k 1 month 2 month 3 month 4 month 5 month 6 month

3 month yield 0.91 0.97*** 0.94*** 0.90*** 0.86*** 0.83***
6 month yield 0.91 0.96*** 0.99*** 0.97*** 0.95*** 0.91***

1 year yield 0.98** 0.99*** 0.97*** 0.97*** 0.97*** 0.97***
2 year yield 0.98*** 0.97*** 0.99*** 0.99*** 0.98*** 0.93***
3 year yield 0.98** 1.00*** 0.99*** 0.95*** 0.91*** 0.87***
4 year yield 0.96** 0.92*** 0.95*** 0.90*** 0.87*** 0.83***
5 year yield 0.91* 0.95*** 0.95*** 0.92*** 0.87*** 0.85***

10 year yield 0.97* 0.98*** 1.00* 0.99*** 0.92*** 0.90***
20 year yield 1.00 1.00 0.90 0.86** 0.84** 0.82**

Notes to Table: We present the out-of-sample RMSEs for the A0(3) latent model with forecasting
loss function and standard loss function. Panel A reports on the A0(3) model with forecasting loss
function. At each time t and for each forecast horizon k, we estimate the specification through
Kalman filter using data up to and including t, and forecast k periods ahead. Panel B reports on the
A0(3) model with standard loss function. We estimate the model through Kalman filter using data
up to and including t at each month t, and forecast one to six months ahead. We show the root mean
square error (RMSE) of the forecast in basis points. In order to compare the forecasting performance
of the latent model with two different loss functions, Panel C shows the ratios of the RMSEs in
Panel A and Panel B. Gains in accuracy that are statistically different from zero are denoted by *,
** and ***, corresponding to significance levels of 10%, 5% and 1% respectively, evaluated using the
Diebold and Mariano (1995) t-statistics computed with a serial correlation-robust variance and the
small-sample adjustment of Harvey, Leybourne, and Newbold (1997).



Table 3: Out-of-Sample RMSEs:
A1(3) with Latent Factors

Panel A: Forecasting Loss Function
Forecast Horizon k 1 month 2 month 3 month 4 month 5 month 6 month

3 month yield 36.56 52.06 66.95 75.75 87.05 101.19
6 month yield 31.03 50.65 67.46 81.67 96.15 110.10

1 year yield 39.22 57.81 74.41 89.63 103.40 117.31
2 year yield 51.69 67.95 82.70 95.93 108.15 120.46
3 year yield 48.14 63.94 77.90 90.20 101.68 113.09
4 year yield 40.40 57.04 70.82 82.48 93.25 103.95
5 year yield 33.83 51.81 66.21 78.24 89.15 99.62

10 year yield 35.45 50.28 62.03 72.56 82.30 91.12
20 year yield 48.95 56.36 62.94 69.82 76.66 82.68

Panel B: Standard Loss Function
Forecast Horizon k 1 month 2 month 3 month 4 month 5 month 6 month

3 month yield 39.87 57.78 73.87 85.81 99.21 113.15
6 month yield 34.58 55.15 74.23 90.77 106.90 122.76

1 year yield 38.47 61.77 83.00 101.43 118.47 134.27
2 year yield 41.62 67.91 90.03 109.03 125.89 141.42
3 year yield 40.00 65.47 86.63 104.83 120.89 135.61
4 year yield 36.69 60.82 80.83 97.93 113.12 127.15
5 year yield 34.80 58.21 77.61 94.37 109.23 122.87

10 year yield 37.20 57.48 74.02 89.00 102.47 114.87
20 year yield 28.23 45.76 60.71 74.48 87.01 98.73

Panel C: RMSE Ratio
Forecast Horizon k 1 month 2 month 3 month 4 month 5 month 6 month

3 month yield 0.92* 0.90*** 0.91*** 0.88*** 0.88*** 0.89***
6 month yield 0.90* 0.92*** 0.91*** 0.90*** 0.90*** 0.90***

1 year yield 1.02 0.94** 0.90*** 0.88*** 0.87*** 0.87***
2 year yield 1.24*** 1.00 0.92*** 0.88*** 0.86*** 0.85***
3 year yield 1.20*** 0.98 0.90*** 0.86*** 0.84*** 0.83***
4 year yield 1.10*** 0.94*** 0.88*** 0.84*** 0.82*** 0.82***
5 year yield 0.97 0.89*** 0.85*** 0.83*** 0.82*** 0.81***

10 year yield 0.95 0.87*** 0.84*** 0.82*** 0.80*** 0.79***
20 year yield 1.73*** 1.23*** 1.04 0.94 0.88*** 0.84***

Notes to Table: We present the out-of-sample RMSEs for the A1(3) latent model with forecasting
loss function and standard loss function. Panel A reports on the A1(3) model with forecasting loss
function. At each time t and for each forecast horizon k, we estimate the specification through
Kalman filter using data up to and including t, and forecast k periods ahead. Panel B reports on the
A1(3) model with standard loss function. We estimate the model through Kalman filter using data
up to and including t at each month t, and forecast one to six months ahead. We show the root mean
square error (RMSE) of the forecast in basis points. In order to compare the forecasting performance
of the latent model with two different loss functions, Panel C shows the ratios of the RMSEs in
Panel A and Panel B. Gains in accuracy that are statistically different from zero are denoted by *,
** and ***, corresponding to significance levels of 10%, 5% and 1% respectively, evaluated using the
Diebold and Mariano (1995) t-statistics computed with a serial correlation-robust variance and the
small-sample adjustment of Harvey, Leybourne, and Newbold (1997).



Table 4: Out-of-Sample RMSEs:
A2(3) with Latent Factors

Panel A: Forecasting Loss Function
Forecast Horizon k 1 month 2 month 3 month 4 month 5 month 6 month

3 month yield 36.90 53.41 67.91 77.63 89.84 104.33
6 month yield 31.92 51.56 69.97 84.11 98.56 113.93

1 year yield 39.77 58.66 75.73 91.75 106.41 120.81
2 year yield 52.31 68.94 84.22 98.16 111.08 124.12
3 year yield 48.68 64.95 79.45 92.41 104.51 116.71
4 year yield 40.79 57.92 72.19 84.53 95.91 107.54
5 year yield 34.19 52.72 67.57 80.30 91.83 103.19

10 year yield 35.66 50.85 63.13 74.42 84.97 94.72
20 year yield 49.30 56.89 63.07 70.74 78.34 85.21

Panel B: Standard Loss Function
Forecast Horizon k 1 month 2 month 3 month 4 month 5 month 6 month

3 month yield 40.24 58.80 74.93 87.55 100.86 115.43
6 month yield 35.09 56.10 75.74 93.03 109.91 126.48

1 year yield 38.81 62.69 84.71 104.04 121.97 138.72
2 year yield 42.25 69.32 92.32 112.17 130.04 146.67
3 year yield 40.67 66.97 88.95 107.90 124.94 140.78
4 year yield 37.29 62.27 83.05 100.77 116.84 132.08
5 year yield 35.52 59.77 79.93 97.26 112.93 127.73

10 year yield 38.17 59.30 76.42 91.84 106.27 119.99
20 year yield 29.21 47.75 63.12 77.33 90.76 103.78

Panel C: RMSE Ratio
Forecast Horizon k 1 month 2 month 3 month 4 month 5 month 6 month

3 month yield 0.92 0.91*** 0.91*** 0.89*** 0.89*** 0.90***
6 month yield 0.91** 0.92*** 0.92*** 0.90*** 0.90*** 0.90***

1 year yield 1.02 0.94** 0.89*** 0.88*** 0.87*** 0.87***
2 year yield 1.24*** 0.99 0.91*** 0.88*** 0.85*** 0.85***
3 year yield 1.20*** 0.97* 0.89*** 0.86*** 0.84*** 0.83***
4 year yield 1.09** 0.93*** 0.87*** 0.84*** 0.82*** 0.81***
5 year yield 0.96* 0.88*** 0.85*** 0.83*** 0.81*** 0.81***

10 year yield 0.93 0.86*** 0.83*** 0.81*** 0.80*** 0.79***
20 year yield 1.69*** 1.19** 1.00 0.91* 0.86*** 0.82***

Notes to Table: We present the out-of-sample RMSEs for the A2(3) latent model with forecasting
loss function and standard loss function. Panel A reports on the A2(3) model with forecasting loss
function. At each time t and for each forecast horizon k, we estimate the specification through
Kalman filter using data up to and including t, and forecast k periods ahead. Panel B reports on the
A2(3) model with standard loss function. We estimate the model through Kalman filter using data
up to and including t at each month t, and forecast one to six months ahead. We show the root mean
square error (RMSE) of the forecast in basis points. In order to compare the forecasting performance
of the latent model with two different loss functions, Panel C shows the ratios of the RMSEs in
Panel A and Panel B. Gains in accuracy that are statistically different from zero are denoted by *,
** and ***, corresponding to significance levels of 10%, 5% and 1% respectively, evaluated using the
Diebold and Mariano (1995) t-statistics computed with a serial correlation-robust variance and the
small-sample adjustment of Harvey, Leybourne, and Newbold (1997).



Table 5: Out-of-Sample RMSEs:
A3(3) with Latent Factors

Panel A: Forecasting Loss Function
Forecast Horizon k 1 month 2 month 3 month 4 month 5 month 6 month

3 month yield 37.33 55.82 70.73 78.92 92.61 105.56
6 month yield 33.03 53.25 71.10 85.70 101.64 117.49

1 year yield 40.01 59.22 76.68 93.14 108.27 123.17
2 year yield 52.57 69.53 85.18 99.55 112.93 126.46
3 year yield 48.94 65.52 80.40 93.77 106.33 119.03
4 year yield 41.01 58.43 73.07 85.82 97.66 109.79
5 year yield 34.44 53.26 68.47 81.61 93.60 105.46

10 year yield 35.82 51.27 63.90 75.59 86.60 96.85
20 year yield 50.87 57.08 63.30 71.33 79.36 86.74

Panel B: Standard Loss Function
Forecast Horizon k 1 month 2 month 3 month 4 month 5 month 6 month

3 month yield 41.02 60.26 75.38 88.61 102.80 117.10
6 month yield 35.14 56.43 76.44 94.20 111.31 128.08

1 year yield 38.94 63.13 85.38 105.11 123.33 140.35
2 year yield 42.38 69.68 92.98 113.20 131.49 148.44
3 year yield 40.81 67.28 89.61 108.94 126.45 142.62
4 year yield 37.42 62.53 83.66 101.80 118.39 133.86
5 year yield 35.65 60.01 80.55 98.27 114.53 129.57

10 year yield 38.22 59.52 77.05 92.94 107.76 121.49
20 year yield 30.02 48.48 63.59 78.25 92.11 105.06

Panel C: RMSE Ratio
Forecast Horizon k 1 month 2 month 3 month 4 month 5 month 6 month

3 month yield 0.91 0.93*** 0.94*** 0.89*** 0.90*** 0.90***
6 month yield 0.94** 0.94** 0.93*** 0.91*** 0.91*** 0.92***

1 year yield 1.03 0.94* 0.90*** 0.89*** 0.88*** 0.88***
2 year yield 1.24*** 1.00 0.92*** 0.88*** 0.86*** 0.85***
3 year yield 1.20*** 0.97 0.90*** 0.86*** 0.84*** 0.83***
4 year yield 1.10*** 0.93*** 0.87*** 0.84*** 0.82*** 0.82***
5 year yield 0.97 0.89*** 0.85*** 0.83*** 0.82*** 0.81***

10 year yield 0.94 0.86*** 0.83*** 0.81*** 0.80*** 0.80***
20 year yield 1.69*** 1.18** 1.00 0.91* 0.86*** 0.83***

Notes to Table: We present the out-of-sample RMSEs for the A3(3) latent model with forecasting
loss function and standard loss function. Panel A reports on the A3(3) model with forecasting loss
function. At each time t and for each forecast horizon k, we estimate the specification through
Kalman filter using data up to and including t, and forecast k periods ahead. Panel B reports on the
A3(3) model with standard loss function. We estimate the model through Kalman filter using data
up to and including t at each month t, and forecast one to six months ahead. We show the root mean
square error (RMSE) of the forecast in basis points. In order to compare the forecasting performance
of the latent model with two different loss functions, Panel C shows the ratios of the RMSEs in
Panel A and Panel B. Gains in accuracy that are statistically different from zero are denoted by *,
** and ***, corresponding to significance levels of 10%, 5% and 1% respectively, evaluated using the
Diebold and Mariano (1995) t-statistics computed with a serial correlation-robust variance and the
small-sample adjustment of Harvey, Leybourne, and Newbold (1997).



Table 6: Out-of-Sample RMSEs:
JSZ Canonical Form with Fixed Portfolio Weights

Panel A: Forecasting Loss Function
Forecast Horizon k 1 month 2 month 3 month 4 month 5 month 6 month

3 month yield 38.18 55.72 67.68 76.69 87.64 99.06
6 month yield 33.81 51.29 66.91 80.26 93.67 107.02

1 year yield 39.39 59.75 77.92 94.37 108.58 120.94
2 year yield 39.63 61.92 79.63 95.15 108.23 119.37
3 year yield 38.06 59.55 76.65 90.79 102.96 113.00
4 year yield 35.30 55.76 72.01 84.46 95.52 104.93
5 year yield 32.18 51.99 67.80 79.46 90.02 98.93

10 year yield 33.27 49.66 61.71 70.58 79.52 87.04
20 year yield 26.36 40.81 51.30 59.60 67.23 73.44

Panel B: Standard Loss Function
Forecast Horizon k 1 month 2 month 3 month 4 month 5 month 6 month

3 month yield 38.11 55.06 69.89 80.61 91.84 103.21
6 month yield 33.68 52.32 69.43 83.91 97.71 110.97

1 year yield 38.68 60.60 79.92 96.19 110.51 123.39
2 year yield 39.13 62.34 81.09 96.46 109.60 121.24
3 year yield 37.45 59.98 77.79 92.29 104.59 115.25
4 year yield 34.71 56.23 73.01 86.40 97.79 107.71
5 year yield 31.62 52.50 68.68 81.67 92.68 102.08

10 year yield 33.02 49.93 62.56 73.33 82.63 90.45
20 year yield 26.24 40.85 51.63 60.85 68.80 75.40

Panel C: RMSE Ratio
Forecast Horizon k 1 month 2 month 3 month 4 month 5 month 6 month

3 month yield 1.00 1.01 0.97 0.95** 0.95** 0.96***
6 month yield 1.00 0.98** 0.96* 0.96** 0.96*** 0.96***

1 year yield 1.02 0.99 0.97 0.98** 0.98*** 0.98***
2 year yield 1.01 0.99 0.98* 0.99*** 0.99*** 0.98***
3 year yield 1.02* 0.99 0.99** 0.98*** 0.98*** 0.98***
4 year yield 1.02 0.99 0.99** 0.98*** 0.98*** 0.97***
5 year yield 1.02 0.99* 0.99** 0.97*** 0.97*** 0.97***

10 year yield 1.01 0.99** 0.99** 0.96*** 0.96*** 0.96***
20 year yield 1.00* 1.00 0.99 0.98 0.98 0.97

Notes to Table: We present the out-of-sample RMSEs for the JSZ canonical form with forecasting
loss function and standard loss function. Panel A reports on the JSZ canonical form with forecasting
loss function. At each time t and for each forecast horizon k, we estimate the specification using data
up to and including t, and forecast k periods ahead. Panel B reports on the JSZ canonical form with
standard loss function. We estimate the specification using data up to and including t at each month
t, and forecast one to six months ahead. We show the root mean square error (RMSE) of the forecast
in basis points. In order to compare the forecasting performance of the JSZ canonical form with two
different loss functions, Panel C shows the ratios of the RMSEs in Panel A and Panel B. Gains in
accuracy that are statistically different from zero are denoted by *, ** and ***, corresponding to
significance levels of 10%, 5% and 1% respectively, evaluated using the Diebold and Mariano (1995)
t-statistics computed with a serial correlation-robust variance and the small-sample adjustment of
Harvey, Leybourne, and Newbold (1997).



Table 7: Out-of-Sample RMSEs:
JSZ Canonical Form with Variable Portfolio Weights

Panel A: Forecasting Loss Function
Forecast Horizon k 1 month 2 month 3 month 4 month 5 month 6 month

3 month yield 36.60 49.69 60.41 69.09 79.40 90.58
6 month yield 29.97 45.55 59.59 73.09 86.01 98.95

1 year yield 35.06 54.58 69.97 84.23 97.20 109.72
2 year yield 40.70 61.01 76.67 89.55 101.50 113.23
3 year yield 39.19 57.80 73.04 84.54 95.55 106.31
4 year yield 35.54 53.10 67.71 77.95 87.92 97.94
5 year yield 32.16 49.41 63.80 73.82 83.81 93.32

10 year yield 39.47 50.97 60.34 69.03 77.73 84.47
20 year yield 41.32 50.58 58.34 64.61 73.16 80.14

Panel B: Standard Loss Function
Forecast Horizon k 1 month 2 month 3 month 4 month 5 month 6 month

3 month yield 38.11 55.06 69.89 80.61 91.84 103.21
6 month yield 33.68 52.32 69.43 83.91 97.71 110.97

1 year yield 38.68 60.60 79.92 96.19 110.51 123.39
2 year yield 39.13 62.34 81.09 96.46 109.60 121.24
3 year yield 37.45 59.98 77.79 92.29 104.59 115.25
4 year yield 34.71 56.23 73.01 86.40 97.79 107.71
5 year yield 31.62 52.50 68.68 81.67 92.68 102.08

10 year yield 33.02 49.93 62.56 73.33 82.63 90.45
20 year yield 26.24 40.85 51.63 60.85 68.80 75.40

Panel C: RMSE Ratio
Forecast Horizon k 1 month 2 month 3 month 4 month 5 month 6 month

3 month yield 0.96 0.90 0.86* 0.86*** 0.86*** 0.88***
6 month yield 0.89 0.87*** 0.86** 0.87*** 0.88*** 0.89***

1 year yield 0.91 0.90** 0.88** 0.88*** 0.88*** 0.89***
2 year yield 1.04 0.98 0.95** 0.93*** 0.93*** 0.93***
3 year yield 1.05** 0.96 0.94*** 0.92*** 0.91*** 0.92***
4 year yield 1.02* 0.94* 0.93*** 0.90*** 0.90*** 0.91***
5 year yield 1.02 0.94** 0.93*** 0.90*** 0.90*** 0.91***

10 year yield 1.20 1.02*** 0.96*** 0.94*** 0.94*** 0.93***
20 year yield 1.57** 1.24 1.13 1.06 1.06 1.06

Notes to Table: We present the out-of-sample RMSEs for the JSZ canonical form with forecasting
loss function and variable portfolio weights, and the JSZ canonical form with standard loss function
and fixed portfolio weights. Panel A reports on the JSZ canonical form with forecasting loss function
and variable portfolio weights. At each time t and for each forecast horizon k, we estimate the
specification using data up to and including t, and forecast k periods ahead. Panel B reports on
the JSZ canonical form with standard loss function and fixed portfolio weights. We estimate the
specification using data up to and including t at each month t, and forecast one to six months ahead.
We show the root mean square error (RMSE) of the forecast in basis points. In order to compare
the forecast performance between the two specifications, Panel C shows the ratios of the RMSEs in
Panel A and Panel B. Gains in accuracy that are statistically different from zero are denoted by *,
** and ***, corresponding to significance levels of 10%, 5% and 1% respectively, evaluated using the
Diebold and Mariano (1995) t-statistics computed with a serial correlation-robust variance and the
small-sample adjustment of Harvey, Leybourne, and Newbold (1997).



Table 8: In-Sample RMSEs: JSZ Canonical Form

Panel A: Forecasting Loss Function with Variable Portfolio Weights
Forecast Horizon k 1 month 2 month 3 month 4 month 5 month 6 month

3 month yield 10.10 10.15 10.65 10.80 10.84 10.81
6 month yield 13.43 13.93 14.84 13.37 13.64 14.89

1 year yield 12.88 13.35 12.42 13.02 14.33 14.60
2 year yield 15.34 16.02 17.07 17.62 16.92 19.12
3 year yield 16.95 12.63 15.54 17.72 19.49 21.27
4 year yield 17.95 15.41 16.51 16.82 17.68 17.53
5 year yield 16.38 15.49 15.47 16.74 17.62 17.35

10 year yield 28.09 29.20 28.85 28.29 28.86 27.96
20 year yield 33.08 34.99 30.94 30.48 32.25 28.70

Panel B: Forecasting Loss Function with Fixed Portfolio Weights
Forecast Horizon k 1 month 2 month 3 month 4 month 5 month 6 month

3 month yield 15.45 15.30 15.35 15.55 15.37 15.62
6 month yield 14.48 14.52 14.58 14.97 14.78 14.90

1 year yield 15.32 15.34 15.42 15.76 16.06 15.92
2 year yield 9.71 9.79 9.88 10.00 10.00 10.98
3 year yield 8.10 8.13 8.18 8.32 8.15 8.31
4 year yield 11.93 11.94 11.98 11.95 11.96 12.07
5 year yield 12.73 12.73 12.75 12.75 12.78 12.77

10 year yield 14.24 14.24 14.26 14.31 14.39 14.39
20 year yield 13.52 13.54 13.57 13.76 13.99 13.92

Panel C: Standard Loss Function with Fixed Portfolio Weights
3 month yield 15.18
6 month yield 13.99

1 year yield 15.04
2 year yield 8.55
3 year yield 6.87
4 year yield 9.86
5 year yield 10.68

10 year yield 11.62
20 year yield 11.54

Notes to Table: We present the in-sample RMSEs for the JSZ canonical form with forecasting loss
function and variable portfolio weights (Panel A), the JSZ canonical form with forecasting loss func-
tion and fixed portfolio weights (Panel B), and the JSZ canonical form with standard loss function
and fixed portfolio weights (Panel C). The estimates of the specifications with forecasting loss func-
tions are forecast-horizon specific, so we report the in-sample RMSEs for each forecast horizon. All
the RMSEs are reported in basis points.



Table 9: Parameter Estimates: JSZ Canonical Form with Variable Portfolio Weights

Panel A: Forecasting Loss Function
P -Dynamics Q-Dynamics

Forecast Horizon KP
0 KP

1 Eigenvalues KQ
0 KQ

1 Eigenvalues
1 month

-0.0016 0.9993 0.0631 0.6416 0.9938 0.0004 0.9982 0.0949 -0.6988 0.9991
0.0005 0.0059 0.9339 0.3664 0.9259 -0.0004 -0.0006 0.9492 0.6744 0.9593
0.0005 -0.0024 -0.0032 0.7770 0.7906 0.0002 0.0006 0.0031 0.8143 0.8034

2 month
-0.0017 1.0000 0.0668 0.7077 0.9942 0.0004 0.9976 0.0970 -0.7441 0.9992
0.0004 0.0061 0.9383 0.3870 0.9287 -0.0003 -0.0002 0.9524 0.6930 0.9608
0.0005 -0.0022 -0.0036 0.7833 0.7986 0.0001 0.0005 0.0028 0.8082 0.7981

3 month
-0.0014 1.0003 0.0668 0.6341 0.9940 0.0005 0.9987 0.0880 -0.7480 0.9993
0.0004 0.0062 0.9423 0.4072 0.9324 -0.0004 -0.0009 0.9606 0.7453 0.9605
0.0005 -0.0029 -0.0045 0.7507 0.7669 0.0002 0.0006 0.0008 0.7760 0.7755

4 month
-0.0014 0.9988 0.0757 0.7156 0.9942 0.0005 0.9993 0.0849 -0.8361 0.9992
0.0004 0.0059 0.9451 0.4420 0.9303 -0.0004 -0.0018 0.9691 0.7976 0.9616
0.0004 -0.0023 -0.0061 0.7428 0.7621 0.0002 0.0009 -0.0008 0.7641 0.7717

5 month
-0.0021 0.9974 0.1140 0.8687 0.9966 0.0004 0.9999 0.0919 -0.7866 0.9993
0.0003 0.0043 0.9549 0.3965 0.9322 -0.0003 -0.0027 0.9765 0.6517 0.9691
0.0004 -0.0011 -0.0089 0.7626 0.7861 0.0001 0.0011 -0.0003 0.8030 0.8110

6 month
-0.0021 1.0001 0.1242 0.8707 0.9969 0.0004 0.9991 0.0884 -0.7991 0.9995
0.0003 0.0047 0.9555 0.3872 0.9306 -0.0003 -0.0016 0.9806 0.6556 0.9694
0.0004 -0.0017 -0.0107 0.7559 0.7840 0.0001 0.0008 -0.0017 0.7951 0.8059

Panel B: Standard Loss Function
P -Dynamics Q-Dynamics

KP
0 KP

1 Eigenvalues KQ
0 KQ

1 Eigenvalues

-0.0021 0.9940 0.0549 0.3129 0.9948 0.0004 1.0052 0.1039 -0.2569 1.0000
0.0004 0.0017 0.9337 0.1538 0.9274 -0.0003 -0.0073 0.9370 0.2717 0.9648
0.0012 -0.0002 -0.0042 0.8084 0.8139 0.0003 0.0042 0.0136 0.8685 0.8458

Notes to Table: We present the estimated P - and Q-parameters governing the state variables in the JSZ canonical form with forecasting loss
function and variable portfolio weights, and the JSZ canonical form with standard loss function. The estimates are based on in-sample estimation
with the entire sample. Panel A reports on the JSZ canonical form with forecasting loss function and variable portfolio weights. The estimates
are forecast-horizon specific. Panel B reports on the JSZ canonical form with standard loss function.



Table 10: Parameter Estimates: JSZ Canonical Form with Fixed Portfolio Weights

Panel A: Forecasting Loss Function
P -Dynamics Q-Dynamics

Forecast Horizon KP
0 KP

1 Eigenvalues KQ
0 KQ

1 Eigenvalues
1 month

-0.0022 0.9950 0.0547 0.3116 0.9956 0.0004 1.0051 0.1033 -0.2582 0.9995
0.0004 0.0017 0.9274 0.1542 0.9196 -0.0003 -0.0073 0.9353 0.2699 0.9634
0.0012 -0.0002 -0.0041 0.8302 0.8374 0.0003 0.0042 0.0137 0.8647 0.8423

2 month
-0.0021 0.9945 0.0544 0.3023 0.9951 0.0004 1.0051 0.1023 -0.2581 0.9995
0.0004 0.0017 0.9324 0.1543 0.9243 -0.0003 -0.0073 0.9354 0.2703 0.9636
0.0012 -0.0002 -0.0041 0.8376 0.8451 0.0003 0.0042 0.0138 0.8643 0.8417

3 month
-0.0021 0.9942 0.0546 0.2793 0.9950 0.0004 1.0051 0.1016 -0.2590 0.9994
0.0004 0.0017 0.9315 0.1540 0.9248 -0.0003 -0.0073 0.9352 0.2705 0.9637
0.0012 -0.0002 -0.0042 0.8145 0.8205 0.0003 0.0042 0.0138 0.8636 0.8409

4 month
-0.0019 0.9947 0.0537 0.2595 0.9955 0.0004 1.0051 0.1007 -0.2553 0.9995
0.0004 0.0018 0.9306 0.1547 0.9243 -0.0003 -0.0073 0.9351 0.2706 0.9634
0.0012 -0.0002 -0.0042 0.8019 0.8074 0.0003 0.0043 0.0138 0.8622 0.8396

5 month
-0.0020 0.9954 0.0512 0.2727 0.9962 0.0004 1.0052 0.0994 -0.2581 0.9995
0.0004 0.0017 0.9325 0.1494 0.9275 -0.0003 -0.0072 0.9350 0.2701 0.9639
0.0014 -0.0002 -0.0041 0.7731 0.7772 0.0003 0.0043 0.0142 0.8618 0.8386

6 month
-0.0018 0.9947 0.0523 0.2703 0.9955 0.0004 1.0052 0.1002 -0.2573 0.9994
0.0004 0.0017 0.9303 0.1534 0.9252 -0.0003 -0.0073 0.9348 0.2702 0.9631
0.0014 -0.0002 -0.0042 0.7684 0.7727 0.0003 0.0042 0.0138 0.8616 0.8392

Panel B: Standard Loss Function
P -Dynamics Q-Dynamics

KP
0 KP

1 Eigenvalues KQ
0 KQ

1 Eigenvalues

-0.0021 0.9940 0.0549 0.3129 0.9948 0.0004 1.0052 0.1039 -0.2569 1.0000
0.0004 0.0017 0.9337 0.1538 0.9274 -0.0003 -0.0073 0.9370 0.2717 0.9648
0.0012 -0.0002 -0.0042 0.8084 0.8139 0.0003 0.0042 0.0136 0.8685 0.8458

Notes to Table: We present the estimated P - and Q-parameters governing the state variables in the JSZ canonical form with forecasting loss
function and fixed portfolio weights, and the JSZ canonical form with standard loss function. The estimates are based on in-sample estimation
with the entire sample. Panel A reports on the JSZ canonical form with forecasting loss function and fixed portfolio weights. The estimates
are forecast-horizon specific. Panel B reports on the JSZ canonical form with standard loss function.



Figure A1: A1(3) Model with Latent Factors
Differences Between State Variables Using Forecasting and Standard Loss Functions.
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Notes to Figure: This figure presents the differences between the state variables from the
A1(3) model with forecasting loss function and standard loss function. The state variables
are obtained from in-sample estimation. These results are forecast-horizon specific, i.e. each
panel represents the differences in the estimates for a given forecast horizon.



Figure A2: A2(3) Model with Latent Factors
Differences Between State Variables Using Forecasting and Standard Loss Functions.
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Notes to Figure: This figure presents the differences between the state variables from the
A2(3) model with forecasting loss function and standard loss function. The state variables
are obtained from in-sample estimation. These results are forecast-horizon specific, i.e. each
panel represents the differences in the estimates for a given forecast horizon.



Figure A3: A3(3) Model with Latent Factors
Differences Between State Variables Using Forecasting and Standard Loss Functions.
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Notes to Figure: This figure presents the differences between the state variables from the
A3(3) model with forecasting loss function and standard loss function. The state variables
are obtained from in-sample estimation. These results are forecast-horizon specific, i.e. each
panel represents the differences in the estimates for a given forecast horizon.



Table A1: In-Sample RMSEs

Panel A: A1(3) with Latent Factors

Forecasting Loss Function Standard Loss Function
Forecast Horizon k 1 month 2 month 3 month 4 month 5 month 6 month

3 month yield 28.96 28.52 28.63 28.95 29.93 28.41 18.21
6 month yield 16.76 16.13 16.67 17.49 17.95 21.66 15.66

1 year yield 22.88 23.78 25.39 25.10 26.48 27.35 17.26
2 year yield 20.96 22.41 23.03 24.43 23.81 22.73 11.01
3 year yield 19.60 20.48 20.89 22.04 21.56 20.58 7.83
4 year yield 15.84 15.00 15.46 16.63 16.10 17.21 10.43
5 year yield 16.49 18.43 20.12 23.37 24.02 28.18 12.12

10 year yield 22.90 22.82 24.57 23.51 26.18 28.43 12.82
20 year yield 21.55 21.06 23.98 24.42 24.79 25.81 15.34

Panel B: A2(3) with Latent Factors

Forecasting Loss Function Standard Loss Function
Forecast Horizon k 1 month 2 month 3 month 4 month 5 month 6 month

3 month yield 28.51 29.81 29.74 29.70 31.18 29.12 18.18
6 month yield 17.00 15.99 16.64 17.87 18.83 23.12 16.77

1 year yield 23.03 24.82 26.39 26.18 27.48 28.16 18.51
2 year yield 21.03 22.44 23.12 25.69 23.96 22.84 14.07
3 year yield 19.65 20.51 21.98 22.31 21.68 22.66 12.57
4 year yield 17.14 15.06 16.54 16.81 16.08 18.12 11.79
5 year yield 16.55 18.45 21.11 23.53 24.22 28.30 10.77

10 year yield 23.42 24.12 26.86 24.68 25.32 28.68 11.74
20 year yield 21.86 21.33 24.04 24.77 25.67 27.89 16.42

Panel C: A3(3) with Latent Factors

Forecasting Loss Function Standard Loss Function
Forecast Horizon k 1 month 2 month 3 month 4 month 5 month 6 month

3 month yield 31.23 30.54 30.02 30.26 31.72 30.01 19.29
6 month yield 18.21 16.04 16.81 18.71 19.03 23.44 17.79

1 year yield 25.05 25.57 26.46 26.78 29.30 28.43 19.51
2 year yield 21.58 22.76 23.96 26.66 24.92 23.78 14.92
3 year yield 20.73 21.58 23.03 23.26 22.44 25.40 13.34
4 year yield 18.38 17.34 18.81 19.00 17.90 19.87 12.50
5 year yield 17.58 19.19 21.62 24.09 24.09 29.03 11.42

10 year yield 25.66 25.10 27.79 26.65 27.93 29.47 11.39
20 year yield 23.14 22.58 25.42 26.41 26.90 28.76 18.99

Notes to Table: We present the in-sample RMSEs for the A1(3) (Panel A), A2(3) (Panel B) and A3(3) (Panel C) models with forecasting
loss function and standard loss function. For the models with forecasting loss function, the estimates are forecast-horizon specific, so
we report the in-sample RMSEs for each forecast horizon. All the RMSEs are reported in basis points.


