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Modeling financial sector joint tail risk in the euro area

Abstract

We develop a novel high-dimensional non-Gaussian modeling framework to infer con-

ditional and joint risk measures for many financial sector firms. The model is based on

a dynamic Generalized Hyperbolic Skewed-t block-equicorrelation copula with time-

varying volatility and dependence parameters that naturally accommodates asymme-

tries, heavy tails, as well as non-linear and time-varying default dependence. We

demonstrate how to apply a conditional law of large numbers in this setting to de-

fine risk measures that can be evaluated quickly and reliably. We apply the modeling

framework to assess the joint risk from multiple financial firm defaults in the euro area

during the 2008-2012 financial and sovereign debt crisis. We document unprecedented

tail risks during 2011-12, as well as their steep decline after subsequent policy actions.

Keywords: systemic risk; dynamic equicorrelation; generalized hyperbolic distribu-

tion; law of large numbers; large portfolio approximation.

JEL classification: G21, C32.

1 Introduction

In this paper we develop a novel high-dimensional non-Gaussian modeling framework to

infer conditional and joint risk measures for many financial sector firms. The model is

based on a dynamic Generalized Hyperbolic Skewed-t copula with time-varying volatility

and dependence parameters. Such a framework naturally accommodates asymmetries, heavy

tails, as well as non-linear and time-varying default dependence. To balance the need of

parsimony as well as flexibility in a high-dimensional cross-section, we endow the dynamic

model with a score driven block-equicorrelation structure. We further demonstrate that a

conditional law of large numbers applies in our setting which allows us to define risk measures

that can be evaluated easily and reliably within seconds. We apply the modeling framework



to assess the joint risk from multiple financial firm defaults in the euro area during the

financial and sovereign debt crisis. We document unprecedented tail risks during 2011-12, as

well as a sharp decline in joint (but not conditional) tail risk probabilities after a sequence of

announcements by the European Central Bank (ECB) that introduced its Outright Monetary

Transactions (OMT) program.1

Since the onset of the financial crisis in 2007, financial stability monitoring has become

a key priority for many central banks, in addition to their respective monetary policy man-

dates, see for example Acharya, Engle, and Richardson (2012), and Adrian, Covitz, and

Liang (2013). Central banks and related authorities have received prudential responsibilities

that involve the analysis of financial risks to and from a large system of financial interme-

diaries. The cross sectional dimensions of these systems are typically high, even if attention

is restricted to only large and systemically important institutions. Our modeling framework

is directly relevant for such monitoring tasks. In addition, our framework is interesting for

financial institutions and clearing houses that are required to actively set risk limits and

maintain economic capital buffers to withstand bad risk outcomes due to exposures to a

large number of credit risky counterparties. Finally, with the benefit of hindsight, an eval-

uation of the time variation in conditional and joint risks allows us to assess the impact of

non-standard policy measures undertaken by central banks (or other actors) on the risk of

a simultaneous and widespread failure of financial intermediaries.

Using our framework, we repeatedly now-cast market participants’ current perceptions

about financial system risks as impounded into asset prices, such as equities. This also in-

volves the use of risk measures derived from such prices, such as expected default frequencies

(EDF) typically used in the industry. Our starting point for modeling time-varying joint and

conditional risks is a dynamic copula framework, as for example also considered by Avesani,

Pascual, and Li (2006), Segoviano and Goodhart (2009), Oh and Patton (2013), Christof-

fersen, Jacobs, Jin, and Langlois (2013), and Lucas, Schwaab, and Zhang (2014). In each

case, a collection of firms is seen as a portfolio of obligors whose multivariate dependence

1See ECB (2012b) and Coeuré (2013). The OMT is a non-standard monetary policy measure within
which the ECB could, under certain conditions, make purchases in secondary markets of bonds issued by
euro area member states.
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structure is inferred from equity (or CDS) data. For example, Avesani, Pascual, and Li

(2006) assess defaults in a Gaussian factor model framework. Their determination of joint

default probabilities is in part based on the notion of an nth-to-default CDS basket, which

can be set up and priced as suggested in Hull and White (2004). Alternatively, Segoviano and

Goodhart (2009) propose a non-parametric copula approach. Here, the multivariate density

is recovered by minimizing the distance between the so-called banking system’s multivari-

ate density and a parametric prior density subject to tail constraints that reflect individual

default probabilities. We regard each of these two earlier approaches as polar cases, and

attempt to strike a middle ground. The framework in our current paper retains the ability

to describe the salient equity data features in terms of skewness, fat tails, and time-varying

correlations (which the static Gaussian copula model fails to do), and in addition retains the

ability to fit a cross-sectional dimension larger than a few firms (which the non-parametric

approach fails to do due to computational problems). Relatedly, Oh and Patton (2013) and

Christoffersen et al. (2013) study non-Gaussian and high-dimensional risk dependence in the

U.S. non-financial sector using the dynamic skewed Student’s t density of Hansen (1994),

rather than the Generalized Hyperbolic Skewed-t of the current paper.

Our study contributes to several directions of current research. First, we effectively apply

‘market risk’ methods to solve a ‘credit risk’ problem. As a result, we connect a growing

literature on non-Gaussian volatility and dependence models with another literature on

credit risk and portfolio loss asymptotics. Time-varying parameter models for volatility

and dependence have been considered, for example, by Engle (2002), Demarta and McNeil

(2005), Creal et al. (2011), Zhang et al. (2011), and Engle and Kelly (2012). At the same

time, credit risk models and portfolio tail risk measures have been studied, for example,

by Vasicek (1987), Lucas et al. (2001, 2003), Gordy (2000, 2003), Koopman, Lucas and

Schwaab (2011, 2012), and Giesecke et al. (2014). We argue that our combined framework

yields the best of these two worlds: portfolio credit risk measures (say, one year ahead) that

are available at a market risk frequency (such as daily or weekly) for real time portfolio

risk measurement. A third strand of literature investigates joint and conditional default

dependence from a financial stability perspective, see, for example, Hartmann, Straetmans,
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and de Vries (2007), Acharya, Engle, and Richardson (2012), Malz (2012), Suh (2012),

Black, Correa, Huang, and Zhou (2012), and Lucas et al. (2014). Fourth, to balance the

need for parsimony and flexibility, we consider a variant of a block dynamic equicorrelation

(DECO) structure for the covariance matrix as in Engle and Kelly (2012). The version

developed in this paper of the block equicorrelation model still allows us to draw upon

machinery developed in the credit portfolio tail risk literature mentioned earlier. Finally, to

introduce time-variation into our econometric model specification we endow our model with

observation-driven dynamics based on the score of the conditional predictive log-density.

Score-driven time-varying parameter models are an active area of research, see for example

Creal, Koopman, and Lucas (2011), Creal, Koopman, and Lucas (2013), Harvey (2013), Oh

and Patton (2013), Creal, Schwaab, Koopman, and Lucas (2014), Harvey and Luati (2014),

Andres (2014), and more.2 For an information theoretical motivation for the use of score

driven models, see Blasques, Koopman, and Lucas (2014b).

We apply our general framework by analyzing financial sector joint and conditional de-

fault risks of N = 10 and N = 73 financial sector firms located in the euro area, based on

weekly data from January 1999 to September 2013. Using a limited dimension of N = 10

firms, we verify that our dynamic correlations based on the (block) DECO assumption closely

track the average correlations from a full correlation matrix model analysis. In addition, we

verify that our semi-analytical approximations to compute joint and conditional tail risk

measures already work well even if the cross-sectional dimension is as low as 10 firms. In our

final high-dimensional (N = 73) application, we document unprecedented joint tail risks for

a set of large euro area financial sector firms during the financial and euro area sovereign debt

crises. We also document a clear peak of financial sector joint default risk in the summer

of 2012. Based on time variation in our joint risk measure we argue that three events — a

speech by the ECB president in London on 26 July 2012, the announcement of the Outright

Monetary Transactions (OMT) program on 2 August 2012, and the disclosure of the OMT

details on 6 September 2012 — collectively ended the most acute phase of extreme financial

sector joint tail risks in the euro area. Second, we document that conditional tail probabil-

2We refer to http://www.gasmodel.com for an extensive enumeration of recent work in this area.
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ities did not decline as much, indicating that risk spillovers may have remained a concern.

Taken together, these findings suggests that the OMT was perceived by market participants

less in terms of a ‘firewall’ measure that mitigates risk spillovers, but rather in terms of a

mechanism that impacts marginal risks but not necessarily the connectedness of financial

sector firms. Finally, we argue that the design and implementation of non-standard mone-

tary policy measures and financial stability (tail) outcomes are strongly related. This finding

suggests substantial scope for the coordination of monetary, macro-prudential, and bank su-

pervision policies. This is relevant as both monetary policy as well as banking supervision

will be carried out jointly by the ECB as of November 2014.

The remainder of the paper is set up as follows. Section 2 introduces our statistical

framework, the dynamic Generalized Hyperbolic Skewer-t Block DECO model, and discusses

parameter estimation. Section 3 demonstrates how a conditional law of large numbers can

be applied to portfolio risk measures in a GHST factor copula setting, which enables us

to compute such measures reliably and quickly. Section 4 applies the modeling framework

to the euro area financial sector during the financial and sovereign debt crisis. Section 5

concludes. The Appendix presents proofs and additional technical details.

2 Statistical model

2.1 The dynamic Generalized Hyperbolic Skewed t copula model

Following Lucas et al. (2014), we consider a copula model based on the Generalized Hyper-

bolic Skewed t (GHST) distribution. Let

yit = (ςt − µς)γi +
√
ςt Σ̃

1/2
t ϵt, i = 1, . . . , N, (1)

where ϵt ∈ RN is a vector of standard normally distributed risk factors, Σ̃t ∈ RN×N is

the GHST copula scale matrix, γ ∈ RN is a vector controlling the skewness of the copula,

and ςt ∈ R+ is an inverse-Gamma distributed common risk factor that affects all firms

simultaneously, ςt ∼ IG(ν
2
, ν
2
). The two random variables ςt and ϵt are independent, and we

set µς = E[ςt] = ν/(ν − 2), such that yit has zero mean if ν > 2. Matrix Σ̃
1/2
t is a matrix
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square root of Σ̃t.

A firm defaults if yit falls below its default threshold y∗it. The cross sectional dependence

in defaults captured by equation (1) thus stems from two sources: common exposures to

the normally distributed risk factors ϵt as captured by the time-varying matrix Σ̃t; and an

additional common exposure to the scalar risk factor ςt. The former captures connectedness

through correlations, while the latter captures such effects through the tail-dependence of

the copula. To see this, note that if ςt is non-random, the first term in (1) drops out of

the equation and there is zero tail dependence. Conversely, if ςt is large, all asset values are

affected at the same time, making joint defaults of two or more firms more likely.

Earlier applications of the GHST distribution to financial and economic data include,

for example, Menćıa and Sentana (2005), Hu (2005), Aas and Haff (2006), and Oh and

Patton (2013). Alternative skewed t distributions have been proposed as well, such as

Branco and Dey (2001), Gupta (2003), Azzalini and Capitanio (2003), and Bauwens and

Laurent (2005); see also the overview of Aas and Haff (2006). An advantage of the GHST

distribution vis-à-vis these alternatives is that the GHST assumption relates more closely to

the continuous-time finance literature under skewness and fat tails; see for example Bibby

and Sørensen (2001).

Define the default probability for firm i at time t as pit, such that

pit = Pr [yit < y∗it] = Fit(y
∗
it) ⇔ y∗it = F−1

it (pit), (2)

where Fit is the univariate GHST cumulative distribution function (cdf) of yit. In our

application, we assume that we observe pit as the expected default frequency of firm i reported

at time t by Moody’s. Instead of focusing on the individual default probabilities pit, our

focus is instead on the time-varying joint probabilities, such as Pr
[
yit < y∗it, yjt < y∗jt

]
, or

on the conditional probabilities Pr
[
yit < y∗it|yjt < y∗jt

]
, for firms i ̸= j. Below, we first

develop a dynamic version of the GHST copula model. We then consider a dynamic (block)-

equicorrelation version of the model in the spirit of Engle and Kelly (2012), which turns out

to be particularly useful to study joint and conditional default probabilities in a parsimonious

way for large dimensional systems.

7



2.2 The dynamic GHST model

To describe the dynamics of the scale parameter Σ̃t in the GHST model (1), we use the gen-

eralized autoregressive score (GAS) dynamics as proposed in Creal et al. (2011, Creal et al.

(2013); see also Harvey (2013). These dynamics easily adapt to the skewed and fat-tailed

nature of the GHST density and improve the stability of dynamic volatility and correlation

estimates; see Blasques et al. (2014b). Our version of the model is slightly different from

that in Lucas et al. (2014) in order to accommodate the use of an equicorrelation structure

later on.

To derive the GAS dynamics for the GHST model, we need the conditional density of yt,

which we parameterize as

p(yt; Σ̃t, γ, ν) =
2 (ν/2)ν/2

Γ(ν/2) |2π Σ̃t|1/2
·
K(ν+N)/2

(√
d(yt) · d(γ)

)
eγ

′Σ̃−1
t (yt−µ̃)

(d(yt)/d(γ))
(ν+N)/4

, (3)

d(yt) = ν + (yt − µ̃)′Σ̃−1
t (yt − µ̃), (4)

d(γ) = γ′Σ̃−1
t γ, µ̃ = − ν

ν − 2
γ, (5)

where Ka(b) is the modified Bessel function of the second kind; see Bibby and Sørensen

(2003), The parameters γ = (γ1, . . . , γN)
′ ∈ RN and ν ∈ R+ are the skewness and degrees

of freedom (or kurtosis) parameter, respectively, while µ̃ and Σ̃t denote the location vector

and scale matrix, respectively. Note that if yt has a multivariate GHST distribution with

parameters µ̃, Σ̃, γ, and ν as given in (3), then Ayt + b for some matrix A and vector b

also has a GHST distribution, with parameters Aµ̃ + b, AΣ̃A′, γ, and ν. In particular, the

marginal distributions of yit also have a GHST distribution. The GHST density (3) nests

symmetric-t (γ = 0) and multivariate normal (γ = 0 and ν → ∞) as a special case.

We parameterize the time-varying matrix Σ̃t of yt as in Engle (2002), i.e.,

Σ̃t = D(ft)R̃(ft)D(ft), (6)

where ft is a vector of time varying parameters, D(ft) is a diagonal matrix holding the scale

parameters of yit, and R̃(ft) captures the dependence parameters. In our current copula set-

up, we use univariate models for D(ft), and the multivariate model for R̃(ft). In Appendix
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A.1 we discuss our univariate volatility modeling approach for D(ft). For the remainder of

this section, we concentrate on the matrix R̃(ft).

Following Creal et al. (2011, Creal et al. (2013), we endow ft with score driven (GAS)

dynamics using the derivative of the log conditional observation density (3). The transition

dynamics for ft are given by

ft+1 = ω̃ +

p−1∑
i=0

Aist−i +

q−1∑
j=0

Bjft−j, (7)

st = St∇t, ∇t = ∂ ln p(yt|Ft−1; ft, θ)/∂ft, (8)

where ω̃ = ω̃(θ) is a vector of fixed intercepts, Ai = Ai(θ) and Bj = Bi(θ) are fixed parameter

matrices that depend on the vector θ containing all time invariant parameters in the model.

The key element in (7) is the use of the scaled score st, with scaling function St. The

following result contains an expression for the score.

Result 1. Let yt follow a zero mean GHST distribution p(yt; Σ̃t, γ, ν), where the time-varying

scale matrix is driven by the GAS model (7)-(8). Then the dynamic score is given by

∇t = Ψ′
tH

′
tvec

(
wt · (yt − µ̃)(yt − µ̃)′ − 0.5Σ̃t − γ(yt − µ̃)′ − w̌t · γγ′

)
, (9)

wt =
ν +N

4d(yt)
−

k′
0.5(ν+N)

(√
d(yt)d(γ)

)
2
√
d(yt)/d(γ)

, (10)

w̌t =
ν +N

4d(γ)
+

k′
0.5(ν+N)

(√
d(yt)d(γ)

)
2
√

d(γ)/d(yt)
, (11)

Ht = Σ̃−1
t ⊗ Σ̃−1

t , Ψt =
∂vec(Σ̃t)

′

∂ft
, (12)

where kν(·) = lnKν(·) with first derivative k′
ν(·). The matrices Ψt and Ht are time-varying

and parameterization specific; both matrices depend on ft but not on the data yt.

Proof. See Appendix A.2.

Result 1 is different from the expressions in Lucas et al. (2014) due to the different

parameterization. In our current specification, we model the scale matrix directly in order

to fully employ the (block)-equicorrelation structure later on for our conditional law of large

9



numbers result. The result in equation (8) reveals the key feature of the GAS dynamic

specification. In essence, the score-driven mechanism takes a Gauss-Newton improvement

step for the scale matrix to better fit the most recent observation. Equation (8) shows that ft

reacts to deviations between Σ̃t and the observed (yt−µ̃)(yt−µ̃)′. The reaction is asymmetric

if γ ̸= 0, in which case there is also a reaction to the level (yt − µ̃) itself. The reaction to

(yt − µ̃)(yt − µ̃)′ is modified by the weight wt. If ν < ∞, the GHST distribution is fat tailed

and the weight decreases in the Mahalanobis distance d(yt); compare the discussion for the

symmetric Student’s t case in Creal et al. (2011). This feature gives the model a robustness

flavor in that incidental large values of yt have a limited impact on future volatilities and

correlations. The remaining expressions for Ht and Ψt only serve to transform the dynamics

of the covariance matrix in (6) into the dynamics of the unobserved factor ft.

To scale the score in (8) we set the scaling matrix St equal to the inverse conditional

Fisher information matrix of the symmetric Student’s t distribution,

St =
{
Ψ′

t(Σ̃
−1
t ⊗ Σ̃−1

t )′[gG− vec(I)vec(I)′](Σ̃−1
t ⊗ Σ̃−1

t )Ψt

}−1

, (13)

where g = (ν + N)/(ν + 2 + N), and G = E[xtx
′
t ⊗ xtx

′
t] for xt ∼ N(0, IN). Zhang et al.

(2011) demonstrate that this results in a stable model that outperforms alternative models

if the data are fat-tailed and skewed.

2.3 Dynamic (Block)-Equicorrelation (DECO) Structure

As we want to use our model in the context of a large cross-sectional dimension to describe

the joint (tail) risk dynamics in a large system of financial institutions, we refrain from

modeling all dependence parameters in R̃(ft) individually. Instead, we adopt the approach

of Engle and Kelly (2012) and impose a block-equicorrelation (block-DECO) structure on

the matrix R̃(ft). By limiting the number of free parameters, we considerably facilitate the

estimation process while we can still capture dynamic patterns in the dependence structure

amongst financial firms, particularly in times of stress.

For the (single block) DECO structure, we assume that Σ̃t takes the form

Σ̃t = (1− ρ2t )IN + ρ2t ℓNℓ
′
N , (14)
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where ρt ∈ (0, 1), and ℓN is a N × 1 vector of ones. Using the specific form of Σ̃t in (14),

the expressions for Ψt and Ht and Result 1 simplify considerably. We summarize this in the

following result.

Result 2 (single block DECO). If Σ̃t = (1 − ρ2t )IN + ρ2t ℓNℓ
′
N , and ρt = (1 + exp(−ft))

−1,

we obtain

Ψt =
∂vec(Σ̃t)

′

∂ft
= (ℓN2 − vec(IN))

2 exp(−ft)

(1 + exp(−ft))3
. (15)

Proof. See Appendix A.3.

We can easily generate the equicorrelation structure in (14) from model (1) by writing

yit = (ςt − µς) γi +
√
ςt

(
ρt κt +

√
1− ρ2t ϵ̃it

)
, (16)

where κt and ϵ̃it are two independent standard normal random variables. The logistic param-

eterization ρt = (1 + exp(ft))
−1 forces the correlation parameter to be in the unit interval,

irrespective of the value of ft ∈ R. Though the original equicorrelation specification of Engle

and Kelly (2012) also allows for (slightly) negative equicorrelations, such values are typi-

cally unrealistic in the type of applications we consider later on. The parameterization with

equicorrelation parameter ρ2t > 0 therefore suffices for our current purposes.

The restriction of a single correlation parameter characterizing the entire scaling matrix

Σ̃t might be too restrictive empirically, particularly if we want to consider differences in

dependence between financial firms in different countries. For example, in the context of

the euro area sovereign debt crisis we might want to allow for different dependence features

between firms in stressed and non-stressed countries. For two blocks containing N1 and N2

firms, respectively, our block-DECO specification is given by

Σ̃t =

(1− ρ21,t)IN1 0

0 (1− ρ22,t)IN2

+

ρ1,tℓN1

ρ2,tℓN2

 ·
(
ρ1,tℓ

′
N1

ρ2,tℓ
′
N2

)
. (17)

The specification in (17) is somewhat more restrictive than the block-equicorrelation struc-

ture laid out in Engle and Kelly (2012). The main advantage, however, is that the form in

(17) preserves the Vasicek (1987) single factor credit risk structure of yt (conditional on ςt).
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This feature is important for the conditional law of large numbers result in Section 3. This

result in turn allows us to compute joint and conditional risk measures fast and efficiently in

large dimensions, precisely when standard simulation methods quickly become inefficient.3

Using the block-DECO structure (17) we obtain the following result.

Result 3 (two-block DECO). If Σ̃t is given by (17) with ρj,t = (1+exp(−fj,t))
−1 for j = 1, 2,

then the time varying factor ft = (f1,t, f2,t)
′ ∈ R2×1 follows the system (9)–(12), with

Ψt =
∂vec(Σ̃t)

′

∂ft
=

∂vec(Σ̃t)
′

∂ρt

dρ′t
dft

, (18)

dρ′t
dft

=

 exp(−f1,t)

(1+exp(−f1,t))2
0

0 exp(−f2,t)

(1+exp(−f2,t))2

 , (19)

∂vec(Σ̃t)
′

∂ρt
=

vec

IN1 0

0 0

 , vec

0 0

0 IN2

 ·

−2ρ1,t 0

0 −2ρ2,t


+

ρ1,tℓN1

ρ2,tℓN2

⊗ IN + IN ⊗

ρ1,tℓN1

ρ2,tℓN2

 ·

ℓN1

0

 ,

 0

ℓN2

 , (20)

where ρt = (ρ1,t, ρ2,t)
′ and N = N1 +N2.

Proof. See Appendix A.3.

We can introduce further flexibility to the model by extending the support of ρ1,t and

ρ2,t from (0, 1) to (−1, 1) by defining ρj,t = (exp(fj,t)− 1)/(exp(fj,t) + 1) for j = 1, 2. The

advantage of this extension is that the correlations between blocks can now become negative,

whereas the within block correlation remains positive. For the empirical application in

Section 4, however, this extension is not needed.

We can also easily generalize the 2-block specification to an m-block DECO structure.

The corresponding equations resemble those in Result 3. Rather than providing the (lengthy)

expressions in the main text, we refer to Appendix A.3 for the precise formulations. These

formulations are used in our empirical analysis in Section 4, where we also consider a 3-block

equicorrelation specification.

3We demonstrate in Section 4.2 based on N = 10 firms that the tail risk measurements obtained from
applying (14) (or (17)) are close to those based on a full correlation matrix analysis.
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2.4 Parameter estimation

We can estimate the static parameters θ of the dynamic GHST model by standard maximum

likelihood procedures. Likelihood estimation is straightforward as the likelihood function

is known in closed form using a standard prediction error decomposition. Deriving the

asymptotic behavior for time varying parameter models with GAS dynamics is non-trivial.

We refer to Blasques et al. (2012, Blasques et al. (2014a, Blasques et al. (2014c) and Lucas

and Silde (2014) for details.

As mentioned earlier, we split the estimation problem into two parts by adopting a copula

perspective. As a result, the number of parameters that need to be estimated in each step

is reduced substantially. In addition, the copula perspective has the advantage that we can

add more flexibility to modeling the marginal distributions. For example, when working

with a multivariate GHST density, all marginal distributions must have the same kurtosis

parameter ν. By adopting a copula perspective, we can relax this restriction.

The two stages of the estimation process can be summarized as follows. In a first step,

we estimate univariate dynamic GHST models using the equity returns for each firm i based

on the maximum likelihood approach as discussed in Appendix A.1. Using the estimated

univariate models with parameters are µ̃it, σ̃it, γi, and νi, we transform the observations

into their probability integral transforms uit ∈ [0, 1]. In the second step, we estimate the

matrix Σ̃t = R̃t as parameterized in Section 2.3 using the probability integral transforms

uit constructed in the first step. The GHST copula parameters are 0, R̃t, γ · (1, . . . , 1)′ for

γ ∈ R, and ν. The static parameters to be estimated include the parameters ω̃, Aj, and Bj

of the dynamic equation (7).

3 Joint and conditional risk measures

A direct method to compute joint and conditional default probabilities is based on Monte

Carlo simulations of firms’ asset values. For example, we can generate many paths for the

joint evolution of all the yits and check how many simulations lie in a joint distress region

of the the type {yt | yjt < y∗jt ∀j ∈ J} for some set of firms J ⊂ {1, 2, . . . , N}, where y∗jt
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denotes the default threshold for firm j. While simulating risk measures in this way is

conceptually easy, such a simulation based approach quickly becomes inefficient if the cross

sectional dimension of the data and the number of firms considered in the set J grow large:

because marginal default probabilities are typically small, we would need a large number of

simulations to obtain realizations of joint defaults, particularly if 3, 4, or even more joint

defaults are considered.

To overcome the computational inefficiency of simple simulation based risk assessments,

we define joint and conditional risk measures and demonstrate how to compute them in a

fast and reliable way based on an application of a conditional law of large numbers (cLLN).

The use of a cLLN in the credit risk context has been popularized by Vasicek (1987) and

studied further in for example Gordi (2000, 2003) and Lucas et al. (2001, 2003). We show

that the cLLN in our setting already provides reliable results for low-dimensional cases such

as N = 10. While we focus on financial sector firms, the derivations presented in this section

are general.

We exploit the (block-)equicorrelation structure in (14) and (17) to obtain reliable alter-

native risk measures that can be evaluated semi-analytically. We define the joint tail risk

measure (JRM) as the time-varying probability that a certain fraction of firms defaults over

a pre-specified period. Let cN,t denote the fraction of financial firm defaults at time t, e.g.,

cN,t = 5%, with

cN,t =
1

N

N∑
i=1

1{yit < y∗it}. (21)

Since the indicators 1{yit < y∗it} are conditionally independent given κt and ςt, we can apply

a conditional law of large numbers to obtain

cN,t ≈
1

N

N∑
i=1

E[1{yit < y∗it} | κt, ςt] =
1

N

N∑
i=1

P[yit < y∗it | κt, ςt] := CN,t, (22)

for large N . As mentioned earlier, such cLLNs are routinely applied in credit risk settings;

see for example Vasicek (1987), Gordy(2000, 2003), and Lucas et al. (2001). Note that

P[yit < y∗it|κt, ςt] = Φ

(
y∗it − (ςt − µς) γi −

√
ςt ρtκt√

ςt (1− ρ2t )

)
, (23)
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where Φ(·) denotes the cumulative standard normal distribution. Also note that CN,t is a

function of the random variables κt and ςt only, and not of ϵ̃it in (16). We now define the

joint tail risk measure (JRM) as

pt = P(CN,t > c̄) = P(CN,t(κt, ςt) > c̄), (24)

i.e., the probability that the fraction of credit portfolio defaults CN,t exceeds the threshold

c̄ ∈ [0, 1]. The fraction of portfolio defaults CN,t is a (possibly complicated) function of its

two arguments κt and ςt. When seen as a function of κt for given ςt, however, we note that

CN,t is monotonically decreasing in κt. This is intuitive: an increase in κt (for instance due to

improved business cycle conditions) implies less defaults in the portfolio and vice versa. We

exploit this to efficiently compute unique threshold levels κ∗
t,N(c̄, ς

(g)) for a number of grid

points ς(g), g = 1, . . . , G. This can be done by solving the equation CN,t(κ
∗
t,N(c̄, ς

(g)), ς(g)) = c̄

numerically for the threshold value κ∗
t,N(c̄, ς

(g)) for each grid point ς(g). Given a grid of

threshold values, we can then use standard numerical integration techniques to efficiently

compute the joint default probability

pt = P(CN,t > c̄) =

∫
P(κt < κ∗

t,N(c̄, ςt))p(ςt)dςt, (25)

effectively integrating out a well-behaved (inverse gamma) random variable.

Our second measure is a conditional tail risk measure (CRM). Let

C
(−i)
N−1,t = (N − 1)−1

∑
j ̸=i

P[yjt < y∗jt | κt, ςt],

be the approximate fraction of defaulted companies excluding firm i using the cLLN approx-

imation, and let c̄(−i) denote our threshold value for this fraction. We define the CRM as

the probability of C
(−i)
N−1,t exceeding c̄(−i) conditional on the default of firm i, i.e.,

P
(
C

(−i)
N−1,t >c̄(−i)

∣∣∣ yit < y∗it

)
= p−1

it · P(C(−i)
N−1,t > c̄(−i) , yit < y∗it)

= p−1
it ·

∫
P
(
κt < κ∗

N−1,t(c̄
(−i), ςt) , yit < y∗it

∣∣ ςt
)
p(ςt)dςt

= p−1
it ·

∫
Φ2(κ

∗
N−1,t(c̄

(−i), ςt) , y∗∗it (ςt) ; ρt) p(ςt)dςt, (26)
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where y∗∗it (ςt) = (y∗it − (ςt − µς)γi)/
√
ςt, and Φ2(·, ·; ρt) denotes the cumulative distribution

function of the bivariate normal with standard normal marginals and correlation parameter

ρt. To obtain the last equality in (26), note that the GHST distribution becomes Gaussian

conditional on ςt. The conditional probability (26) is a time-varying and higher-frequency

extension of the multivariate extreme spillovers measure of Hartmann, Straetmans, and De

Vries (2004, 2007).

Both the joint tail risk measure (JRM) in equation (25) and the conditional tail risk

measure (CRM) in equation (26) can be computed based on a simple 1-dimensional numerical

integration over the positive real line. As a result, both measures can be computed quickly.

We also note that it is straightforward to add exposure weights ei to the definition of cN,t

in (21). The computations in that case remain equally efficient. If the exposures are very

unevenly distributed, however, the approximation error of the cLLN in (22) might increase.

To mitigate such an effect, one could try to implement a second order expansion using a

conditional central limit theorem rather than a cLLN only. Finally, we note that the model

is easily extended to fit the m-block DECO structure explained in Section 2.3. The fact

that ρi,t parameters are different between blocks does not distort the one-factor credit risk

structure of the current set-up, and all computations remain of similar structure and speed.

4 Empirical application: euro area financial sector risk

during the financial and sovereign debt crisis

We apply our model to euro area financial firms. In a first analysis, we focus on N = 10

large firms, where each firm is headquartered in a different euro area country. The small

cross-sectional dimension allows us to benchmark the dynamic GHST block-DECO model

against a model with a fully specified time varying correlation matrix and to investigate the

sensitivity of the joint tail risk measure (JRM) and the conditional tail risk measure (CRM)

to the equicorrelation assumption. Subsequently, we focus on a large scale application based

on N = 73 euro area financial firms.
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4.1 Equity and EDF data

Our 73 listed financial firms are located in 11 euro area countries: Austria (AT), Belgium

(BE), Germany (DE), Spain (ES), Finland (FI), France (FR), Greece (GR), Ireland (IE),

Italy (IT), the Netherlands (NL), and Portugal (PT). We selected these firms as the subset of

financial sector firms that (i) are, as of 2011Q1, listed as a component of the STOXX Europe

600 index, a broad European equity price index, and (ii) are headquartered in the euro area.

For each firm, we observe demeaned weekly equity returns. Equity data are obtained from

Bloomberg. The sample comprises large commercial banks as well as large financial non-

banks such as insurers and investment companies. The total panel covers 762 weeks from

January 1999 to August 2013. The panel is unbalanced in that some data are missing in the

first part of the sample. Dealing with missing values is straightforward in our framework, as

long as the data are missing completely at random: the score steps only account for the joint

density of the observed values. For the marginal default probabilities pit, we use one year

ahead expected default frequencies (EDF) obtained from Moody’s Analytics. Such EDFs are

widely-used measures of time-varying one year ahead marginal default probabilities (Duffie

et al. (2007)).

4.2 N = 10: Ten large banking groups

In our first application, we select a geographically diversified sub-sample of ten large financial

firms from ten euro area countries: Erste Bank Group (AT), Dexia (BE), Deutsche Bank

(DE), Santander (ES), BNP Paribas (FR), National Bank of Greece (GR), Bank of Ireland

(IE), UniCredito (IT), ING (NL), and Banco Comercial Portugues (PT). This subsample

contains no missing observations. The descriptive statistics in Table 1 indicate that the

weekly equity returns corresponding to our subsample of ten financial firms are significantly

negatively skewed and fat-tailed, suggesting that a dynamic GHST model is appropriate.

We distinguish different sets of financial firms based on their country location because of the

mutual dependence of bank and sovereign risk (as well as the market fragmentation due to

this link) that was an acknowledged feature of the euro area sovereign debt crisis, see for
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Table 1: Sample descriptive statistics

The table reports descriptive statistics for N = 10 weekly equity returns between January 1999 and August
2013. The sample mean values are all close to zero. All excess kurtosis and skewness coefficients are
significantly different from 0 at the 5% significance level.

Median Std.Dev. Skewness Kurtosis Minimum Maximum
Bank of Ireland 0.004 0.099 -0.614 14.736 -0.658 0.581
Banco Comercial Portugues 0.004 0.049 -0.375 6.753 -0.284 0.230
Santander 0.002 0.049 -0.558 7.289 -0.261 0.212
UniCredito 0.001 0.084 -0.235 15.968 -0.705 0.613
National Bank of Greece 0.003 0.061 -1.253 12.909 -0.475 0.292
BNP Paribas 0.002 0.056 -0.364 10.344 -0.367 0.339
Deutsche Bank 0.000 0.059 -0.489 16.145 -0.529 0.398
Dexia 0.008 0.087 -0.569 13.735 -0.529 0.494
Eerste Group Bank 0.002 0.061 -1.143 16.100 -0.552 0.296
ING 0.004 0.069 -1.319 13.358 -0.546 0.290

example ECB (2012b) and Coeuré (2013).

We consider four different models. All models use the score (GAS) dynamics for time

varying volatilities and correlations, but the structure of their correlation matrices differs. As

we use a copula approach, all models share the same structure for the univariate volatility

models; we refer to the Appendix A.1 for more details. Without showing the respective

volatility plots for space considerations, we report that all ten financial firms exhibit periods

of high equity volatility. A pronounced period of high volatility starts on 15 September 2008

with the bankruptcy of Lehman Brothers. From 2010-12 the euro area sovereign debt crisis

also strongly affects equity volatilities. Volatility tends to increase more for financial firms

headquartered in stressed countries (Greece, Ireland, and Portugal, starting in 2011 also

Spain and Italy) compared to other relatively less- or non-stressed countries in the euro area

(such as Austria, Belgium, Germany, France, and The Netherlands).

Our first model uses a full correlation matrix with GAS dynamics. Following the multi-

variate DCC model of Engle (2002), the GAS GHST copula model is highly parsimonious

and uses a scalar A and B to drive the correlation dynamics. In addition, it uses a common

scalar skewness parameter γ in the GHST copula. The full GAS correlation model con-

tains 45 pairwise correlation coefficients, and thus 45 dynamic factors. Standard correlation

targeting is used to estimate the intercepts in the transition equation for the correlations.
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Table 2: Multivariate model estimates for filtered data

Parameter estimates for our multivariate GAS-GHST models of financial firms’ equity returns. Columns 2
to 5 refer to our copula model for N = 10 financial firms. Columns 6 to 7 refer to the modeling of the full
set of N=73 financial firms. Univariate GAS-GHST models are used for the modeling of marginal volatilities
before estimating the dynamic equicorrelation copula models. For the 2-block model, we distinguish
between financial firms from stressed countries (Greece, Portugal, Spain, Italy, Ireland) and firms from the
remaining non-stressed countries. In the 3-block model, we distinguish between financial firms from smaller
stressed countries (Greece, Portugal, Ireland), firms from larger stressed countries (Spain, Italy), and firms
from the remaining non-stressed countries. The 2∗-block model merges the firms from non-stressed and
large stressed countries (Spain, Italy), and only assigns a separate dynamic correlation to financial firms
headquartered in small stressed countries (Greece, Portugal, Ireland). AICc denotes the finite-sample
corrected version of the AIC of Hurvich and Tsai (1989).

10 firms 73 firms

GAS-DECO[1] GAS-DECO[2] GAS-DECO[3] GAS-DECO[2∗] GAS-DECO[1] GAS-DECO[2]
A 0.219 0.116 0.085 0.119 0.522 0.236

(0.068) (0.023) (0.015) (0.022) (0.088) (0.028)
B 0.979 0.989 0.991 0.989 0.978 0.995

(0.018) (0.008) (0.006) (0.008) (0.017) (0.003)
ω1 0.585 0.249 0.208 -0.238 0.190 -0.882

(0.186) (0.276) (0.304) (0.370) (0.302) (0.314)
ω2 0.794 0.194 0.856 0.035

(0.248) (0.370) (0.214) (0.311)
ω3 0.810

(0.222)
ν 17.095 17.554 17.625 17.867 32.808 26.234

(1.761) (0.005) (0.007) (0.004) (1.795) (0.925)
γ1 -0.393 -0.441 -0.435 -0.468 -0.229 -0.223

(0.093) (0.000) (0.001) (0.000) (0.066) (0.058)
γ2 -0.361 -0.445 -0.344 -0.239

(0.000) (0.001) (0.000) (0.043)
γ3 -0.366

(0.001)

Log-lik 1499.6 1536.4 1529.9 1610.4 11010.8 11014.5
AIC -2989.2 -3058.7 -3041.9 -3206.8 -22011.5 -22014.9
BIC -2956.8 -3013.4 -2983.6 -3161.4 -21997.6 -21995.4
AICc -2989.1 -3058.6 -3041.6 -3206.6 -22011.4 -22014.8

We use the full model to benchmark three different GAS-DECO specifications with 1,

2 and 3 blocks, respectively. In the 2-block model, we distinguish between financial firms

in five countries under pronounced stress during the sovereign debt crisis (Greece, Ireland,

Italy, Portugal, Spain) and firms from non- or less-stressed countries. In the 3-block model,

we distinguish financial firms from smaller stressed countries (Greece, Portugal, Ireland),

larger stressed countries (Spain, Italy), and the remaining countries. This modeling choice

reflects the notion that the sovereign debt crisis spread from Greece, Ireland, and Portugal

to Italy and Spain only at a later stage of the crisis, see Eser et al. (2012), Eser and Schwaab

(2013), and ECB (2014).

Table 2 provides the parameter estimates as well as a set of model selection criteria. The
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left columns in Table 2 suggest that the correlations are highly persistent for all specifications

considered, as the B parameters are all close to unity. The unconditional correlation levels,

as captured by the parameters ωi, are higher for the stressed countries, in particular the

smaller stressed countries (ω3). If we look at the model selection criteria AIC, BIC, or

AICc, the GAS-DECO[2*] model is preferred. In this model the financial firms from Ireland,

Portugal, and Greece have their own dynamic correlation parameter separate from the other

countries (including Italy and Spain).

Figure 1 plots the estimated dynamic correlations. The top left panel plots the average

pairwise correlations of each firm with the other (nine) firms. These correlation estimates

are based on the modeling of a full correlation matrix with 45 time varying parameters.

The estimates strongly suggest a pronounced commonality in the correlation dynamics over

time. For instance, all correlations tend to increase over the sample period, possibly reflecting

gradual financial integration and economic convergence in the euro area after the inception

of the euro in 1999. All correlations remain elevated during the financial crisis from 2008-

2010. Finally, correlations come down from high levels to some extent during the euro area

sovereign debt crisis in 2011-2012.

Such common correlation dynamics can be captured simply and conveniently by a 1-block

DECO structure. The top right panel in Figure 1 plots the GAS 1-block equicorrelation over

time. Due to the structure of the model, the dynamics are much clearer. There appears to

be a drop in correlations after the burst of the dotcom bubble, possibly due to the different

exposures of the different euro area financial firms to U.S. equity markets and the subsequent

recession. The maximum correlation is reached in mid-2010, at a time when Greece, Ireland,

and Portugal needed the assistance of third parties such as the EU and the IMF, see ECB

(2012a).

The common picture changes somewhat when we allow for different correlations among

financial firms located in stressed and non-stressed countries, respectively. The left panel in

the middle row of Figure 1 plots the dynamic correlation estimates for these two groups. The

first group contains the Bank of Ireland, Banco Comercial Portugues, Santander, UniCredito

and the National Bank of Greece. The second group includes BNP Paribas, Deutsche Bank,
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Figure 1: Filtered correlation estimates for N = 10 financial firms

The top left panel plots the average correlation estimate with the nine other firms for each financial firm,
using the full correlation model. The top right panel plots the dynamic correlations for the 1-block DECO
model. The middle left panel reports the block equicorrelation estimates from a 2-block DECO model. The
middle right panel plots three block equicorrelations from a 3-block DECO model. The bottom left panel
plots correlation estimates from a 2-block model which pools over banks from non-stressed and large stressed
countries. The bottom right panel plots the average correlations over all 45 pairs for the full correlation
matrix model, for the 1-block, 2-block, and 3-block DECO models.
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Dexia, Erste Bank Group, and ING. The overall dependence dynamics are similar. However,

and perhaps surprisingly, the correlation between financial firms from non-stressed countries

lies substantially above that of financial firms from countries that became stressed during the

sovereign debt crisis. This pattern holds in particular before the onset of the financial and

debt crisis in 2008, and may therefore be related to different degrees of financial integration

rather than to shared exposure to heightened market turmoil in a crisis (ECB (2012a)).

The middle right panel plots the correlation estimates for the 3-block DECO model. The

correlation between financial firms from non-stressed countries continues to lie above that of

financial firms from countries that became stressed during the debt crisis. In addition, the

correlation dynamics are again fairly similar across the different sets of firms. The bottom

left panel plots the correlation estimates for the 2-block DECO model that pools across firms

in non-stressed and stressed large countries while allowing for different correlations for the

three firms located in Greece, Ireland, and Portugal. While the overall correlation dynamics

are similar, the maximum correlation is achieved earlier in the second stressed group (in

2009-2010). This is intuitive given that Ireland, Greece and Portugal were the first euro area

countries that needed economic assistance during the crisis.

The bottom right panel compares the average correlation levels across all 45 pairs for

different models. The average correlations are similar across all models. Only relatively

minor deviations are observed. The pairwise correlation estimates are relatively lower for

the full correlation matrix specification from 2010 to mid-2011. The converse holds from

late 2012 onwards, after policy reactions of the ECB had calmed the markets. We conclude

that the equicorrelation model reliably estimates the salient trend in correlation dynamics.

Correlations from the equicorrelation specifications exhibit larger and more intuitive time

series variation than the average correlation from the unrestricted model.

We can now use the different dependence models to compute the joint tail risk measure

(JRM) and conditional tail risk measure (CRM) introduced in Section 3. We use the default

thresholds obtained by inverting the GHST distribution function at the observed EDF levels.

Given the small cross sectional dimension of the model, we can benchmark the adequacy of

the cLLN approximation compared to a brute force simulation based approach to computing
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Figure 2: Joint and conditional tail risk measures based on simulation and cLLN approxi-
mation
We report the joint tail risk measure (JRM, top left and right panels) defined in (25) for three or more
defaults out of ten, and the average conditional tail risk measure (CRM, bottom left and right panels). The
CRM is defined in (26) and here taken as the probability of 2 or more (out of 9 possible) credit events given
a credit event for a given financial firm, averaged over all ten firms. The risk measures are either computed
using 500,000 simulations at each point in time t and a full correlation matrix (left top and bottom panels),
or alternatively using the cLLN approximation as discussed in Section 3 for the DECO and block-DECO
models (right top and bottom panels).

the JRM and CRM. For the simulation based computations, we use 500,000 simulations at

each time t and count the number of firms under stress. The semi-analytical calculations

based on the cLLN by contrast are fast and less cumbersome than the simulation based

method. Figure 2 reports the JRM for three or more defaults out of ten firms, as well as the

average CRM of all firms in the sample.

The left and right panels of Figure 2 demonstrate that the dynamic patterns and overall

levels of the joint (top two panels) and conditional tail risk measures (bottom two panels) are

similar irrespective of the computation method used. Regarding the top panels, the cLLN

approximated JRM appears to slightly understate the risk in good times and to slightly
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overstate the risk during the crisis period around 2012. The proximity of the two time

series, however, is encouraging for using the cLLN approximation and DECO assumption

in the larger system of N = 73 financial firms. Also the CRM in the bottom two panels

reveals that the DECO assumption and cLLN approximation work well for the conditional

risk measure compared to the simulation approach. The overall time series patterns for both

series are again similar. The simulation based approach of the conditional probability is

substantially noisier particularly if the joint risk is low, i.e., up to mid 2009. In particular,

we see the drop and subsequent rise in conditional probabilities during the unfolding of the

financial crisis, and further increases during the euro area sovereign debt crisis. Under the

conditional LLN approximations, the equicorrelation models provide similar outcomes for

the risk measures regardless of the number of blocks used in the estimation.

Based on our small sample study with ten firms, we conclude that the full correlation

model and the block equicorrelation models lead to a similar time varying pattern for the

joint and conditional risk measures. The cLLN works well even when the data dimension is

relatively small. Finally, the simulation based approach can suffer from sizable simulation

noise in non-crisis periods (when marginal default probabilities are low), while no such

problems are encountered for the cLLN based approximation.

4.3 Large N : The euro area financial sector

In this section we apply our new joint and conditional tail risk measures to the full panel

of 73 financial sector firms. The sample contains commercial banks as well as financial non-

banks such as insurers and investment companies.4 Table 3 reports descriptive statistics

for all 73 firms’ equity returns. The GHST model seems appropriate given the pronounced

skewness and kurtosis features of the data. As mentioned before, the GAS dynamics auto-

matically account for the presence of missing values. Each firm starts to contribute to the

4Freezing the set of firms as the constituents of a broad based equity index in 2011Q1 means that we may
underestimate total euro area financial sector risk prior to this date (due to sample selection; weaker firms
may have dropped out of the index by then). While this concern should be kept in mind, it is unlikely to be
large, as most financial institutions under stress during the financial crisis continued to operate, also due to
substantial government aid and the extension of public sector guarantees. Sample selection is no issue after
2011Q1.
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Table 3: Sample summary statistics for all 73 financial institutions

The table reports sample moments across all 73 institutions included in the empirical application. For
example, the row labeled ‘skewness’ contains the mean and standard deviation of the skewness statistic
across all 73 firms, followed by the minimum, 25th, 50th, and 75th percentile, and the maximum.

Mean Std. Dev. Minimum 25% 50% 75% Maximum
Count 717.027 116.360 196.000 762.000 762.000 762.000 762.000
Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Std. Dev. 0.056 0.020 0.025 0.043 0.049 0.061 0.113
Skewness -0.812 1.937 -12.062 -0.836 -0.406 -0.218 1.894
Kurtosis 18.046 38.466 3.694 6.770 10.127 14.261 266.259

equicorrelation dynamics once it enters the sample.

Figure 3 plots the dynamic correlations estimates based on the same models as described

in Section 4.2, but now estimated for the full sample of N = 73 firms. The equicorrelations

(top left) range from low values of approximately 0.1 in 2000 to values as high as 0.6 towards

the start of the euro area sovereign debt crisis in 2010. Using the two block structure

(top right), there appear to be little differences between financial firms from stressed versus

non-stressed countries, except during the peak of the sovereign debt crisis in 2011–2012.

Interestingly, institutions from non-stressed countries appear to have a higher degree of

clustering. This difference may be due to the heterogeneous nature of the different financial

institutions in the different stressed countries.

The bottom left panel of Figure 3 introduces further heterogeneity by modeling the

dynamic correlation for firms from Greece, Ireland, and Portugal on the one hand and Italy

and Spain on the other hand. Again, Ireland, Greece, and Portugal entered the sovereign

debt crisis earlier, and were relatively more stressed compared to Spain and Italy. We see a

lower level of correlation among financial institutions from the first group of smaller stressed

countries. The correlation rises after the financial crisis up to the start of 2010, and then

decreases to pre-crisis levels around 2012. By contrast, the correlation for financial firms

from Italy and Spain starts to rise earlier, peaks higher, and remains (together with the

correlations of the non-stressed countries) high until the end of the sample. If we consider

the average correlations across all 73(73 − 1)/2 = 2628 pairs (lower right), the picture

emerging from all three models is similar.

We compute the financial tail risk measures using the cLLN approximation from Sec-
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Figure 3: Filtered correlation estimates for all N = 73 financial firms

The panels plot dynamic equicorrelation estimates from different GHST block DECO models. We distinguish
three block structures: 1 block (top left), 2 blocks (top right) and 3 blocks (bottom left). The bottom right
panel benchmarks the equicorrelation estimates to the average correlation taken across 73(73− 1)/2 = 2628
pairwise correlation estimates based on a 12 weeks (approximately 3 moths) rolling window.

26



Pr[7 or more credit events], N=73. 
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Figure 4: Joint and average conditional tail risk measures.

The left panel plots the joint tail risk measure (JRM) based on the GHST dynamic equicorrelation model.
The JRM is the probability that 7 or more financial sector firms (c̄ = 7/73 ≈ 10%) experience a credit event
over a 12 months ahead horizon, at any time t. The right panel plots the average conditional risk measure
(CRM). The CRM is the average (over all 73 financial firms) conditional probability that c̄ = 7/73 ≈ 10%
or more financial firms experience a credit event given a credit event for a given firm i. All computations
rely on the conditional law of large numbers (cLLN) approximation for the GHST DECO model.
The vertical lines in the left panel indicate the following events: (a) the allotment of the first (of two) 3y long
term refinancing operations by the ECB on 21 December 2011, (b) a speech by the ECB president (“whatever
it takes”) on 26 July 2012, (c) the OMT announcement on 2 August 2012, and (d) the announcement of
the OMT technical details on 6 September 2012. The vertical line in the right panel indicates the Lehman
brothers bankruptcy on 15 September 2008.

tion 3. For the joint risk measure (JRM), we consider the probability that c̄ = 7/73 ≈ 10%

or more of currently active financial institutions experience a credit event over the next 12

months. The probability of such widespread and massive failure should typically be very

small during non-crisis times. We plot the result in the left panel in Figure 4. As the JRM

moves relatively little before 2008, we only plot it over the period 2006–2013. The JRM

moves sharply upwards after the bankruptcy of Lehman Brothers in September 2008. The

tail probability then remains approximately constant until the onset of the sovereign debt

crisis in early 2010. It reaches a first peak in late 2011, followed by a second peak mid-2012.

The vertical lines in the left panel of Figure 4 indicate a number of relevant policy

announcements. In late 2011, the announcement and implementation of two 3-year Long

Term Refinancing Operations (3y-LTROs, allotted in December 2011 and February 2012)

had a visible but temporary impact on financial sector tail risk.5 In particular, the allotment

of the first 3y-LTRO in late December 2011 appears to have lowered financial sector joint tail

5See ECB (2011) for the official press release and monetary policy objectives.
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risk, temporarily, for a few months. In the first half of 2012, financial sector joint tail risk

picks up again and rises to unprecedented levels until July 2012. The three vertical lines from

July to September 2012 and the time variation in our joint risk measure strongly suggest that

three events — a speech by the ECB president in London to do ‘whatever it takes ’ to save

the euro on 26 July 2012, the announcement of the Outright Monetary Transactions (OMT)

program on 2 August 2012, and the disclosure of the OMT details on 6 September 2012 —

collectively ended this acute phase of extreme financial sector joint tail risks in the euro area.

The joint risk measure decreases sharply, all the way until the end of the sample. The OMT

is a program of the ECB under which the bank makes purchases (“outright transactions”)

in secondary sovereign bond markets, under certain conditions, of bonds issued by euro area

member states. We refer to ECB (2012b) and Coeuré (2013) for the details on the OMT

program. No purchases have yet been undertaken by the ECB within the OMT.

The right-hand panel in Figure 4 presents the average (across institutions) conditional

risk measure for the 73 firms in our sample. At the start of the sample, there is little

evidence of systemic clustering on average with low levels of the CRM between 0%–25%.

The conditional probability rises substantially after the onset of the financial crisis. It peaks

after the Lehman Brothers failure at levels of approximately 60%, with even higher peaks of

approximately 80% during parts of the sovereign debt crisis. Such high levels of conditional

tail probabilities signal strong interconnectedness among euro area financial institutions.

One should also bear in mind, however, that the CRM is somewhat biased upwards due

to the cLLN approximation. As can be seen in equation (26), the conditional probability

given a default of firm i only considers the common risk variables κt and ςt, and washes

out all idiosyncratic risks ϵ̃jt for j ̸= i. At high levels of correlations, a default of firm i

automatically implies that ρtκt is very low given that yit is below the default threshold y∗it.

As a result, given the low value of κt, subsequent defaults are much more likely because in

the cLLN limiting approximation they cannot be off-set by idiosyncratic risks. We already

saw, however, in the sample with N = 10 firms that the CRM limiting approximation still

provides a good fit to the overall dynamic pattern of joint risk evolution in the sample. We

therefore also take the current plot of the CRM as revealing the conditional risk dynamics
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over the sample period.

Interestingly, we find that the conditional risk measure is still quite high towards the

end of the sample, despite the collapse in joint risk as shown in the left panel. The OMT

announcements apparently have not brought down markets’ perceptions of conditional (or

contagion) risks in the euro area financial system as a whole to a comparable extent. Taken

together, these findings suggests that the OMT may have been perceived by market par-

ticipants as less of a ‘firewall’ measure that mitigates risk spillovers, but rather as a policy

geared towards decreasing marginal risks but not necessarily systemic connectedness. Fi-

nally, our empirical results suggest that non-standard monetary policy measures (such as

the 3y-LTROs and the OMT announcements) and financial stability tail risk outcomes are

strongly related. This suggests substantial scope for the coordination of monetary, macro-

prudential, and bank supervision policies. This is relevant as both monetary policy as well

as prudential policies and banking supervision will be carried out jointly within the ECB as

of November 2014.

5 Conclusion

We developed a novel and reliable modeling framework for estimating joint and conditional

tail risk measures over time in a financial system that consists of many financial sector firms.

For this purpose, we used a copula approach based on the generalized hyperbolic skewed

Student’s t (GHST) distribution, endowed with score driven dynamics of the generalized au-

toregressive score (GAS) type. Parsimony and flexibility were traded off by using a dynamic

block-equicorrelation structure (block DECO). Using this structure, we were able to imple-

ment efficient approximations based on a conditional law of large numbers to compute joint

and conditional tail probabilities of multiple defaults for a large set of firms. An application

to euro area financial firms from 1999 to 2013 revealed unprecedented joint default risks

during 2011-12. We also document the collapse of these joint default risks (but not condi-

tional risks) after a sequence of announcements pertaining to the ECB’s Outright Monetary

Transactions program in August and September 2012.
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Appendix A: technical details

Appendix A.1: Univariate volatility models

For full details and discussions on the univariate marginal modeling strategy used in this paper, we refer to

Lucas et al. (2014). A short summary is as follows. Using the univariate GHST density

p(yt; σ̃
2
t , γ, ν) =

ν
ν
2 21−

ν+1
2

Γ( ν2 )π
1
2 σ̃t

·
K ν+1

2

(√
d(yt)(γ2)

)
eγ(yt−µ̃t)/σ̃t

d(yt)
ν+1
4 · (γ2)−

ν+1
4

,
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2/σ̃2

t ,
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ν − 2
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(
ν

ν − 2
+

2ν2γ2

(ν − 2)2(ν − 4)

)−1/2

,

with σt = σ(ft) and σ(ft) = f
1/2
t or alternatively σ(ft) = exp(ft/2), the score driven dynamics allowing for

a leverage effect are given by

ft+1 = ω̃ +

p−1∑
i=0

Aist−i +

q−1∑
j=0

Bjft−j + C(st − sµt )1{yt < µt},

st = St∇t, ∇t = ∂ ln p(yt|Ft−1; ft, θ)/∂ft,

sµt = St∇µ
t , ∇µ

t = ∂ ln p(µt|Ft−1; ft, θ)/∂ft,

∇t = ΨtHt

(
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(
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)
,

wt =
ν + 1
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(√
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)
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d(yt)/(γ2)

,

Ψt =
∂σt

∂ft
, Ht = T σ̃−3.

Using this univariate model, we obtain the univariate filtered volatilities for N=10 financial firms as discussed

in Section 4.2. We do not report the volatility plots for space considerations.

Appendix A.2: The dynamic GHST score

This subsection proves Result 1.
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Proof. Let kλ(·) = lnKλ(·) with first derivative k′λ(·). We use the following matrix calculus results for an

invertible matrix X, and column vectors α and β:

∂(α′X−1β)

∂vec(X)
= −((X ′)−1 ⊗X−1)vec(αβ′),

∂(log |X|)
∂vec(X)

= ((X ′)−1 ⊗X−1)vec(X).

Based on these results one obtains
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Appendix A.3: The GHST m-block DECO model

Assume that N firms can be divided up into m different groups, and that firms have equicorrelation ρ2i

within each group, i = 1, . . . ,m, ρi · ρj between groups i and j, j = i + 1, . . . ,m. There are ni firms in

group i. The block-equicorrelation model proposed here differs from Engle and Kelly (2012) in that there is

a direct relation between the equicorrelation in the off-diagonal blocks and the diagonal blocks. We impose

this restriction to maintain the factor copula structure in Section 2.1 that permits the quick computations

of the joint and conditional risk measures discussed in Section 3.

In the dynamic GHST m- block equicorrelation case the scale matrix at time t is given by

Σ̃t =



(1− ρ21,t)I1 . . . . . . 0

0 (1− ρ22,t)I2 . . . 0

...
...

. . .
...

0 0 . . . (1− ρ2m,t)Im


+



ρ1,tℓ1

ρ2,tℓ2
...

ρm,tℓm
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·
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ρ2,tℓ2
...

ρm,tℓm
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′

, (A1)

where Ii is an ni × ni identity matrix, ℓi ∈ Rni×1 is a column vector of ones, and |ρit| < 1. The block

structure of the matrix allows us to obtain analytical solutions for the determinant,

det(Σ̃t) =

[
1 +

n1ρ
2
1,t

1− ρ21,t
+ · · ·+

nmρ2m,t

1− ρ2m,t

]
(1− ρ21,t)

n1 · · · (1− ρ2m,t)
nm , (A2)

see Harville (2008). This matrix determinant result further facilitates the computation of the likelihood and

the score steps in high dimensions. The GAS updating equations are as follows.
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Result 4. Assume that yt follows a GHST distribution and that its time-varying scale matrix Σ̃t has a block

equicorrelation structure which contains m × m blocks as in (A1). Factor ft is an m × 1 vector such that

ρi = (1 + exp(−fit))
−1 for i = 1, 2, · · · ,m. For the system (9)–(12),
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Proof. Using results from differential calculus, the result follows from the fact that

∂vec(Σ̃t)
′

∂ρit
= −2ρit · vec



0 0 . . . 0

...
...

. . .
...

0 0 Ii 0

0 0 . . . 0


+





ρ1,tℓ1

ρ2,tℓ2
...

ρm,tℓm


⊗ IN + IN ⊗



ρ1,tℓ1

ρ2,tℓ2
...

ρm,tℓm




·



0

...

ℓni

0


,

and by combining this expression across the m groups.
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