5th Conference on Fixed Income Markets Federal Reserve Bank of San Francisco and Bank of Canada

Economic Policy Uncertainty and the Yield Curve

by Markus Leippold and Felix Matthys

Discussion by Anna Cieślak

Duke University, Fuqua School of Business

November 5, 2015

This paper

This paper Comments

Model

Empirics

Interactions

How does monetary and government policy uncertainty (MPU, GPU) affect the nominal yield curve?

Monetary RBC model:

- \Box Money in the utility
- □ Fed controls money supply with three targets: long-run nominal money growth, inflation target and long-run economic growth
- □ Stochastic volatility of real ("government") and nominal ("monetary policy") shocks

Empirical results:

- $\hfill\square$ Baker-Bloom-Davis uncertainty indices to measure MPU, GPU
- □ Higher GPU reduces short rate (IRF) and increases yield volatility (volatility hump)
- MPU has no contemporaneous effect on yields or volatilities, but predicts bond excess returns

Comments

Th	is paper
\triangleright	Comments

Model

Empirics

Interactions

- i. Paper's question is important but the model cannot answer it
- ii. Empirical relationship between yield curve level, volatility, premia ... and uncertainty proxies
- iii. Interaction between fiscal and monetary policy uncertainty?

This paper

Comments

▷ Model

Setup

Yield curve implications

Empirics

Interactions

i. Model

Setup

This paper

Comments

Model

▷ Setup

Yield curve implications

Empirics

Interactions

 \Box Money in the utility (MUI):

$$U(X_t) = \int_0^\infty e^{-\beta t} \frac{X_t^{1-\gamma}}{1-\gamma} dt, \quad X_t = C_t (M_t^d)^{\xi}$$
(1)

 \Box Real sector:

$$\frac{dY_t}{Y_t} = (\mu_Y + q_A A_t) dt + \sigma_Y \sqrt{g_t} dW_t^Y$$

$$dA_t = (\kappa_A (\theta_A - A_t) + \lambda g_t) dt + \sigma_A \sqrt{g_t} dW_t^A$$

$$dg_t = \kappa_g (\theta_g - g_t) dt + \sigma_g \sqrt{g_t} W_t^g$$

□ Monetary policy:

$$\frac{dM_t^s}{M_t^s} = \mu_M dt + \eta_1 \left(\frac{dK_t}{K_t} - \bar{k}dt\right) + \eta_2 \left(\frac{dp_t}{p_t} - \bar{\pi}dt\right) + \sigma_M \sqrt{m_t} dW_t^M$$

$$\frac{dm_t}{dm_t} = \kappa_m (\theta_m - m_t) dt + \sigma_m \sqrt{m_t} dW_t^m$$

 \Box State variables: productivity A_t and stochastic volatilities g_t , m_t

Model comments

This paper Comments

Model

▷ Setup

Yield curve implications

Empirics

Interactions

A model of policy uncertainty without the government and (essentially) without the Fed?

- □ Nothing in the model allows to interpret g_t as GPU; g_t is just stochastic volatility of TFP; some suggestions:
 - Gov policies have uncertain effect on firm productivity (effect though drift)
 - Gov has preferences over policy choices (\neq agents)
 - Could be interpreted as uncertainty about tax policy
- □ Monetary policy in the model is neutral (essentially–nonseparable MIU):
 - No nominal rigidities; monetary RBC models have counterfactual implications (e.g. optimal monetary policy with zero nominal rate rule)
 - Unclear interpretation of the reduced-form process m_t
- □ Need meaningful interaction between fiscal and monetary policy:
 - Government debt valuation equation
 - (Nominal/imperfectly indexed fiscal system)

 \square

This paper Comments Model Setup Yield curve ▷ implications

Empirics

Interactions

Nominal yield curve is affine function of state variables

$$y_t^{\tau} = B_0(\tau) + B_A(\tau)A_t + B_g(\tau)g_t + B_m(\tau)m_t$$

□ Level of yields spans volatility states: usual feature of macro-finance models with stochastic volatility

□ Instantaneous volatility of yields is affine in volatility states

$$v_t^{\tau} = B_g^v(\tau) g_t + B_m^v(\tau) m_t$$

... and so is the term premium

This paper

Comments

Model

▷ Empirics

My priors

 ${\sf Vol\ components}$

Vol dynamics

Vol and EPU

Vol and term premia

MPU and term premia

Interactions

ii. Empirics

My priors

This paper Comments Model Empirics > My priors Vol components Vol dynamics Vol dynamics Vol and EPU Vol and term premia

MPU and term premia

Interactions

- □ Stochastic volatility has negligible effect on the level of interest rates (order of magnitude of measurement error)
- □ Relatedly, link between term premia and interest rate volatility is tenuous
- □ Hump in yield volatility induced by volatility of short-rate expectations which could comove with monetary policy uncertainty

Decomposing yield curve volatility

 \square

This paper Comments

....

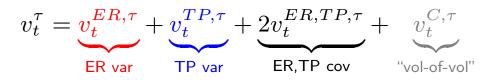
Model

Empirics

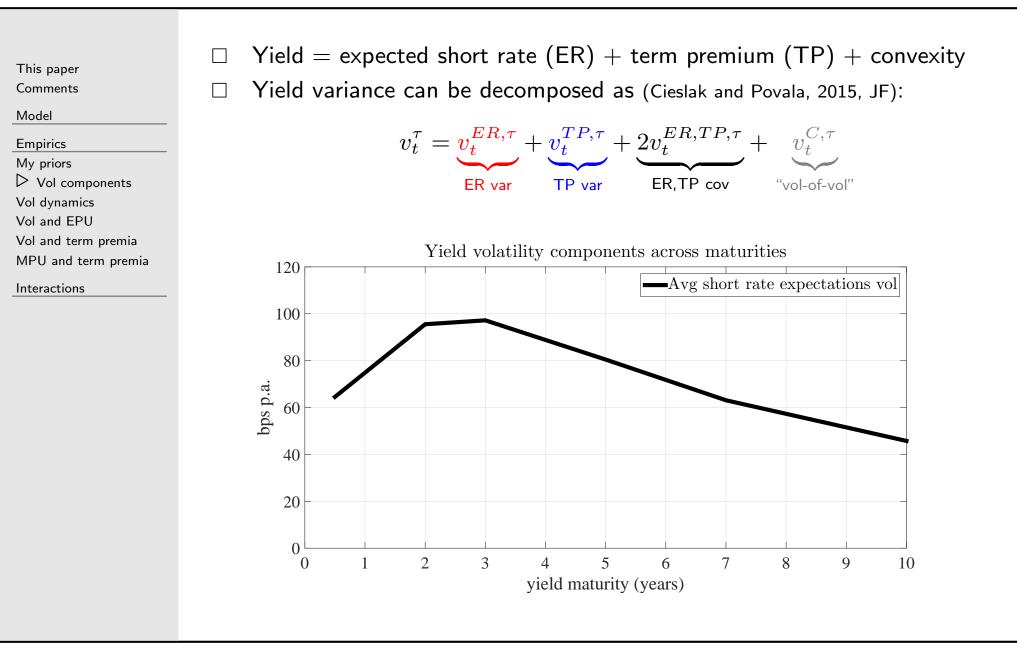
My priors

▷ Vol components

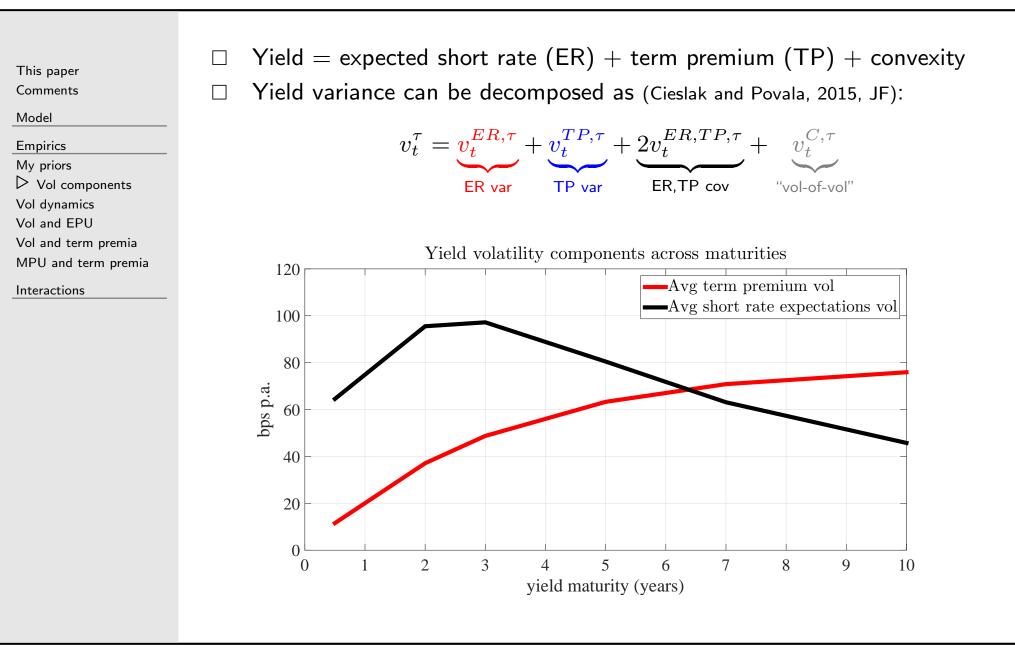
Vol dynamics

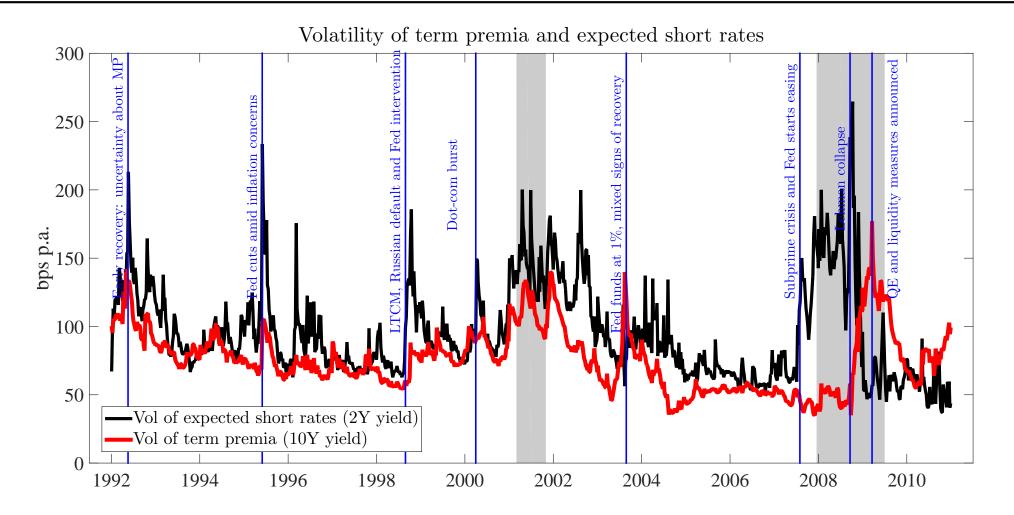

Vol and EPU

Vol and term premia

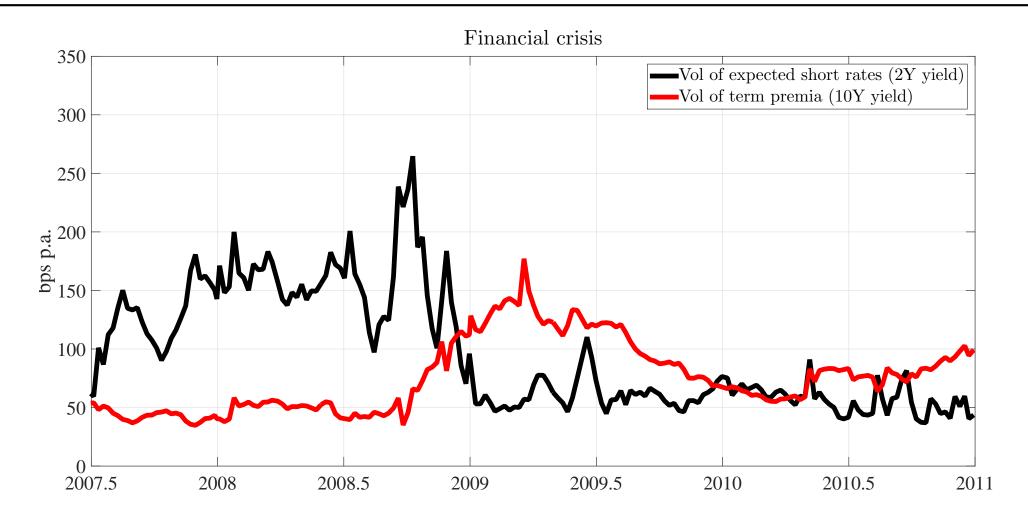

MPU and term premia

Interactions

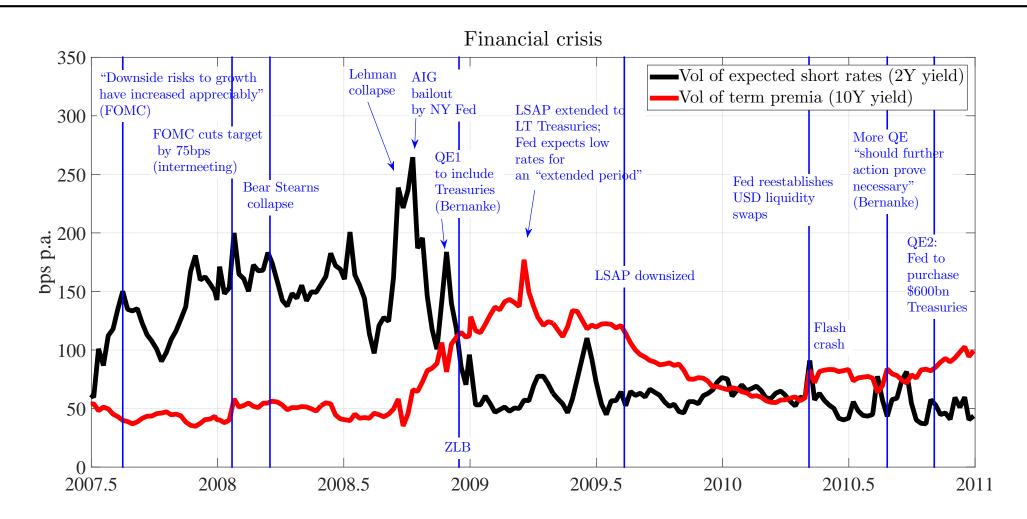

Yield = expected short rate (ER) + term premium (TP) + convexity Yield variance can be decomposed as (Cieslak and Povala, 2015, JF):


Decomposing yield curve volatility

Decomposing yield curve volatility



Yield volatility dynamics


Volatility of short rate expectations (ER volatility) increases ahead of recessions and in periods of distress in financial markets

Yield volatility dynamics in financial crisis

During 2007/09 crisis, ER volatility high in mid-2007 until ZLB in Dec 2008; TP volatility low until Lehman collapse and rising persistently afterwards

Yield volatility dynamics in financial crisis

During 2007/09 crisis, ER volatility high in mid-2007 until ZLB in Dec 2008; TP volatility low until Lehman collapse and rising persistently afterwards

Yield volatility and economic policy uncertainty

This paper

Comments

Model

Empirics

My priors

Vol components

Vol dynamics

▷ Vol and EPU

Vol and term premia

MPU and term premia

Interactions

□ Baker-Bloom-Davis proxies for policy uncertainty:

- EPU = economic policy uncertainty news
- MPU = monetary policy uncertainty news (results robust to adding inflation disagreement)
- GPU = fiscal policy uncertainty news (+ government, tax expiration, taxes, fed-state-local purchases disagreement)

Yield volatility and economic policy uncertainty

This paper Comments Model Empirics

My priors

Vol components

Vol dynamics

▷ Vol and EPU

Vol and term premia

MPU and term premia

Interactions

□ Baker-Bloom-Davis proxies for policy uncertainty:

- EPU = economic policy uncertainty news
- MPU = monetary policy uncertainty news (results robust to adding inflation disagreement)
- GPU = fiscal policy uncertainty news (+ government, tax expiration, taxes, fed-state-local purchases disagreement)

□ Contemporaneous projections:

		Yield volatility	component:	
	Vol ER 2Y	Vol TP 10Y	Vol ER 2Y	Vol TP 10
EPU	10.10 (2.45)	8.81 (3.18)		
MPU			20.68 (4.37)	-0.92 (-0.24)
GPU			-9.82 (-1.55)	10.06 (1.94)
const	97.14 (16.26)	77.33 (21.44)	96.37 (18.44)	78.12 (20.22)
N (months) adj. R^2	228 0.09	228 0.14	228 0.19	228 0.12
	1992–2010, RI	HS in z-scores, LH	IS in bps p.a.	

Yield volatility and economic policy uncertainty

This paper Comments

Model

Empirics

My priors

Vol components

Vol dynamics

▷ Vol and EPU

Vol and term premia

MPU and term premia

Interactions

□ Baker-Bloom-Davis proxies for policy uncertainty:

- EPU = economic policy uncertainty news
- MPU = monetary policy uncertainty news (results robust to adding inflation disagreement)
- GPU = fiscal policy uncertainty news (+ government, tax expiration, taxes, fed-state-local purchases disagreement)

□ Contemporaneous projections:

Vol ER 2Y 10.10 (2.45)	Vol TP 10Y 8.81 (3.18)	Vol ER 2Y	Vol TP 10
		20.69	0.00
		20.60	0.00
		(4.37)	-0.92 (-0.24)
		-9.82 (-1.55)	10.06 (1.94)
97.14 (16.26)	77.33 (21.44)	96.37 (18.44)	78.12 (20.22)
228	228	228	228
0.09	0.14	0.19	0.12
	(16.26) 228 0.09	(16.26)(21.44)2282280.090.14	-9.82 (-1.55) 97.14 77.33 96.37 (16.26) (21.44) 228 228

This paper
Comments
Model
Empirics
My priors
Vol components
Vol dynamics
Vol and EPU
Dash Vol and term premia
MPU and term premia

Interactions

Link between term premia and interest rate volatility is tenuous:

- □ Predictive regressions using auxiliary (not-in-the-yield-curve) regressors overfit term premium variation
- □ Such auxiliary factors often predict ex-post forecast errors about the short rate and identified monetary policy shocks (e.g. Kuttner surprises)
- \Box Fitted excess returns \neq time t expected returns

Yield volatility and term premia

This paper Comments	Predicti	ve regressions c	of annual b	ond excess	s returns:	
Model			rx2	rx5	rx10	urx2
Empirics			Term prem	ium (TP) <i>ir</i>	the yield cu	irve
My priors Vol components Vol dynamics Vol and EPU		$\frac{TP\;(\widehat{cf}_t)}{R^2}$	0.27 (2.33) 0.11	0.56 (3.65) 0.25	0.64 (5.92) 0.42	0.10 (0.83) 0.01
Vol and term premia MPU and term premia				TP + volat		
Interactions		TP (\widehat{cf}_t)	0.16 (1.13)	0.51 (2.91)	0.67 (5.38)	0.03 (0.18)
		Vol ER 2Y	0.19 (2.99)	0.11 (1.03)	-0.00 (-0.04)	0.23 (2.85)
		Vol TP 10Y	0.07 (0.64)	0.02 (0.12)	-0.05 (-0.48)	-0.02 (-0.18)
		adj. R^2	0.20	0.26	0.42	0.11
		N (months)	228	228	228	228
		1992–2011, N\	N std errors	with 18 lag	s, RHS z-sco	pres, LHS $rx^{(n)}/n$
	(2015, F	RFS)		-		from Cieslak and Povala error measured from the
	BCFF s	urvey: $Urx_{t+1}^{(2)}$	$\equiv E_t^s(y_{t+1}^{(1)})$	$(1) - y_{t+1}^{(1)}$		

This paper Comments	Repeat	previous regres	sions with	policy unce	ertainty pro	xies (GPU/MPU)
Model			rx2	rx5	rx10	urx2
Empirics My priors		GPU	-0.10 (-1.63)	-0.07 (-0.76)	-0.03 (-0.24)	-0.08 (-1.22)
Vol components Vol dynamics		MPU	0.20 (2.97)	0.20 (2.29)	0.13 (1.30)	0.20 (3.10)
Vol and EPU Vol and term premia		adj. R^2	0.05	0.03	0.01	0.05
MPU and term ▷ premia			Cont	olling for TI	^D variation	
Interactions		TP (\widehat{cf}_t)	0.24 (2.79)	0.46 (4.52)	0.52 (7.70)	0.13 (1.53)
		GPU	-0.03 (-0.37)	0.06 (0.63)	0.12 (1.24)	-0.05 (-0.53)
		MPU	0.14 (2.03)	0.08 (1.06)	-0.00 (-0.07)	0.17 (2.29)
		adj. R^2 N (months)	0.17 318	0.27 318	0.38 318	0.09 318
		1988-2015:6, 1	NW std error	s with 18 lag	gs, RHS z-sco	pres, LHS $rx^{(n)}/n$
	predict Usual µ	ability of ex-pos	st forecast	errors; \neq to	erm premiu	regressions comes m interpretation ostly at the short er

This paper

Comments

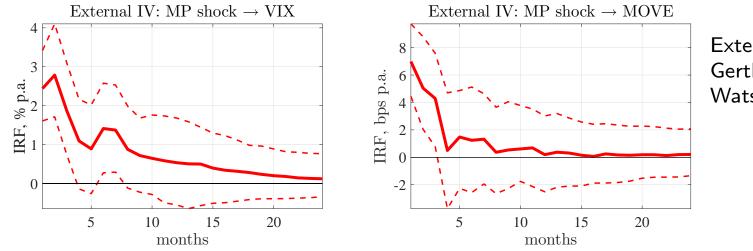
Model

Empirics

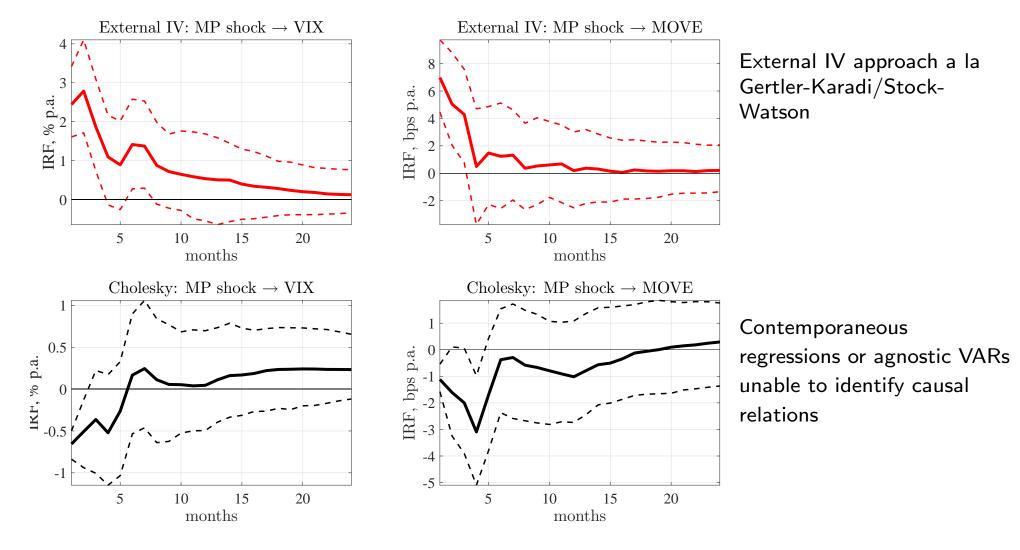
▷ Interactions

Fed and vol

MPU and GPU


Conclusions

iii. Interactions: volatility, MPU, GPU


Link between monetary policy and volatility

Correlations: Post-Volcker, high interest rate volatility coincides with low interest rates

Correlations: Post-Volcker, high interest rate volatility coincides with low interest rates

External IV approach a la Gertler-Karadi/Stock-Watson Correlations: Post-Volcker, high interest rate volatility coincides with low interest rates

Potential channels though which MPU can affect GPU

This paper	□ Trend inflation (perceived inflation target) uncertainty:
Comments <u>Model</u> <u>Empirics</u> Interactions Fed and vol ▷ MPU and GPU Conclusions	 Money-like features of (long-term) Treasuries tied to trend inflation vol (size of level shocks) Last two decades, negligible shocks to trend inflation, thus financing of government deficits at zero (negative) term premium Additionally, if Treasuries serve as money, vol of trend inflation affects effective money supply in the economy

Potential channels though which MPU can affect GPU

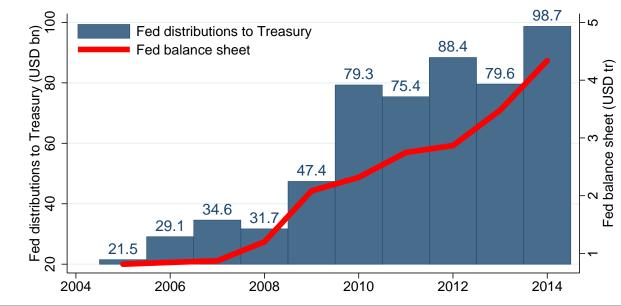
This paper

Comments

Model

Empirics

Interactions


Fed and vol

MPU and GPU

Conclusions

Trend inflation (perceived inflation target) uncertainty:

- Money-like features of (long-term) Treasuries tied to trend inflation vol (size of level shocks)
- Last two decades, negligible shocks to trend inflation, thus financing of government deficits at zero (negative) term premium
- Additionally, if Treasuries serve as money, vol of trend inflation affects effective money supply in the economy
- \Box Fed balance sheet uncertainty:
 - Budget deficit 2014 = \$483bn; Fed transfer to Treasury = \$99bn
 - Total Fed transfers to Treasury 2009-2014 = \$469bn

 \square

Conclusions

This paper Comments
Model
Empirics
Interactions
Fed and vol
MPU and GPU
▷ Conclusions

- Need a model with nontrivial both government and the Fed to obtain tight predictions how policy uncertainty affects yield curve
- □ Important to understand whether/how uncertainty about Fed policy affects market volatility and how it interacts with fiscal uncertainty
 - My empirical priors on the properties of interest rate vol have not changed:
 - Not spanned by the level of yields; thus not related to term premia
 - Short-rate expectations volatility correlates with proxies of monetary policy uncertainty; humped effect across maturities
 - Predictive regressions with auxiliary variables should not be interpreted as capturing variation term premia (expectation frictions at the short end of the yield curve)

 \square