A Macroeconomic Framework for Quantifying Systemic Risk

Zhiguo He, University of Chicago and NBER Arvind Krishnamurthy, Stanford University and NBER

March 2015

Financial Crisis in the Model

Note: Capital constraint binds for e < 0.435

Non-linearity: State-dependent Impulse Response: -1% Shock

Global Solution: Steady State Distribution

Model-based stress test

- Pick initial condition to match 2007Q2 asset prices
- Probability of crisis over horizon:
 - 1 year: 0.32%
 - 2 year: 3.57%
 - 5 year: 17.30 %
- Initial condition + rational forward looking agents = can't see around corners!

Model-based stress test

- Pick initial condition to match 2007Q2 asset prices
- Probability of crisis over horizon:
 - 1 year: 0.32%
 - 2 year: 3.57%
 - 5 year: 17.30 %
- Initial condition + rational forward looking agents = can't see around corners!
- Stress test:
 - Add \$2 trillion of shadow banking liabilities, with close to 0% capital.
 - This information was not in 2007Q2 asset prices
- Probability of crisis over horizon:
 - 1 year: 6.73%
 - 2 year: 23.45%
 - 5 year: 57.95 %

Outline of Presentation

Nonlinear macro model of a financial crisis

- Recent work on financial intermediaries: He-Krishnamurthy, Brunnermeier-Sannikov, Rampini-Viswanathan, Adrian-Boyarchenko, Gertler-Kiyotaki
- Our approach: occasionally binding constraint; global solution method (similar to Brunnermeier-Sannikov, Adrian-Boyarchenko)

Outline of Presentation

Nonlinear macro model of a financial crisis

- Recent work on financial intermediaries: He-Krishnamurthy, Brunnermeier-Sannikov, Rampini-Viswanathan, Adrian-Boyarchenko, Gertler-Kiyotaki
- Our approach: occasionally binding constraint; global solution method (similar to Brunnermeier-Sannikov, Adrian-Boyarchenko)
- 2 Calibration and results
- Quantify systemic risk and stress test

Model

- Two classes of agents: households and bankers
 - Households:

$$\mathbb{E}\left[\int_{0}^{\infty} e^{-\rho t} \frac{1}{1-\gamma} C_{t}^{1-\gamma} dt\right], \qquad C_{t} = \left(c_{t}^{y}\right)^{1-\phi} \left(c_{t}^{h}\right)^{\phi}$$

- Two types of capital: productive capital K_t and housing capital H.
 - Fixed supply of housing $H \equiv 1$
 - Price of capital q_t and price of housing P_t determined in equilibrium

Model

- Two classes of agents: households and bankers
 - Households:

$$\mathbb{E}\left[\int_{0}^{\infty} e^{-\rho t} \frac{1}{1-\gamma} C_{t}^{1-\gamma} dt\right], \qquad C_{t} = \left(c_{t}^{y}\right)^{1-\phi} \left(c_{t}^{h}\right)^{\phi}$$

- Two types of capital: productive capital K_t and housing capital H.
 - Fixed supply of housing $H \equiv 1$
 - Price of capital q_t and price of housing P_t determined in equilibrium
- Production $Y = AK_t$, with A being constant
- Fundamental shocks: stochastic capital quality shock *dZ*_t. TFP shocks

$$\frac{dK_t}{K_t} = i_t dt - \delta dt + \sigma dZ_t$$

Model

- Two classes of agents: households and bankers
 - Households:

$$\mathbb{E}\left[\int_{0}^{\infty} e^{-\rho t} \frac{1}{1-\gamma} C_{t}^{1-\gamma} dt\right], \qquad C_{t} = \left(c_{t}^{y}\right)^{1-\phi} \left(c_{t}^{h}\right)^{\phi}$$

- Two types of capital: productive capital K_t and housing capital H.
 - Fixed supply of housing $H \equiv 1$
 - Price of capital q_t and price of housing P_t determined in equilibrium
- Production $Y = AK_t$, with A being constant
- Fundamental shocks: stochastic capital quality shock dZ_t. TFP shocks

$$\frac{dK_t}{K_t} = i_t dt - \delta dt + \sigma dZ_t$$

Investment/Capital i_t , guadratic adjustment cost

$$\Phi(i_t, K_t) = i_t K_t + \frac{\kappa}{2} (i_t - \delta)^2 K_t$$
$$\max_{i_t} q_t i_t K_t - \Phi(i_t, K_t) \Rightarrow i_t = \delta + \frac{q_t - k_t}{\kappa}$$

К

Aggregate Balance Sheet

Aggregate Balance Sheet

Equity Dynamics in GE

Equity Constraint

Equity constraint: ϵ_t

- Bank can raise equity upto ϵ_t at zero cost
- Cost of raising equity more than ϵ_t is infinite.
- ϵ_t linked to intermediary performance (constant *m*)

$$\frac{d\epsilon_t}{\epsilon_t} = md\tilde{R}_t.$$

Equity constraint: ϵ_t

- Bank can raise equity upto ϵ_t at zero cost
- Cost of raising equity more than ϵ_t is infinite.
- ϵ_t linked to intermediary performance (constant *m*)

$$\frac{d\epsilon_t}{\epsilon_t} = md\tilde{R}_t.$$

- ϵ_t as "reputation" of the banker
- ϵ_t as banker's "net worth" fluctuating with past returns

Equity constraint: ϵ_t

- Bank can raise equity upto ϵ_t at zero cost
- Cost of raising equity more than ϵ_t is infinite.
- ϵ_t linked to intermediary performance (constant *m*)

$$\frac{d\epsilon_t}{\epsilon_t} = md\tilde{R}_t.$$

- ϵ_t as "reputation" of the banker
- ϵ_t as banker's "net worth" fluctuating with past returns
- Aggregate dynamics of $\mathcal{E}_t = \int \epsilon_t$

Calibration: Baseline Parameters

	Parameter	Choice	Targets (Unconditional)					
Dor	Panel A: Intermediation							
Гai								
т	Performance sensitivity	2	Average Sharpe ratio (model=38%)					
λ	Debt ratio	0.67	Average intermediary leverage					
η	Banker exit rate	13%	Prob. of crisis (model,data = 3%)					
γ	Entry trigger	6.5	Highest Sharpe ratio					
\dot{eta}	Entry cost	2.43	Average land price vol (model,data=14%)					
Par	Panel B: Technology							
σ	Capital quality shock	3%	Consumption volatility (model=1.4%)					
			Note: Model investment vol = 4.5%					
δ	Depreciation rate	10%	Literature					
κ	Adjustment cost	3	Literature					
Α	Productivity	0.133	Average investment-to-capital ratio					
Par	Panel C: Others							
ρ	Time discount rate	2%	Literature					
ξ	1/EIS	0.15	Interest rate volatility					
ϕ	Housing share	0.5	Housing-to-wealth ratio					

Results(1): State variable is $e_t = \mathcal{E}_t / K_t$

Capital constraint binds for *e* < 0.435</p>

Results(2)

- Capital constraint binds for e < 0.435</p>
- Without the possibility of the capital constraint, all of these lines would be flat. Model dynamics would be i.i.d., with vol=3%

State-dependent Impulse Response: -1% Shock (= σdZ_t) • VARdata

Pick initial condition for intermediary state variable (e) to match asset prices in 2007Q2

- Asset price = Gilchrist-Zakrajsek credit spread
- Note: this spread (as with most spreads) was low in 2007Q2
- Data from 1975 to 2010; compute histogram of spread variable
- Match percentile of spread in the data to the same percentile in model implied distribution for risk premium
- Answer: In 2007Q2, *e* = 1.27.

Matching Recent Crisis: Data(L) and Model(R)

- Set initial condition of e = 1.27 in 2007Q2.
- Then choose $(Z_{t+1} Z_t)$ shocks to match realized intermediary equity series.

07QIII	07QIV	08QI	08QII	08QIII	08QIV	09QI	09QII	09QIII	09QIV
-2.5%	-4.2	-1.1	-1.1	-0.7	-1.6	-1.8	-1.8	-0.9	-0.9

- Total -15.5%. Capital constraint binds after 07Q4—systemic risk state
- In the model (data), land price falls by 50% (55%)
- In the model (data), investment falls by 23% (25%)

Systemic Risk: What is the probability of the 2007-2009 crisis?

- What is the likelihood of the constraint binding ("systemic crisis") assuming e = 1.27 currently:
 - 0.32% in next 1 years
 - 3.57% in next 2 years
 - 17.30% in next 5 years

Systemic Risk: What is the probability of the 2007-2009 crisis?

- What is the likelihood of the constraint binding ("systemic crisis") assuming e = 1.27 currently:
 - 0.32% in next 1 years
 - 3.57% in next 2 years
 - 17.30% in next 5 years

Lessons:

- Initial condition calibrated to asset prices + rational forward looking agents = can't see around corners!
- Even with a highly non-linear model
- Could abandon RE. Credit growth unusually high, crash likely, even though asset markets dont see it

Stress testing: Leverage test

- Financial sector aggregate leverage fixed at 3 in model
 - We measure across commercial banks, broker/dealers, hedge funds in 2007:
 - Assets = \$15,703 billion; Liabilities = \$10,545 billion
- Suppose a stress test uncovered leverage:
 - ABCP (SIVs): \$1,189 billion; Liabilities \$1,189 billion
 - Repo (MMFs and Sec Lenders): \$1,020 billion; Liabilities \$1,000 billion (assumed 2% haircut)
- Leverage is "hidden" in sense that agents take equilibrium functions as given based on leverage=3
 - 1 year: 6.73%
 - 2 year: 23.45%
 - 5 year: 57.95 %

Stress testing plus a model

 In current practice, work goes into estimating exposure (i.e. true leverage in example)

With a model:

- Stress may trigger macro and asset price feedbacks, second round,... third round...
 - Model computes the fixed point
- Model translates stress event into a probability of a systemic crisis
- Model can help calibrate corrective actions (i.e. capital raising) based on target:
 - How much capital is needed to ensure probability of crisis < X%?</p>
 - "Macro-VAR"

Stress testing

Key step: Need to map from stress scenario into underlying shock, dZ_t .

- Say stress scenario \Rightarrow -30% Return on equity
- Naive partial eqbm: leverage of 3, $\sigma(Z_{t+0.25} Z_t) = -30/3 = -10\%$.
- Feed in -10% shock into the model over one quarter.
- Result: Beginning at *e* = 1.27 in 2007Q2, economy is immediately moved into crisis region, *e* < 0.435
- our model helps in figuring out the right shock dZ_t

In US stress tests, scenario was over 6 quarters. Feed in shocks quarter-by-quarter, over 6 quarters:

Return on Equity	6 QTR Shocks	Prob(Crisis within next 2 years)
-2%	-1.16%	5.25 %
-5	-2.53%	8.90
-10	-4.69%	22.88
-15	-6.71%	48.90
-30	-8.72%	100.00

Stress testing

Map "stress test" into a shock to e.

Conclusion

- We develop a fully stochastic model of a systemic crisis, with an equity capital constraint on the intermediary sector
- Is able to replicate 2007/2008 period with only intermediary capital shocks
- The model quantitatively matches the differential comovements in distress and non-distress periods
- Offers a way of mapping macro-stress tests into probability of systemic states.

Other crises

Systemic Risk

Equity series

VIX

