Macro Risks and the Term Structure

Geert Bekaert1 Eric Engstrom2 Andrey Ermolov3

2015

The views expressed herein do not necessarily reflect those of the Federal Reserve System, its Board of Governors, or staff.

1 Columbia University and NBER
2 Federal Reserve Board of Governors
2 Gabelli School of Business, Fordham University
Existing Literature

- **Affine models**
 - Latent variables
 - Macro variables (Ang and Piazzesi; 2003)
 - Less focus on economics; “Fits” yield curve data

- **DSGE models**
 - Optimizing agents
 - Complex equations
 - Lots of economics; tightly parameterized

- Many models are still (conditionally) Gaussian
Introduction (2/2)
Contributions of this paper

Macroeconomics
- New device to model real activity and inflation
- Evidence for non-Gaussian shocks with time-varying distributions

Asset Pricing
- Macro variables drive 70 percent of variation in yields
- Non-Gaussian macro risk factors drive substantial variation in risk premiums
- Novel TS model in the affine class (work in progress)
Roadmap for Presentation

- 2 Key modeling assumptions
- 3 Methodological steps
- Some reduced-form asset pricing results
- Plan for the formal TS model
Key Modeling Assumption (1/2)

“Device” for Macroeconomic Shocks

- Consider shocks to real growth and inflation

\[
g_t = E_{t-1}[g_t] + u_t^g, \\
\pi_t = E_{t-1}[\pi_t] + u_t^\pi,
\]

- Model shocks as functions of supply/demand shocks

\[
u_t^\pi = -\sigma_{\pi s} u_t^s + \sigma_{\pi d} u_t^d, \\
u_t^g = \sigma_{gs} u_t^s + \sigma_{gd} u_t^d, \\
Cov(u_t^d, u_t^s) = 0, Var(u_t^d) = Var(u_t^s) = 1.
\]
Key Modeling Assumption (1/2)
“Device” for Macroeconomic Shocks

➢ If supply/demand shocks are heteroskedastic

\[Cov_{t-1}[u_t^g, u_t^\pi] = -\sigma_{\pi_s} \sigma_{gs} Var_{t-1} u_t^s + \sigma_{\pi_d} \sigma_{gd} Var_{t-1} u_t^d. \]

– Demand shock environment

\[Cov_{t-1}[u_t^g, u_t^\pi] > 0 \]

nominal assets hedge real risk

– Supply shock environment

\[Cov_{t-1}[u_t^g, u_t^\pi] < 0 \]

nominal bonds exacerbate real risk
Key Modeling Assumption (2/2)
Non-Gaussian Distributions for Shocks

- Demand (and supply) shocks are “BEGE”-distributed
 \[u_t^d = \sigma_p^d \omega_{p,t}^d - \sigma_n^d \omega_{n,t}^d \]

- \(\omega_{p,t}^d \) and \(\omega_{n,t}^d \) follow gamma distributions
 \[\omega_{p,t}^d \sim \Gamma(p_{t-1}^d, 1) \]
 \[\omega_{n,t}^d \sim \Gamma(n_{t-1}^d, 1) \]

- \(\Gamma(p_{t-1}^d, 1) \) denotes a demeaned gamma distribution with
 time-varying shape parameter \(p_{t-1}^d \) and unit size parameter
Digression on the Gamma Distribution

\begin{align*}
-\omega_{n,t} &= n_t \\
\text{Variance}_t &= \frac{-2}{\sqrt{n_t}} \\
\text{Skewness}_t &= \frac{6}{n_t} \\
\omega_{p,t} &= p_t \\
\text{Excess Kurtosis}_t &= \frac{2}{\sqrt{p_t}} \\
\end{align*}
1) “Large” and equal p_t and n_t: Gaussian limit
BEGE Distributions

2) “Small” but still equal p_t and n_t: excess kurtosis
3) Relatively large n_t: negative skewness: “Bad Environment”
4) Relatively large p_t: positive skewness “Good Environment”
The BEGE distribution has some advantages...

- Flexible
- Realistic
 - Fits some financial and macro economic data well
- Tractable
 - Moments are affine in p_t and n_t
 - Fits in the affine class of asset pricing models
BEGE Distributions

... and some disadvantages
3 Methodological Steps to Assemble a set of Macro Factors

- We assemble six factors for use in term structure modeling that we identify using *(only)* macro data

\[
\begin{align*}
E_t [g_{t+1}] &= \text{Expected growth} \\
E_t [\pi_{t+1}] &= \text{Expected inflation} \\
p^d_t &= \text{“Good” (positive skew) demand variance} \\
p^s_t &= \text{“Good” (positive skew) supply variance} \\
n^d_t &= \text{“Bad” (negative skew) demand variance} \\
n^s_t &= \text{“Bad” (negative skew) supply variance}
\end{align*}
\]
3 Methodological Steps

1. Identify conditional means versus shocks in growth and inflation data \(\rightarrow E_t[g_{t+1}], E_t[\pi_{t+1}] \)

2. Recover supply and demand shocks

3. Estimate BEGE processes \(\rightarrow [p_t^d, n_t^d, p_t^s, n_t^d] \)
Methodological Steps (1/3)
Measuring Expected Growth and Inflation

➢ Use simple predictive regressions

 — LHS: quarterly U.S. GDP growth and CPI inflation from 1970

 — RHS: lagged LHS, survey-based (SPF) forecasts
 • Try many possible combinations of RHS variables and lag structures
 • Use BIC to choose
Results

\[
g_{t+1} = 0.0064^{**} + 0.3401^{***} g_t + -0.1721^{**} \pi_t \\
\pi_{t+1} = -0.0002 + 0.9055^{***} \pi_{t,t+1} + 0.2355^{**} \pi_t
\]

- GDP growth expectations consistent with VAR(1)
- Inflation expectations load on survey measures
Methodological Steps (1/3)
Measuring Expected Growth and Inflation

Expected GDP Growth

Expected Inflation
Fundamental identification problem with Gaussian DGP

\[u_i^\pi = -\sigma_{\pi s} u_i^s + \sigma_{\pi d} u_i^d, \]
\[u_i^q = \sigma_{gs} u_i^s + \sigma_{gd} u_i^d, \]
\[Cov(u_i^d, u_i^s) = 0, Var(u_i^d) = Var(u_i^s) = 1. \]

The BEGE structure is consistent with identification using non-Gaussian features of data

- Use 2nd 3rd 4th order moments to identify “\(\sigma \)”s
- Then “invert” supply and demand shocks
Methodological Steps (2/3)
Recover Supply/Demand Shocks
Methodological Steps (2/3)
Recover Supply/Demand Shocks

Supply shock u_t^s
Methodological Steps (3/3)
Filter BEGE Factors

➢ Assume autoregressive, square root-like processes for the four BEGE factors

\[
\begin{align*}
 p_t^d &= \bar{p}^d (1 - \phi_p^d) + \phi_p^d p_{t-1}^d + \sigma_p^d \omega_{p,t}^d, \\
 p_t^s &= \bar{p}^s (1 - \phi_p^s) + \phi_p^s p_{t-1}^s + \sigma_p^s \omega_{p,t}^s, \\
 n_t^d &= \bar{n}^d (1 - \phi_n^d) + \phi_n^d n_{t-1}^d + \sigma_n^d \omega_{n,t}^d, \\
 n_t^s &= \bar{s}^d (1 - \phi_n^s) + \phi_n^s p_{t-1}^s + \sigma_n^s \omega_{n,t}^s.
\end{align*}
\]

➢ Use Bates filter to estimate parameters and filter
 – accommodates non-Gaussian processes
Methodological Steps (3/3)

Filter BEGE Factors

Demand variances

- Good demand variance
- Bad demand variance

Year:
- 1970
- 1975
- 1980
- 1985
- 1990
- 1995
- 2000
- 2005
- 2010

Variance:
- 0
- 1
- 2
- 3
- 4
- 5
Methodological Steps (3/3)
Filter BEGE Factors

Supply variances

- Blue line: Good supply variance
- Red line: Bad supply variance

Year

Variance

0 0.5 1 1.5 2

Methodological Steps (3/3)
Filter BEGE Factors

Total conditional variance

- Blue dots: Demand shock
- Red line: Supply shock

Year

Variance

We can recover the implied correlation between real growth and inflation.
Macro Risks and the Term Structure: Reduced-from evidence

- So far, we have (purposefully) not looked at asset price data
- Do the macro factors show signs of life for helping to explain yields and risk premiums?
Macro Risks and the Term Structure: Reduced-from evidence 1

<table>
<thead>
<tr>
<th>1 Quarter nominal interest rate</th>
<th>Constant</th>
<th>$E_t g_{t+1}$</th>
<th>$E_t \pi_{t+1}$</th>
<th>p_t^d</th>
<th>n_t^d</th>
<th>n_t^s</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.0022</td>
<td>0.4944***</td>
<td>1.5208***</td>
<td>-0.0001</td>
<td>0.0193</td>
<td>-0.0008*</td>
<td>0.7074</td>
</tr>
<tr>
<td></td>
<td>(0.0027)</td>
<td>(0.1849)</td>
<td>(0.2205)</td>
<td>(0.0001)</td>
<td>(0.0149)</td>
<td>(0.0004)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 Year nominal interest rate</th>
<th>Constant</th>
<th>$E_t g_{t+1}$</th>
<th>$E_t \pi_{t+1}$</th>
<th>p_t^d</th>
<th>n_t^d</th>
<th>n_t^s</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.0022</td>
<td>0.5645***</td>
<td>1.6767***</td>
<td>-0.0001</td>
<td>0.0206</td>
<td>-0.0006</td>
<td>0.7174</td>
</tr>
<tr>
<td></td>
<td>(0.0028)</td>
<td>(0.1936)</td>
<td>(0.2393)</td>
<td>(0.0001)</td>
<td>(0.0178)</td>
<td>(0.0006)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10 Year nominal interest rate</th>
<th>Constant</th>
<th>$E_t g_{t+1}$</th>
<th>$E_t \pi_{t+1}$</th>
<th>p_t^d</th>
<th>n_t^d</th>
<th>n_t^s</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0036*</td>
<td>0.5011***</td>
<td>1.5623***</td>
<td>-0.0003**</td>
<td>0.0261*</td>
<td>0.0001</td>
<td>0.7284</td>
</tr>
<tr>
<td></td>
<td>(0.0022)</td>
<td>(0.1583)</td>
<td>(0.2100)</td>
<td>(0.0001)</td>
<td>(0.0143)</td>
<td>(0.0004)</td>
<td></td>
</tr>
</tbody>
</table>
Macro Risks and the Term Structure: Reduced-form evidence 2

1-year holding period excess returns, predictability

- Adjusted R^2 without p_t^d, n_t^d, and n_t^s
- Adjusted R^2 with p_t^d, n_t^d, and n_t^s
Macro Risks and the Term Structure: Reduced-form evidence 2

1-qtr holding period excess returns, predictability

<table>
<thead>
<tr>
<th></th>
<th>Excess return on 2 year bond</th>
<th>Excess return on 10 year bond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-0.0003</td>
<td>0.0228***</td>
</tr>
<tr>
<td></td>
<td>(0.0012)</td>
<td>(0.0081)</td>
</tr>
<tr>
<td>$E_t g_{t+1}$</td>
<td>0.1810**</td>
<td>0.1797</td>
</tr>
<tr>
<td></td>
<td>(0.0846)</td>
<td>(0.8231)</td>
</tr>
<tr>
<td>$E_t \pi_{t+1}$</td>
<td>0.0967</td>
<td>-0.8669</td>
</tr>
<tr>
<td></td>
<td>(0.1252)</td>
<td>(0.5974)</td>
</tr>
<tr>
<td>p_t^d</td>
<td>-0.0002***</td>
<td>-0.0012***</td>
</tr>
<tr>
<td></td>
<td>(0.0001)</td>
<td>(0.0003)</td>
</tr>
<tr>
<td>n_t^d</td>
<td>-0.0150</td>
<td>-0.2448***</td>
</tr>
<tr>
<td></td>
<td>(0.0103)</td>
<td>(0.0719)</td>
</tr>
<tr>
<td>n_t^s</td>
<td>0.0006*</td>
<td>0.0055***</td>
</tr>
<tr>
<td></td>
<td>(0.0003)</td>
<td>(0.0014)</td>
</tr>
</tbody>
</table>
Formal Term Structure Model

Aspirations

Specify real short rate as function of macro factors

\[y_{1,t} = a_0 + a_g E_t [g_{t+1}] + a_\pi E_t [\pi_{t+1}] + a_{pd} p^d_t + a_{nd} n^d_t + a_{ns} n^s_t + z_t \]

- \(z_t \) is a latent factor (Gaussian)

Specify an “empirical” pricing kernel

\[(m_{t+1} - E_t [m_{t+1}]) = \lambda_{pd} \omega^d_{p,t+1} + \lambda_{nd} \omega^d_{n,t+1} + \lambda_{ps} \omega^s_{p,t+1} + \lambda_z \varepsilon^z_{t+1} \]

- Constant prices of risk \(\rightarrow \) model is in the affine class
Can the model explain using macro factors
– yield dynamics?
– apparent non-Gaussiananities in option prices?
Conclusions

Supply and demand shocks
- Relative variances change considerably over time
- Evidence of non-Gaussianity

Asset prices
- Macro factors drive significant portion of variation in yields
- Non-Gaussian macro risks are important drivers of risk premiums for nominal bonds