Introduction	Model	Asset Prices	Discussion	Conclusions

A Macroeconomic Model of Equities and Real, Nominal, and Defaultable Debt

Eric T. Swanson

University of California, Irvine

Bank of Canada/Federal Reserve Bank of San Francisco Conference on Fixed Income Markets San Francisco November 5, 2015

Introduction	Model	Asset Prices	Discussion	Conclusions
●○	000000		000	o
Motivation				

- equity premium puzzle
- long-term bond premium puzzle (nominal and real)
- credit spread puzzle

Introduction	Model	Asset Prices	Discussion	Conclusions
●○	000000		000	o
Motivation				

- equity premium puzzle
- long-term bond premium puzzle (nominal and real)
- credit spread puzzle

Reduces separate puzzles in finance to a single, unifying puzzle: Why does risk aversion in the model need to be so high?

Introduction	Model	Asset Prices	Discussion	Conclusions
●○	000000		000	o
Motivation				

- equity premium puzzle
- long-term bond premium puzzle (nominal and real)
- credit spread puzzle

Reduces separate puzzles in finance to a single, unifying puzzle: Why does risk aversion in the model need to be so high?

- uncertainty: Weitzman (2007), Barillas-Hansen-Sargent (2010), et al.
- rare disasters: Rietz (1988), Barro (2006), et al.
- long-run risks: Bansal-Yaron (2004) et al.

Introduction	Model	Asset Prices	Discussion	Conclusions
●○	000000		000	o
Motivation				

- equity premium puzzle
- long-term bond premium puzzle (nominal and real)
- credit spread puzzle

Reduces separate puzzles in finance to a single, unifying puzzle: Why does risk aversion in the model need to be so high?

- uncertainty: Weitzman (2007), Barillas-Hansen-Sargent (2010), et al.
- rare disasters: Rietz (1988), Barro (2006), et al.
- long-run risks: Bansal-Yaron (2004) et al.
- heterogeneous agents: Mankiw-Zeldes (1991), Guvenen (2009), Schmidt (2015), et al.
- financial intermediaries: Adrian-Etula-Muir (2013)

Introduction	Model	Asset Prices	Discussion	Conclusions
○●	000000		000	o
Motivation				

- unifying explanation for asset pricing puzzles
- structural model of asset prices (provides intuition, robustness to breaks and policy interventions)

Introduction	Model	Asset Prices	Discussion	Conclusions
○●	000000		000	o
Motivation				

- unifying explanation for asset pricing puzzles
- structural model of asset prices (provides intuition, robustness to breaks and policy interventions)

Implications for Macro:

- show how to match risk premia in DSGE framework
- start to endogenize asset price-macroeconomy feedback

Introduction	Model	Asset Prices	Discussion	Conclusions
○●	000000		000	o
Motivation				

- unifying explanation for asset pricing puzzles
- structural model of asset prices (provides intuition, robustness to breaks and policy interventions)

Implications for Macro:

- show how to match risk premia in DSGE framework
- start to endogenize asset price-macroeconomy feedback

Secondary theme: Keep the model as simple as possible

Introduction	Model	Asset Prices	Discussion	Conclusions
○●	000000		000	o
Motivation				

- unifying explanation for asset pricing puzzles
- structural model of asset prices (provides intuition, robustness to breaks and policy interventions)

Implications for Macro:

- show how to match risk premia in DSGE framework
- start to endogenize asset price-macroeconomy feedback

Secondary theme: Keep the model as simple as possible

Two key ingredients:

- Epstein-Zin preferences
- nominal rigidities

Introduction	Model ●○○○○○	Asset Prices	Discussion 000	Conclusions o
Househo	lde			

Period utility function:

$$u(c_t, l_t) \equiv \log c_t - \eta \frac{l_t^{1+\chi}}{1+\chi}$$

- additive separability between c and l
- SDF comparable to finance literature
- log preferences for balanced growth, simplicity

Flow budget constraint:

$$a_{t+1} = e^{i_t}a_t + w_t I_t + d_t - c_t$$

Calibration: (IES = 1), χ = 3, I = 1 (η = .54)

Introduction	Model o●oooo	Asset Prices	Discussion 000	Conclusions o

Generalized Recursive Preferences

Household chooses state-contingent $\{(c_t, l_t)\}$ to maximize

$$V(a_t; \theta_t) = \max_{(c_t, l_t)} u(c_t, l_t) - \beta \alpha^{-1} \log \left[E_t \exp(-\alpha V(a_{t+1}; \theta_{t+1})) \right]$$

Calibration: $\beta = .992$, RRA (R^c) = 60 ($\alpha = 59.15$)

Introduction	Model oo●ooo	Asset Prices	Discussion 000	Conclusions o
Firms				

Firms are very standard:

- continuum of monopolistic firms (gross markup λ)
- Calvo price setting (probability 1ξ)
- Cobb-Douglas production functions, $y_t(f) = A_t k^{1-\theta} I_t(f)^{\theta}$
- fixed firm-specific capital stocks k

Random walk technology: $\log A_t = \log A_{t-1} + \varepsilon_t$

- simplicity
- comparability to finance literature
- helps match equity premium

Calibration: $\lambda = 1.1, \xi = 0.8, \theta = 0.6, \sigma_A = .007, (\rho_A = 1), \frac{k}{4Y} = 2.5$

Introduction	Model ooo●oo	Asset Prices	Discussion 000	Conclusions o
		D. II		

Fiscal and Monetary Policy

No government purchases or investment:

$$Y_t = C_t$$

Taylor-type monetary policy rule:

$$i_t = r + \pi_t + \phi_{\pi}(\pi_t - \overline{\pi}) + \phi_y(y_t - \overline{y}_t)$$

"Output gap" $(y_t - \overline{y}_t)$ defined relative to moving average:

$$\overline{\mathbf{y}}_t \equiv \rho_{\overline{\mathbf{y}}} \overline{\mathbf{y}}_{t-1} + (\mathbf{1} - \rho_{\overline{\mathbf{y}}}) \mathbf{y}_t$$

Rule has no inertia:

- simplicity
- Rudebusch (2002, 2006)

Calibration: $\phi_{\pi} = 0.5, \ \phi_{y} = 0.75, \ \overline{\pi} = .008, \ \rho_{\overline{y}} = 0.9$

Introduction	Model ○○○○●○	Asset Prices	Discussion 000	Conclusions o
Solution	Method			

Introduction	Model ○○○○●○	Asset Prices	Discussion 000	Conclusions o
Solution	Method			

```
Divide nonstationary variables (Y_t, C_t, w_t, etc.) by A_t
```

Introduction	Model ○○○○●○	Asset Prices	Discussion 000	Conclusions o
Solution	Method			

```
Divide nonstationary variables (Y_t, C_t, w_t, etc.) by A_t
```

Solve using perturbation methods around nonstoch. steady state

Introduction	Model oooo●o	Asset Prices	Discussion 000	Conclusions o
Solution Me	ethod			

Divide nonstationary variables (Y_t , C_t , w_t , etc.) by A_t

Solve using perturbation methods around nonstoch. steady state

- first-order: no risk premia
- second-order: risk premia are constant
- third-order: time-varying risk premia
- higher-order: more accurate over larger region

Introduction	Model ooooooo	Asset Prices	Discussion	Conclusions o
Solution Me	ethod			

Divide nonstationary variables (Y_t , C_t , w_t , etc.) by A_t

Solve using perturbation methods around nonstoch. steady state

- first-order: no risk premia
- second-order: risk premia are constant
- third-order: time-varying risk premia
- higher-order: more accurate over larger region

Model has 2 state variables (\bar{y}_t , Δ_t), one shock (ε_t)

Introduction	Model	Asset Prices	Discussion	Conclusions
	000000			

Impulse Responses

Introduction	Model	Asset Prices	Discussion	Conclusions
	000000			

Impulse Responses

Introduction	Model	Asset Prices	Discussion	Conclusions
00	oooooo	●oo	000	o
Equity: Lev	ered Cons	umption Claim		

Equity price

$$p_t^e = E_t m_{t+1} (C_{t+1}^{\nu} + p_{t+1}^e)$$

where ν is degree of leverage

Introduction	Model	Asset Prices	Discussion	Conclusions
00	000000	●oo	000	o
Equity: Le	evered Co	nsumption Clai	m	

Equity price

$$p_t^e = E_t m_{t+1} (C_{t+1}^{\nu} + p_{t+1}^e)$$

where $\boldsymbol{\nu}$ is degree of leverage

Realized gross return:

$$R^{e}_{t+1} \equiv rac{C^{
u}_{t+1} + p^{e}_{t+1}}{p^{e}_{t}}$$

00	000000		000	0
Introduction	Model	Asset Prices	Discussion	Conclusions

Equity: Levered Consumption Claim

Equity price

$$p_t^e = E_t m_{t+1} (C_{t+1}^{\nu} + p_{t+1}^e)$$

where $\boldsymbol{\nu}$ is degree of leverage

Realized gross return:

$${\sf R}^{e}_{t+1}\equiv rac{C^{
u}_{t+1}+{
ho}^{e}_{t+1}}{{
ho}^{e}_{t}}$$

Equity premium

$$\psi_t^e \equiv E_t R_{t+1}^e - e^{r_t}$$

00	000000		000	0
Introduction	Model	Asset Prices	Discussion	Conclusions

Equity: Levered Consumption Claim

Equity price

$$p_t^e = E_t m_{t+1} (C_{t+1}^{\nu} + p_{t+1}^e)$$

where $\boldsymbol{\nu}$ is degree of leverage

Realized gross return:

$${\sf R}^{e}_{t+1}\equiv rac{C^{
u}_{t+1}+
ho^{e}_{t+1}}{
ho^{e}_{t}}$$

Equity premium

$$\psi_t^e \equiv E_t R_{t+1}^e - e^{r_t}$$

Calibration: $\nu = 3$

Introduction	Model 000000	Asset Prices	Discussion 000	Conclusions o			
Table 2:	Table 2: Equity Premium						

In the data: 3–6.5 percent per year (e.g., Campbell, 1999, Fama-French, 2002)

	odel Doooo	Asset Prices oeocococococo	Discussion	Conclusions o				
Table 2: Equi	Table 2: Equity Premium							
In the data: 3–6. Fama-French,	•	er year (e.g., Cam	obell, 1999,					
Risk aversion	R ^c Shock	κ persistence ρ_A	Equity premiu	m ψ^{e}				
10		1	0.62					
30		1	1.96					
60		1	4.19					
90		1	6.70					

Introduction oo	Model 000000	Asset Prices o●ooooooooooo	Discussion	Conclusions o				
Table 2: Eq	Table 2: Equity Premium							
In the data: 3- Fama-Frenc	•	ent per year (e.g., Cam	pbell, 1999,					
Risk aversio	on <i>R^c</i>	Shock persistence ρ_A	Equity premiu	um ψ^{e}				
10		1	0.62					
30		1	1.96					
60		1	4.19					
90		1	6.70					

Introduction	Model	Asset Prices	Discussion 000	Conclusions o		
Table 2: Equity Premium						
	a: 3–6.5 pei rench, 2002	rcent per year (e.g., Car 2)	npbell, 1999,			
Risk ave	ersion <i>R^c</i>	Shock persistence ρ_A	Equity premi	ium $\psi^{\pmb{e}}$		

10	1	0.62
30	1	1.96
60	1	4.19
90	1	6.70
60	.995	1.86
60	.99	1.08
60	.98	0.53
60	.95	0.17

Introduction	Model 000000	Asset Prices	Discussion 000	Conclusions o
Real Gover	mment Del	ot		

$$p_t^{(n)} = E_t m_{t+1} p_{t+1}^{(n-1)},$$

Introduction	Model 000000	Asset Prices	Discussion 000	Conclusions o
Real Gover	rnment Del	ot		

$$p_t^{(n)} = E_t m_{t+1} p_{t+1}^{(n-1)},$$

 $p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-r_t}$

Introduction	Model	Asset Prices	Discussion 000	Conclusions o
Real Gov	vernment D	Debt		

$$p_t^{(n)} = E_t m_{t+1} p_{t+1}^{(n-1)},$$

 $p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-r_t}$

Real yield:

$$r_t^{(n)} = -\frac{1}{n} \log p_t^{(n)}$$

Introduction 00	Model	Asset Prices	Discussion 000	Conclusions o
Real Go	vernment [)eht		

$$p_t^{(n)} = E_t m_{t+1} p_{t+1}^{(n-1)},$$

 $p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-r_t}$

Real yield:

$$r_t^{(n)} = -\frac{1}{n} \log p_t^{(n)}$$

Real term premium:

$$\psi_t^{(n)} = r_t^{(n)} - \hat{r}_t^{(n)}$$

Introduction	Model 000000	Asset Prices	Discussion 000	Conclusions o			
Real Government Debt							

Real *n*-period zero-coupon bond price:

$$p_t^{(n)} = E_t m_{t+1} p_{t+1}^{(n-1)},$$

 $p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-r_t}$

Real yield:

$$r_t^{(n)} = -\frac{1}{n} \log p_t^{(n)}$$

Real term premium:

$$\psi_t^{(n)} = r_t^{(n)} - \hat{r}_t^{(n)}$$

where

$$\hat{r}_t^{(n)} = -\frac{1}{n} \log \hat{p}_t^{(n)}$$
$$\hat{p}_t^{(n)} = e^{-r_t} E_t \hat{p}_{t+1}^{(n-1)}$$

Introduction	Model	Asset Prices	Discussion	Conclusions
00	000000	○○○○●○○○○○○○○	000	o
Nominal G	overnme			

Nominal *n*-period zero-coupon bond price:

$$p_t^{(n)} = E_t m_{t+1} e^{-\pi_{t+1}} p_{t+1}^{(n-1)},$$

Introduction	Model	Asset Prices	Discussion	Conclusions o	
Nominal	Governme	nt Debt			

Nominal *n*-period zero-coupon bond price:

$$p_t^{\$(n)} = E_t m_{t+1} e^{-\pi_{t+1}} p_{t+1}^{\$(n-1)},$$
$$p_t^{\$(0)} = 1, \quad p_t^{\$(1)} = e^{-i_t}$$

		000000000000000000000000000000000000000		0			
Nominal Covernment Debt							

Nominal Government Debt

Nominal *n*-period zero-coupon bond price:

$$p_t^{\$(n)} = E_t m_{t+1} e^{-\pi_{t+1}} p_{t+1}^{\$(n-1)},$$
$$p_t^{\$(0)} = 1, \quad p_t^{\$(1)} = e^{-i_t}$$

Nominal yield:

$$i_t^{(n)} = -\frac{1}{n} \log p_t^{(n)}$$

00	000000	000000000000000000000000000000000000000	000	o			
Introduction	Model	Asset Prices	Discussion	Conclusions			

Nominal Government Debt

Nominal *n*-period zero-coupon bond price:

$$p_t^{\$(n)} = E_t m_{t+1} e^{-\pi_{t+1}} p_{t+1}^{\$(n-1)},$$
$$p_t^{\$(0)} = 1, \quad p_t^{\$(1)} = e^{-i_t}$$

Nominal yield:

$$i_t^{(n)} = -\frac{1}{n} \log p_t^{(n)}$$

Nominal term premium:

$$\psi_t^{(n)} = i_t^{(n)} - \hat{i}_t^{(n)}$$

Introduction	Model 000000	Asset Prices	Discussion 000	Conclusions o

Nominal Government Debt

Nominal *n*-period zero-coupon bond price:

$$p_t^{\$(n)} = E_t m_{t+1} e^{-\pi_{t+1}} p_{t+1}^{\$(n-1)},$$
$$p_t^{\$(0)} = 1, \quad p_t^{\$(1)} = e^{-i_t}$$

Nominal yield:

$$i_t^{(n)} = -\frac{1}{n} \log p_t^{(n)}$$

Nominal term premium:

$$\psi_t^{(n)} = i_t^{(n)} - \hat{i}_t^{(n)}$$

where

$$\hat{i}_{t}^{(n)} = -\frac{1}{n} \log \hat{p}_{t}^{\$(n)}$$
$$\hat{p}_{t}^{\$(n)} = e^{-i_{t}} E_{t} \hat{p}_{t+1}^{\$(n-1)}$$

Introduction	Model	Asset Prices	Discussion 000	Conclusions o	
Real Yie	ld Curve				

Table 3: Real Zero-Coupon Bond Yields

	2-yr.	3-yr.	5-yr.	7-yr.	10-yr.	(10y)–(3y)
US TIPS, 1999–2014 ^a			1.37	1.63	1.90	
US TIPS, 2004–2014 ^a	0.19	0.32	0.65	0.95	1.28	0.96
US TIPS, 2004–2007 ^a	1.39	1.52	1.74	1.91	2.09	0.57
UK indexed gilts, 1983–1995 ^b	6.12	5.29	4.34		4.12	-1.17
UK indexed gilts, 1985–2014 ^c		2.02	2.16	2.26	2.35	0.33
UK indexed gilts, 1990–2007 ^c		2.79	2.78	2.79	2.80	0.01

Introduction	Model	Asset Prices	Discussion 000	Conclusions o	
Real Yie	ld Curve				

Table 3: Real Zero-Coupon Bond Yields

	2-yr.	3-yr.	5-yr.	7-yr.	10-yr.	(10y)–(3y)
US TIPS, 1999–2014 ^a			1.37	1.63	1.90	
US TIPS, 2004–2014 ^a	0.19	0.32	0.65	0.95	1.28	0.96
US TIPS, 2004–2007 ^a	1.39	1.52	1.74	1.91	2.09	0.57
UK indexed gilts, 1983–1995 ^b	6.12	5.29	4.34		4.12	-1.17
UK indexed gilts, 1985–2014 ^c		2.02	2.16	2.26	2.35	0.33
UK indexed gilts, 1990–2007 ^c		2.79	2.78	2.79	2.80	0.01
macroeconomic model	1.94	1.93	1.93	1.93	1.93	0.00

^aGürkaynak, Sack, and Wright (2010) online dataset ^bEvans (1999) ^cBank of England web site

Introduction	Model	Asset Prices	Discussion	Conclusions	
	000000	○○○○○●○○○○○○	000	o	
Nominal	Yield Curv	е			

Table 4: Nominal Zero-Coupon Bond Yields

	1-yr.	2-yr.	3-yr.	5-yr.	7-yr.	10-yr.	(10y)-(1y)
US Treasuries, 1961–2014 ^a	5.36	5.59	5.77	6.05	6.26		
US Treasuries, 1971–2014 ^a	5.53	5.77	5.97	6.29	6.54	6.81	1.28
US Treasuries, 1990–2007 ^a	4.56	4.84	5.06	5.41	5.68	5.98	1.42
UK gilts, 1970–2014 ^b	7.07	7.25	7.41	7.65	7.84	8.02	0.95
UK gilts, 1990–2007 ^b	6.20	6.29	6.38	6.47	6.50	6.48	0.28

Introduction	Model 000000	Asset Prices	Discussion 000	Conclusions o
Nominal	Yield Curv	е		

Table 4: Nominal Zero-Coupon Bond Yields

	1-yr.	2-yr.	3-yr.	5-yr.	7-yr.	10-yr.	(10y)-(1y)
US Treasuries, 1961–2014 ^a	5.36	5.59	5.77	6.05	6.26		
US Treasuries, 1971–2014 ^a	5.53	5.77	5.97	6.29	6.54	6.81	1.28
US Treasuries, 1990–2007 ^a	4.56	4.84	5.06	5.41	5.68	5.98	1.42
UK gilts, 1970–2014 ^b	7.07	7.25	7.41	7.65	7.84	8.02	0.95
UK gilts, 1990–2007 ^b	6.20	6.29	6.38	6.47	6.50	6.48	0.28
macroeconomic model	5.35	5.59	5.80	6.09	6.27	6.44	1.09

^aGürkaynak, Sack, and Wright (2007) online dataset ^bBank of England web site

Introduction	Model	Asset Prices	Discussion 000	Conclusions o
Nominal	Yield Curv	е		

Table 4: Nominal Zero-Coupon Bond Yields

	1-yr.	2-yr.	3-yr.	5-yr.	7-yr.	10-yr.	(10y)-(1y)
US Treasuries, 1961–2014 ^a	5.36	5.59	5.77	6.05	6.26		
US Treasuries, 1971–2014 ^a	5.53	5.77	5.97	6.29	6.54	6.81	1.28
US Treasuries, 1990–2007 ^a	4.56	4.84	5.06	5.41	5.68	5.98	1.42
UK gilts, 1970–2014 ^b	7.07	7.25	7.41	7.65	7.84	8.02	0.95
UK gilts, 1990–2007 ^b	6.20	6.29	6.38	6.47	6.50	6.48	0.28
macroeconomic model	5.35	5.59	5.80	6.09	6.27	6.44	1.09

^aGürkaynak, Sack, and Wright (2007) online dataset ^bBank of England web site

Supply shocks make nominal long-term bonds risky: inflation risk

Introduction	Model	Asset Prices	Discussion	Conclusions
00	000000	○○○○○○○●○○○○	000	o
Defaultable	Debt			

$$p_t^c = E_t m_{t+1} e^{-\pi_{t+1}} (1 + \delta p_{t+1}^c)$$

Introduction	Model 000000	Asset Prices	Discussion 000	Conclusions o
Defaultable	Debt			

$$p_t^c = E_t m_{t+1} e^{-\pi_{t+1}} (1 + \delta p_{t+1}^c)$$

Yield to maturity:

$$i_t^c = \log\left(\frac{1}{p_t^c} + \delta\right)$$

Introduction	Model 000000	Asset Prices	Discussion 000	Conclusions o
Defaultable	Debt			

$$p_t^c = E_t m_{t+1} e^{-\pi_{t+1}} (1 + \delta p_{t+1}^c)$$

Yield to maturity:

$$i_t^c = \log\left(\frac{1}{p_t^c} + \delta\right)$$

Nominal consol with default:

$$p_t^d = E_t m_{t+1} e^{-\pi_{t+1}} \left[(1 - \mathbf{1}_{t+1}^d) (1 + \delta p_{t+1}^d) + \mathbf{1}_{t+1}^d \omega_{t+1} p_t^d \right]$$

Introduction	Model 000000	Asset Prices ○○○○○○○●○○○○	Discussion	Conclusions o
Defaultable	Debt			

$$p_t^c = E_t m_{t+1} e^{-\pi_{t+1}} (1 + \delta p_{t+1}^c)$$

Yield to maturity:

$$i_t^c = \log\left(\frac{1}{p_t^c} + \delta\right)$$

Nominal consol with default:

$$p_t^d = E_t m_{t+1} e^{-\pi_{t+1}} \left[(1 - \mathbf{1}_{t+1}^d) (1 + \delta p_{t+1}^d) + \mathbf{1}_{t+1}^d \omega_{t+1} p_t^d \right]$$

Yield to maturity:

$$i_t^d = \log\left(\frac{1}{p_t^d} + \delta\right)$$

Introduction	Model 000000	Asset Prices ○○○○○○○●○○○○	Discussion	Conclusions o
Defaultable	Debt			

$$p_t^c = E_t m_{t+1} e^{-\pi_{t+1}} (1 + \delta p_{t+1}^c)$$

Yield to maturity:

$$i_t^c = \log\left(\frac{1}{p_t^c} + \delta\right)$$

Nominal consol with default:

$$\boldsymbol{p}_{t}^{d} = E_{t} m_{t+1} \boldsymbol{e}^{-\pi_{t+1}} \Big[(1 - \mathbf{1}_{t+1}^{d}) (1 + \delta \boldsymbol{p}_{t+1}^{d}) + \mathbf{1}_{t+1}^{d} \omega_{t+1} \boldsymbol{p}_{t}^{d} \Big]$$

Yield to maturity:

$$i_t^d = \log\left(\frac{1}{p_t^d} + \delta\right)$$

The credit spread is $i_t^d - i_t^c$

Introduction	Model 000000	Asset Prices	Discussion 000	Conclusions o
Table 5: Cr	redit Spre	ead		

average ann.cyclicality of
default prob.average
recovery ratecyclicality of
recovery ratecredit
spread (bp).0060.42034.0

Introduction	Model 000000	Asset Prices	Discussion 000	Conclusions o
Table 5: Cr	edit Spre	ead		

average ann.cyclicality of
default prob.average
recovery ratecyclicality of
recovery ratecredit
spread (bp).0060.42034.0

If default isn't cyclical, then it's not risky

Default Rate is Countercyclical

Introduction	Model	Asset Prices	Discussion	Conclusions
	000000	○○○○○○○○○○●○	000	o

Recovery Rate is Procyclical

Introduction	Model	Asset Prices ○○○○○○○○○○○●	Discussion	Conclusions o
Table 5:	Credit Spre	ead		

average ann.	, ,	average	cyclicality of	credit
default prob.		recovery rate	recovery rate	spread (bp)
.006	0	.42	0	34.0
.006	0.3	.42	0	130.9

Introduction	Model	Asset Prices	Discussion	Conclusions
	000000	○○○○○○○○○○○●	000	o
Table 5: Cr	edit Spre	ead		

average ann. default prob.	cyclicality of default prob.	average recovery rate	cyclicality of recovery rate	credit spread (bp)
.006	0	.42	0	34.0
.006	-0.3	.42	0	130.9
.006	-0.3	.42	2.5	143.1

Introduction	Model	Asset Prices	Discussion	Conclusions
00	000000		●oo	o
Discussio	วท			

- Endogenous conditional heteroskedasticity
- 2 IES \leq 1 vs. IES > 1
- Volatility shocks
- Monetary and fiscal policy shocks
- Financial accelerator

Introduction	Model 000000	Asset Prices	Discussion ○●○	Conclusions o

Monetary and Fiscal Policy Shocks

Rudebusch and Swanson (2012) consider similar model with

- technology shock
- government purchases shock
- monetary policy shock

Introduction	Model 000000	Asset Prices	Discussion ○●○	Conclusions o

Monetary and Fiscal Policy Shocks

Rudebusch and Swanson (2012) consider similar model with

- technology shock
- government purchases shock
- monetary policy shock

All three shocks help the model fit macroeconomic variables

Introduction	Model 000000	Asset Prices	Discussion o●o	Conclusions o

Monetary and Fiscal Policy Shocks

Rudebusch and Swanson (2012) consider similar model with

- technology shock
- government purchases shock
- monetary policy shock

All three shocks help the model fit macroeconomic variables

But technology shock is most important (by far) for fitting asset prices:

- technology shock is more persistent
- technology shock makes nominal assets risky

Introduction	Model	Asset Prices	Discussion	Conclusions
00	oooooo		oo●	o
No Financi	al Acceler	ator		

With model-implied stochastic discount factor m_{t+1} , we can price any asset

Economy affects $m_{t+1} \Rightarrow$ economy affects asset prices

However, asset prices have no effect on economy

Introduction	Model 000000	Asset Prices	Discussion oo●	Conclusions o
No Financia	al Accelera	ator		

With model-implied stochastic discount factor m_{t+1} , we can price any asset

Economy affects $m_{t+1} \Rightarrow$ economy affects asset prices

However, asset prices have no effect on economy

Clearly at odds with financial crisis

To generate feedback, want financial intermediaries whose net worth depends on assets

Introduction	Model 000000	Asset Prices	Discussion oo●	Conclusions o
No Financia	al Accelera	ator		

With model-implied stochastic discount factor m_{t+1} , we can price any asset

Economy affects $m_{t+1} \Rightarrow$ economy affects asset prices

However, asset prices have no effect on economy

Clearly at odds with financial crisis

To generate feedback, want financial intermediaries whose net worth depends on assets

...but not in this paper

Introduction	Model 000000	Asset Prices	Discussion 000	Conclusions •
Conclusion	S			

- The standard textbook New Keynesian model (with Epstein-Zin preferences) is consistent with a wide variety of asset pricing facts/puzzles
- Unifies asset pricing puzzles into a single puzzle—Why does risk aversion in macro models need to be so high? (Literature provides good answers to this question)
- Provides a structural framework for intuition about risk premia
- Suggests a way to model feedback from risk premia to macroeconomy