Discussion of Doshi, Jacobs and Liu
“Loss Functions for Forecasting Treasury Yields”

Francis X. Diebold
University of Pennsylvania

November 4, 2015
There’s a Lot to Like in This Paper

– Prediction under the relevant loss function deserves lots of attention

– The yield curve model used for prediction deserves lots of attention

– Maybe even yield curve curvature deserves lots of attention
Prediction Under the Relevant Loss Function
Prediction is Key in an Evidence-Based Macro-Finance

History: $\{y_t\}_{t=1}^T$

Realization and prediction: $y_{T+h}, \hat{y}_{T+h, T}$

Error: $e_{T+h, T} = y_{T+h} - \hat{y}_{T+h, T}$

Loss: $L(e_{T+h, T})$

Accuracy comparison via expected loss: $E(L(e_{T+h, T}))$
What is the Relevant Loss Function, $L(e_{T+h}, T)$?

What is the horizon, h? Short term? Long term?

– Doshi et al. (2015)
 (this paper)

What is the loss function L? $L(e) = e^2$? $L(e) = |e|$?

– Diebold and Shin (2015),
 “Assessing Point Forecast Accuracy by Stochastic Error Distance”
Estimation Under the Relevant Loss Function: Shines in Principle

Correct specification:
- We learn the truth asymptotically
- It is best for all purposes

Incorrect specification:
- We never learn the truth, even asymptotically
 Instead we learn a “best approximation,” induced by L
- MLE effectively ties our hands and picks L
- Instead, think hard about the relevant loss function
- Best approximation for one purpose generally very different from
 (and not implied by) best approximation for another purpose
 e.g., mis-specified $AR(1)$: $\hat{\rho}^{10} \neq \hat{\rho}^{10}$, even as $T \to \infty$
Estimation Under the Relevant Multi-Step Loss Function: Flops in Practice

Of course everyone knows Weiss (1996, *J. Applied Econometrics*)

But there’s a “file drawer problem”

is very clearly negative and not cited

(“A Comparison of Direct and Iterated Multistep AR Methods for Forecasting Macroeconomic Time Series”)
The Yield Curve Model Used for Prediction
Successful Time-Series Prediction Requires \textit{Parsimony}

- Selection
 - Bayesian shrinkage
 - Lasso

"The Parsimony Principle"

For prediction, "maximally-flexible" models are not appealing
An Appealing Predictive Model

Arbitrage-Free Nelson-Siegel (AFNS)
(Christensen et al., 2011, *Journal of Econometrics*)

\[y_t = \Lambda f_t + \varepsilon_t \]
\[f_t = \Phi f_{t-1} + \eta_t \]

- Three (latent) factors; provably level, slope, curvature
- Factors are latent but estimation is trivial and reliable
- Easily accommodates the zero lower bound, non-spanning, etc.

- *Structure placed on factor loadings* (\(\Lambda\) matrix)
 [Equivalently, structure on Duffie-Kan state-transition dynamics]
 [Equivalently, structure on maximally-flexible \(A_0(3)\)]

 test the restrictions and find \(p \approx 1/2\)
Yield Curve Curvature

???
In Conclusion: What I’d Like to See

– 1-step vs. h-step estimation

– Squared-error vs. absolute-error loss

– AFNS $A_0(3)$ vs. JSZ maximally-flexible $A_0(3)$ (and drop the latent-state maximally-flexible affine models)

– Robustness to sample start date, sample end date, in-sample / out-of-sample split, estimation method, etc.

– Progress in understanding curvature