Introduction	Loss Function	Latent Model	JSZ Form	Estimates	Conclusion
000	000	0000	000000	000000	0

Loss Functions for Forecasting Treasury Yields

Hitesh Doshi Kris Jacobs Rui Liu

University of Houston

5th Conference on Fixed Income Markets Recent Advances in Fixed Income Research and Implications for Monetary Policy

Bank of Canada and Federal Reserve Bank of San Francisco

San Francisco, CA, November 5, 2015

(日) (周) (日) (日) (日) (日) (000)

Introduction	Loss Function	Latent Model	JSZ Form	Estimates	Conclusion
●○○	000	0000		000000	O
Backgro	und				

Interest Rates Point Forecasting

Duffee (2002, JF), Ang and Piazzesi (2003, JME), Diebold and Li (2006, JE), Van Dijk, Koopman, Van der Wel and Wright (2014, JAE), Bowsher and Meeks (2008, JASA), Moench (2008, JE), Christensen, Diebold and Rudebusch (2011, JE)

Interest Rates Density Forecasting

Hong, Li and Zhao (2004, JBES), Egorov, Hong and Li (2006, JE), Shin and Zhong (2013, WP), Carriero, Clark and Marcellino (2014, WP)

Introduction	Loss Function	Latent Model	JSZ Form	Estimates	Conclusion
•୦୦	000	0000		000000	O
Backgro	und				

Interest Rates Point Forecasting

Duffee (2002, JF), Ang and Piazzesi (2003, JME), Diebold and Li (2006, JE), Van Dijk, Koopman, Van der Wel and Wright (2014, JAE), Bowsher and Meeks (2008, JASA), Moench (2008, JE), Christensen, Diebold and Rudebusch (2011, JE)

Interest Rates Density Forecasting

Hong, Li and Zhao (2004, JBES), Egorov, Hong and Li (2006, JE), Shin and Zhong (2013, WP), Carriero, Clark and Marcellino (2014, WP)

Introduction OOO	Loss Function	Latent Model 0000	JSZ Form	Estimates 000000	Conclusion O
Motivati	on				

This paper takes a different perspective and explore how the choice of loss function affects a given model's out-of-sample forecasting performance

- The specification of the loss function is critical for model estimation and evaluation Engle (1993, JofF), Granger (1993, JofF), Weiss (1996, JAE), Elliott and Timmermann (2008, JEL)
- ► Granger (1993, JofF):

...evaluation criteria are used twice in the modeling process, once to decide how to select the 'best' estimates of parameter values and then to evaluate the forecasts made by the model.

...if we believe that a particular criterion should be used to evaluate forecasts then it should also be used at the estimation stage of the modeling process.

Introduction ○●○	Loss Function	Latent Model 0000	JSZ Form	Estimates 000000	Conclusion O
Motivatio	on				

This paper takes a different perspective and explore how the choice of loss function affects a given model's out-of-sample forecasting performance

- The specification of the loss function is critical for model estimation and evaluation Engle (1993, JofF), Granger (1993, JofF), Weiss (1996, JAE), Elliott and Timmermann (2008, JEL)
- ► Granger (1993, JofF):

...evaluation criteria are used twice in the modeling process, once to decide how to select the 'best' estimates of parameter values and then to evaluate the forecasts made by the model.

...if we believe that a particular criterion should be used to evaluate forecasts then it should also be used at the estimation stage of the modeling process.

Introduction ○●○	Loss Function	Latent Model 0000	JSZ Form	Estimates 000000	Conclusion O
Motivati	on				

This paper takes a different perspective and explore how the choice of loss function affects a given model's out-of-sample forecasting performance

- The specification of the loss function is critical for model estimation and evaluation Engle (1993, JofF), Granger (1993, JofF), Weiss (1996, JAE), Elliott and Timmermann (2008, JEL)
- ► Granger (1993, JofF):

...evaluation criteria are used twice in the modeling process, once to decide how to select the 'best' estimates of parameter values and then to evaluate the forecasts made by the model.

...if we believe that a particular criterion should be used to evaluate forecasts then it should also be used at the estimation stage of the modeling process.

Introduction ○○●	Loss Function	Latent Model 0000	JSZ Form	Estimates 000000	Conclusion O
Contribut	ions				

• We align the loss functions for in-sample estimation and out-of-sample evaluation of affine term structure models (ATSMs)

Three-Factor ATSMs with and without stochastic volatility

• We propose to estimate the ATSMs by minimizing the mean squared forecasting errors for a given forecast horizon (forecasting loss function)

Empirical Findings

- The improvement in out-of-sample forecasting performance is substantial, especially for long forecast horizons
 For the six-month forecast horizon, the improvement in the forecasting RMSEs for the A₀(3) model is 12% for the A₁(3) model is 15%
- The improvement in out-of-sample forecasting performance results from the identification of different factors, especially in the case of curvature *Cochrane and Piazzesi (2005, AER), Duffee (2011, RFS)*

Introduction ○○●	Loss Function	Latent Model 0000	JSZ Form	Estimates 000000	Conclusion O
Contribut	ions				

• We align the loss functions for in-sample estimation and out-of-sample evaluation of affine term structure models (ATSMs)

• Three-Factor ATSMs with and without stochastic volatility

• We propose to estimate the ATSMs by minimizing the mean squared forecasting errors for a given forecast horizon (forecasting loss function)

Empirical Findings

The improvement in out-of-sample forecasting performance is substantial, especially for long forecast horizons For the six-month forecast horizon, the improvement in the forecasting RMSEs for the $A_0(3)$ model is 12%, for the $A_1(3)$ model is 15%

The improvement in out-of-sample forecasting performance results from the identification of different factors, especially in the case of curvature *Cochrane and Piazzesi (2005, AER), Duffee (2011, RFS)*

Introduction ○○●	Loss Function	Latent Model 0000	JSZ Form	Estimates 000000	Conclusion O
Contribut	ions				

- We align the loss functions for in-sample estimation and out-of-sample evaluation of affine term structure models (ATSMs)
 - Three-Factor ATSMs with and without stochastic volatility
- We propose to estimate the ATSMs by minimizing the mean squared forecasting errors for a given forecast horizon (forecasting loss function)

The improvement in out-of-sample forecasting performance is substantial, especially for long forecast horizons
For the six-month forecast horizon, the improvement in the forecasting RMSEs for the A₀(3) model is 12%, for the A₁(3) model is 15%

The improvement in out-of-sample forecasting performance results from the identification of different factors, especially in the case of curvature *Cochrane and Piazzesi (2005, AER), Duffee (2011, RFS)*

Introduction ○○●	Loss Function	Latent Model 0000	JSZ Form	Estimates 000000	Conclusion O
Contribut	ions				

- We align the loss functions for in-sample estimation and out-of-sample evaluation of affine term structure models (ATSMs)
 - Three-Factor ATSMs with and without stochastic volatility
- We propose to estimate the ATSMs by minimizing the mean squared forecasting errors for a given forecast horizon (forecasting loss function)

The improvement in out-of-sample forecasting performance is substantial, especially for long forecast horizons
For the six-month forecast horizon, the improvement in the forecasting RMSEs for the A₂(3) model is 12% for the A₁(3) model is 15%

The improvement in out-of-sample forecasting performance results from the identification of different factors, especially in the case of curvature *Cochrane and Piazzesi (2005, AER), Duffee (2011, RFS)*

Introduction ○○●	Loss Function	Latent Model 0000	JSZ Form	Estimates 000000	Conclusion O
Contribut	ions				

- We align the loss functions for in-sample estimation and out-of-sample evaluation of affine term structure models (ATSMs)
 - Three-Factor ATSMs with and without stochastic volatility
- We propose to estimate the ATSMs by minimizing the mean squared forecasting errors for a given forecast horizon (forecasting loss function)

- The improvement in out-of-sample forecasting performance is substantial, especially for long forecast horizons For the six-month forecast horizon, the improvement in the forecasting RMSEs for the $A_0(3)$ model is 12%, for the $A_1(3)$ model is 15%
- The improvement in out-of-sample forecasting performance results from the identification of different factors, especially in the case of curvature *Cochrane and Piazzesi (2005, AER), Duffee (2011, RFS)*

Introduction ○○●	Loss Function	Latent Model 0000	JSZ Form	Estimates 000000	Conclusion O
Contribut	ions				

- We align the loss functions for in-sample estimation and out-of-sample evaluation of affine term structure models (ATSMs)
 - Three-Factor ATSMs with and without stochastic volatility
- We propose to estimate the ATSMs by minimizing the mean squared forecasting errors for a given forecast horizon (forecasting loss function)

- The improvement in out-of-sample forecasting performance is substantial, especially for long forecast horizons For the six-month forecast horizon, the improvement in the forecasting RMSEs for the $A_0(3)$ model is 12%, for the $A_1(3)$ model is 15%
- The improvement in out-of-sample forecasting performance results from the identification of different factors, especially in the case of curvature *Cochrane and Piazzesi (2005, AER), Duffee (2011, RFS)*

Introduction 000	Loss Function	Latent Model 0000	JSZ Form	Estimates 000000	Conclusion O
Standard	Loss Funct	tion			

Mean-squared error (MSE) loss

• Given term structure data for months t = 1, ..., T on maturities n = 1, ..., N, the parameters Θ are typically estimated by minimizing

$$MSE(\Theta) = \frac{1}{NT} \sum_{n=1}^{N} \sum_{t=1}^{T} (\hat{y}_{t|t}^{n}(\Theta) - y_{t}^{n})^{2}$$
(1)

Out-of-sample forecasting performance

• The out-of-sample RMSE for the $n\mbox{-maturity}$ yield with forecast horizon k

$$RMSE_{-}OS_{n,k} = \sqrt{\frac{1}{T-k} \sum_{t=1}^{T-k} (\widehat{y}_{t+k|t}^{n}(\Theta) - y_{t+k}^{n})^{2}}$$
(2)

(日) (周) (日) (日) (日)

Introduction 000	Loss Function	Latent Model 0000	JSZ Form	Estimates 000000	Conclusion O
Standard	Loss Funct	tion			

Mean-squared error (MSE) loss

• Given term structure data for months t=1,...,T on maturities n=1,...,N, the parameters Θ are typically estimated by minimizing

$$MSE(\Theta) = \frac{1}{NT} \sum_{n=1}^{N} \sum_{t=1}^{T} (\hat{y}_{t|t}^{n}(\Theta) - y_{t}^{n})^{2}$$
(1)

Out-of-sample forecasting performance

• The out-of-sample RMSE for the n-maturity yield with forecast horizon k

$$RMSE_{-}OS_{n,k} = \sqrt{\frac{1}{T-k} \sum_{t=1}^{T-k} (\hat{y}_{t+k|t}^{n}(\Theta) - y_{t+k}^{n})^{2}}$$
(2)

_					
Introduction 000	Loss Function	Latent Model	JSZ Form	Estimates 000000	Conclusion o

Forecasting Loss Function

Mean-squared forecasting error loss

- The choice of loss function at the estimation stage reflects out-of-sample forecasting purpose
- Estimate the ATSMs for a given forecast horizon k by minimizing

$$OS_MSE_k(\Theta) = \frac{1}{N(T-k)} \sum_{n=1}^N \sum_{t=k+1}^T (\widehat{y}_{t|t-k}^n(\Theta) - y_t^n)^2$$
(3)

► Given state variables at time t - k, compute k-period ahead yields using Θ

The estimation is forecast-horizon specific

-		-				
000	000		0000	000000	000000	0
Introduction	Loss Functi	on	Latent Model	JSZ Form	Estimates	Conclusion

Forecasting Loss Function

Mean-squared forecasting error loss

- The choice of loss function at the estimation stage reflects out-of-sample forecasting purpose
- Estimate the ATSMs for a given forecast horizon k by minimizing

$$OS_MSE_k(\Theta) = \frac{1}{N(T-k)} \sum_{n=1}^N \sum_{t=k+1}^T (\widehat{y}_{t|t-k}^n(\Theta) - y_t^n)^2$$
(3)

- ▶ Given state variables at time t k, compute k-period ahead yields using Θ
- ▶ The estimation is forecast-horizon specific

Introductio	n	Loss Function	Latent Model 0000	JSZ Form	Estimates 000000	Conclusion O
•						

Out-of-Sample Forecasting Procedure

Forecasting loss function

- At each month t and for each forecast horizon k, we estimate the parameters ⊖^k by minimizing the forecasting loss function using data up to and including t
- Subsequently, we forecast the k-period ahead yields $\widehat{y}_{t+k|t}^n(\Theta_t^k),$ n=1,...,N
- The recursion proceeds by adding one month of data, re-estimate the parameters using data up to and including t+1, and forecast the k-period ahead yields $\widehat{y}_{t+1+k|t+1}^{n}(\Theta_{t+1}^{k})$
- Iterate the procedure until ${\boldsymbol{T}}-{\boldsymbol{k}}$

Standard loss function

• At each month *t*, one set of parameters is estimated and used to generate forecasts for different horizons

Introductio	n	Loss Function	Latent Model 0000	JSZ Form	Estimates 000000	Conclusion O
•						

Out-of-Sample Forecasting Procedure

Forecasting loss function

- At each month t and for each forecast horizon k, we estimate the parameters ⊖^k by minimizing the forecasting loss function using data up to and including t
- Subsequently, we forecast the k-period ahead yields $\widehat{y}_{t+k|t}^n(\Theta_t^k),$ n=1,...,N
- The recursion proceeds by adding one month of data, re-estimate the parameters using data up to and including t+1, and forecast the k-period ahead yields $\widehat{y}_{t+1+k|t+1}^n(\Theta_{t+1}^k)$
- Iterate the procedure until T-k

Standard loss function

• At each month *t*, one set of parameters is estimated and used to generate forecasts for different horizons

000	000	0000	000000	000000	0
Model De					

Model Description

Canonical form of Latent ATSMs: Dai and Singleton (2000)

$$dX_t = (K_{0\Delta}^P + K_{1\Delta}^P X_t)dt + \Sigma\sqrt{S_t}dW_{t+1}^P$$
$$dX_t = (K_{0\Delta}^Q + K_{1\Delta}^Q X_t)dt + \Sigma\sqrt{S_t}dW_{t+1}^Q$$
$$r_t = \rho_0 + \rho_1 X_t$$

- $X_t \in R^3$, r_t is the instantaneous spot interest rate
- W^P_{t+1} and W^Q_{t+1} are three-dimensional independent standard Brownian motions under P- and Q-measure
- $\Sigma S_t \Sigma'$ is the conditional covariance matrix of X_t , S_t is a 3×3 diagonal matrix with the *i*th diagonal element given by

$$[S_t]_{ii} = \alpha_i + \beta'_i X_t$$

Model-implied continuously compounded yields

$$\widehat{y}_t = A(\Theta^Q) + B(\Theta^Q)X_t$$

•
$$y_t \in \mathbb{R}^N, N > 3$$
, $\Theta^Q = \{K^Q_{0\Delta}, K^Q_{1\Delta}, \rho_0, \rho_1, \Sigma, \alpha_i, \beta_i\}$

JSZ Canonical Form

Doshi, Jacobs, Liu

Introduction 000	Loss Function	Latent Model 0000	JSZ Form	Estimates 000000	Conclusion O
Estimatio	n Method				

Prediction of k-period ahead n-maturity yield

$$\widehat{y}_{t+k|t}^{n}(\Theta) = A_{n}(\Theta^{Q}) + B_{n}(\Theta^{Q})\widehat{X}_{t+k|t}$$

• X_t follows VAR(1) when sampled monthly

$$\widehat{X}_{t+\Delta|t} = \underbrace{K_{0\Delta}^P \int_0^{\Delta} e^{sK_{1\Delta}^P ds}}_{K_0^P} + \underbrace{e^{\Delta K_{1\Delta}^P}}_{K_1^P} X_t, \text{ where } \Delta = 1/12$$

• K_0^P and K_1^P are the parameters for the VAR(1) process of X_t under P measure

$$\widehat{y}_{t+k|t}^{n}(\Theta) = A_{n}(\Theta^{Q}) + B_{n}(\Theta^{Q})f(X_{t},k;K_{0}^{P},K_{1}^{P})$$

 $f(X_t, k; K_0^P, K_1^P) = K_0^P (I_3 + K_1^P + \dots + (K_1^P)^{k-1}) + (K_1^P)^k X_t$

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ 三回 のなの

Introduction	Loss Function	Latent Model	JSZ Form	Estimates	Conclusion
000	000	○●○○		000000	O
Estimation	n Method				

Prediction of k-period ahead n-maturity yield

$$\widehat{y}_{t+k|t}^{n}(\Theta) = A_{n}(\Theta^{Q}) + B_{n}(\Theta^{Q})\widehat{X}_{t+k|t}$$

• X_t follows VAR(1) when sampled monthly

$$\widehat{X}_{t+\Delta|t} = \underbrace{K_{0\Delta}^P \int_0^{\Delta} e^{sK_{1\Delta}^P} ds}_{K_0^P} + \underbrace{e^{\Delta K_{1\Delta}^P}}_{K_1^P} X_t, \text{ where } \Delta = 1/12$$

• K_0^P and K_1^P are the parameters for the VAR(1) process of X_t under P measure

 $\widehat{y}_{t+k|t}^{n}(\Theta) = A_{n}(\Theta^{Q}) + B_{n}(\Theta^{Q})f(X_{t},k;K_{0}^{P},K_{1}^{P})$

 $f(X_t, k; K_0^P, K_1^P) = K_0^P (I_3 + K_1^P + \dots + (K_1^P)^{k-1}) + (K_1^P)^k X_t$

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ 三回 のなの

Introduction 000	Loss Function 000	Latent Model	JSZ Form	Estimates 000000	Conclusion O
Estimation	n Method				

Prediction of k-period ahead n-maturity yield

$$\widehat{y}_{t+k|t}^{n}(\Theta) = A_{n}(\Theta^{Q}) + B_{n}(\Theta^{Q})\widehat{X}_{t+k|t}$$

• X_t follows VAR(1) when sampled monthly

$$\widehat{X}_{t+\Delta|t} = \underbrace{K_{0\Delta}^P \int_0^{\Delta} e^{sK_{1\Delta}^P} ds}_{K_0^P} + \underbrace{e^{\Delta K_{1\Delta}^P}}_{K_1^P} X_t, \text{ where } \Delta = 1/12$$

 $\bullet \ K_0^P$ and K_1^P are the parameters for the $\mathsf{VAR}(1)$ process of X_t under P measure

$$\widehat{y}_{t+k|t}^{n}(\Theta) = A_{n}(\Theta^{Q}) + B_{n}(\Theta^{Q})f(X_{t},k;K_{0}^{P},K_{1}^{P})$$
$$f(X_{t},k;K_{0}^{P},K_{1}^{P}) = K_{0}^{P}(I_{3}+K_{1}^{P}+\ldots+(K_{1}^{P})^{k-1}) + (K_{1}^{P})^{k}X_{t}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

0.00		D C	4	(\mathbf{a})	
000	000	0000	000000	000000	0
Introduction	Loss Function	Latent Model	JSZ Form	Estimates	Cond

Out-of-Sample Forecasting Performance: $A_0(3)$

	Out-of-Sample RMSEs: $A_0(3)$ with Latent Factors								
	Panel A: Forecasting Loss Function								
Forecast Horizon k	1 month	2 month	3 month	4 month	5 month	6 month			
3 month yield	38.47	55.53	68.99	78.78	88.97	99.65			
6 month yield	33.51	53.37	69.85	83.52	96.27	108.70			
1 year yield	37.84	59.81	78.28	92.96	105.82	117.62			
2 year yield	40.41	63.36	81.95	95.63	107.89	118.75			
3 year yield	37.65	59.22	76.23	88.29	99.70	109.44			
4 year yield	33.77	54.00	69.40	79.79	90.30	99.13			
5 year yield	30.76	50.19	66.65	78.61	87.65	96.97			
10 year yield	32.10	49.40	63.15	76.06	82.02	91.09			
20 year yield	28.54	44.51	52.71	61.85	70.89	80.07			
		B: Standa							
Forecast Horizon k	1 month	2 month	3 month	4 month	5 month	6 mont			
3 month yield	42.22	57.51	73.06	87.73	103.87	120.70			
6 month yield	36.79	55.87	70.27	85.84	101.77	119.88			
1 year yield	38.75	60.28	80.46	95.58	108.62	121.45			
2 year yield	41.07	65.36	82.99	96.92	110.11	127.41			
3 year yield	38.60	59.48	76.86	92.61	109.65	125.54			
4 year yield	35.22	58.49	72.90	88.85	104.24	118.98			
5 year yield	33.92	52.85	70.46	85.83	100.68	114.68			
10 year yield	33.24	50.40	63.15	77.06	89.02	101.09			
20 year yield	28.44	44.51	58.71	71.85	84.89	97.07			

0 60				$\langle \alpha \rangle$	
000	000	0000	000000	000000	0
Introduction	Loss Function	Latent Model	JSZ Form	Estimates	Conclus

Out-of-Sample Forecasting Performance: $A_0(3)$

Panel C: RMSE Ratio										
1 month	2 month	3 month	4 month	5 month	6 month					
0.91	0.97***			0.86***	0.83***					
0.91	0.96***	0.99***	0.97***	0.95***	0.91***					
0.98**	0.99***	0.97***	0.97***	0.97***	0.97***					
0.98***	0.97***	0.99***	0.99***	0.98***	0.93***					
0.98**	1.00***	0.99***	0.95***	0.91***	0.87***					
0.96**	0.92***	0.95***	0.90***	0.87***	0.83***					
0.91*	0.95***	0.95***	0.92***	0.87***	0.85***					
0.97*	0.98***	1.00*	0.99***	0.92***	0.90***					
1.00	1.00	0.90	0.86**	0.84**	0.82**					
	0.91 0.91 0.98*** 0.98*** 0.98** 0.96** 0.91* 0.97*	0.91 0.97*** 0.91 0.96*** 0.98*** 0.97*** 0.98*** 0.97*** 0.96** 0.92*** 0.96** 0.92*** 0.91* 0.95***	0.91 0.97*** 0.94*** 0.91 0.96*** 0.99*** 0.98*** 0.99*** 0.97*** 0.98*** 0.97*** 0.99*** 0.98*** 0.97*** 0.99*** 0.98*** 0.92*** 0.99*** 0.96*** 0.92*** 0.95*** 0.91* 0.95*** 0.95*** 0.97** 0.98*** 1.00*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						

- The improvements in forecasting performance for the $A_0(3)$ model are greatest for longer forecast horizons and shorter maturities
- For the six-month forecast horizon, the improvement in the forecasting RMSEs is on average across maturities approximately 12%, which corresponds to an out-of-sample R-square of 22%
- For the three-month yield, the improvement in the forecasting RMSEs is on average across forecast horizons approximately 10%, which corresponds to an out-of-sample R-square of 19%

OOS Performance JSZ Fixed

Doshi, Jacobs, Liu

0.00		D C	4	$\langle \mathbf{a} \rangle$	
000	000	0000	000000	000000	0
Introduction	Loss Function	Latent Model	JSZ Form	Estimates	Conclu

Out-of-Sample Forecasting Performance: $A_0(3)$

Panel C: RMSE Ratio										
Forecast Horizon k	1 month	2 month	3 month	4 month	5 month	6 month				
3 month yield	0.91	0.97***	0.94***	0.90***	0.86***	0.83***				
6 month yield	0.91	0.96***	0.99***	0.97***	0.95***	0.91***				
1 year yield	0.98**	0.99***	0.97***	0.97***	0.97***	0.97***				
2 year yield	0.98***	0.97***	0.99***	0.99***	0.98***	0.93***				
3 year yield	0.98**	1.00***	0.99***	0.95***	0.91***	0.87***				
4 year yield	0.96**	0.92***	0.95***	0.90***	0.87***	0.83***				
5 year yield	0.91*	0.95***	0.95***	0.92***	0.87***	0.85***				
10 year yield	0.97*	0.98***	1.00*	0.99***	0.92***	0.90***				
20 year yield	1.00	1.00	0.90	0.86**	0.84**	0.82**				

Diebold and Mariano Test: Diebold (2015, JBES)

- The improvements in forecasting performance for the A₀(3) model are greatest for longer forecast horizons and shorter maturities
- For the six-month forecast horizon, the improvement in the forecasting RMSEs is on average across maturities approximately 12%, which corresponds to an out-of-sample R-square of 22%
- For the three-month yield, the improvement in the forecasting RMSEs is on average across forecast horizons approximately 10%, which corresponds to an out-of-sample R-square of 19%

OOS Performance JSZ Fixed

Doshi, Jacobs, Liu

Introduction	Loss Function	Latent Model	JSZ Form	Estimates	Conclusion
000	000	0000	●00000	000000	0

JSZ Canonical Form: Joslin, Singleton and Zhu (2011)

JSZ Canonical form of $A_0(3)$

- The state variables are observables, perfectly priced portfolio of yields $PO_t = Wy_t, W$ denotes portfolio weights, which is a $3 \times N$ matrix
- PO_t is governed by the same dynamics as the latent state variable X_t
- $\bullet~\Theta^P=\{K_0^P,K_1^P\}$ can be estimated separately from the parameters governing the Q-dynamics
- Estimate Θ^P through ordinary least squares (OLS)
 - $Wy_t \approx W \hat{y}_t$, the best approximation is obtained by choosing W_0 such that $W_0 y_t = PC_t$, the first three principal components of the observed term structure of yields
- $A(\Theta^Q)$ and $B(\Theta^Q)$ are ultimately functions of $\Theta^Q = \{r^Q_{\infty}, \lambda^Q, \Sigma\}$
- $\bullet \ r_{\infty}^Q$ is a scalar related to the long-run mean of the short rate under risk neutral measure
- λ^Q , a 3×1 vector, represents the ordered eigenvalues of K_1^Q

Appendix: JSZ Mapping

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回= のへの

Introduction	Loss Function	Latent Model	JSZ Form	Estimates	Conclusio
000	000	0000	00000	000000	0

Out-of-Sample Forecasting Performance: JSZ

Out-of-Sample RMSEs: JSZ Canonical Form with Fixed Portfolio Weights									
Panel A: Forecasting Loss Function									
Forecast Horizon \boldsymbol{k}	$1 \mathrm{month}$	2 month	3 month	4 month	5 month	6 month			
3 month yield	38.18	55.72	67.68	76.69	87.64	99.06			
6 month yield	33.81	51.29	66.91	80.26	93.67	107.02			
1 year yield	39.39	59.75	77.92	94.37	108.58	120.94			
2 year yield	39.63	61.92	79.63	95.15	108.23	119.37			
3 year yield	38.06	59.55	76.65	90.79	102.96	113.00			
4 year yield	35.30	55.76	72.01	84.46	95.52	104.93			
5 year yield	32.18	51.99	67.80	79.46	90.02	98.93			
10 year yield	33.27	49.66	61.71	70.58	79.52	87.04			
20 year yield	26.36	40.81	51.30	59.60	67.23	73.44			
	Panel	B: Standa	rd Loss Fu	inction					
Forecast Horizon \boldsymbol{k}	1 month	2 month	3 month	4 month	5 month	6 month			
3 month yield	38.11	55.06	69.89	80.61	91.84	103.21			
6 month yield	33.68	52.32	69.43	83.91	97.71	110.97			
1 year yield	38.68	60.60	79.92	96.19	110.51	123.39			
2 year yield	39.13	62.34	81.09	96.46	109.60	121.24			
3 year yield	37.45	59.98	77.79	92.29	104.59	115.25			
4 year yield	34.71	56.23	73.01	86.40	97.79	107.71			
5 year yield	31.62	52.50	68.68	81.67	92.68	102.08			
10 year yield	33.02	49.93	62.56	73.33	82.63	90.45			
20 year yield	26.24	40.85	51.63	60.85	68.80	75.40			

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

~ ~ ~				_	
000	000	0000	000000	000000	0
Introduction	Loss Function	Latent Model	JSZ Form	Estimates	Conclusion

Out-of-Sample Forecasting Performance: JSZ

	1	Panel C: R	MSE Rati	ю		
Forecast Horizon \boldsymbol{k}	1 month	2 month	3 month	4 month	5 month	6 month
3 month yield	1.00	1.01	0.97	0.95**	0.95**	0.96***
6 month yield	1.00	0.98**	0.96*	0.96**	0.96***	0.96***
1 year yield	1.02	0.99	0.97	0.98**	0.98***	0.98***
2 year yield	1.01	0.99	0.98*	0.99***	0.99***	0.98***
3 year yield	1.02*	0.99	0.99**	0.98***	0.98***	0.98***
4 year yield	1.02	0.99	0.99**	0.98***	0.98***	0.97***
5 year yield	1.02	0.99*	0.99**	0.97***	0.97***	0.97***
10 year yield	1.01	0.99**	0.99**	0.96***	0.96***	0.96***
20 year yield	1.00*	1.00	0.99	0.98	0.98	0.97

 For the six-month forecast horizon, the improvement in the forecasting RMSEs is on average across maturities approximately 3%, which corresponds to an out-of-sample R-square of 5%

OOS Performance Latent

•		_				 -		
000	000		0000		00000	000000	0	
Introduction	Loss Func	tion	Latent Mo	del	JSZ Form	Estimates	Conclusion	

Out-of-Sample Forecasting Performance: JSZ

	Panel C: RMSE Ratio										
Forecast Horizon \boldsymbol{k}	1 month	2 month	3 month	4 month	5 month	6 month					
3 month yield	1.00	1.01	0.97	0.95**	0.95**	0.96***					
6 month yield	1.00	0.98**	0.96*	0.96**	0.96***	0.96***					
1 year yield	1.02	0.99	0.97	0.98**	0.98***	0.98***					
2 year yield	1.01	0.99	0.98*	0.99***	0.99***	0.98***					
3 year yield	1.02*	0.99	0.99**	0.98***	0.98***	0.98***					
4 year yield	1.02	0.99	0.99**	0.98***	0.98***	0.97***					
5 year yield	1.02	0.99*	0.99**	0.97***	0.97***	0.97***					
10 year yield	1.01	0.99**	0.99**	0.96***	0.96***	0.96***					
20 year yield	1.00*	1.00	0.99	0.98	0.98	0.97					

• For the six-month forecast horizon, the improvement in the forecasting RMSEs is on average across maturities approximately 3%, which corresponds to an out-of-sample R-square of 5%

OOS Performance Latent

Introduction	Loss Function	Latent Model	JSZ Form	Estimates	Conclusion
000	000	0000	000000	000000	0

JSZ Canonical Form with Variable Portfolio Weights

- Allow the portfolio weights to be free parameters Cochrane and Piazzesi (2005, AER), Duffee (2011, RFS), Ludvigson and Ng (2009, RFS), Cooper and Priestley (2009, RFS), Joslin, Priebsch and Singleton (2014, JF), Cieslak and Povala, (2015, RFS)
- Implement iterative two-step estimation procedure to take full advantage of the computational efficiency of the JSZ method
- Use converged JSZ estimates from the standard loss function as initial values
- 1 For given Θ^P and $\Theta^Q,$ search for the best possible W by minimizing the forecasting loss function
- $2\;\; {\rm Fix}\; W$ from step 1, solve for Θ^P and Θ^Q by minimizing the forecasting loss function
- With converged ⊖^P and ⊖^Q from step 2, go back to step 1, the optimization goes back and forth between the two steps until it converges

Introduction	Loss Function	Latent Model	JSZ Form	Estimates	Conclusion
000	000	0000	000000	000000	0

JSZ Canonical Form with Variable Portfolio Weights

- Allow the portfolio weights to be free parameters Cochrane and Piazzesi (2005, AER), Duffee (2011, RFS), Ludvigson and Ng (2009, RFS), Cooper and Priestley (2009, RFS), Joslin, Priebsch and Singleton (2014, JF), Cieslak and Povala, (2015, RFS)
- Implement iterative two-step estimation procedure to take full advantage of the computational efficiency of the JSZ method
- Use converged JSZ estimates from the standard loss function as initial values
- 1 For given Θ^P and $\Theta^Q,$ search for the best possible W by minimizing the forecasting loss function
- 2~ Fix W from step 1, solve for Θ^P and Θ^Q by minimizing the forecasting loss function
- With converged ⊖^P and ⊖^Q from step 2, go back to step 1, the optimization goes back and forth between the two steps until it converges

Introduction	Loss Function	Latent Model	JSZ Form	Estimates	Conclusion
000	000	0000	000000	000000	0

JSZ Canonical Form with Variable Portfolio Weights

- Allow the portfolio weights to be free parameters Cochrane and Piazzesi (2005, AER), Duffee (2011, RFS), Ludvigson and Ng (2009, RFS), Cooper and Priestley (2009, RFS), Joslin, Priebsch and Singleton (2014, JF), Cieslak and Povala, (2015, RFS)
- Implement iterative two-step estimation procedure to take full advantage of the computational efficiency of the JSZ method
- Use converged JSZ estimates from the standard loss function as initial values
- 1 For given Θ^P and $\Theta^Q,$ search for the best possible W by minimizing the forecasting loss function
- 2 Fix W from step 1, solve for Θ^P and Θ^Q by minimizing the forecasting loss function
- With converged ⊖^P and ⊖^Q from step 2, go back to step 1, the optimization goes back and forth between the two steps until it converges

Introdu	ction Loss	s Function La	atent Model	JSZ Form	Estimates (Conclusion
000	000	0 0	000	000000	000000	C

Out-of-Sample Forecasting Performance: JSZ Variable Weights

Out-of-Sample RMSEs: JSZ Canonical Form with Variable Portfolio Weights									
	Panel A: Forecasting Loss Function								
Forecast Horizon \boldsymbol{k}	1 month	2 month	3 month	4 month	5 month	6 month			
3 month yield	36.60	49.69	60.41	69.09	79.40	90.58			
6 month yield	29.97	45.55	59.59	73.09	86.01	98.95			
1 year yield	35.06	54.58	69.97	84.23	97.20	109.72			
2 year yield	40.70	61.01	76.67	89.55	101.50	113.23			
3 year yield	39.19	57.80	73.04	84.54	95.55	106.31			
4 year yield	35.54	53.10	67.71	77.95	87.92	97.94			
5 year yield	32.16	49.41	63.80	73.82	83.81	93.32			
10 year yield	39.47	50.97	60.34	69.03	77.73	84.47			
20 year yield	41.32	50.58	58.34	64.61	73.16	80.14			
	Panel	B: Standa	rd Loss Fi	inction					
Forecast Horizon \boldsymbol{k}	1 month	2 month	3 month	4 month	5 month	6 month			
3 month yield	38.11	55.06	69.89	80.61	91.84	103.21			
6 month yield	33.68	52.32	69.43	83.91	97.71	110.97			
1 year yield	38.68	60.60	79.92	96.19	110.51	123.39			
2 year yield	39.13	62.34	81.09	96.46	109.60	121.24			
3 year yield	37.45	59.98	77.79	92.29	104.59	115.25			
4 year yield	34.71	56.23	73.01	86.40	97.79	107.71			
5 year yield	31.62	52.50	68.68	81.67	92.68	102.08			
10 year yield	33.02	49.93	62.56	73.33	82.63	90.45			
20 year yield	26.24	40.85	51.63	60.85	68.80	75.40			

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Loss Function	Latent Model	JSZ Form	Estimates	Conclusion
000	000	0000	00000	000000	0

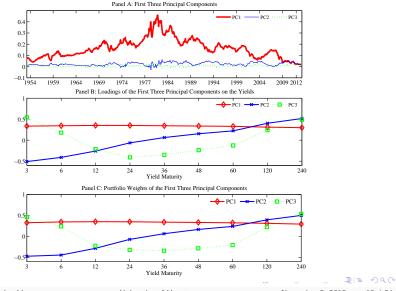
Out-of-Sample Forecasting Performance: JSZ Variable Weights

	I	Panel C: R	MSE Rati	io		
Forecast Horizon k	1 month	2 month	3 month	4 month	5 month	6 month
					4 4 4	
3 month yield	0.96	0.90	0.86*	0.86***	0.86***	0.88***
6 month yield	0.89	0.87***	0.86**	0.87***	0.88***	0.89***
1 year yield	0.91	0.90**	0.88**	0.88***	0.88***	0.89***
2 year yield	1.04	0.98	0.95**	0.93***	0.93***	0.93***
3 year yield	1.05**	0.96	0.94***	0.92***	0.91***	0.92***
4 year yield	1.02*	0.94*	0.93***	0.90***	0.90***	0.91***
5 year yield	1.02	0.94**	0.93***	0.90***	0.90***	0.91***
10 year yield	1.20	1.02***	0.96***	0.94***	0.94***	0.93***
20 year yield	1.57**	1.24	1.13	1.06	1.06	1.06

- The improvements in forecasting performance for the JSZ canonical form with variable portfolio weights are greatest for longer forecast horizons and shorter maturities
- For the six-month forecast horizon, the improvement in the forecasting RMSEs is on average across maturities approximately 7%, which corresponds to an out-of-sample R-square of 15%
- For short maturity yields, the improvement in the forecasting RMSEs is on average across forecast horizons approximately 11%, which corresponds to an out-of-sample R-square of 23%

Introduction	Loss Function	Latent Model	JSZ Form	Estimates	Conclusion
000	000	0000	00000	000000	0

Out-of-Sample Forecasting Performance: JSZ Variable Weights

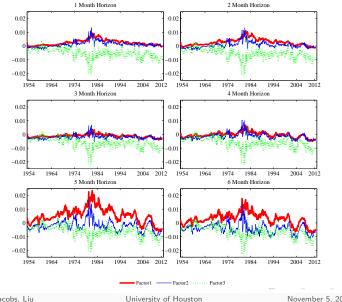

	I	Panel C: R	MSE Rati	io		
Forecast Horizon k	1 month	2 month	3 month	4 month	5 month	6 month
					4 4 4	
3 month yield	0.96	0.90	0.86*	0.86***	0.86***	0.88***
6 month yield	0.89	0.87***	0.86**	0.87***	0.88***	0.89***
1 year yield	0.91	0.90**	0.88**	0.88***	0.88***	0.89***
2 year yield	1.04	0.98	0.95**	0.93***	0.93***	0.93***
3 year yield	1.05**	0.96	0.94***	0.92***	0.91***	0.92***
4 year yield	1.02*	0.94*	0.93***	0.90***	0.90***	0.91***
5 year yield	1.02	0.94**	0.93***	0.90***	0.90***	0.91***
10 year yield	1.20	1.02***	0.96***	0.94***	0.94***	0.93***
20 year yield	1.57**	1.24	1.13	1.06	1.06	1.06

- The improvements in forecasting performance for the JSZ canonical form with variable portfolio weights are greatest for longer forecast horizons and shorter maturities
- For the six-month forecast horizon, the improvement in the forecasting RMSEs is on average across maturities approximately 7%, which corresponds to an out-of-sample R-square of 15%
- For short maturity yields, the improvement in the forecasting RMSEs is on average across forecast horizons approximately 11%, which corresponds to an out-of-sample R-square of 23%

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 のなる

Introduction	Loss Function	Latent Model	JSZ Form	Estimates	Conclusion
000	000	0000	000000	00000	0

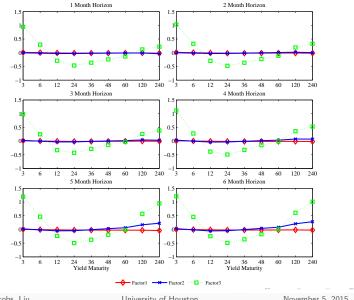
State Variables: JSZ Canonical Form with Standard Loss Function



Doshi, Jacobs, Liu

University of Houston

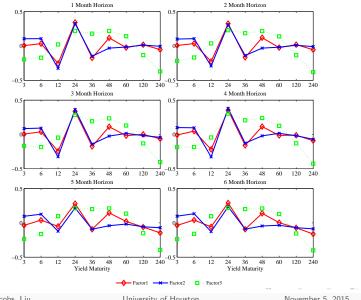
Introduction	Loss Function	Latent Model	JSZ Form	Estimates	Conclusion
000	000	0000	000000	00000	0


State Variables Difference: Forecasting VS. Standard Loss Function

Doshi, Jacobs, Liu

Introduction	Loss Function	Latent Model	JSZ Form	Estimates	Conclusion
000	000	0000	000000	000000	0

Factor Loadings Difference: Forecasting VS. Standard Loss Function



Doshi, Jacobs, Liu

University of Houston

Introduction	Loss Function	Latent Model	JSZ Form	Estimates	Conclusion
000	000	0000	000000	000000	0

Portfolio Weights Difference: Forecasting VS. Standard Loss Function

Doshi, Jacobs, Liu

University of Houston

Introduction	Loss Function	Latent Model	JSZ Form	Estimates	Conclusio
000	000	0000	000000	000000	0

JSZ with Variable Portfolio Weights: Parameter Estimates

					Forecasting Loss	Function				
			P-Dynam	nics				Q-Dynar	nics	
Forecast Horizon	K_0^P		K_1^P		Eigenvalues	K_0^Q		K_1^Q		Eigenvalue
1 month										
	-0.0016	0.9993	0.0631	0.6416	0.9938	0.0004	0.9982	0.0949	-0.6988	0.9991
	0.0005	0.0059	0.9339	0.3664	0.9259	-0.0004	-0.0006	0.9492	0.6744	0.9593
	0.0005	-0.0024	-0.0032	0.7770	0.7906	0.0002	0.0006	0.0031	0.8143	0.8034
2 month										
	-0.0017	1.0000	0.0668	0.7077	0.9942	0.0004	0.9976	0.0970	-0.7441	0.9992
	0.0004	0.0061	0.9383	0.3870	0.9287	-0.0003	-0.0002	0.9524	0.6930	0.9608
	0.0005	-0.0022	-0.0036	0.7833	0.7986	0.0001	0.0005	0.0028	0.8082	0.7981
3 month										
	-0.0014	1.0003	0.0668	0.6341	0.9940	0.0005	0.9987	0.0880	-0.7480	0.9993
	0.0004	0.0062	0.9423	0.4072	0.9324	-0.0004	-0.0009	0.9606	0.7453	0.9605
	0.0005	-0.0029	-0.0045	0.7507	0.7669	0.0002	0.0006	0.0008	0.7760	0.7755
4 month										
	-0.0014	0.9988	0.0757	0.7156	0.9942	0.0005	0.9993	0.0849	-0.8361	0.9992
	0.0004	0.0059	0.9451	0.4420	0.9303	-0.0004	-0.0018	0.9691	0.7976	0.9616
	0.0004	-0.0023	-0.0061	0.7428	0.7621	0.0002	0.0009	-0.0008	0.7641	0.7717
5 month										
	-0.0021	0.9974	0.1140	0.8687	0.9966	0.0004	0.9999	0.0919	-0.7866	0.9993
	0.0003	0.0043	0.9549	0.3965	0.9322	-0.0003	-0.0027	0.9765	0.6517	0.9691
	0.0004	-0.0011	-0.0089	0.7626	0.7861	0.0001	0.0011	-0.0003	0.8030	0.8110
6 month										
	-0.0021	1.0001	0.1242	0.8707	0.9969	0.0004	0.9991	0.0884	-0.7991	0.9995
	0.0003	0.0047	0.9555	0.3872	0.9306	-0.0003	-0.0016	0.9806	0.6556	0.9694
	0.0004	-0.0017	-0.0107	0.7559	0.7840	0.0001	0.0008	-0.0017	0.7951	0.8059
					Standard Loss	Function				
	D		P-Dynam	lics		0		Q-Dynar	nics	
	K_0^P		K_1^P		Eigenvalues	K_0^Q		K_1^Q		Eigenvalu
	-0.0021	0.9940	0.0549	0.3129	0.9948	0.0004	1.0052	0.1039	-0.2569	1.0000
	0.0004	0.0017	0.9337	0.1538	0.9274	-0.0003	-0.0073	0.9370	0.2717	0.9648
	0.0012	-0.0002	-0.0042	0.8084	0.8139	0.0003	0.0042	0.0136	0.8685	0.8458

Doshi, Jacobs, Liu

University of Houston

November 5, 2015 22 / 24

EL OQO

Introduction 000	Loss Function	Latent Model 0000	JSZ Form	Estimates	Conclusion O
Source of	Improvem	ent			

- Estimation using forecasting loss function reveals a different set of factors, especially in the case of the third factor
 - Time series of state variables
 - Factor loadings
 - Portfolio weights
- Parameter estimates show that the third factor behaves differently under the two loss functions
 - The persistence of the third factor
 - How the third factor affects other factors

<ロ > < 同 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction	Loss Function	Latent Model	JSZ Form	Estimates	Conclusion
000	000	0000		000000	•
Conclusio	n				

- We propose estimating ATSMs by aligning the loss functions for in-sample estimation and out-of-sample evaluation
- Aligning loss functions provides substantial improvements in out-of-sample forecasting performance, especially for long forecast horizons
- The improvements in out-of-sample forecasting performance results from identification of the third factor

(日) (周) (日) (日) (日) (日) (000)

Introduction 000	Loss Function	Latent Model 0000	JSZ Form	Estimates 000000	Conclusion •
Conclusio	on				

- We propose estimating ATSMs by aligning the loss functions for in-sample estimation and out-of-sample evaluation
- Aligning loss functions provides substantial improvements in out-of-sample forecasting performance, especially for long forecast horizons
- The improvements in out-of-sample forecasting performance results from identification of the third factor

<ロ > < 同 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction	Loss Function	Latent Model	JSZ Form	Estimates	Conclusion
000	000	0000		000000	•
Conclusio	'n				

- We propose estimating ATSMs by aligning the loss functions for in-sample estimation and out-of-sample evaluation
- Aligning loss functions provides substantial improvements in out-of-sample forecasting performance, especially for long forecast horizons
- The improvements in out-of-sample forecasting performance results from identification of the third factor

JSZ Mapping

$$\begin{split} K_1^Q &= WB(\Theta_L^Q) diag(\lambda^Q) (WB(\Theta_L^Q))^{-1} + I_M \\ K_0^Q &= -WB(\Theta_L^Q) diag(\lambda^Q) (WB(\Theta_L^Q))^{-1} WA(\Theta_L^Q) \\ \rho_0 &= r_\infty^Q - \tau (WB(\Theta_L^Q))^{-1} WA(\Theta_L^Q) \\ \rho_1 &= \tau (WB(\Theta_L^Q))^{-1} \end{split}$$

• $A(\Theta_L^Q)$ and $A(\Theta_L^Q)$ are functions of Θ_L^Q through a set of Ricatti ODEs, where $\Theta_L^Q = \{r_\infty^Q, \lambda^Q, \Sigma\}$

Back to JSZ Canonical Form

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Check of Diebold-Mariano Assumption

Augmented Dickey-Fuller Test (Critical Value: -3.44 at 1% Significance Level)							
Forecast Horizon \boldsymbol{k}	1 month	2 month	3 month	4 month	5 month	6 month	
3 month yield	-20.01	-11.21	-9.71	-8.07	-6.78	-6.46	
6 month yield	-17.08	-7.92	-6.94	-5.14	-4.69	-4.75	
1 year yield	-17.71	-7.88	-6.59	-5.63	-4.90	-4.72	
2 year yield	-11.81	-7.70	-6.83	-5.96	-5.52	-5.06	
3 year yield	-12.54	-7.91	-7.14	-6.24	-6.09	-5.37	
4 year yield	-12.49	-8.84	-7.91	-6.80	-6.53	-5.91	
5 year yield	-12.17	-8.88	-8.04	-7.01	-6.96	-6.13	
10 year yield	-11.40	-9.52	-8.53	-8.24	-7.28	-7.03	
20 year yield	-8.99	-9.44	-7.26	-7.41	-6.60	-6.19	

Back to OOS Forecasting Performance

Related Literature

• The estimation of the ATSMs is challenging due to high level of nonlinearity in the parameters and badly behaved likelihood surfaces *Duffee (2011, WP), Duffee and Stanton (2012, QJF), Hamilton and Wu (2012, JE)*

 Innovative estimation approaches to address the identification issues in the estimation of ATSMs Joslin, Singleton and Zhu (2011, RFS), Hamilton and Wu (2012, JE), Bauer, Rudebusch and Wu (2012, JBES), Duffee (2011, WP), Adrian, Crump and Moench (2013, JFE), Diez de los Rios (2014, JBES), Creal and Wu (2015, JE)

• Estimate the Gaussian-ATSMs using an objective function that takes into account excess returns for different horizons Sarno, Schneider and Wagner (2014, WP), Adrian, Crump and Moench (2013, JFE)

Related Literature

- The estimation of the ATSMs is challenging due to high level of nonlinearity in the parameters and badly behaved likelihood surfaces *Duffee (2011, WP), Duffee and Stanton (2012, QJF), Hamilton and Wu (2012, JE)*
- Innovative estimation approaches to address the identification issues in the estimation of ATSMs Joslin, Singleton and Zhu (2011, RFS), Hamilton and Wu (2012, JE), Bauer, Rudebusch and Wu (2012, JBES), Duffee (2011, WP), Adrian, Crump and Moench (2013, JFE), Diez de los Rios (2014, JBES), Creal and Wu (2015, JE)
- Estimate the Gaussian-ATSMs using an objective function that takes into account excess returns for different horizons Sarno, Schneider and Wagner (2014, WP), Adrian, Crump and Moench (2013, JFE)

Related Literature

- The estimation of the ATSMs is challenging due to high level of nonlinearity in the parameters and badly behaved likelihood surfaces *Duffee (2011, WP), Duffee and Stanton (2012, QJF), Hamilton and Wu (2012, JE)*
- Innovative estimation approaches to address the identification issues in the estimation of ATSMs Joslin, Singleton and Zhu (2011, RFS), Hamilton and Wu (2012, JE), Bauer, Rudebusch and Wu (2012, JBES), Duffee (2011, WP), Adrian, Crump and Moench (2013, JFE), Diez de los Rios (2014, JBES), Creal and Wu (2015, JE)
- Estimate the Gaussian-ATSMs using an objective function that takes into account excess returns for different horizons Sarno, Schneider and Wagner (2014, WP), Adrian, Crump and Moench (2013, JFE)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの

Data

_

	Summary Statistics							
		Centra	l Moments		Au	tocorrelat	ion	
	Mean	St.Dev	Skewness	Kurtosis	Lag 1	Lag 12	Lag 30	
3 month yield	0.0450	0.0290	0.8938	4.3247	0.9773	0.7944	0.5197	
6 month yield	0.0479	0.0305	0.8717	4.2283	0.9850	0.8126	0.5359	
1 year yield	0.0516	0.0306	0.6980	3.6594	0.9857	0.8317	0.5891	
2 year yield	0.0536	0.0301	0.6734	3.4957	0.9878	0.8509	0.6485	
3 year yield	0.0554	0.0294	0.6703	3.4460	0.9884	0.8611	0.6782	
4 year yield	0.0569	0.0288	0.6903	3.4142	0.9882	0.8655	0.7000	
5 year yield	0.0579	0.0282	0.7270	3.3717	0.9890	0.8739	0.7183	
10 year yield	0.0617	0.0275	0.9148	3.5853	0.9890	0.8739	0.7183	
20 year yield	0.0638	0.0265	0.9158	3.5373	0.9930	0.8936	0.7724	

- Fama CRSP Treasury Bill files, zero coupon files and Federal Reserve Database
- Monthly zero coupon bond yields (continuously compounded)
- With maturities of 3 months, 6 months, 1-5 years, 10 and 20 years
- April 1953 to Dec 2012

Out-of-Sample Forecasting Performance: Stochastic Volatility Models

	Out-of-S	ample Fore	ecasting R	MSE Rati	2				
Panel A: A ₁ (3) with Latent Factors									
Forecast Horizon k	1 month	2 month	3 month	4 month	5 month	6 mont			
3 month yield	0.92*	0.90***	0.91***	0.88***	0.88***	0.89***			
6 month yield	0.90*	0.92***	0.91***	0.90***	0.90***	0.90***			
1 year yield	1.02	0.94**	0.90***	0.88***	0.87***	0.87***			
2 year yield	1.24***	1.00	0.92***	0.88***	0.86***	0.85***			
3 year yield	1.20***	0.98	0.90***	0.86***	0.84***	0.83***			
4 year yield	1.10***	0.94***	0.88***	0.84***	0.82***	0.82***			
5 year yield	0.97	0.89***	0.85***	0.83***	0.82***	0.81***			
10 year yield	0.95	0.87***	0.84***	0.82***	0.80***	0.79***			
20 year yield	1.73***	1.23***	1.04	0.94	0.88***	0.84***			
	Panel E	$\mathbf{B}: \mathbf{A_2}(3)$ w	rith Latent	Factors					
Forecast Horizon k	1 month	2 month	3 month	4 month	5 month	6 mont			
3 month yield	0.92	0.91***	0.91***	0.89***	0.89***	0.90**			
6 month yield	0.91**	0.92***	0.92***	0.90***	0.90***	0.90**			
1 year yield	1.02	0.94**	0.89***	0.88***	0.87***	0.87***			
2 year yield	1.24***	0.99	0.91***	0.88***	0.85***	0.85***			
3 year yield	1.20***	0.97*	0.89***	0.86***	0.84***	0.83***			
4 year yield	1.09**	0.93***	0.87***	0.84***	0.82***	0.81***			
5 year yield	0.96*	0.88***	0.85***	0.83***	0.81***	0.81**			
10 year yield	0.93	0.86***	0.83***	0.81***	0.80***	0.79***			
20 year yield	1.69***	1.19**	1.00	0.91*	0.86***	0.82***			

Out-of-Sample Forecasting Performance: Stochastic Volatility Models

	Panel C	: A ₃ (3) w	ith Latent	Factors		
Forecast Horizon k	1 month	2 month	3 month	4 month	5 month	6 month
3 month yield	0.91	0.93***	0.94***	0.89***	0.90***	0.90***
6 month yield	0.94**	0.94**	0.93***	0.91***	0.91***	0.92***
1 year yield	1.03	0.94*	0.90***	0.89***	0.88***	0.88***
2 year yield	1.24***	1.00	0.92***	0.88***	0.86***	0.85***
3 year yield	1.20***	0.97	0.9***	0.86***	0.84***	0.83***
4 year yield	1.10***	0.93***	0.87***	0.84***	0.82***	0.82***
5 year yield	0.97	0.89***	0.85***	0.83***	0.82***	0.81***
10 year yield	0.94	0.86***	0.83***	0.81***	0.80***	0.80***
20 year yield	1.69***	1.18**	1.00	0.91*	0.86***	0.83***

- The improvements in forecasting performance for the stochastic volatility models are greatest for longer forecast horizons
- For the six-month forecast horizon, the improvement in the forecasting RMSEs of the $A_1(3)$ model is on average across maturities approximately 15%, which corresponds to an out-of-sample R-square of 28%
- The improvements of the $A_2(3)$ model and the $A_3(3)$ model are very similar to that of the $A_1(3)$ model

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの

Out-of-Sample Forecasting Performance: Stochastic Volatility Models

Panel C: $A_3(3)$ with Latent Factors											
Forecast Horizon \boldsymbol{k}	1 month	2 month	3 month	4 month	5 month	6 month					
3 month yield	0.91	0.93***	0.94***	0.89***	0.90***	0.90***					
6 month yield	0.94**	0.94**	0.93***	0.91***	0.91***	0.92***					
1 year yield	1.03	0.94*	0.90***	0.89***	0.88***	0.88***					
2 year yield	1.24***	1.00	0.92***	0.88***	0.86***	0.85***					
3 year yield	1.20***	0.97	0.9***	0.86***	0.84***	0.83***					
4 year yield	1.10***	0.93***	0.87***	0.84***	0.82***	0.82***					
5 year yield	0.97	0.89***	0.85***	0.83***	0.82***	0.81***					
10 year yield	0.94	0.86***	0.83***	0.81***	0.80***	0.80***					
20 year yield	1.69***	1.18**	1.00	0.91*	0.86***	0.83***					

- The improvements in forecasting performance for the stochastic volatility models are greatest for longer forecast horizons
- For the six-month forecast horizon, the improvement in the forecasting RMSEs of the $A_1(3)$ model is on average across maturities approximately 15%, which corresponds to an out-of-sample R-square of 28%
- The improvements of the $A_2(3)$ model and the $A_3(3)$ model are very similar to that of the $A_1(3)$ model

Trade-off between In-Sample and Out-of-Sample Fit

		D1465	167.6								
Panel A: For		RMSEs:									
Forecast Horizon k	1 month	2 month		4 month	5 month						
Forecast Horizon K	1 month	2 monun	5 month	4 month	5 monun	0 month					
3 month yield	10.10	10.15	10.65	10.80	10.84	10.81					
6 month yield	13.43	13.93	14.84	13.37	13.64	14.89					
1 year yield	12.88	13.35	12.42	13.02	14.33	14.60					
2 year yield	15.34	16.02	17.07	17.62	16.92	19.12					
3 year yield	16.95	12.63	15.54	17.72	19.49	21.27					
4 year yield	17.95	15.41	16.51	16.82	17.68	17.53					
5 year yield	16.38	15.49	15.47	16.74	16.74 17.62 28.29 28.86						
10 year vield	28.09	29.20	28.85	20.20	20.06	27.96					
20 year yield	33.08	34.99	20.05	20.29	32.25	27.90					
Panel B: Forecasting Loss Function with Fixed Portfolio Weights											
Forecast Horizon k	1 month	2 month	3 month	4 month	5 month	6 month					
3 month vield	15.45	15.30	15.35	15.55	15.37	15.62					
6 month yield	14.48	14.52	14.58	14.97	14.78	14.90					
o montin yield	14.40	14.52	14.50	14.57	14.70	14.50					
1 year yield	15.32	15.34	15.42	15.76	16.06	15.92					
2 year yield	9.71	9.79	9.88	10.00	10.00	10.98					
3 year yield	8.10	8.13	8.18	8.32	8.15	8.31					
4 year yield	11.93	11.94	11.98	11.95	11.96	12.07					
5 year yield	12.73	12.73	12.75	12.75	12.78	12.77					
10 year yield	14.24	14.24	14.26	14.31	14.39	14.39					
20 year yield	13.52	13.54	13.57	13.76	13.99	13.92					
Panel C: S	tandard L	oss Functi			lio Weight	ts					
3 month yield	15.18										
6 month yield			13	.99							
1 year yield			15	.04							
2 year yield				55							
3 year yield				87							
4 year vield				86							
5 year yield				.68							
10 year yield				.62							
20 year yield			11	.54							

JSZ with Fixed Portfolio Weights: Parameter Estimates

			F	Panel A: F	orecasting Loss	Function						
	P-Dynamics						Q-Dynamics					
Forecast Horizon 1 month	K_0^P		K_1^P		Eigenvalues	K_0^Q		K_1^Q		Eigenvalues		
	-0.0022	0.9950	0.0547	0.3116	0.9956	0.0004	1.0051	0.1033	-0.2582	0.9995		
	0.0004	0.0017	0.9274	0.1542	0.9196	-0.0003	-0.0073	0.9353	0.2699	0.9634		
	0.0012	-0.0002	-0.0041	0.8302	0.8374	0.0003	0.0042	0.0137	0.8647	0.8423		
2 month												
	-0.0021	0.9945	0.0544	0.3023	0.9951	0.0004	1.0051	0.1023	-0.2581	0.9995		
	0.0004	0.0017	0.9324	0.1543	0.9243	-0.0003	-0.0073	0.9354	0.2703	0.9636		
	0.0012	-0.0002	-0.0041	0.8376	0.8451	0.0003	0.0042	0.0138	0.8643	0.8417		
3 month												
	-0.0021	0.9942	0.0546	0.2793	0.9950	0.0004	1.0051	0.1016	-0.2590	0.9994		
	0.0004	0.0017	0.9315	0.1540	0.9248	-0.0003	-0.0073	0.9352	0.2705	0.9637		
	0.0012	-0.0002	-0.0042	0.8145	0.8205	0.0003	0.0042	0.0138	0.8636	0.8409		
4 month												
	-0.0019	0.9947	0.0537	0.2595	0.9955	0.0004	1.0051	0.1007	-0.2553	0.9995		
	0.0004	0.0018	0.9306	0.1547	0.9243	-0.0003	-0.0073	0.9351	0.2706	0.9634		
	0.0012	-0.0002	-0.0042	0.8019	0.8074	0.0003	0.0043	0.0138	0.8622	0.8396		
5 month												
	-0.0020	0.9954	0.0512	0.2727	0.9962	0.0004	1.0052	0.0994	-0.2581	0.9995		
	0.0004	0.0017	0.9325	0.1494	0.9275	-0.0003	-0.0072	0.9350	0.2701	0.9639		
	0.0014	-0.0002	-0.0041	0.7731	0.7772	0.0003	0.0043	0.0142	0.8618	0.8386		
6 month												
	-0.0018	0.9947	0.0523	0.2703	0.9955	0.0004	1.0052	0.1002	-0.2573	0.9994		
	0.0004	0.0017	0.9303	0.1534	0.9252	-0.0003	-0.0073	0.9348	0.2702	0.9631		
	0.0014	-0.0002	-0.0042		0.7727	0.0003	0.0042	0.0138	0.8616	0.8392	_	_
			P-Dynan		Standard Loss F	unction		Q-Dynar	nics			
	K_0^P		K_1^P		Eigenvalues	K_0^Q		K_1^Q		Eigenvalues		
	-0.0021	0.9940	0.0549	0.3129	0.9948	0.0004	1.0052	0.1039	-0.2569	1.0000		
	0.0004	0.0017	0.9337	0.1538	0.9274	-0.0003	-0.0073	0.9370	0.2717	0.9648		
	0.0012	-0.0002	-0.0042	0.8084	0.8139	0.0003	0.0042	0.0136	0.8685	0.8458		
									(⊡))	▲ 置 ▶ ▲	-	E≯

Doshi, Jacobs, Liu