Staying at Zero with Affine Processes
An Application to Term Structure Modelling

Alain Monfort1,2 Fulvio Pegoraro1,2
Jean-Paul Renne2 Guillaume Roussellet1,2,3

1CREST
2Banque de France
3Dauphine University

5th Conference on Fixed Income Markets
Bank of Canada and SF Fed
San Francisco, November 2015

All the views presented here are those of the authors and should not be associated with those of the Banque de France.
Contents

1 Introduction
2 The ARG0 process
 - A mixture of affine distributions
 - Properties and extensions
3 The NATSM
 - Short-rate specification and the affine framework
 - Advantages of an affine framework
4 Estimation
 - State-space formulation
 - Estimation results
5 Assessing lift-off dates
6 Conclusion
7 Appendix
Zero lower bound (ZLB)

Several of the major central banks now face the ZLB

![Policy Rates (in %)](chart)

- U.S. Fed
- Bank of Japan
- Bank of England
- ECB
Stylized facts to match

- The short-term nominal rate can stay at the ZLB for several periods...

- and in the meantime, longer-term yields can show substantial fluctuations [JGB yields from June 1995 to May 2014]
Closed-form pricing

- Gaussian ATM
- CIR
 - QTSM

Positivity

- Shadow rate

Can stay at 0
Closed-form pricing

- Gaussian ATSM
- CIR
- QTSM
- Shadow rate

Positivity

This Paper

Can stay at 0
Our ZLB model: a primer

We introduce a new **affine** process:

![Simulation of an ARGo process](image1)

![Cumulative distribution function](image2)

- $P(R=0) = 0.6$
What we do in this paper

- **We derive** Non-negative Affine processes staying at 0 (ARG$_0$ processes) to build a Term Structure Model which is:
 - providing positive yields for all maturities;
 - consistent with the ZLB (a short-rate experiencing prolonged periods at 0) **WHILE** long-term rates still fluctuates;
 - affine: thus closed-form formulas for bond-pricing and lift-off probabilities are available.

- Empirical assessment on JGB yields (June 1995 to May 2014). **Good performance** of our model in terms of:
 - fitting yield levels and conditional variances;
 - calculating Risk-Neutral *and* Historical lift-off probabilities.
Related literature

- **Lift-off probabilities:** Bauer & Rudebusch (2013), Swanson & Williams (2013)
Contents

1. Introduction

2. The ARG₀ process
 - A mixture of affine distributions
 - Properties and extensions

3. The NATSM
 - Short-rate specification and the affine framework
 - Advantages of an affine framework

4. Estimation
 - State-space formulation
 - Estimation results

5. Assessing lift-off dates

6. Conclusion

7. Appendix
Defining the **Gamma-Zero distribution**

We construct a new distribution in two steps:

- $Z \sim \mathcal{P}(\lambda) \implies Z(\omega) \in \{0, 1, 2, \ldots\}$ and $\mathbb{P}(Z = 0) = \exp(-\lambda)$.

- We define $X|Z \sim \gamma_Z(\mu)$, which implies:
 1. If $Z = 0$, X is a Dirac point mass at 0.
 2. If $Z > 0$, X is Gamma-distributed (continuous on \mathbb{R}^+).

Definition

The non-negative r.v. $X \sim \gamma_0(\lambda, \mu), \lambda > 0$ and $\mu > 0$, if

$$X \mid Z \sim \gamma_Z(\mu) \quad \text{with} \quad Z \sim \mathcal{P}(\lambda)$$

$$\implies \mathbb{P}(X = 0) = \mathbb{P}(Z = 0) = \exp(-\lambda).$$
A mixture of affine distributions

A mixture distribution

In other words, $X \sim \gamma_0(\lambda, \mu)$ if its (complicated) p.d.f. is:

$$f_X(x; \lambda, \mu) = \sum_{z=1}^{+\infty} \left[\frac{\exp(-x/\mu) x^{z-1}}{(z-1)! \mu^z} \times \frac{\exp(-\lambda) \lambda^z}{z!} \right] 1_{\{x>0\}} + \exp(-\lambda) 1_{\{x=0\}}$$

However, simple Laplace transform:

$$\varphi_X(u; \lambda, \mu) := \mathbb{E} [\exp(uX)] = \exp \left[\lambda \frac{u \mu}{1 - u \mu} \right] \text{ for } u < \frac{1}{\mu}.$$
A mixture of affine distributions

A mixture distribution

In other words, $X \sim \gamma_0(\lambda, \mu)$ if its (complicated) p.d.f. is:

$$f_X(x ; \lambda, \mu) = \sum_{z=1}^{+\infty} \left[\frac{\exp(-x/\mu) x^{z-1}}{(z - 1)! \mu^z} \times \frac{\exp(-\lambda) \lambda^z}{z!} \right] \mathbb{1}_{\{x>0\}} + \exp(-\lambda) \mathbb{1}_{\{x=0\}}$$

However, simple Laplace transform:

$$\varphi_X(u ; \lambda, \mu) := \mathbb{E} [\exp(uX)] = \exp \left[\lambda \frac{u\mu}{(1 - u\mu)} \right] \text{ for } u < \frac{1}{\mu}.$$

\Rightarrow Exponential-affine in λ.

A mixture of affine distributions

A mixture distribution

In other words, \(X \sim \gamma_0(\lambda, \mu) \) if its (complicated) p.d.f. is:

\[
f_X(x ; \lambda, \mu) = \sum_{z=1}^{+\infty} \left[\frac{\exp(-x/\mu) x^{z-1}}{(z-1)! \mu^z} \times \frac{\exp(-\lambda) \lambda^z}{z!} \right] \mathbb{1}_{\{x > 0\}} + \exp(-\lambda) \mathbb{1}_{\{x = 0\}}
\]

However, simple Laplace transform:

\[
\phi_X(u ; \lambda, \mu) := \mathbb{E} [\exp(uX)] = \exp \left[\lambda \frac{u\mu}{(1 - u\mu)} \right] \quad \text{for} \quad u < \frac{1}{\mu}.
\]

\(\implies \) Exponential-affine in \(\lambda \).
Introducing dynamics: the ARG\(_0\) process

Main goal: Build a dynamic **affine** process with **zero point mass**.

Definition

\((X_t)\) is a ARG\(_0(\alpha, \beta, \mu)\) if \((X_{t+1}|X_t)\) is Gamma-zero distributed:

\[(X_{t+1}|X_t) \sim \gamma_0(\alpha + \beta X_t, \mu) \quad \text{for} \quad \alpha \geq 0, \; \mu > 0, \; \beta > 0.\]

Again, simple conditional LT, exponential-affine in \(X_t\):

\[
\varphi_{X,t}(u; \alpha, \beta, \mu) := E_t [\exp(uX_{t+1})] \\
= \exp \left[\frac{u\mu}{1 - u\mu} (\alpha + \beta X_t) \right], \quad \text{for} \quad u < \frac{1}{\mu}.
\]
Key properties:

- **Non-negative** process.
- **Affine** process: the conditional Laplace transform is exp-affine.
 \[
 \varphi_{X,t}(u; \alpha, \beta, \mu) := \mathbb{E}_t [\exp(uX_{t+1})] = \exp [a(u)X_t + b(u)]
 \]
- **Staying at zero** with probability:
 \[
 \mathbb{P}(X_{t+1} = 0 | X_t = 0) = \exp(-\alpha) \neq 0.
 \]
 \[\square\] \(\alpha \neq 0 \implies\) zero is not absorbing.
 \[\square\] in our multivariate yield curve model this probability will be time-varying, function of all date-\(t\) factors;
- **Closed-form moments** (affine conditional cumulants).
We extend the ARG\(_0(\alpha, \beta, \mu)\) process to the more general ARG\(_\nu(\alpha, \beta, \mu)\) case:

\[
X_t \text{ follows an ARG}_{\nu}(\alpha, \beta, \mu) \text{ process if:} \\
X_{t+1} \mid Z_{t+1} \sim \gamma_{\nu + Z_{t+1}}(\mu) \text{ with } Z_{t+1} \mid X_t \sim \mathcal{P} (\alpha + \beta X_t)
\]

- \(\nu = 0 \implies \text{ARG}_0 \text{ process.}\)
- \(\nu > 0, \alpha = 0 \implies \text{ARG process of Gouriéroux and Jasiak (2006).}\)

<table>
<thead>
<tr>
<th>(\nu = 0)</th>
<th>(\nu > 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positivity</td>
<td>Yes</td>
</tr>
<tr>
<td>Affine</td>
<td>Yes</td>
</tr>
<tr>
<td>Zero point mass</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Contents

1 Introduction
2 The ARG₀ process
 • A mixture of affine distributions
 • Properties and extensions
3 The NATSM
 • Short-rate specification and the affine framework
 • Advantages of an affine framework
4 Estimation
 • State-space formulation
 • Estimation results
5 Assessing lift-off dates
6 Conclusion
7 Appendix
Stylized facts to match (1)

- short-term nominal rate at the ZLB for several periods
- longer-term yields showing substantial fluctuations [JGB yields from June 1995 to May 2014]
The state of the economy is defined by a \(n \)-dimensional vector \(X_t \). These factors follow a \(\text{VARG}_\nu \) process under \(Q \) (the same under \(P \)).

\(\text{VARG}_\nu \) processes

\(X_t \) follows a \(\text{VARG}_\nu(\alpha, \beta, \mu) \) if, \(\forall t, \forall i: \)

- \(Z_{i,t+1}|X_t \sim \mathcal{P}(\alpha_i + \beta_i'X_t) \).
- \(X_{i,t+1}|Z_{i,t+1} \sim \gamma Z_{i,t+1} + \nu_i(\mu_i) \) cond. indep across \(i \).

Conditional \(Q \)-moments (same formulas under \(P \)):

\[
\mathbb{E}_t^Q(X_{t+1}) = \mu^Q \odot (\alpha^Q + \beta^Q' X_t + \nu) \\
\mathbb{V}_t^Q(X_{t+1}) = \text{diag} \left[\mu^Q \odot \mu^Q \odot \left(\nu + 2\alpha^Q + 2\beta^Q' X_t \right) \right]
\]

\textit{Note:} Conditional correlations can be allowed.
Short-rate specification and the affine framework

Short-rate specification

- The vector of factors X_t is split into two: $X_t = (X_t^{(1)'}, X_t^{(2)'})'$

where:

(i) All components of $X_t^{(1)}$ have $\nu_j = 0$ (point mass at 0).

(ii) All components of $X_t^{(2)}$ have $\nu_j > 0$ (no point mass).

(iii) $\mu_j^P = 1$, β_P^P and β_Q^Q lower-triangular (identification).

- The short-term rate r_t is given by:

$$r_t = \delta' X_t^{(1)} \quad (= r_{min} + \delta' X_t^{(1)}, \text{ if } LB \neq 0)$$

1. **Key Property**

 $\{\text{Eq.(1) + (i)}\} \Rightarrow r_t$ has a zero point mass.
Other Properties:

\{\text{Eq.}(1) + (iii)\}:

\[
\begin{align*}
 r_t &= \delta' X_t^{(1)} \\
 \begin{pmatrix} X_t^{(1)} \\ X_t^{(2)} \end{pmatrix} &= \text{constant} + \begin{pmatrix} \beta_{11}^Q & \beta_{12}^Q \\ 0 & \beta_{22}^Q \end{pmatrix} \begin{pmatrix} X_{t-1}^{(1)} \\ X_{t-1}^{(2)} \end{pmatrix} + \xi_t^Q
\end{align*}
\]

- We have $X^{(2)} \overset{G.C.}{\rightarrow} X^{(1)}$
- and thus $X_t^{(2)}$ appears in the short rate conditional \mathbb{Q}-expectations (hence in long rates).

\implies long-term yields can move during the ZLB.
Pricing Formulas

The model belongs to the class of ATSM:

- Explicit closed-form bond-pricing
- Yields are affine in the factors for all maturities:

\[
R_t(h) = -\frac{1}{h} (A_h'X_t + B_h) = \bar{A}_hX_t + \bar{B}_h.
\]

- Recursive pricing formulas:

\[
A_h = -\delta + \beta^Q \left(\frac{A_{h-1} \circ \mu^Q}{1 - A_{h-1} \circ \mu^Q} \right)
\]

\[
B_h = B_{h-1} + \alpha^{Q'} \left(\frac{A_{h-1} \circ \mu^Q}{1 - A_{h-1} \circ \mu^Q} \right) - \nu' \log \left(1 - A_{h-1} \circ \mu^Q \right)
\]
The historical dynamics

- The SDF is exp-affine with market price of risk vector θ:

$$\frac{dP_{t,t+1}}{dQ_{t,t+1}} = \exp \left[\theta' X_{t+1} - \psi^Q_t(\theta) \right]$$

Change of measure property

X_t follows a $\text{VARG}_\nu(\alpha^P, \beta^P, \mu^P)$ process under the historical measure P.

$$\alpha^P_j = \frac{\alpha^Q_j}{1 - \theta_j \mu^Q_j}, \quad \beta^P_j = \frac{1}{1 - \theta_j \mu^Q_j} \beta^Q_j, \quad \mu^P_j = \frac{\mu^Q_j}{1 - \theta_j \mu^Q_j}.$$

Rk: ν is the same under both measures.
Stylized facts to match (2)

Conditional volatilities: time-varying and maturity-dependent.
How to treat it

- Conditional variance of yields:

\[\mathbb{V}_t^P [R_{t+1}(h)] \]

\[= \bar{A}_h' \mathbb{V}_t^P (X_{t+1}) \bar{A}_h \]

\[= \bar{A}_h' \left\{ \text{diag} \left[\mu^P \odot \mu^P \odot \left(\nu + 2\alpha^P + 2\beta^P' X_t \right) \right] \right\} \bar{A}_h \]

- Time-varying and maturity-dependent.
Advantages of an affine framework

NATSM properties

- Yields $R_t(h)$ are non-negative;
- Long-term yields can move while $r_t = 0$ for several periods;
- Unconditional first two moments are available in closed-form;
- Conditional first two moments of yields are affine in X_t (available in closed-form);
- Yields forecasts are explicitly affine in X_t;
State-space formulation

Estimation technique

State vector \(Y_t = (R'_t, V'_t, S'_t)' \) affine in \(X_t \):

- \(R_t \) = yield levels (6 maturities);
- \(V_t \) = 2- and 10-y yield conditional (EGARCH) variance;
- \(S_t \) = SPF for 3-m and 1-y ahead 10-y yield;
- prelim. estimations have suggested \(\text{dim}(X_t^{(1)}) = 1 \), \(\text{dim}(X_t^{(2)}) = 3 \) and \(\nu = 0 \);

Estimation technique

Linear Kalman-filter-based QML:

\[
\begin{align*}
X_{t+1} & = m + MX_t + \Sigma_t^{1/2} \varepsilon_{t+1} \\
Y_t & = \Gamma_0 + \Gamma_1 X_t + \Omega \eta_t
\end{align*}
\]
Filtered factors

![Graph showing filtered factors from 1995 to 2015](image-url)
Factor loadings of yields and conditional variances

(a) Factor loadings of yields

(b) Factor loadings of conditional variances
Fit of Conditional Variances and SPFs

- 2-year yield
- 10-year yield
- 3-month ahead 10-year yield
- 12-month ahead 10-year yield

Conditional variance proxy

Forecast Surveys (in %, annual basis)
Fit of Yields

Estimation results

Dates

Yield in %, annual basis

6-month yield

2-year yield

7-year yield

10-year yield

Dates

1-year yield

4-year yield

10-year yield

observed

fitted

-0.00
-0.50
-1.00
-1.50
-2.00
0.00
0.50
1.00
1.50
2.00

0.00
0.25
0.50
0.75
1.00

0.00
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0
3.0

0.0
0.5
1.0
1.5
2.0
3.0

Yields (in %, annual basis)
Contents

1 Introduction

2 The ARG₀ process
 - A mixture of affine distributions
 - Properties and extensions

3 The NATSM
 - Short-rate specification and the affine framework
 - Advantages of an affine framework

4 Estimation
 - State-space formulation
 - Estimation results

5 Assessing lift-off dates

6 Conclusion

7 Appendix
Lift-off probability dates under \mathbb{P} and \mathbb{Q}

We calculate the following probabilities:

- $\mathbb{P}(r_{t+k} = 0 \mid X_t)$ and $\mathbb{Q}(r_{t+k} = 0 \mid X_t)$;
- $\mathbb{P}(r_{t+k} < 25 \text{ bps.} \mid X_t)$ and $\mathbb{Q}(r_{t+k} < 25 \text{ bps.} \mid X_t)$.

Useful formula

If $z \in \mathbb{R}^+$ and $\varphi_z(u)$ its Laplace transform.

$$
\mathbb{P}(z = 0) = \lim_{u \to -\infty} \varphi_z(u).
$$

Next two plots (\mathbb{Q} is the black solid line):

- *Time-series dimension*: t varies ($k = 2\text{yrs and 5yrs}$).
- *Horizon dimension*: k varies ($t = 11/30/07$ and $05/30/14$).
The results are presented in terms of probabilities for lift-off dates 2−years and 5−years ahead. Two different cases are considered:

1. **lambda = 0**: This scenario represents the baseline case with no external shocks.
2. **lambda = 25 bps**: This case incorporates a moderate level of external shocks.

The graphs display the evolution of these probabilities over time, with dates marked from 1995 to 2015. The y-axis represents probabilities ranging from 0 to 1, while the x-axis shows the years from 1995 to 2015 in increments of 5 years.

The graphs illustrate how the probabilities of lift-off dates change over time under both scenarios, highlighting the impact of external shocks on the assessment of lift-off dates.
Horizon dimension of probabilities

![Graph showing probabilities over forecast horizon for two different lambda values: lambda = 0 and lambda = 25 bps. The bars represent probabilities at different forecast horizons, with lines indicating the progression over time. The x-axis represents the forecast horizon in years, ranging from 1 to 5. The y-axis represents the probabilities ranging from 0.00 to 1.00. Two sets of probabilities are displayed: Q probability and P probability. The graph includes data points for dates 2007-11-30 and 2014-05-30.]
Contents

1. Introduction
2. The ARG_0 process
 - A mixture of affine distributions
 - Properties and extensions
3. The NATSM
 - Short-rate specification and the affine framework
 - Advantages of an affine framework
4. Estimation
 - State-space formulation
 - Estimation results
5. Assessing lift-off dates
6. Conclusion
7. Appendix
Summary and further research

We have derived **affine non-negative processes staying at 0** and built an affine term-structure model (**NATSM**) gathering:

- a **short-rate consistent with the ZLB** experiencing periods at 0 while **long-run rates still fluctuates**;
- **closed-form formulas** for bond-pricing and lift-off probabilities.

An empirical assessment showed performance of our model for:

- **fitting yield levels and conditional variances**;
- calculating risk-neutral *and* historical **lift-off probabilities**.

Further research: Empirical comparison of NATSMs, derivatives pricing.
Thank you for your attention.
Contents

1 Introduction

2 The ARG₀ process
 • A mixture of affine distributions
 • Properties and extensions

3 The NATSM
 • Short-rate specification and the affine framework
 • Advantages of an affine framework

4 Estimation
 • State-space formulation
 • Estimation results

5 Assessing lift-off dates

6 Conclusion

7 Appendix
Table: Parameter estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>P-parameters</th>
<th>Q-parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimates</td>
<td>Std.</td>
</tr>
<tr>
<td>α_4</td>
<td>3.2455</td>
<td>0.1118</td>
</tr>
<tr>
<td>$\beta_{1,1}$</td>
<td>0.9663</td>
<td>0.0078</td>
</tr>
<tr>
<td>$\beta_{2,2}$</td>
<td>0.9978</td>
<td>0.0005</td>
</tr>
<tr>
<td>$\beta_{3,3}$</td>
<td>0.9486</td>
<td>0.0044</td>
</tr>
<tr>
<td>$\beta_{4,4}$</td>
<td>0.9967</td>
<td>0.0005</td>
</tr>
<tr>
<td>$\beta_{2,1}$</td>
<td>0.0308</td>
<td>0.0041</td>
</tr>
<tr>
<td>$\beta_{3,2}$</td>
<td>0.1094</td>
<td>0.0059</td>
</tr>
<tr>
<td>$\beta_{4,3}$</td>
<td>$3.88 \cdot 10^{-4}$</td>
<td>$2.28 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>μ_1</td>
<td>1</td>
<td>0.0040</td>
</tr>
<tr>
<td>μ_2</td>
<td>1</td>
<td>0.0005</td>
</tr>
<tr>
<td>μ_3</td>
<td>1</td>
<td>0.0023</td>
</tr>
<tr>
<td>μ_4</td>
<td>1</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

Other Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ_1</td>
<td>0.0030</td>
</tr>
<tr>
<td>θ_1</td>
<td>-0.0133</td>
</tr>
<tr>
<td>θ_3</td>
<td>-0.0226</td>
</tr>
<tr>
<td>σ_R</td>
<td>0.0407</td>
</tr>
<tr>
<td>σ_V</td>
<td>$3 \cdot 10^{-3}$</td>
</tr>
<tr>
<td>σ_S</td>
<td>0.15</td>
</tr>
</tbody>
</table>
ARG₀ Summary

\[X_t \text{ realized} \]

\[\alpha + \beta X_t \quad \rightarrow \quad Z_{t+1} | X_t \sim P(\alpha + \beta X_t) \]

\[X_{t+1} | Z_{t+1} \sim \gamma Z_{t+1}(\mu) \]

\[\text{time } t \quad \rightarrow \quad \text{time } t + 1 \]
Univariate case: lift-offs formulas

- $Z \in \mathbb{R}^+$ and $\varphi_Z(u)$ its Laplace transform.

$$
\mathbb{P}_Z\{0\} = \lim_{u \to -\infty} \varphi_Z(u).
$$

- Lift-off probabilities: $(X_t) \sim \text{ARG}_0(\alpha, \beta, \mu)$ and $\varphi_{t,h}(u_1, \ldots, u_h)$ its multi-horizon conditional Laplace transform.

 - $\mathbb{P}(X_{t+h} = 0 \mid X_t) = \lim_{u \to -\infty} \varphi_{t,h}(0, \ldots, 0, u)$
 - $\mathbb{P}[X_{t+1} = 0, \ldots, X_{t+h} = 0 \mid X_t] = \lim_{u \to -\infty} \varphi_{t,h}(u, \ldots, u) = \exp(-\alpha h - \beta X_t)$,
 - $\mathbb{P}[X_{t+1} = 0, \ldots, X_{t+h} = 0, X_{t+h+1} > 0 \mid X_t] = \exp[-\alpha h - \beta X_t] [1 - \exp(-\alpha)]$, $h > 1$.
Multivariate Case

- \(Z \in \mathbb{R}_+^n \) and \(\varphi_Z(u_1, \ldots, u_n) \) its Laplace transform.

\[
\mathbb{P}_Z\{0, \ldots, 0\} = \lim_{u \to -\infty} \varphi_Z(u, \ldots, u).
\]

- **Notations:** Multi-horizon conditional LT.

\[
\varphi_{t,k}^{\mathbb{P}}(u_1, \ldots, u_k) = \mathbb{E}^{\mathbb{P}} \left[\exp \left(u_1' X_{t+1} + \ldots + u_k' X_{t+k} \right) \bigg| X_t \right] \\
= \exp \left[A_k' X_t + B_k \right] \\
\varphi_{R,t,k}^{(h)}(v_1, \ldots, v_k) = \mathbb{E} \left[\exp \left(v_1 R_{t+1}(h) + \ldots + v_k R_{t+k}(h) \right) \bigg| X_t \right]
\]
Lift-offs

\(\mathbb{P} [r_{t+k} = 0 \mid X_t] = \lim_{u \to -\infty} \varphi_{R,t,k}^{(1)}(0, \ldots, 0, u) \)

\(\mathbb{P} [r_{t+1} = 0, \ldots, r_{t+k} = 0 \mid X_t] = \lim_{u \to -\infty} \varphi_{R,t,k}^{(1)}(u, \ldots, u) = p_{r,t,k} \) (say)

\(\mathbb{P} [r_{t+1} = 0, \ldots, r_{t+k-1} = 0, r_{t+k} > 0 \mid X_t] = p_{r,t,k-1} - p_{r,t,k} \)

\(\mathbb{P} \left[v' R_{t+1}^{(t+k)} (h) > \lambda \mid X_t \right] = \frac{1}{2} + \frac{1}{\pi} \int_{0}^{+\infty} \frac{\text{Im} \left[\varphi_{R,t,k}^{(h)} (i v x) \exp(-i \lambda x) \right]}{x} \, dx \)
Useful remarks

Remark 1

Stationarity conditions are easily imposed:

\[X_t \text{ stationary } \iff \forall j \in \{1, \ldots, n\}, \quad \rho_j := \mu_j \beta_{j,j} < 1. \]

Remark 2

The assumption of conditional independence can be relaxed keeping the affine structure of the multivariate process \(X_t \).

\[\implies \text{Recursive discrete-time affine process (mimeo).} \]