Comments on “An economical model of the business cycle” by Pascal Michaillat and Emmanuel Saez

Carl E. Walsh

University of California, Santa Cruz

FRBSF: March 27, 2015
Michaillat and Saez develop a model with similarities to a traditional IS-LM-AD-AS model.

They argue model is consistent with two key features of the U.S. economy:
- very sluggish inflation;
- prolonged periods at the ZLB.

They also argue model provides new insights, particularly regarding the effects of aggregate supply shocks at the ZLB.
An economical model of the business cycle: key features of the model

- Wealth enters the utility function of the representative household.
 - Allows *steady-state* equilibrium real interest rate to be sufficiently negative to generate prolonged periods at ZLB.
 - Wealth effect provides channel for fiscal policy in form of helicopter drops of money to affect demand at the ZLB.

- Trading frictions are introduced into the labor/product market.
The IS-LM model with wealth in utility but without trading frictions

Given their specification of utility, the steady-state IS curve is

\[c = \left[\frac{\delta - (i - \pi)}{\omega'(0)} \right]^\epsilon = \left[\frac{\delta - r}{\omega'(0)} \right]^\epsilon \]

where \(\delta = \beta^{-1} - 1 \) and \(\omega'(a) \) is the marginal utility of wealth evaluated at \(a = 0 \). They use the FOC for money holdings to eliminate \(i \) from IS to obtain an AD curve.
The IS-LM model with wealth in utility but without trading frictions

- Given their specification of utility, the steady-state IS curve is

\[c = \left[\frac{\delta - (i - \pi)}{\omega'(0)} \right]^\varepsilon = \left[\frac{\delta - r}{\omega'(0)} \right]^\varepsilon \]

where \(\delta = \beta^{-1} - 1 \) and \(\omega'(a) \) is the marginal utility of wealth evaluated at \(a = 0 \). They use the FOC for money holdings to eliminate \(i \) from IS to obtain an AD curve.

- In a NK model with money-in-the-utility function, policy sets \(i \) and the LM determines real money balances. The AD curve in this case is simply the IS curve.
The model with wealth in utility but without trading friction.

- Without trading frictions, steady-state aggregate supply is
 \[c = \bar{c}. \]

- With consumption determined by AS, AD determines real interest rate:
 \[r = i - \pi = \delta - \bar{c} \varepsilon \omega'(0) \]

- Nominal rate determined, given \(\pi \), or \(\pi \) determined given \(i \).
 - In former case, LM determines \(m = M/P \). Monetary policy determines level of \(P \) by choosing \(M \) but it doesn’t choose \(m \).
 - In latter case, \(\pi = i - \delta + \bar{c} \varepsilon \omega'(0) \), LM again determines \(m = M/P \). Monetary policy determines inflation – by picking \(i \) – but not \(m \).
The second key ingredient: trading frictions

- Paper is part of a large and growing literature that incorporates trading frictions into macroeconomic models.
 - Labor markets – huge literature
- Michaillat and Saez (2013) provides an extensive literature review.
The second key ingredient: trading frictions

- Matching frictions for labor services.
- To hire labor requires posting job ads which themselves require labor services, as in Farmer (2008, 2012).
- Two consequences:
 - Output available for consumption is net of labor used up in recruiting services:
 \[c = [f(x(t)) - \rho x(t)] k \]
 - Cost of a unit of consumption is
 \[1 + \tau(x(t)), \tau'(\cdot) \geq 0. \]
 - Both depend on \(x \), a measure of tightness (job ads divided by total labor force).
Model with wealth in utility function and trading frictions: away from the ZLB

- AD under an interest rate policy becomes

\[c = \left(\frac{\delta - r}{[1 + \tau(x)] \omega'(0)} \right)^{\varepsilon}. \]

 - Increase in tightness increases cost of consumption; consumption falls.

- AS is

\[c = [f(x) - \rho x] k. \]

 - Increase in tightness makes it easier for firms to sell, output rises; as long as \(f'(x) > \rho \), consumption rises.

- Two equations, but three unknowns – \(c, r, \) and \(x \).
How do markets equilibrate?

“The immediate impact of changes in demand and supply is to be found in order-books, waiting lines, inventories, delivery dates, output, hours of work, employment...Such quantitative adjustments are the first signals of changes in the demand-supply relationship. Shifts in relative prices come later and in a less apparent way.” Malinvaud 1977, p. 9.

Michaillat and Saez turn Marshall on his head:

- Alfred Marshall’s short-run, long-run analysis in which “prices adjust more rapidly than quantities, indeed so rapidly that the price adjustment can be regarded as instantaneous.” (Friedman 1970, page 207)
- “In equilibrium, given a price, tightness adjusts to equalize AD and AS curve.” (M-S, page 2)

- Relevant price an intertemporal one – the real interest rate.
Model with wealth in utility function and trading frictions: What closes the model?

- M-S: Assume π and initial price level are fixed exogenously.
 - “The price process responds neither to equilibrium variables nor to monetary policy.” (p. 12)
 - “The money supply, $M(t)$, must also grow at the rate π but monetary policy does not control π.”

- Using the LM curve, $i = i(M(0), c, x)$, model becomes two equations in c and x:

 $c = \left[\frac{\delta - i(M(0), c, x) + \pi}{[1 + \tau(x)] \omega'(0)} \right]^\varepsilon$

 $c = [f(x) - \rho x] k.$

- With $P(0)$ fixed and π given, monetary policy is able to set real money balances and therefore steady-state c and x.
Model at the ZLB

- At the ZLB, AD becomes
 \[c = \left[\frac{\delta + \pi}{1 + \tau(x) \omega'(0)} \right]^\varepsilon. \]

- AS is
 \[c = [f(x) - \rho x] k. \]

- Two equations in three endogenous variables – \(c, \pi, \) and \(x \).
- So fix \(\pi \) exogenously to close model.
 - This is key to their results on supply shocks at the ZLB – a negative supply shock cannot raise inflation, lower the real rate of interest, and stimulate aggregate demand.

- Helicopter drops of money are effective at the ZLB – they affect marginal utility of wealth.
 - However this is fiscal policy, not monetary policy.
The Michaillat-Saez model: characterization of monetary policy

- So who sets inflation?
- Steady-state inflation fixed exogenously, but this is similar to the situation in a new Keynesian model:

\[x_t = E_t x_{t+1} - \sigma (i_t - E_t \pi_{t+1} - r_t) \]

\[\pi_t - \bar{\pi} = \beta E_t (\pi_{t+1} - \bar{\pi}) + \kappa x_t \]

\[i_t = r_t + \bar{\pi} + \delta (\pi_t - \bar{\pi}) \]

- Three equations in \(x_t, \pi_t, i_t \) and \(\bar{\pi} \).
- Steady-state inflation \(\bar{\pi} \) is set by the central bank’s target (and commitment, in Cochrane’s terms, to blow up the world if inflation deviates from target).
Closing the model: determining inflation

- Standard simple macro model: real interest rate ensures \(AD \) equals \(AS \).
 - At ZLB, \(r = -\pi \) and M-S eliminate role of real interest rate by fixing \(\pi \).
 - Away from ZLB, \(r = i - \pi \) and role eliminated by fixing \(\pi \) and assuming monetary policy sets the steady-state nominal rate.

- Multiple equilibrium a sign of a missing equilibrium condition:
 - Job posting and a wage setting assumption in a DMP model.
 - Farmer adds a beliefs function or animal spirits.

- M-S add competitive search with posted prices ala Moen (1997), Bai, et. al. (2012) plus they add costly price adjustment.
Adding a Phillips curve and short-run dynamics

- Competitive search with costly price adjustment yields a Phillips curve.
 - Steady-state inflation still fixed exogenously (at zero).
 - Tightness and inflation positively correlated – Phillips curve.
 - Competitive search ensures tightness is efficient in steady state.

- Implications:
 - Positive aggregate demand shock increases tightness, inflation and output.
 - But starting from steady state, a positive aggregate demand shock reduces consumption.
 - Positive aggregate supply shock decreases tightness, inflation and output.
 - So oddity of a negative aggregate supply shock causing an expansion in a NK model at the ZLB is replaced by a negative aggregate supply shock causing an output expansion away from the ZLB.
Conclusions

- Interesting avenue for research:
 - Emphasis on non-price mechanisms for market clearing promising.
 - Opens up formal role for Malinvaud’s “...order-books, waiting lines, inventories, delivery dates....”.

- But:
 - Results seem broadly consistent with what we already think we know.
 - Effects of aggregate supply shocks:
 - Reverse odd NK implications at ZLB, but only by simply assuming inflation can’t respond.
 - Reverse reasonable short-run NK implications when inflation is made endogenous.
 - Characterization of monetary policy in terms of \(M \).

- What would be nice to see:
 - Extension of model to provide insights into financial and real linkages.