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Motivation

1 Interest rates are close to or have reached their lower bound across
several markets globally.

2 Bounded positive interest rates imply large tractability or flexibility
costs within the existing DTSM framework.

3 These costs are especially acute when exploring the volatility of yields
over the cycle. As the level and slope of the yield curve evolves,

I How does the volatility of bond yields evolve throughout the cycle?
I How does the (hump-shaped) term structure of yield volatility evolve

throughout the cycle?
I How does volatility of the expectation and risk premium components

evolve throughout the cycle?
(Cieslak and Povala, 2015)

4 Contribution: we introduce Tractable Term Struture Models (TTSMs)
to answer these questions.
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Examples

Models with positive yields are restrictive:
1 Positive affine DTSM models

I Restrictions on the correlation structure (only positive).
I Restrictions to accommodate macro variables that changes signs.
I Restrictions on the risk premium (Dai and Singleton, 2002; Joslin and

Le, 2013).

2 Quadratic DTSM models or Black’s DTMS
I Tractable?
I Limited to simple Gaussian state dynamics.
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Motivation

DTSMs are based on the fundamental theorems of asset pricing to
ensure the Absence of Arbitrage.

The focus is on the subset of “realistic” SDFs Mt > 0 such that:

P1,t = Et [Mt+1] is closed form,

P2,t = Et [Mt+1Mt+2] is closed form,

...,

Pn,t = Et [Mt+1Mt+2...Mt+n] is closed form

This subset of SDF’s appears restrictive for models with positive yields.

Question: Can we bypass specifying the SDF to retain
tractability and flexibility yet producing bond prices that are
“close” to AOA?
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1. Our construction of bond prices

Assumption (1)

The n-period bond price Pn is given recursively by

P0(Xt) ≡1, ∀Xt (1)

Pn(Xt) =Pn−1(g(Xt))× exp(−m(Xt)), (2)

given some state Xt with support X,

and some functions m(·), g(·) where g(Xt) ∈ X for every Xt ∈ X.

Assumption 1 guarantees pricing tractability.
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1. Our construction of bond prices

Example n=1:

P1(Xt) = P0(g(Xt))× exp(−m(Xt)) = exp(−m(Xt)) (3)

I m(·) gives the one-period rate

Example n=2:

P2(Xt) = P1(g(Xt))× exp(−m(Xt))

= exp(−m(g(Xt)))× exp(−m(Xt)) (4)

I g(·) lets us price Pn(·) given Pn−1(·).
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1. Properties of bond prices

Assumption (2)

P1 — Positivity Pn(Xt) ≤ 1 ∀X ∈ X or equivalently yn,t ≥ 0;

P2 — Discounting distant cash flows limn→∞ Pn(Xt)→ 0;

P3 — Invertibility ∃u(·) : R→ R such that u−1(fn,t) = an + bnXt ∀n.

The following choices of functions m(·), g(·) guarantee Properties P1-P3:

1 m(·) is continuous and monotonic with m(X ) ≥ 0 ∀X ∈ X,

2 g(X ) is a contraction with unique fixed-point g(X ∗) = X ∗,

3 g(X ) = KX .
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1. Time series dynamics

Assumption (3)

The time series dynamics of Xt admits X as support and is such that yields
for all maturities yn,t ≡ −log(Pn(Xt))/n have a joint distribution that is
stationary and ergodic.

Virtually any time series dynamics is acceptable in our framework and
will not affect any of our earlier results.

This means that our framework is flexible enough to accommodate:
I GARCH-like or stochastic volatility
I DCC-like or stochastic correlation
I Unspanned macro variables
I Long or infinite lag structure
I Shifting endpoints and unit roots.
I ...
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2. How close are we to AOA?
Theorem 1: Nelson-Siegel Yield Curve
Bond prices generated using

m(Xt) =
[
1 1−e−λ

λ
1−e−λ

λ − e−λ
]
Xt , (5)

g(Xt) =

1 0 0
0 e−λ λe−λ

0 0 e−λ

Xt , (6)

have yields-to-maturity with Nelson-Siegel (1987) loadings.

1 Implementations of the Nelson-Siegel model are not strictly free of
arbitrage (Bjork and Christensen; Filipovic) and the same applies here.

2 Nevertheless, the empirical literature has long concluded that not much
distinguishes NS from a fully-fledged DTSM implementation. (Diebold
and Li; Christensen, Diebold and Rudebusch).

3 We also clarify how close TTSM are to strict AOA.
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2. How close are we to AOA?

Theorem 2: No Dominant Trading Strategy
Our bond price construction allows no dominant trading strategies

Figure: Prices of portfolios with strictly positive payoffs.
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2. How close are we to AOA?

Theorem 3: Self-Financing Arbitrage
Portfolios with non-negative payoffs cannot have negative price.

(

[

Required by AOA
0

0
Implied by our models

Figure: No Arbitrage Strategies: prices of portfolios with non-negative payoffs.
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2. How close are we to AOA?

Theorem 4: Transaction Costs
Our bond price construction allows no arbitrage opportunities in presence of
transaction costs (however small)

How reasonable/important for us to think about transaction costs?

Strictly speaking, we only need to invoke the transaction costs for
self-financing portfolios. These must involve costly short positions.

I See evidence in e.g., Duffie (1996); Krishnamurthy (2002); Vayanos and
Weill (2008); and Banerjee and Graveline (2012)
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3. Specification—f and g functions
Choose g(X ) = KX and m(X ) = u(θ,X ) such that

1 limit (i): Black’s max(0, δ0 + δ′1Xt) with θ1 → 0,

2 limit (ii): linear δ0 + δ′1X with θ1 →∞.

Guarantees positivity in spirit of max(0, δ0 + δ′1Xt) but remains
invertible:

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

6

8

10

s

u(
θ,s

)

Figure: The max function and different shapes of the short-rate function u(θ, s)
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3. Specification—f and g functions

Analytical yields/ forwards:

fn,t = u(θ, δ0 + δ′1K
nXt) (7)

We can work with transformed forwards f̃n,t ,

f̃n,t ≡ u−1(θ, fn,t) = δ0 + δ′1K
nXt (8)

We are back to the linear space: restate the model in terms of
portfolios Pt = Wf̃n,t and proceed with preferred estimation method.
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3. Specification

1 Joint VAR dynamics for yield portfolios Pt and unspanned macro
variables Ut :(

Pt+1

Ut+1

)
= KP

0 + KP
1

(
Pt
Ut

)
+
√

Σt

(
εP,t+1

εU,t+1

)
, (9)

2 The innovations εt ≡ (εP,t+1, εU,t+1)′ ∼ N(0,Σt)

3 Σt combines EGARCH(1,1) and DCC dynamics.

4 Yields: GSW forward rates from GSW; 1990 and 2015; quarterly
maturities between 3 months and 10 years.

5 Macro: Survey forecasts of inflation and gdp 1-year ahead (Blue Chips
Financials).
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4. Results—Model nomenclature

1 A0(3) Gaussian DTSM → A

2 Affine TTSM → AT

3 Affine TTSM with Volatility dynamics → ATV

4 Positive TTSM → PT

5 Positive TTSM with Volatility dynamics → PTV

Here: focus on cyclical volatility variations

In the paper: also check that pricing errors, forecasts, liftoff time, risk
premium and Sharpe ratios are identical between models
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4. Results—Sharpe Ratios

Figure: 2-year bond annual Sharpe ratio; 1990-2008
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Essentially no differences between model-implied Sharpe ratios.
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4. Results—Sharpe Ratios

Figure: 2-year bond annual Sharpe ratio; 2008-2015
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4. Results—Conditional volatility

Figure: 1-Year Yield Conditional Volatility 1990-2008
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Volatility peaks in recession, adding to risk.
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4. Results—Conditional volatility

Figure: 1-Year Yield Conditional Volatility 1990-2015
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4. Results—Conditional volatility

Figure: 10-year Yield Conditional Volatility (2008-2015)
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4. Results—Conditional volatility

Figure: Volatility hump:Difference between 12-month and 1-month ahead volatility.
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4. Results—The changing role of level and slope

Figure: Principal components R2s from yields’ conditional correlation matrix.
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4. Results—The changing role of level and slope

Figure: Principal components R2s from yields’ conditional correlation matrix.
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4. Results—The changing role of level and slope

Figure: Principal components R2s from yields’ conditional correlation matrix.
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Conclusion

1 Propose Tractable Term Structure Models (TTSMs).
I We specify bond prices directly without imposing a parametric SDF.
I Like Nelson-Siegle curves, bond prices are nearly but not strictly AOA.
I Imposition of lower bound is straightforward without giving away

flexibility, tractability and ease of implementation.

2 Empirically:
I DTSM and TTSM risk premium and Sharpe ratios are essentially the

same away from the lower bound.
I TTSM can match volatility dynamics both near and away from the lower

bound.
I The relative importance of level risk and slope risk changes plays a key

role.
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