Pricing Mortgage Stress – Lessons from Hurricanes and Credit Risk Transfer Securities

Authors:
Pedro Gete (IE Business School)
Athena Tsouderou (IE Business School)
Susan Wachter (Wharton)

Discussion:
Fabrice Tourre (Copenhagen Business School)

October 29, 2021
The paper in one slide

Motivation

- How do markets price mortgage credit risk related to natural disasters?
- How would mortgage rates behave absent credit insurance supplied by Fannie/Freddie?

What the paper does

- Study price behavior of CRT securities during hurricane Harvey and Irma via diff-in-diff analysis, exploiting CRTs’ cross-sectional differences in exposure to hurricane-hit areas
- Build mortgage credit model
- Use calibrated model to quantify subsidy to hurricane-prone areas from uniform G-fees
- Use calibrated model to study time-series variation in hypothetical mortgage rates where credit risk is priced by private market
Framework (at least my understanding of it)

- Exponentially amortizing mortgage, floating rate (\(?\))
- Exogenous short rate process, no prepayment option
- Exogenous default intensity (\(\pi_t\)) and loss-given-default (\(\ell_t\))
- Perfectly competitive, risk-neutral credit insurance sector
- Credit insurance premium (\(s_t\))

When all processes are constant (my calculations), \(s = \pi \ell\)
FROM CRT PRICES TO MARKET-IMPLIED MORTGAGE CREDIT SPREADS

What this paper does

• Uses increase in (a) observed credit spreads of junior CRT tranches and (b) delinquencies due to hurricane realization;
• Uses the previous mortgage credit pricing model;
• Estimates incremental default probability due to hurricane risk;
• Backs out “market-implied” credit cost for hypothetical mortgages originated in hurricane-prone coastal areas

Statistical measure \mathbb{P} vs. risk-neutral measure \mathbb{Q}?

• Mortgage pricing model features risk-neutral investors without “priced” aggregate risks
• Do we need CRT securities’ market price to estimate incremental credit cost due to hurricane risk?
 • If hurricane risk is not “priced”, no difference between \mathbb{P} and \mathbb{Q};
 • Mortgage average default rate: 1.78bps p.a.
 • 1 hurricane/year increases baseline hazard rate by 57%
 • \implies Incremental yearly loss rate = $57\% \times 1.78\text{bps} \times LGD$
FROM CRT PRICES TO MARKET-IMPLIED MORTGAGE CREDIT SPREADS
What if aggregate risk is priced?

- To estimate market-implied pricing of different mortgage credit products, need to rely on pricing of all CRT tranches

Without information on all CRT Tranches?

- Market-implied measures becomes highly “model-dependent”
- Example:
 - Portfolio of 2 mortgages (default probability p_i, default correlation ρ)
 - LGD of 100%
 - First-loss tranche 0 – 50 and Super-senior tranche 50 – 100

$$EL_{FL} = p_1 + p_2 - p_1p_2 - \rho \sqrt{p_1p_2(1 - p_1)(1 - p_2)}$$

$$EL_{SS} = p_1p_2 + \rho \sqrt{p_1p_2(1 - p_1)(1 - p_2)}$$

- If $\uparrow EL_{FL}$, is this due to $\uparrow p_i$, or $\downarrow \rho$?
- “Real-world” example: May 2005 auto/credit correlation crisis
What about prepayment risk?

In the model: no prepayment option

In the data: Agency FRM with prepayment option

- Agency FRMs exhibit negative interest rate convexity...
- ... and thus (potentially significant) negative credit convexity:
 - Given LLPA matrix pricing, when borrower’s credit conditions improve, borrower more likely to prepay, thus extinguishing the premium earned by protection seller;
 - Given DTI and other requirement for QM mortgages, when borrower’s economic conditions deteriorate, borrower less likely to prepay, thus extending duration of credit risk taken by protection seller.

- But credit convexity could also go the other way:
 - In bad economic environment with high default rates, Fed QE program leads to a drop in long term rates and wave of refinancings...
Tranche Exposure to Prepayments

Figure 1: 0% CPR

Figure 2: 20% CPR
Delinquencies vs. Realized Losses

In the paper: focus is on mortgage delinquencies

In the contractual structure of CRTs: payoff linked to realized losses

<table>
<thead>
<tr>
<th>Prior Loan Status</th>
<th>Current Loan Status</th>
<th>Pipeline</th>
<th>Pool Removal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Current</td>
<td>Modified</td>
<td>Credit Event</td>
</tr>
<tr>
<td></td>
<td>D30</td>
<td>REO Acq</td>
<td>Defect</td>
</tr>
<tr>
<td></td>
<td>D60</td>
<td></td>
<td>Prepaid</td>
</tr>
<tr>
<td></td>
<td>D90</td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>D120</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D150</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D180+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mod</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prior Loan Status</th>
<th>Current</th>
<th>D30</th>
<th>D60</th>
<th>D90</th>
<th>D120</th>
<th>D150</th>
<th>D180+</th>
<th>Modified</th>
<th>REO Acq</th>
<th>Credit Event</th>
<th>Defect</th>
<th>Prepaid</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>60.47%</td>
<td>0.52%</td>
<td>0.23%</td>
<td>0.19%</td>
<td>0.17%</td>
<td>0.18%</td>
<td>1.89%</td>
<td>0.01%</td>
<td>0.00%</td>
<td>0.08%</td>
<td>0.01%</td>
<td>36.25%</td>
<td>100.00%</td>
</tr>
<tr>
<td>D30</td>
<td>50.19%</td>
<td>9.07%</td>
<td>3.07%</td>
<td>1.95%</td>
<td>1.60%</td>
<td>1.50%</td>
<td>14.09%</td>
<td>0.15%</td>
<td>0.02%</td>
<td>0.69%</td>
<td>0.09%</td>
<td>17.58%</td>
<td>100.00%</td>
</tr>
<tr>
<td>D60</td>
<td>33.27%</td>
<td>8.92%</td>
<td>6.15%</td>
<td>3.93%</td>
<td>2.92%</td>
<td>2.69%</td>
<td>26.20%</td>
<td>0.44%</td>
<td>0.11%</td>
<td>2.57%</td>
<td>0.05%</td>
<td>12.76%</td>
<td>100.00%</td>
</tr>
<tr>
<td>D90</td>
<td>30.19%</td>
<td>6.16%</td>
<td>4.57%</td>
<td>3.68%</td>
<td>2.79%</td>
<td>2.57%</td>
<td>31.55%</td>
<td>0.33%</td>
<td>0.32%</td>
<td>5.89%</td>
<td>0.20%</td>
<td>11.74%</td>
<td>100.00%</td>
</tr>
<tr>
<td>D120</td>
<td>24.83%</td>
<td>5.97%</td>
<td>3.96%</td>
<td>3.45%</td>
<td>2.77%</td>
<td>2.57%</td>
<td>32.52%</td>
<td>1.22%</td>
<td>0.58%</td>
<td>8.76%</td>
<td>0.12%</td>
<td>13.25%</td>
<td>100.00%</td>
</tr>
<tr>
<td>D150</td>
<td>27.65%</td>
<td>4.67%</td>
<td>3.09%</td>
<td>2.35%</td>
<td>2.01%</td>
<td>2.88%</td>
<td>36.45%</td>
<td>0.42%</td>
<td>0.54%</td>
<td>8.55%</td>
<td>0.21%</td>
<td>11.17%</td>
<td>100.00%</td>
</tr>
<tr>
<td>D180+</td>
<td>19.22%</td>
<td>3.27%</td>
<td>1.75%</td>
<td>1.55%</td>
<td>0.77%</td>
<td>1.50%</td>
<td>44.89%</td>
<td>0.75%</td>
<td>2.45%</td>
<td>12.80%</td>
<td>0.21%</td>
<td>10.84%</td>
<td>100.00%</td>
</tr>
<tr>
<td>Mod</td>
<td>48.65%</td>
<td>8.76%</td>
<td>4.45%</td>
<td>2.16%</td>
<td>2.22%</td>
<td>1.28%</td>
<td>24.75%</td>
<td>0.22%</td>
<td>0.49%</td>
<td>7.02%</td>
<td></td>
<td></td>
<td>100.00%</td>
</tr>
</tbody>
</table>